
UNCLASSIFIED

SECURI'Y CLASSIFICAlION OF THIS PAGE (WhenDaraEntered) .

XL&D D4M,'LCflONS1REPORT DOCUMENTATION PAGE srrp pr:,T srp.
1. REPORT NUMHCBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUM6 MW

N 4. TITLE (ondSubitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report:TeleSoft, 26 Nov. 1989 to 26 Nov. 1990
TeleGen2 Ada Development Systems for Hewlett-Packard 9000' 7 PLRFORMING'DRG. REPORT NUMBER
/370 (Host & Target), 89[126I1.10217

7. AUTHOR(s) S. CONTRACT OR GRANT NUMER(s)

Ottobrunn, Federal Republic of Germany.

3. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PRCJECT. TASK

IABG,
AREA & WORK UUIT NUMBERS

Ottobrunn, Federal Republic of Germany.

11. CONTROLLING OFFICE NAME AND APDRESS 12. REPORT DATE

Ada Joint Program Office
United States De partment of Defense 1J NUM:t Of Fii5
Washington, DC 20301-3081

14. OITORING AGENCY NAME & AODRESS(If different from Controlling Office) 15. SECURITi CLASS (o(thisrepori)

IABG, UNCLASSIFIED
Ottobrunn, Federal Republic of Germany. hSa. IrCAIO,/OO,%RADIN

16. DISTRIBJTIOh STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRISJ7iON STATEMEhl (of the abract erreted81 k20 fdfferent from Report)

jUNCLASSIFIED DJ) 1
d :ELECTE

1. SUPP .EMENIARi NOTES

19. XE YWDRDS (Continue on reverse side of neceuar) and identify by blo(k number)

Ada Progra =ning language, Ada Compiler Validation Sumrmary Report, Ada
Corpiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary ond dentf) by block number)

TeleSoft, TeleGen2 Ada Development System, Version 1.4, Ottobrunn West Germany,
Hewlett-Parkard 9000/370 under HP/UX 6.5 (Host & Target), ACVC 1.10.

DD "", 1473 EDITION OF I NOV 65 IS OBSOLETE
1 JAN 73 - S/N =jO.-LF-014-6601 UNCLASSIFIED

9 (4 6)/1. SECURIT1Y CLASSIFICA71ON OF THIS PAGE (when DateaEntered)

AVF Control Number: AVF-!ABG-049

1da COPTT.ER
VALIDATIOi 31UJIMiAY _ PnRT:

Certificate Number: 9891!26T.i0$17
TeleSoft

TeleGen2 Ada Develonpt- System for
Hewlett-Packard 90no/70

Completion of On-Site Testing:
26 November 1989

Prepared y:
ZABG nbH, A-bt. SZT
Einst4insrrasse 20
0-8012 Ottobrunn

'est Germany

Prepared For:
Ada Joint Program Office

United States Departm ent of efense
Vashinuton ?C '0301-10;

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System
Version 1.4

Certificate Number: #89112611.10217

Host and Target: Hewlett-Packard 9000/370
under HP/UX 6.5

Testing Completed 26 November 1989 Using ACVC 1.10

This report has been reviewed and is approved.

IABG mbHAbt SZT

Dr. S. Heilbrunner
Einsteinstr. 20
D-8012 Ottobrunn
West Germany ¢

'a Validation Organization-
ctor, Computer & Software Engineering Division Accesion FO.

..itute for Defense Analyses - --
•andria, VA 22311 NTIS CRA&I

Ada Joint Program Office By
I, Dr John Solomond

...t ...,

Director
Department of Defense A., C
Washington DC 20301 --s ,

Spec,a l

Tl.3M OF COPTF'T',

CHAPTER 1 !i1TRo~ucT7O01

1.1 ?TRPOS-E OF THIS NJTIATIOT S1;,':'.:AFY 0T? .
i~c USE OF THIS "ALIDATIO; SUX..r.?Y .
. EEFERENCES1.4 DEFT-,;.'ITTONr 0 7 TER='.S

1:J5 ;CVC _71r CLASSES

CHAPTER 2 CON1GURATIOU I!FOR!.!ATION

2.1 COUFTGURATIOU TESTED .
2.2 II'PLEiMENTATION CHARACTERISTICS 9

CHAPTER 3 TEST INFORMATION;5

3.1 TEST RESULTS5
3.2 SUMMARY OF TEST RESULT": " ASS 5
3.3 SUi!.'ARY OF TEST RESULTS BY CHAPTER

3.4 UITHDRAIN TESTS......... 16
3.5 INAPPLICABLE TESTS 6
3.6 TEST, PROCESSING, AND EVALUATION M.ODIFICATIONS . 20
3.7 ADDITIONAL TESTING INFOR!ATION 20

3.7.1 Prevalidation20
3-.7.2 Test 'lethod 21
3.7.3 Test Site 21

APPENDIX A DECLARATION OF CONFORIANCE

APPENDIX B APPENDIX F OF THE Ada STAIIDPRD

APPENDIX C TEST PARA:-!ETERS

APPENDIX D WITHDRAWII TESTS

APPENDIX E COl!PIL.ER A11D I?;KER C9TO1;S

K M2TRODUCTOiN

R

.ITRODUCTTO.T

This Validation Summary Report ;TVT descriB .he 4l O ,hich a
specific -Ada compiler conforms to tie Ada Sttan'idard, AiSI/..,-$TD-lBISA.
This report explains all technical terms used -it in it an d thorr,'Igh.
reports the results ,ot.sng this ,-o,,piler using the A,3; Covpiler
Validation Capability / ..4 C An Ada compiler must be implemented
according to the Ada Standard, and any implementation-6ependent features
must conform to the requirements of the ;da 9tandard. The zd- Standard
must be implemented in its entirety, and nothing can 'c .alioplemenred 'hat is
not in the Standard.)

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do Pxisf between implementations.
The Ada Standard permits som.e implementation dependencies--for exai'ple, th&.
maximum length of identifiers or the ,,aximun talues of integer types.
Other differences between compilers result from the characteristics of
-particular -operating systems, hardware, or imnplementation strategies. All
the dependencies observed during the process of testing this compil-zr are
-given in this report. 9

-The information in this report is derived from the test results nrciduce4
during validation testing. The validation process inclildes sub!Pitting a
suite of standardized tests, the ACVC, as inputs to an Ada ,:onpiil.r tnv
evaluating the results.The p.urpose of validating is to ensure .:ortF r'.ity
of the compiler to the Ad Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language construct'. The testing also identifies behavior tHat i%
implementation- dependent,\ but is permitted by the Ada Standard. Six
classes of tests are used. \These tests are designed to perform rhecks
compile time, at link time, duig.xutin

1.1 PURPOSE OF THIS VALIDATION SU .ARY REPORT

This vSR documents the results of the walidatin resting performed on an
Aa- compiler. 7e-sting was carried out for the following purposes:

To at-tempt tr' ideiitify any langnage 'orst 'ors kipported 'y rH-
compiler t'at ,o not ,onform to the AZa Sta"3Ard

To attempnt to identify any langiiage e,',ctri"ts not -upported by
the ,'ompiler h,,t -qir ed by the Ada Standard

To determine that the i-mplementat,.or,-,i en,,et bhav-ior is .- ioed
by the Ada Standard

Testing of .'this compiler uas oondiredt by 1-.. ZVF accordewq to
procedures established by he Ada Joint Proram O*. ,'e a',; ;dlij sfered uy
the Ada Validation Organization (AVO).

1.2 USE OF THIS VALIDATIOt SUIIARY PFPORT

Consistent with the national laws of the originating contry, the AVO 1.my
make full and free pubiic disclosure of this report. in the United States,
this is provided in accordance with the "Freedom of Tnformation Act"
(5 U.S.C. #552). The results of this "alidation a-ply only to the
computers, operating systems, and compiler -versions identified in this
report.

The organizations represented on -the signature page of this report do not
represent or warrant that a-l statements set forth in this -report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this -report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
IABd mbH, Abt. SZT
Einsteinstr. 20-
D-8012 Ottobrunn
Vest Germany

Questions regarding this report or the validation test results ihnniLd the
directed to the AVF listed above or to:

Ada Validation Organization
nsttute for Defense Analysps
1801 ;Uorth Beauregard Street
Alexandria VA 22311

iNTRODUCTIOt

1.3 REFERENCFS

1. Reference .anual for the Ada Programming -ngliage,
ANSIII.IL-STD-1815A, February 1983 an6 L, .652-1987.

2. Ada Compiler Validation Procedures and kidelin;s, '.da 0.oLiI
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Imple,,nenters' Guide, qoffech,
7.nc., December 1986.

4. Ada -Compiler Validation Capability User's Gide, December 1986.

1.4 DEFINITION OF TER!S

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all infor ation ere-1evant to t he
Commentary point addressed by a comment on the Ada Standard. These

comments are given a uniepe identification nimber haiuing the
-form AI-ddddd.

Ada Standard ANSI/IL-STD-1815A, February 1-98 and ISO 8652-1987.

Applicant The agency requesting validat-ion-.

AVF The Ma Validation Facility. The AVF is responsible for
-conducting compiler validations accordinig to proced,,res
contained in the Ada Compiler Valiration ?coceduL-es ;u!d
Guidelines.

AVO The Ada Validation Organization. The AV has oversight
authority ovrer all AVF practices for the piirpose of
maintaining a uniform process .for "alidation of Ada
compilers. The AVO provides administrati;e .nd technical
support for Ada -alidations to ensure consistent practices-.

Compiler -A processor for the Ada language. In the context of thi i
report, a compiler is any languiage processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the- compfler generates a result that

demonstrates Ponconfor'-ity to the zda Standard.

'st The corpt . ,,n which the .omnile re:.ideq.

inapplicable An ACV*c Fest that ,ts;.s eati're. of the i.alaJlage that
test compiler is not required to ;upport or may legitimately

support in a way other thhn the nne ex.ected hY the -eFst.
assed test An CVC test for which A compilr generates Phr expected

result.

Target The computer which .xecuts the code jeene rated by
compiler.

Test A program that checks a 7ompil, r' ' -onformd ty regarding i.
particular feature or a combination of features to the Ada
Standard. In the conteyt of this r;eport, the term is used h,1
designate a single test, which :-ay coroprise one or miore
files.

Withdrawn An ACVC test found -to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illergal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured itsing- the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program uinits are used to report their results during
execution. Class B tests are expected to produce compilation errors.
-Class L tests are expected to produce errors because of the way in which a
program library is used at link- tme.

Class A tests ensure the successful compilation And execution of legal Aa
pregrams with certain language constructs which cannot be verified at run
time. There are -no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved ,ords of
another language (other than those already reserved- in- the Ada language)
are nor treated: as reserved words by an Ada ,ompi'ler. z Class -A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests rheck that a compiler detects illega! language uisagr.
Class B tests ar: riot executable. Each test in this class is compiled and
the resulting compilation listing is examined ro verify that every syntax
or semantic error in the test is detected. ; C-lass S test is p~ssed i.
ewery il!-gal construct that it contains is detected by the compiler-.

Class C t'ests check the run time system to ensure that !eegal Zda DrograN.
can be correctly comqpiled and execut-e,. -ach Class C test is -
and produces a PASSED, FAILED, or VOT 'jP1,IC1!7., qlessage indicating the
result when it is executed.

Class 0 tests check the compilation -and execution capacities of A compii .z
Since there are no capacity recpire,nens ,.i oil a "oimpilhr by the Zde
Standard for some parameters--for exanple, 1he number -if i db*tif eL
permitted in a compilation or the number of 11n. i s in a lihrary-- rrlD r
may refuse to compile a Class D test and s':11 :1P 4 conforming o,'iler.
Therefore, i-f a Class D test fails o -n, Inile loecause the ,'apac h, of he
compiler is exceeded, the test is ciassified As inapplicable. Tf . . '
test compiles successfully, it is self-,hecking and produces a PASSETI or
FAILED message during execution.

Class E -tests are expected to execute successfully and ,'heck
implementation-dependent options ind r-sol,,tions of ambigpities in the 'tda
Standard. Each Class E test is se-f-checking and produces I tOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class F tests during compilation.
Therefore, a- Class E test is passed- by a compiler if iV is compiled
successfully and executes to produce a PASSED esqare, or i-f i-t is reJecten
by the compiler for an allowable reason.

Class L--tests check that incomplete or illegal Ada programs involling
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled-separately and execution is attempted.
A Class L test passes if it is rejected at- link time--that is, an Attempt
to execute the main program must -generate an error message before any
declarations in the main program or any units referenced by the main
program are -elaborated. In some cases, an implementation nay legitimately
detect errors during compilation of -the test.

Two library units, the package REPORT and the procedure CHECK FILE, support
the se-f-checking features of the executable tests. The package REPORT
provides the mechanism by which executable t-sts report PASSED, FAIL-D, or
14OT APPLICABLE results. It also -proides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would- circumvent a test objective. The procedure CHECK _ILE is ,Ised to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and- CHECK_.ILE is
checked-by a set of executable tests- These tests produce iessages that
are examined to verify that the units are operating correctly. if these
units are -not operating correctly, then the validation is not attenpted.

The text of each test in the ACVC tol!,nws conventions that are intended o
ensure that the tests are reasonably portable uithout ,eodfication. For
example, the tests make use of only the basic set of 55 characters, contain
lines vith a mavin.um length of 721 charac'ters, ise small nuezic "*al ues, and
tests. However, come tests ,nlitair, --Aluis that require the test to be

customi-zed according to implemnentation-specific vaiiies--for tixampl_, an
illegjal file name. A list of the values used for this validaetion is
provided in Appendix C.

A compiler must correctly process each of the tests in the ;uite and
demonstrate conformity to the Ada Standar4 j either meetiny -he pass
oriteria given for the test or by sbowing that the test is inapp]icable to
the implementation. The applicabil.:ty nf a test to an. impLetieetation is
considered each time the implementation is validated. z. test that is
inapplicable for one validation is .*ot :!e-5sarily inapplicable For a
subsequent validation. kny test that was determined to co,,tain an illegal
language construct or an erroneous langiiaga construuct is trithdrawn fvom the
ACVC and, therefore, is not -used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

~GUR ~ThT; rQ;;.ATToi3

CHAPTER 2

CONFIGURATION TMFORNATI Oi

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: TeleGen2 Ada Development System

Version- 1.4

ACVC Version: 1.10

Certificate Number: #89112611.10217

Host Computer:

Machine: Hewlett-Packard 9000/-70

Operating System: HPIUX 6.5

Memory Size: 16 TlegaBytes

Target Computer: same as host

2.2 itIPLEIRENTATION CHIUACTERISTICS

One nf the purposes of ralidating compilers is to determine thA bshAvior of
a compiler in those areas of the Ada $tandard rhat per,,it implem ntations
to differ. Class D and E tests specifically ,ihkck for sich imp! .qntation
differences. However, tests in other clasqes ilso -har;tsrize ;-
implementation. The tests demonstrate the followring characteristics:

a. Capacities.

1) The compiler oorrect!y Dro,esses a -cio-pi!Ation
containing 123 variables in the safe declarative part. (See
test D29002K.)

2) The compiler correctly processes tests containing
loop statements nested to 65 levels. (See te~ts D55A03A..H
(8 tests).)

1) The compiler correctly processes tests containing
block statements nested to 65 levels. (See i'esc P'O01B.)

4) The compiler correctly processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D64MOSE..G (3 tests).)

b. Predefine6 types.

1) This implementation supports the additional predefined typei
LONGTNTEGER and LONG-FLOAT in the package STARDARD. (lee
tests B8600iT..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the tire at which
constraints are checked ire not d-fined by tht language. *-hiIi;-
the ACVC tests do not specifically attepf '.n !,etermine 1he order
of evaluation of expressions, test resilts indicate the following:

1) Some of the default initialization expressions
for record components are evaluated before any .iaue1 is
checked for membership in a component' subtype. (5e test
C32117A.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See test C357128.)

3) This imple-ientation itses no extra bits for .xtri .,recision
and .ises no extra bits for extra range. (See test rO03A.)

4

4) NUMERIC ERROR is raised for largest integer 'omparison and
membership tests and no exception is raised for or'-defined
integer comparison and membership tests when an integer
literal operand in a comparison or :nembership test is outside
the range of the base type. (See test C45232A.)

5) NUMERICERROR is raised ,'h en :4 "teral np-rand in a
fixed-point comparison or membership t.-st is outside t r- cnge
of the base type. (See test .

6) Underflow is gradual. (see ,r~sr3 r524A. 7 ! tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the 'CvC tests do not specificAlly
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest int-ger is roind
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static uni',ersal
real expressions is round away from zero. (See test C4AOI4A.)

e. Array types.

An implementation is allowed to raise HIUMERIC.ERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STARDARD.ITTEGER'LAST and/or SYSTEN.rIAX ilT. Fr r this
implementation:

1) Declaration of an array type or subtype declaration vith -lore
than SYSTEIL.AXIT components raises NUMERICSPROR for a
two dimensional array subtype -,here the large dimension is the
second one. (See test C36003A)

2) CONSTRAINTERROR is raised when 'LENGTH is applied to an
array type with IUTEGER'LAST + 2 components. (See test
C36202A.)

3') UERICERRO is eaised hen an array type with
SYSTEM.MAXLIlT + 2 components is declared. (S- test
C36202B.)

4) ' packed BOOLEW aNrray having A L77TMT exceeding VITEGER'LAST
raises no exception. (lee test C521011)

5) A packed two-dimensional ROOLEAN qrray with nore than
INTEGER'LAST :omrpnents raiseq CONSTRAINT.ERROR when the
length of a dimension is calculated nd ex.eeds TNTEGER'LAST.
(See test C52104Y.)

6) In assigning one-dimensional array Iypes, the expression is
evaluated in its entirety be4-re CO11TRATITTSPROR is
raised when checking whether the expression's -ubtyp6 is
compatible with the target's subtype. (See test r52013:.)

7) In assigning two-dimensional array types, the expression
is not evaluated in its entirety before CONSTRIT RROR is
raised when checking whether the expression's smbtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater than
!I4TEGER'LAST 5ray raise NUMERICERROR or CONSTRAINTRROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E5213Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINTFRROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are
made as choices are evaluated. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

3) CONSTRAIITERROR is raised after all ohoices are
evaluated when a bound in a non-null cange of a non-null
aggregate does not belong to an index subtype. (As reit
Z43211B.)

CONFIGURATION INFORMATION

h. Pragmas.

1) The pragma INLINE is supported for procedures and for non-
library functions. (See tests LA3004A..B (2 tests), EA3004C..D
(2 tests), and CA3004E..F (2 tests).)

i. Generics.

This implementation creates a dependence between a generic body
and those units which instantiate it. As allowed by IA-408/11, if
the body is compiled after a unit that instantiates it, then that
unit becomes obsolete.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CA1012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) G6neric subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CA1012A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies - can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,

O3NFTGURATIO. T"-1A T T01

BC3204C, and BC3205D.)

8) Generic library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

9) Generic uinit bodies and their subunits can be
compiled in separate compilations. (S e test CA3O1.)

J. Input and output.

1) The package SEQUENTIALTO cannot be instantiated with uncon-
strained array types or record types with Aiscriminants with-
out defaults. (See tests AE2101C, EE22O1D. and EE2201E.)

2) The package DIRECT_1O cannot be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE21OIH, EE2401D: and EE240IG.)

3) Modes INFILE and OUTFILE are supported for SEQUENTAL_1O.
(See tests CE2102D..E, CE2102N, and CE2102P.)

4) Modes IN FILE, OUT FILE, and TOUTFILE are supported for
DIRECT-IO. (See tests CE2102F, CE-Z102..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

5) Modes IN FILE and OUTFILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

6) RESET and DELETE operations are supported for
SEQUENTIAL_1O. (See tests CE2102G and CE2102X.)

7) RESET and DELETE operations are supported for DTRECTTO.
(See tests CE2102K and CE2102Y.)

8) RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE311OA, and
CE3114A.)

9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

10) Temporary sequential files are given names And not
deleted when closed. (See test CE2108A.)

11) Temporary direct files are given nam es and not deleted when

closed. (See test CE2108C.)

12) Temporary text files are given- ;ames and not 4eleted

when closed. (See test CE3112A.)

13) More than one internal file can be associated with
each external file for sequent:ial Hiles 4ben reading
only. (See tests CE2107A..E (5 tesrs), CE21021., CE211flB, atnd
CE2111D.)

14) More than one internal fil- :n :e associated ".4ith
each external file for direct fil-. .1en ,.'eadi;g oniy (See
tests CE21O7F..H (3 tests), CE2110s and CS211!H.)

15) More than oee internal file can he assoi?ted with
each external file for text files when reading only (See
tests CE3111A..E (5 tests), C(Er3i1iB, and .31.15A.)

TEST IF:TOT

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 314 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 15 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 127 1129 2018 17 23 A5 3359

Inapplicable 2 9 297 0 5 1 314

Withdrawn 1 2 35 0 6 0 4A

TOTAL 130 1140 235n 17 34 46 717

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT TEST IPTER TOTAL

2 3 4 5 6 7 i3 ii ,01 2 3

Passed 198 573 544 245 172 99 160 112 111 36 250 1403 273 3359

I/A 1476 136 3 0 0 6 '- 2 9 43 314

7drn 1 1 0 0 0 0 0 2 0 i s 5 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 A04 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC300?8 C-1212D
CD2A63A CD2A63B CD2A63C CD2A61D CD2A6AA CD2A66;
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73l CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A!31G CD2A83G
CD2A84N CD2A84, CD50110 CD2Bl5C CD7205C CD2D1B
CD5007B ED7004B ED7005C ED7005D ED7009C ED7006D
CD71O5A CD7203B CD7204B CD7205D CE21071 CE3111C
CE330IA CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make 'is. of irat'res
that a compiler is not required by the Ada Standard to support. Others way
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 314 tests were inapplicable for

a. The following 201 tests are not applicable because they have
floating-point type declarations 'eqiiring 'ore ,ijits thau
SYSTE.!. IAX_ IGITS:

(24113L..'t (14 tests) C35705L..Y (14 tpstq)
C3570AL..1 (14 tests) C37fl ..Y (14 tests)

'TST TFOrI ATTnU

C^708L..Y (14 tests) 1'35802...Z (15 tests)
C452Z!,.. Y (I tests) C45321L..7 (14 tests)
C45421L..Y (14 tests) 45521L. .Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C49312L..Z 115 tests)

b. C355081, C35508J, C35508N!, and Cr5508N are not applicable because
they include enumeration represe4ntation clauses for BOOLEAN types
in which the -presentation %,alues are other I'han (TALSS ,
TRUE =5 1). Under the terms of AI-n0l23, this implehenta-ion is
not required to support such representation clauses.

c. C35702A and B86001T are not applicable because this implementation
qupports no predefined type SHORTFLOAT.

d. The following 16 tests are 'lot applicable becanse this
implementation does not support a predefined type SHORT_?XTEGER:

C45231B C45304B C45502B C455038 C45504B
C45504E C45611B r45613B C45614B C45631B
C45632B B52004E C55BO7B B55BO9D B86001V
CD7101E

e. C455314..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTE1.HAX4ARTTSSA greater than
J2.

f. C86001F is not applicable because, for this implementation, the -

package TEXTIC is dependent upon package SYSTEMr. These tests
recompile package SYSTEM, making package TEXT-TO, and
hence package REPORT, obsolete.

g. B8600IX, C45231D, and CD71O1G are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, LONG_1PTEGER, or SHORT INTEGER.

h. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. B8600IZ is not applicable because this implementation supports no
predefined floating-point type iith a name other than FLOAT,
LONG-FLOAT, or SHORTFLOAT.

j. CA2009C, CA2009F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic body
and those units which instantiate it (See Section 2.Z. i ind
Appendix F of the Ada Standard).

k. LA3004B, EA3004D, and CA3004F are not applicable hec ,se this
implementation does not support prPgroa TIILINE for :li1'rary

T"T TIMO ATTON

functions.

1. CD1009C, CD2A41A..B (2 tests), CD2A41E and CD2A42A..J (10 tests)
are not applicable because of restricti-, ,onST,&F, Length clauses
for floating point types.

n. CD2A61I..J (2 tests) are not --.plicabl- '.ecause of restrictions en
'SIZE length clauses for array "ipes.

n. CD2A84B..I (8 tests) and Cn2A84X..L (7 hPsts) ire not 1-picah-

because of restrictions on 'SIZE length -!laitss fnr acoess trplpq,

o. CD4041A is not applicable because of restrictions on record
representation clauses with 32 bit al gnment.

p. AE2101C, rE2201D, and EE2201E use instantiations of package
SEQUENTIAL_1O with unconstrained array types and record typps wit'h
discriminants without defaults. These instantiations are rejected
by this compiler.

q. AE2101H, EE240ID, and EE2401G use instantiations of package
DIRECT IO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

r. CE2102D is inapplicable because this implementation supports
CREATE with INFILE mode for SEQUENTIALIO.

s. CE2102E is inapplicable because this implementation supports
CREATE with OUTFILE mode for SEQUENTIAL10.

t. CE2102F is inapplicable because this implementation supports
CREATE with INOUTJILE mode for DIRECT_TO.

u. CE2102I is inapplicable becaiise this implemenation supports
CREATE with INFILE mode for DTPECT TO.

v. CE2102J is inapplicable because this implenentation siipports
CREATE with OUT-FILE mode for DTRECTIO.

w. CE2102N is inapplicable because this implementation supports OPEN
with IN FILE mode for SEQUE11TIALTO.

x. CE21020 is inapplicable because this implementation supports RESET
with INFILE mode for SEQUENTIALIO.

y. CE2102P is inapplicable because this impl..:T-entation -,pp,'-ts OP?;i
with OUTFILE mode for SEQUENTIALTO.

z. CE2102Q is inapplicable because this impnl.!,ntation siipporrs RSF.T
with OUTFILE :,lode for SEQUENTIA L_0.

T T !: ATT(

ia. CE2102R is inapplicable because this irplenentatinn supports OPEN
with INOUT FILE mode for DIRECT-IC.

ab. CE2102S is inapplicible because this implementation stpports RESET
with I1TOUTFILE mode for DIRECT-!O.

ac. CT2102T is inapplicable because this imaplemrntatirin -,upports OPEIT
rith I- FILE mode for DIRECT-TO.

ad. (E2102U is inapplicable because this implemrentatien snprorts RESET
with IN-FILE mode for DIRECT 10.

ae. CE2102V is inapplicable because this i-pleiventation supports OPEN
with OUTJTLE mode for DIRECTTO.

af. CE2102W is inapplicable because this mplementation supports RESET
with OUT FILE mode for DIRECT 10.

ag. CE2107B..E (4 tests), CE2107L, CE211OB, and CE2111D are not
applicable because multiple internal files cannot ba associated
with the same external file when one or more files is writing
for sequential files. The proper exception is raised when
multiple access is attempted.

ah. CE2107G..H (2 tests), CE211OD, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

ai. CE3102E is inapplicable because text file CREATE with 11_FILE mode
is supported by this implementation.

aj. CE3102F is inapplicable because text file RESET is supported by
this implementation.

ak. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

al. CE31021 is inapplicable because text tile CREATE with OUTFILE
mode is supported by this implementation.

am. CE3102J is inapplicable because text file OPEN with INJILE mode
is supported by this implementation.

an. CE3102* is inayplicible because -ext file OPEN with MUT_7TLE mnde
is supported by this implementation.

ao. CE3111B, "I311ID.-. (2 tests), "E3114B, and CZ3115A are not
ipplicable because nuitiple internal fil-s rnnnot 1)e issociated

with the same external file when one or ,ore ;il-s is wiHit,(i ,O
text Eiles. The proper exception is raised :hen 'r.:tip[cless
is attempted.

3.6 1ST, PROCESSIN,, 1.D VALUT.TT OiR O, TS

:t is expected that some tests -ill qiri inoi Cirati.ons ,. 'ode,
processing, or r,,ahttation in ord-r tr) '..nsat ,r r, t,

implementation bnehavior. T.odificitions ;rie ,., ., r n. 5 . -
legitimate ir.piementation beha,,ior prevents the ucs.fi. ', tin of tn
(otherwise) applicable test. Examples -If ZIch "'."C, ications itude:
adding a length ,:laiise to altter fhe default size nf A collection; -piitting
a Class B test into subtests so that . I -rrr .- ' i 1.tected; a nd
confirming that messages produced by a n -xe-,it able I-st e stonstrate
conforming behavior that was not anticipatd by 'he t st (,.uch ;is raising
one exception instead of .nother).

Iodifications were required for 15 tests.

The following tests were split because syntax irrnr'; at ,n~z ,, ,!ir t
in the compiler not detecting other errors in the test:

B71001E B71001K 87!0n!Q .7 .0 O 1 A3C,.SA BA3OG6B
RA3007B BA3008A BA3008B 15A303A (6 ri ,.)

Tests C34005G, C34005J and C34006D returned the resilt FAILED because ,f
false assumptions that an element in an array orI a record type may lint be
represented more compactly than a single object of that type. The AVO has
ruled these tests PASSED if the only message of failir, nccurs fro,, the
requirements of T'SIZE due to the above assumptions (T is the array type).

In tests CD2C11A and CD2C1IB the size specification in !h, rnpres.ntition
clause for the task storage size for task type TTYPE was increased from
1024 to 2048 because 1024 bytes were insiifficient for this copiler.

3.7 ADDITIONAL TESTING INFORIMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ;CvC Us.r-ion 1.10 produiced
by the TeleGen2 Ada Development System for A computing sys.t m based on
the same instruction set architecture was submitted to the AVF by the
applicant for review. Analysis of these res iiI 4emonstr;ted that the
TeleGen? System successfully passed all Anplc.b,1 tests, ind i
exhibited the expected behavior on all in piih, -" sts. The AppDccant
certified that testing results for the computing system of this .t;lidatioi.
would be identical to the ones submitted for reviev Prior to ,,alidatiuIn.

3.7.2 Test Hechod

Testing of the TeleGen2 Mda evelopment Systcu using ACVC Version 1.10
WAs conducted -n-site by a validation t ua m rort the AVM. The
configuration in which the testing was rerforred is described by the
following designations of hardware and software co!ponents:

Host: Hewlett-Packard 9000/370

under HP/UX 6.5

Target: same as host

A cartridge containing the customized test -uite was '.oaded onto a SUTN-3
and transferred via Ethernet to an intermediate computer whose disks were
accessible via Ethernet for the host computer. The full set of tests were
then compiled, linked and executed on the host computer. Results were
collected on the host computer and transferred vii Ethernet to yet another
computer for evaluation and archiving.

'rhe compiler was tested using command scripts provided by Tl.Ie~oft
and reviewed by the validation team. The tests were compiled using the
command

Ada -0 D>

and linked with t,- command

ald <main unit>

The -L qualifier was added to the compiler call for claqs B, expanded and
modified tests. See Appendix E for explanation of compilcr and linker
switches.

Tests were compiled, linked, and executed (as appropriate) using one com-
puter. Test output, compilation listings, and job logs vere captured on
cartridge and Archived at the AVF. The listings Axamined on-site by the
validation team were also archived.

3.7.3 Test Site

Testing was conducted at TeleSoft, San Diego, USA, and was completed on
26 November 1989.

DECLARATTO OF CCTItR',!A'HCE

TeleSoft has submitted the following Declaration of Conformance concerning
the TeleGen2 Ada Development System.

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: IABG, Dept. SZT, D-8012 Ottobrunn
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System
Version: 1.4

Host Architecture ISA: Hewlett-Packard 9000/370
OS & VER #: HP/UX 6.5

Target Architecture ISA: Same as Host
OS & VER #: Same as Host

Implementor's Declaration

I, the undersigned, representing TELESOFT, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that TELESOFT is the owner of record of the Ada language
compilers listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made only in the owner's corporate
name.

____ __'CA___ ___4___ Date:4-'ELESOFT (7 {

* f Raymond A. Parra, VicePresident and General Counsel

Owner's Declaration

I, the undersigned, representing TELESOFT, take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

4 ~~Date:______
ydTELESOFT

rRaymond A. Parra, Vice President and General Counsel

MPENIT F OF TH7, MA !1TARD

APPENDIX A

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies corresponi to
implementation-dependent pragmas, to certain n.achine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the TeleGen2 Ada Development System, as described in
this Appendix, are provided by TeleSoft. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are nct a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONG-INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONGFLOAT is digits 15

range -8.98846567431158E+307 .. 3.98846567431!58E+307;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 36400.0;

end STANDARD;

CHAPTER 3: LRM ANNOTATIONS

CHAPTER CONTENTS

3 LRM ANNOTATIONS 3-1

3.1 LRM Chapter 2 - Lexical Elements .. 3-1

3.2 LILM Chapter 3 - Declarations and Types 3-1

3.3 LRM Chapter 4 - Names and Expressions ... 3-3

3.4 LIL Chapter 9 -Tasks 3-3

3.5 L M Chapter 10 - Program Structure and Compilation Issues o 33
3.6 LRM Chapter 11 -Exceptions .. 3-3

3.7 LRM Chapter 13 - Implementation-Dependent Features 3-4

Table:. Summary of LRLM Chapter 13 Features .. 3-4

3.7.1 Pragma Pack .. 3-5

3.7.2 [LRM 13.21 Length Clauses ... 3-7

3.7.2.1 (a) Specifying Size: T'Size ... 3-7

3.7.2.2 (b) Specifying Collection Size: T'Storage..Size ... 3-8
3.7.2.3 (c) Specifying Storage for Task Activation: T'StorageSize 3-9

3.7.2.4 (d) Specifying 'Small for Fixed Point Types: T'Small 3-9
3.7.3 [LRM 13.31 Enumeration Representation Clauses 3-10
3.7.4 [LRM 13.41 Record Representation Clauses ... 3-10

3.7.5 ILRM 13.51 Address Clauses .. 3-11

3.7.6 [LRM 13.6 Change of Representation ... 3-12

3.7.7 [LRM 13.71 The Package System ... 3-12
3.7.8 [LRM 13.7.21 Representation Attributes. ... 3-12

3.7.9 [LRM 13.7.31 Representation Attributes of Real Types 3-12
3.7.10 (LRM 13.81 Machine Code Insertions ... 3-12

3.7.11 [LRM 13.9 Interface to Other Languages ... 3-13

3.7.12 (LRM 13.101 Unchecked Programming .. 3-13

3.8 LILM Appendix F for TeleGen2 ... 3-13
Table: LRM Appendix F Summary .. 3-14

3.8.1 Implementation-Defined Pragma o.. 3-15

3.8.1.1 Pragma Comment ... 3-15
3.8.1.2 Pragma Linkname .. 3-16
3.8.1.3 Pragma Im ages 3-16
3.8.1.4 Pragma No.Suppress ... 3-17

3.8.2 Implementation-Dependent Attributes .. 317
3.8.2.1 'Address and 'Of et 3.17

3.8.2.2 Extended Attributes for Scalar Types ... 3-17
3.8.2.2.1 Integer Attributes .. 3-19

31JUL89 -"k- R.EF-134TNVl.l(U/68) (1989 TeleSoft

CHAPTER 3: LRM ANNOTATIONS

CHAPTER CONTENTS

3.8.2.2.2 Enumeration Type Attributes ... 3-22
3.8.2.2.3 Floating Point Attributes ... 3-25

3.8.2.2.4 Fixed Point Attributes .. 3-27
3.8.3 Package System ... 3-31

R.EP-1347N-V1.l(U/68) 0 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

3. LRM ANiOTATIONS

TeleGen2 compiles the full ANSI Ada language as defined by the Reference Manual for the
Ada Programming Language (LRM) (ANSI/MIL-STD-1815A). This chapter describes the
portions of the language that are designated by the LRM as implementation dependent for the
compiler and run-time environment.

The information is presented in the order in which it appears in the LRM. In general,
however, only those language features that are not fully implemented by the current release of
TeleGen2 or that require clarification are included. The features that are optional or that are
implementation dependent, on the other hand, are described in detail. Particularly relevant are
the sections annotating LRIM Chapter 13 (Representation Clauses and Implementation-
Dependent Features) and Appendix F (Implementation-Dependent Characteristics).

3.1. LRM Chapter 2 - Lexical Elements

[LRI 2.1] Character Set. The host and target character set is the ASCII character set.

[LRM 2.21 Lexical Elementa,Separators, and Delimiters. The maximum number of
characters on an Ada source line is 200.

[TRM 2.8] Pragmas. TeleGen2 implements all language-defined pragmas except pragma
Optimize. If pragma Optimize is included in Ada source, the pragma will have no effect.
Optimization is implemented by using pragma Inline and the optimizer. Pragma Inline is not
supported for library-level subprograms. Pragma Priority is not supported for main programs.

Limited support is available for pragmas Memory..Size, Storage-Unit, and System_.Name;
that is, these pragmas are allowed if the argument is the same as the value specified in the
System package.

Pragma Page and List are supported in the context of source/error listings; refer to the
Compiler/Linker chapter of the TeleGen2 User Guide for more information.

3.2. LRM Chapter 3 - Declarations and Types

[LRM 3.2.11 Object Declarations. TeleGen2 does not produce warning messages about the
use of uninitialized variables. The compiler will not reject a program merely because it contains
such variables.

[LRM 3.5.11 Enumeration Types. The maximum number of elements in an enumeration
type is 32767. This maximum can be realized only if generation of the image table for the type
has been deferred, and there are no references in the program that would cause the image table to
be generated. Deferral of image table generation for an enumeration type, P, is requested by the
statement:

pragma Images (P, Deferred);

Refer to "Implementation-Defined Pragmas," in Section 3.8.1, for more information on pragma
Images.

31JUL89 RF.134N.V1.1(U/88) () 1989 TeleSoft

TeleGeA2 Reference Information for UNIfl/68K eosts

[LRM 3.3.4] Integer Types. There are two predefined integer types: Intevepr andLong..nteger. The attributes of these types are shown in Table 3-I. Note that using explicitinteger type definitions instead of predefined integer types should result in more portable code.

Table 3-I. Attributes of Predefined Types Integer and Long-Integer

Attribute - Type
Integer Long-Integer

First -32768 -2147483648
'Last 32767 2147483647
'Size 16 32
'Width 6 11

[LRM 3.5.81 Operations of Floating Point Types. There are two predefined floating pointtypes: Float and Long-Float. The attributes of types Float and Long..Float are shown in Table3-2. This floating point facility is based on the IEEE standard for 32-bit and 64-bit numbers.Note that using explicit real type definitions should lead to more portable code.
The type Short-Float is not implemented.

Table 3-2. Attributes of Predefined Types Float and Long-Float

Attribute Type
Float Long-Float

'Machine Overflows TRUE 'RU
'Machine..Rounds TRUE TRUE
'Machine..Radix 2 2
'Machine..Mantis a 24 53
'Machine..Emax 127 1023
'Machine_-Emin -125 -1021
'Manti.s ' 21 51
'Digits 6 15
'Size 32 64
'Emax 84 204
'Safe..Emax 125 1021
'Epsilon 9.53674E-07 8.88178E- 16
'Safe..Large 4.25253E+37 2.2471164 1857789E+307
'Safe-.Small 1.17549E-38 2.22507385850721E-308
'Large 1.93428E+25 2.57110087081438E+61
'Small 2.58494E-26 1.99469227433161E-62

3-2 R.EP-1347N.V.l(U/68) (9) 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

3.1. LRM Chapter 4 - Names and Expressions

[LRM 4.10] Universal Expressions. There is no limit on the accuracy of real literal
expressions. Real literal expressions are computed using an arbitrary-precision arithmetic
package.

3.2. LRM Chapter 9 - Tasks

[LRM 9.6] Delay Statements, Duration, and Time. This implementation uses 32-bit
fixed point numbers to represent the type Duration. The attributes of the type Duration are
shown in Table 3-3.

Table 3-3. Attributes of Type Duration

Attribute Value

'Delta 0.000061035156250
'First -86400.0
'Last 86400.0

[LRM 9.8] Priorities. Sixty-four levels of priority are available to associate with tasks

through pragma Priority. The predefined subtype Priority is specified in the package System as

subtype Priority is Integer range 0..63;

Currently the priority assigned to tasks without a pragma Priority specification is 31; that is:

(System.Priority'First + System.Priority'Last) / 2

[LRM 9.11] Shared Variables. The restrictions on shared variables are only those specified
in the LRM.

3.3. LRM Chapter 10 - Program Structure and Compilation Issues

[LRM 10.1] Compilation Units - Library Units. All main programs are assumed to be
parameterless procedures or functions that return an integer result type.

3.4. LRM Chapter 11 - Exceptions

[LRM 11.11 Exception Declarations. Numeric-Error is raised for integer or floating point
overflow and for divide-by-zero situations. Floating point underflow yields a result of zero without
raising an exception.

Program-Error and Storage-Error are raised by those situations specified in LRM Section
11.1. Exception handling is also discussed in the Programming Guide chapter.

04JAN90 REF-1347N-V1.2a(U/68) @) 1990 TeleSoft 3-3

TeieGen2 Reference Information for UNIX/68K Hosts

3.7. LRM Chapter 13 - Implementation-Dependent Features

As shown in Table 3-4, the current release of TeleGen2 supports most LRM Chapter 13
facilities. The sections below the table document those LRM Chapter 13 facilities that are either
not implemented or that require explanation. Facilities implemented exactly as described in the
LRM are not mentioned.

Table 3-4. Summary of LRM Chapter 13 Features for TeleGen2

13.1 Representation Clauses Supported, except as indicated below (LRM 13.2 -
13.5). Pragma Pack is supported, except for dynam-
ically sized components. For details on the
TeleGen2 implementation of pragma Pack, see Sec-
tion 3.7.1.

13.2 Length Clauses Supported:
'Size
'Storage-Size for collections
'Storage..Size for task activation
'Small for fixed-point types

See Section 3.7.2 for more information.

13.3 Enumeration Rep. Clauses Supported, except for type Boolean or types derived
from Boolean. (Note: users can easily define a non-
Boolean enumeration type and assign a representa-
tion clause to it.)

13.4 Record Rep. Clauses Supported except for records with dynamically sized
components. See Section 3.7.4 for a full discussion
of the TeleGen2 implementation.

13.5 Address Clauses Supported for: objects (including task objects).
Not supported for: packages, subprograms, or task
units.
See Section 3.7.5 for more information.

13.5.1 Interrupts For interrupt entries, the address of a TeleGen2-
defined interrupt descriptor can be given. See "In-
terrupt Handling" in the "Programnming Guide
chapter for more information.

13.6 Change of Representation Supported, except for types with record representa-
tion clauses.

Continued on the next page-

3-4 REP-1347N.Vl.(U/68) @ 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

Table 3-4. Summary of LRM Chapter 13 Features for TeleGen2 (Contd)

Continued from the previous page ---

13.7 Package System Conforms closely to LRM model. Refer to Section
3.7.7 for details on the TeleGen2 implementation.

13.7.1 System-Dependent Named Refer to the specification of package System (Sec-

Numbers tion 3.7.7).

13.7.2 Representation Attributes Implemented as described in LRM except that:
'Address for packages is unsupported.
'Address of a constant yields a null address.

13.7.3 Representation Attributes of See Table 3-2.
Real Types

13.8 Machine Code Insertions Fully supported. The TeleGen2 implementation
defines an attribute, 'Offset, that, along with the
language-defined attribute 'Offset, allows addresses
of objects and offsets of data items to be specified in
stack frames. Refer to "Using Machine Code Inser-
tions" in the Programming Guide chapter for a full
description on the implementation and use of
machine code insertions.

13.9 Interface to Other Pragma Interface is supported for Assembly, C,
Languages UNIX, and Fortran. Refer to "Interfacing to Other

Languages" in the Programming Guide chapter for
a description of the implementation and use of prag-
ma Interface.

13.10 Unchecked Programming Supported except as noted below (LRM 13.10.2).

13.10.1 Unchecked Storage Deallo- Supported.
cation

13.10.2 Unchecked Type Conver- Supported ezcept for unconstrained record or array
sions types.

3.7.1. Pragma Pack. This section discusses how pragma Pack is used in the TeleGen2
implementation.

a. With Boolean Arrays. You may pack Boolean arrays by the use of pragma Pack.
The compiler allocates 16 bits for a single Boolean, 8 bits for a component of an unpacked
Boolean array, and I bit for a component of a packed Boolean array. The first figure illustrates
the layout of an unpacked Boolean array; the one below that illustrates a packed Boolean array:

31JUL89 REF-1347N-VI.1(U/18) @ 1989 TeleSoft 5-

TeIeGen2 Reference Information for UNX/vSK Hosts

- Unpacked Boolean array: -

Unpacked Bool Arr Type is array (Natural range 0..1) of Boolean
UB_,rr: Unp-*ZkcdBoolArr.Type := (True,False);

MSB LSB
7 0

0 1 Element

0 0 Element 1

---- Packed Boolean array: -

Packed Bool Arr Type is array (Natural range 0..6) of Boolean;
prigma ac-k(Packed Bool Arr Type);
P B Arr: Packed Bool Arr Type := (P B Arr(O) => True,
-P-BArr(S) =>-True, ot~ers => Fa!re:T;

MSB LSB
Bit: 15 0I olo1°°I ' .I a' I o 11 oI

Element: 0 1 2 3 4 5 6- (unused)

b. With Records. You may pack records by use of pragma Pack. Packed records follow
these conventions:

1. The total size of the record is a multiple of 8 bits.

2. Packed records may cross word boundaries.

3. Records are packed to the bit level if the elements are themselves packed.

Below is an example of packing in a procedure, RepProc, that defines three records of different
lengths. Objects of these three packed record types are components of the packed record Rec.
The storage allocated for Rec is 16 bits; that is, it is maximally packed.

3- .REF-1347N-VI.(U/68) @ 1989 TeleSoft 31JULS9

LRM ANNOTATIONS

procedure Rep.Proc is

type Al is array (Natural range 0 .. 8) of Boolean;
pragma Pack (Al);

type A2 is array (Natural range 0 .. 3) of Boolean;
pragma Pack (.2);

type A3 is array (Natural range 0 .. 2) of Boolean;
pragma Pack (A3);

type A.Rec is
record

One : Al;
Two : A2;
Three : A3;

end record;
pragma Pack (A..-Rec);

Rec : .Rec;

begin
Rec.One : (0 => True, 1 :> False, 2 => False,

3 => False, 4 => True, 5 => False,
8 => False, 7 => False, 8 => True);

Rec.Two (3) : True;
Rec.Three (1) := True;

end Rep..Proc;

3.7.2. (LRM 13.21 Length Clauses. A length clause specifies an amount of storage
associated with a type. The sections below describe how length clauses are supported in this
implementation of TeleGen2 and how to use length clauses effectively within the context of
TeleGen2.

3.7.2.1. (a) Specifying Size: T'Size. The prefix T denotes an object. The size specification
must allow for enough storage space to accommodate every allowable value of these objects. The
constraints on the object and on its subcomponents (if any) must be static. For an unconstrained
array type, the index subtypes must also be static.

For this implementation, MinSize is the smallest number of bits logically required to hold
any value in the range; no sign bit is allocated for non-negative ranges. Biased representations
are not supported; e.g., a range of 100 .. 101 requires 7 bits, not 1. Warning: in the current
release, using a size clause for a discrete type may cause incfient code to be generated. For
example, given...

type Nibble is range 0 .. 15;
for Nibble'Size use 4;

...each object of type Nibble will occupy only 4 bits, and relatively expensive bit-field instructions
will be used for operations on Nibbles. (A single declared object of type Nibble will be aligned on
a stnrage-unit boundary, however.)

For floating-point and access types, a size clause has no effect on the representation. (Task

types are implemented as access types).

31JUL89 I1TAT2-1, 1 /,i not -, . . .

TeIeGen2 Reference Information for UNIX/68K Hosts

For composite (array or record) types, a size clause acts like an implicit pragma Pack,
followed by a check that the resulting size is no greater than the requested size. Note that the
composite type will be packed whether or not it is necessary to meet the requested size. The size
clause for a record must be a multiple of storage units.

3.7.2.2. (b) Specifying Collection Size: T'Storage._Size. A collection is the entire set of
objects created by evaluation of allocators for an access type.

The prefix T denotes an access type. Given an access type AccType, a length clause for a
collection allocated using AccType objects might look like this:

for Acc-.Type'Storage.Size use 64;

In TeleGen2, the above length clause allocates from the heap 64 bytes of contiguous memory for
objects created by Acc.Type allocators. Every time a new object is created, it is put into the
remaining free part of the memory allocated for the collection, provided there is adequate space
remaining in the collection. Otherwise, a storage error is raised.

Keeping the objects in a contiguous span of memory allows system storage reclamation
routines to deallocate and manage the space when it is no longer needed. Pragma Controlled can
prevent the deallocation of a specified collection of objects. Objects can be explicitly deallocated
by calling the Unchecked-Deallocation procedure instantiated for the object and access types.

Header Record
In this configuration of TeleGen2, information needed to manage storage blocks in a collection is
stored in a collection header that requires 20 bytes of memory, adjacent to the collection, in
addition to the value specified in the length clause.

Minimum Size
When an object is deallocated from a collection, a record containing link and size information for
the space is put in the deallocated space as a placeholder. This enables the space to be located
and reallocated. The space allocated for an object must therefore have the minimum size needed
for the placeholder record. For this TeleGen2 configuration, this minimum size is the sum of the
sizes of an access type and a integer type, or 6 bytes.

Dynamically Sized Objects
When a dynamically-sized object is allocated, a record requiring 2 bytes accompanies it to keep
track of the size of the object for when it is put on the free list. The record is used to set the size
field in the placeholder record since compaction may modify the value.

Size Expressions

Instead of specifying an integer in the length clause, you can use an expression to specify storage
for a given number of objects. For example, suppose an access type DictRef references a record
SymboL.Rec containing five fields:

3-8 R.EF-1347N-V.1(U/68) (?) 1989 TeleSoft 31JUL89

LR.M A1NOTATIONS

type Tag is String(l..8);

type Symbol._Rec;
type DictRef is access SymbolRec;

type SymbolRec is
record
Left : DictRef;
Right : DictRef;
Parent : Dict.Ref;
Value : Integer;
Key : Tag;
end record;

To allocate 10 Symbol-Rec objects, you could use an expression such as:
for Dict..-Ref'Storage..Size use ((SymboLec'Size * 10)+20);

where 20 is the extra space needed for the header record. (SymbolRec is obviously larger than
the minimum size required, which is equivalent to one access type and one integer.)

In another implementation, SymbolRec might be a variant record that uses a variable
length for the string Key:

type Symbol.Rec(Last : Natural :=0) is
record

Left : Dict- e;
Right : Di t.-.Ref;
Parent : Dict.Ref;
Value : Integer;
Key : String(1..Last);

end record;

In this case, Symbol.Rec objects would be dynamically sized depending on the length of the
string for Key. Using a length clause for Dict...Ref as above would then be illegal since
SymbolRec'Size cannot be consistently determined. A length clause for SymbolRec objects, as
described in (a) above, would be illegal since not all components of Symbol.Rec are static. As
defined, a Symbol..Rec object could conceivably have a Key string with Integer'Last number of
characters.

3.7.2.3. (c) Specifying Storage for Task Activation: T'StorageSize. The prefix T
denotes a task type. A length clause for a task type specifies the number of storage units to be
reserved for an activation of a task of the type. The TeleGen2 default stack size is 8192 bytes.

3.7.2.4. (d) Specifying 'Small for Fixed Point Types: T'Small. Small is the absolute
precision (a positive real number) while the prefix T denotes the first named subtype of a fixed
point type. Elaboration of a real type defines a set of model numbers. T'Small is generally a
power of 2, and model numbers are generally multiples of this number so that they can be
represented exactly on a binary machine. All other real values are defined in terms of model
numbers having explicit error bounds.

Example:

type Fixed is delta 0.25 range -10.0 .. 10.0;

31JUL89 REP-13417N-V1.1(U/68) @ 1989 TeleSoft 3-9

TeleGen2 Reference Information for UNIX/GSK Hosts

Here...

Fixed'Small - 0.25 - power of 2

3.0 - 12 0 0.25 - A model number but not a power of 2

The value of the expression of the length clause must not be greater than the delta of the
first named subtype. The effect of the length clause is to use this value of 'Small for the
representation of values of the fixed point base type. The length clause thereby also affects the
amount of storage for objects that have this type.

If a length clause is not used, for model numbers defined by a fixed point constraint, the
value of Small is defined as the largest power of two that is not greater than the delta of the fixed
accuracy definition.

If a length clause is used, the model numbers are multiples of the specified value for Small.
For this configuration of TeleGen2, the specified value must be (mathematically) equal to either
an exact integer Qr the reciprocal of an exact integer.

Examples:

1.0, 2.0, 3.0, 4.0, . . are legal
0.5, 1.0/3.0, 0.25, 1.0/3600.0 are legal
2.5, 2.0/3.0, 0.3 are illegal

3.7.3. [LRM 13.3] Enumeration Representation Clauses. Enumeration representation
clauses are supported, except for Boolean types.

Performance note: Be aware that use of such clauses will introduce considerable overhead
into many operations that involve the associated type. Such operations include indexing an array
by an element of the type, or computing the 'Pos, 'Pred, or 'Succ attributes for values of the
type.

3.7.4. [LRM 13.4] Record Representation Clauses. Since ri. ord components are subject
to rearrangement by the compiler, you must use representation clauses to guarantee a particular
layout. Such clauses are subject to the following constraints:

* Each component of the record must be specified with a component clause.

* The alignment of the record is restricted to mods 1 and 2, byte and word aligned.

* Bits are ordered right to left within a byte.

* Components may cross word boundaries.

Here is a simple example showing how the layout of a record can be specified by using
representation clauses:

package Repspec..Example is
Bits : constant*:= 1;
Word : constant := 4;

type Five is range 0 .. 16#lF#;
type Seventeen is range 0 .. 16#lFFFF#;
type Nine is range 0 .. 511;

type RecordLayout,_Type is record
Elementi : Seventeen;

3-10 l.EF.1347N.VI.1(tJ/68) @ 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

Element2 : Five;
Elezent3 : Boolean;
Element4 : Nine;

end record;

for Record.Layout-Type use record at mod 2;
Elementl at OWord range 0 .. 16;
Element2 at 0*Word range 17 .. 21;
Element3 at 0.Word range 22 22;
Element4 at 0.Word range 23 31;

end record;

Record.Layout : RecordLayoutType;
end Repspec..Example;

3.7.5. [LRM 13.51 Address Clauses. The Ada compiler supports address clauses for-
objects, subprograms, and entries. Address clauses for packages and task units are not
supported.

Address clauses for objects may be used to access hardware memory registers or other
known memory locations. The use of address clauses is affected by the fact that the
System.Address type is private. For the MC680x0 target, literal addresses are represented as
integers, so an unchecked conversion must be applied to these literals before they can be passed
as parameters of type System.Addrms. For example, in the examples in this document the
following declaration is often assumed:

function Addr is new UncheckedConversion (LongInteger,System.Address);

This function is invoked when an address literal needs to be converted to an Address type.
Naturally, user programs may implement a different convention. Below is a sample program that
uses address clauses and this convention. Package System mu.- be explicitly uwihed when using
address clauses.

with System;
with Unchecked-Conversion;
procedure Hardware-Access is

lunction Addr is new Unchecked-Conversion (LongInteger, System.Address);
Hardware-Register : integer;
for Hardware-Register use at Addr (18#FFO000#);

begin

end" Hardware..Access;

When using an address clause for an object with an initial value, the address clause should
immediately follow the object declaration:

Obj: Some.Type := <init..expr>;
for Obj use at <addrexpr>;

This sequence allows the compiler to perform an optimization wherein it generates code to
evaluate the <addrexpr> as part of the elaboration of the declaration of the object. The
expression <init.expr> will then be evaluated and assigned directly to the object, which is stored
at <addr-expr>. If another declaration had intervened between the object declaration and the
address clause, the compiler would have had to create a temporary object to hold the
initialization value before copying it into the object when the address clause is elaborated. If the

31JUTL89 REF-1347N-V1.1(U/8) () 1989 TeleSoft 3-11

TeleGen2 Reference Information for UNV/68K Hosts

object were a large composite type, the need to use a temporary could result in considerable
overhead in both time and space. To optimize your applications, therefore, you are encouraged
to place address clauses immediately after the relevant object declaration.

As mentioned above, arrays containing components that can be allocated in a signed or
unsigned byte (8 bits) are packed, one component per byte. Furthermore, such components are
referenced in generated code by MC680xO byte instructions. The following example indicates
how these facts allow access to hardware byte registers:

with System;
with UncheckedConversion;
procedure Main is

function Addr is new Unchecked-Conversion (Long-Integer, System.Address);
type Byte is range -128..127;
HW.Regs : array (0..1) of Byte;
for HWLRegs use at Addr (16#FFF310#);

Status.yte : constant integer :-0;
Next-Jlock.Request: constant integer : 1;
Request-Byte :Byte := 119;
Status : Byte;

begin
Status := HW-Regs(Status.Jyte);
HWRegs (Next.-BlockiRequest) := Request..Byte;

end Vain;

Two byte hardware registers are referenced in the example above. The status byte is at location
16#FFF310# and the next block request byte is at location 16#FFF311#.

Function Addr takes a long integer as its argument. Longlnteger'Last is 16#7FFFFFFF#,
but there are certainly addresses greater than Long-Integer'Last. Those addresses with the high
bit set, such as FFFA0000, cannot be represented as a positive long integer. Thus, for addresses
with the high bit set, the address should be computed as the negation of the 2's complement of
the desired address. According to this method, the correct representation of the sample address
above would be Addr(-16#00060000#).

3.7.6. (LRMd 13.61 Change of Representation. TeleGen2 supports changes of
representation, except for types with record representation clauses.

3.7.7. [LRM 13.7] The Package System. The specification of TeleGen2's implementation
of package System is presented in the LRM Appendix F section at the end of this chapter.

3.7.8. [LRLMN 13.7.2] Representation Attributes. The compiler does not support 'Address
for packages.

3.7.9. (LRM 13.7.31 Representation Attributes of Real Types. The representation
attributes for the predefined loating point types were presented in Table 3-2.

3.7.10. [LRM 13.81 Machine Code Insertions. Machine code insertions, an optional
feature of the Ada language, are fully supported in TeleGen2. Refer to the "Using Machine Code
Insertions" section in the Programming Guide chapter for information regarding their

3-12 REF-1347N-VI.1(t/68) (K 1989 TeleSoft 31JUL89

LRM ANNOTATIONS . . .

implementation and for examples on their use.

3.7.11. [LRM 13.91 Interface to Other Languages. In pragma Interface is supported for
Assembly, C, UNIX, and Fortran. Refer to "Interfacing to Other Languages" in the
Programming Guide chapter for for information on the use of pragma Interface. TeleGen2 does
not currently allow pragma Interface for library units.

3.7.12. [LRM 13.101 Unchecked Programming. Restrictions on unchecked programming
as it applies to TeleGen2 are listed in the following paragraphs.

[LRM 13.10.2] Unchecked Type Conversions. Unchecked conversions are allowed
between types (or subtypes) T1 and T2 as long as they are not unconstrained record or array
types.

3.8. LRIM Appendix F for TeleGen2

The Ada language definition allows for certain target dependencies. These dependencies
must be described in the reference manual for each implementation, in an "Appendix F" that
addresses each point listed in LRM Appendix F. Table 3-5 constitutes Appendix F for this
implementation. Points that require further clarification are addressed in sections refererenced in
the table.

31JUL89 REP-1347N-V1.J(U/68) @ 1989 TeleSoft 3-13

TeleGen2 Reference Information for UNIX/6SK Hosts

Table 3-5. LRM Appendix F for TeleGen2

(1) Implementation-Dependent Pragmas (a) Implementation-defined pragmas: Comment,
Linkname, Images, and No-Suppress (Section
3.8.1).

(b) Predefined pragmas with implementation-
dependent characteristics:

* Interface (assembly, UNIX, C, and Fortran-
see "Interfacing to Other Languages."
Not supported for library units.

* List and Page (in context of source/error
compiler listings.) (See the User Guide.)

* Pack. See Section 3.7.1.
* Inline. Not supported for library-level

subprograms.
* Priority. Not supported for main programs.
Other supported predefined pragmas:
Controlled Shared Suppress
Elaborate

F redefined pragmas partly supported (see Sec-
tion 3.1):
Memory-Sise StorageUnit SystemName

Not supported: Optimize

(2) Implementation-Dependent Attri- 'Offset. Used for machine code insertions.
butes The predefined attribute 'Address is not supported

for packages. See "Using Machine Code Insertions"
earlier in this chapter for information on 'Offset and
'Address.

'Extended-Image
'Extended-Value
'Extended-Width
'Extended..Aft
'Extended-Digits

Refer to Section 3.8.2 for information on the
implementation-defined extended attributes listed
above.

(3) Package System See Section 3.7.7.

(4) Restrictions on Representation Summarized in Table 3-4.
Clauses

-.--- Continued on the next page -----

3-14 REF-1347N-Vi.I(U/68) @ 1989 TeleSoft 31JUL89

....... LRM ANNOTATIONS

Table 3-5. LRM Appendix F for TeleGen2 (Contd)

...... Continued from tMe prenouS page- ------

(5) Implementation-Generated Names None

(6) Address Clause Expression Interpre- An expression that appears in an object address
tation clause is interpreted as the address of the first

storage unit of the object.

(7) Restrictions on Unchecked Conver- Summarized in Table 3-4.
sions

(8) Implementation-Dependent Charac- 1. In TextJO, the type Count is defined as follows:
teristics of the I/O Packages. type Count is range ..System.MaxText-O_.Coun:;

- or O..MaxInc-I OR O..2-147_"483_-48

2. In Text-O, the type Field is defined as follows:
subtype Field is integer range
System.Max__.TextcO...Field;

3. In Text..O, the Form parameter of procedures
Create and Open is not supported. (If You sup-
ply a Form parameter with either procedure, it
is ignored.)

4. SequentiallO and Direct-IO cannot be instan-
tiated for unconstrained array types or discrim-
inated types without defaults.

5. The standard library contains preinstantiated
versions of Text.IO.Integer..[O for types Integer
and Long-Integer and of TextJIO.Float-O for
types Float and Long-Float. We suggest that
you use the following to eliminate multiple in-
stantiations of these packages:

Integer.Text.IO
Longncteger..Tex;._O
FloatText..IO
LongFloatText.O

3.8.1. Implementation-Defined Pragmas. There are four implementation-defined pragmas
in TeleGen2: pragmas Comment, Linkname, Images. and NoSuppress.

3.8.1.1. Pragma Comment. Pragma Comment is used for embedding a comment into the
object code. Its syntax is:

pragma Comment (<stringliteral>);

31JUL89 RlF-1347N-VI.I(U/68) @ 1989 TeleSoft 3-15

TeleGen2 Reference Information for UNDX/68K Hosts

where "<string.literal>" represents the characters to be embedded in the object code. Pragma
Comment is allowed only within a declarative part or immediately within a package specification.
Any number of comments may be entered into the object code by use of pragma Comment.

3.8.1.2. Pragma Linkname. Pragma Linknane is used to provide interface to any routine
whose name can be specified by an Ada string literal. This allows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma Linkname takes two arguments. The first is a subprogram name that has been
previously specified in a pragma Interface statement. The second is a string literal specifying the
exact link name to be employed by the code generator in emitting calls to the associated
subprogram. The syntax is:

pragma Interface (assembly, <subprogram-name>);
pragma Linkname (<subprogram.-name>, <stringliteral>);

If pragma Linkname does not immediately follow the pragma Interface for the associated
program, a warning will be issued saying that the pragma has no effect.

A simple example of the use of pragma Linknane is:

procedure DummyAccess(Dummy_.Arg : System.Address);
pragma Interface (assembly, Dummy-Access);
pragma Linkname (Dummy-Access, '..access*);

3.8.1.3. Pragima Images. Pragma Images controls the creation and allocation of the image
and index tables for a specified enumeration type. The image table is a literal string consisting of
enumeration literals catenated together. The index table is an array of integers specifying the
location of each literal within the image table. The length of the index table is therefore the sum
of the lengths of the literals of the enumeration type; the length of the index table is one greater
than the number of literals.

The syntax of this pragma is:

pragma lmages(<enumeration-type>, Deferred);
or--

pragma Images(<enumerationtype>, Immediate);

The default, Deferred, saves space in the literal pool by not creating image and index tables for
an enumeration type unless the 'Image, 'Value, or 'Width attribute for the type is used. If one of
these attributes is used, the tables are generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in more than one compilation unit. more
than one set of tables is generated, eliminating the benefits of deferring the table. In this case,
using

pragma Images (<enumeration.type>, Immediate);

will cause a single image table to be generated in the literal pool of the unit declaring the
enumeration type.

For a very large enumeration type, the length of the image table will exceed Integer'Last
(the maximum length of a string). In this case, using either

3-16 REP-1347N-V1.1(U/68) @ 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

pragma Inages(<enumeratiou, type>, Immediate);

or the 'Image, 'Value, or 'Width attribute for the type will result in an error message from the
compiler.

3.8.1.4. Pragma No-Suppress. No-Suppress is a TeleGen2-defined pragma that prevents
the suppression of checks within a particular scope. It can be used to override pragma Suppress
in an enclosing scope. No-Suppress is particularly useful when you have a section of code that
relies upon predefined checks to execute correct!y, but you need to suppress checks in the rest of
the compilation unit for performance reasons.

Pragma No-Suppress has the same-syntax as pragma Suppress and may occur in the same
places in the source. The syntax is:

pragma No..Suppress (<identifier> [, [ON =>] <name>J);

where <identifier> is the type of check you want to suppress (e.g., access-check; refer to
LRM 11.7)
<name> is the name of the object, type/subtype, task unit, generic unit, or subprogram
within which the check is to be suppressed; <name> is optional.

If neither Suppress nor No-Suppress are present in a program, no checks will be suppressed.
You may override this default at the command level, by compiling the file with the -i(nhibit
option and specifying with that option the type of checks you want to suppress. For more
information on -i(nhibit, refer to your TeleGen2 Overview aa:d Command Summary document.

If either Suppress or No..Suppress are present, the compiler uses the pragma that applies to
the specific check in order to determine whether that check is to be made. If both Suppress and
No..Suppress are present in the same scope, tkA pragma declared last takes precedence. The
presence of pragma Suppress or No-Suppress in the source takes precedence over an -i(nhibit
option provided during compilation.

3.8.2. Implementation-Dependent Attributes.

3.8.2.1. 'Address and 'Offset. These were discussed within the context of using machine
code insertions, in the Programming Guide chapter.

3.8.2.2. Extended Attributes for Scalar Types. The extended attributes extend the
concept behind the TextJO attributes 'Image, 'Value, and 'Width to give the user more power
and flexibility when displaying values of scalars. Extended attributes differ in two respects from
their predefined counterparts:

1. Extended attributes take more parameters and allow control of the format of the output
string.

2. Extended attributes are defined for all scalar types, including fixed and floating point
types.

31JUL89 REF.1347N-VI.1(U/68) C 1989 TeleSoft 3-17

TeleGen2 Reference Information for UNVX/68K Hosts

Extended versions of predefined attributes are provided for integer, enumeration, floating point,
and fixed point types:

Integer: 'Extended-image, 'Extended-Value, 'Extended-Width
Enumeration: 'Extended-Image, 'Extended-Value, 'Extended-Width
Floating Point: 'Extended-Image, 'Extended-Value, 'Extended-Digits
Fixed Point: 'ExtendedImage, 'Extended-Value, 'Extended-Fore,

'Extended-Aft

The extended attributes can be used without the overhead of including TextJO in the
linked program. Below is an example that illustrates the difference between instantiating
Text-IO.FloatJO to convert a float value to a string and using Float'ExtendedJmage:

with TextIO;
function Conver..ToString (Fl : Float) return String is

TempStr : String (1 .. 6 + Float'Digits);

package Flt.JO is new Text-IO.Floa-I (Float);

begin

Flt.IO.Put (TempStr, Fl);
return TempStr;

end Convert-ToString;

function Convert_To.String.NoText-I0(F1 : Float) return String is

begin

return Float'Extended-Image (Fl);

end Convert-To-String_NoTextJO;

with Text-IO, ConvertTaoString, ConvertToStringNoTextIO;
procedure Show-DifferentConversions is

Value : Float := 10.03376;

begin

TextIO.Put-Line (*Using the Convert..ToString, the value of the variable
is : I k ConvertToString (Value));
Text.O.PutLine ('Using the Convert-ToStringo..Text._IO, the value
is : & k ConverToStringlNo__Text.IO (Value));

end Show-DifferentConversions;

3-18 REF-1347N-V1I(U/68) @ 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

3.8.2.2.1. Integer Attributes

'Extended-Image

X'Extended.Ima ge(Item,WidthBase,Based,SpaceIP -Pomtive)

Returns the image associated with Item as defined in Text-IO.Integer-IO. The TextJIO
definition states that the value of Item is an integer literal with no underlines, no exponent, no
leading zeros (but a single zero for the zero value), and a minus sign if negative. If the resulting
sequence of characters to be output has fewer than Width characters, leading spaces are first
output to make up the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute is a function that may have
more than one parameter. The parameter Item must be an integer value. The resulting string is
without underlines, leading zeros, or trailing spaces.

Parameter Descriptions:

Item The item for which you want the image; it is passed to the
function. Required

Width The minimum number of characters to be in the string that
in returned. If no width is specified, the default (0) is as-
sumed. Optional

Base The base in which the image is to be displayed. If no base
is specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned to be
in base notation or not. If no preference is specified, the de-
fault (false) is assumed. Optional

SpaceIf-Positive An indication of whether or not the sign bit of a positive in-
teger is included in the string returned. If no preference is
specified, the default (false) is assumed. Optional

Examples:
Suppose the following subtype were declared:

subtype I is Integer Range -10..16;

Then the following would be true:

X'Extende...-age(5) = '5'
X'Extended_.Iage(5,0) = Isl

X'Extended.Image(5,2) = 1 5'

X'Extended..in e(5,0,2) = v1'
X'Extended.mage(5,4,2) = 1 101'
X'ExtendedImage(5,0,2,True) = 12#101#9
X'Extended.mage(5,0,10,False) = 'S'

X'ExtendedImage(5,0,10,False,True) = 1 5'
X'Extendedmage(-1,0,10,False,False) = 1-1#
X'Extended._mage(-1,0,1O,False,True) = *-1
X'ExtendedImage(-1,1,10,False,True) = 4-1"

31JUL89 REF-134N-V1.(U/68) @ 1989 TeieSoft 3-19

TeleGen2 Reference Information for UNIX/08K East#

X'Extended-Image(.1,0,2,True,True) = R.2#1#9
X'Extended-Image(.1,10,2,True,True) = ' -2#1#0

'Extended-Value

Usage:

X'ExtendedValue(Item)

Returns the value associated with Item as defined in Text-JO.Integerj1O. The Text.O definitionstates that given a string, it reads an integer value from the beginning of the string. The valuereturned corresponds to the sequence input. (LRM 14.3.7:14)
For a prefix X that is a discrete type or subtype, this attribute is a function with a singleparameter. The actual parameter Item must be of predefined type string. Any leading ortrailing spaces in the string X are ignored. In the case where an illegal string is passed, a

Cons3traint-Error is raised.

Parameter Dec.,p ion

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type X. Required

Examples:
Suppose the following subtype were declared:

Subtype X is Integer Range .10..16;

Then the following would be true:
X'Extended.Value (15') = 5
X'ExtendecLValue(I 5') = 5
X'Extended-Value(12#101#1) = 5
X'Extended..Yalue('.1') -1
X'Extended-.alue(' .1') =-1

'Extended _Width

X'ExtendedWidth (BaseBaued,Space-..Positive)

Returns the width - subtype of X.
For a prefix X that is e discrete subtype: this attribute is a function that may have multipleparameters. This attribute yields the maximum image length over all values of the type or

subtype X.

3-20 RPEP-1347N.V.(U/68) @ 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

Parameter Descriptions:

Base The base for which the width will be calculated. If no base
is specified, the default (10) is assumed. Optional

Based An indication of whether the subtype is stated in based no-
tation. If no value for based is specified, the default (false)
is assumed. Optional

Space.JlfPositive An indication of whether or not the sign bit of a positive in-
teger ;i included in the string returned. If no preference is

_________speci -ed, the default (false) is assumed. Optional

Examples:

Suppose the following subtype were declared:
Subtype X is Integer Range -10-.16;

Then the following would be true:
X'Extended-Width = 3 - ".10"
X'Extended-Width(10) = 3 - "..10"
X'Extended-.Width(2) = 5 - ".10000"
X'Extended-Width(10,True) = 7 - ".Z0#10#1
X'Extended-Width(2,True) = 8 - 210#1
X'Extended..Midth(10,False,True) = 3 - "Id"
X'Extended.!idth (10, True, False) = 7 -"1-10#10#"
X'Eztended-.idth(1O,True,True) =7 - "1o#z#"
X'Exteuded-Width(2,True,True) = g - 2#10000#"
X'Extended-W.idth(2,False,True) = 8 - "10000"

31JUL89 __ EF-1347N-V1.1 @) 6LA8IesafL

TeleGen2 Reference Information for UN fX/68K Hosts

3.8.2.2.2. Enuineration Type Attributes

'Extended_.Image

X'ExtendedImage(Item,Width,Uppercase)

Returns the image associated with Item as defined in Text.JO.Enumeration-1O. The TextJ1O
definition states that given an enumeration literal, it will output the value of the enumeration
literal (either an identifier or a character literal). The character case parameter is ignored for
character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute is a function that may have
more that one parameter. The parameter Item must be an enumeration value. The image of an
enumeration value is the corresponding identifier, which may have character case and return
string width specified.

Parameter Descriptions:

Item The item for which you want the image; it is pased to the
function. Required

Width The minimum number of characters to be in the string that
is returned. If no width is specified, the default (0) is as-
sumed. If the Width specified is larger than the image of
Item, the return string is padded with trailing spaces. If the
Width specified is smaller than the image of Item, the de.
fault is assumed and the image of the enumeration value is
output completely. Optional

Uppercase An indication of whether the returned string is in uppercase
characters. In the case of an enumeration type where the
enumeration literals are character literals, Uppercase is ig-
nored and the case specified by the type definition is taken.
If no preference is specified, the default (true) is assumed.

A Optional

3-22 REP-134'N-V1.1(U/68) @ 1989 TeleSoft 31JULS9

LRM ANNOTATIONS

Examples:

Suppose the following types were declared:

type X is (red, green, blue, purple);
type Y is ('a', 'B', 'c', 'D');

Then the following would be true:

X'ExtendedImage (red) = 'RED'
X'Extended..Image(red, 4) = 'RED '
X'Extended-Image(red,2) = ,RED'
X'ExtendedImage (red, 0, f alse) = 'red'
X'Extended-Image(red,10,false) = *red
Y'ExtendedImage('a') = ''a"
Y'Extended..mage('B') = " 'B'"

Y'Extended_1mage('a',5) = ' 'a
Y'ExtendedTmage('a',O,true) = ''a"#

'Ext nded-Value

X'Zxtenaded-Value(Item)

Returns the image associated with Item as defined in TextIO.Enumerationi1O. The TextJO
definition states that it reads an enumeration value from the beginning of the given string and
returns the value of the enumeration literal that corresponds to the sequence input. (LRM
14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute is a function with a single
parameter. The actual parameter Item must be of predefined type string. Any leading or
trailing spaces in the string X are ignored. In the case where an illegal string is passed, a
Constraint E.]rror is raised.

31JULS9 REF-1347N-V1.1(U/68) () 1989 TeleSoft

TeleGen2 Reference Information for UNVC/68K Hosts

Parameter Descriptions:

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of X. Required

Examples:
Suppose the following type were declared:

type X is (red, green, blue, purple);
Then the following would be true:

X'ExtendecValue(lredl) = red'
X'ExtendeYalue(w green") = green
X'Extendedale ie(Purple*) = purple
X'ExtendeL'Value(I GreEn R) = green

'Extended-Width

X'ExtendedWidth

Returns the width for subtype of X.
For a prefix X that is a discrete type or subtype; this attribute is a function. This attributeyields the maximum image length over all values of the enumeration type or subtype X.

Parameter Descriptions:
There are no parameters to this function. This function returns the width of the largest (width)
enumeration literal in the enumeration type specified by X.
Examples:
Suppose the following types were declared:

type X is (red, green, blue, purple);
type Z is (X1, X12, X123, X1234);

Then the following would be true:
X'Extended-Width a 6 - "purple"
Z'Extended-idth a 5 - "X.1U4"

3-24 REF-1347N-Vi.a(U/6 8) © 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

3.8.2.2.3. Floating Point Attributes

'Extended_..mage

X'Extended..mage(Item,Fore,A.t,Exp,BaseBased)

Returns the image associated with Item as defined in Text.O.Float_[O. The Text.O definition
states that it outputs the value of the parameter Item as a decimal literal with the format defined
by the other parameters. If the value is negative, a minus sign is included in the integer part of
the value of Item. If Exp is 0, the integer part of the output has as many digits as are needed to
represent the integer part of the value of Item or is zero if the value of Item has no integer part.
(LRM 14.3.8:13, 14.3.8:15)

Item must be a Real value. The resulting string is without underlines or trailing spaces.

Parameter Descriptions:

Item The item for which you want the image; it is passed to the
function. Required

Fore The minimum number of characters for the integer part of
the decimal representation in the return str;ng. This in-
cludes a minus sign if the value is negative and the base
with the '#' if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore, leading spaces are output first to make up the
difference. If no Fore is specified, the default value (2) is as-
sumed. Optional

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta of
the type or subtype is greater than 0.1, then Aft is 1. If no
Aft is specified, the default (X'Digits-1) is assumed. If based
notation is specified, the trailing '#' is included in Aft. Op.
tional

Exp The minimum number of digits in the exponent. The ex-
ponent consists of a sign and the exponent, possibly with
leading zeros. If no Exp is specified, the default (3) is as-
sumed. If Exp is 0, no exponent is used. Optional

Base The base that the image is to be displayed in. If no base is
specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned to be
in based notation or not. If no preference is specified, the

I default (false) is assumed. Optional

31JUL89 REF-1347N-V1.1(U/68) @ 1989 TeleSoft_ __

TeleGen2 Ieference Information for UIND/68K Hosts

Examples:

Suppose the following type were declared:

type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'ExtendedImage(5.0) = " 5.O00OE+0"
X'Extended.Image(5.0,I) = 15.0000E 000

X'ExtendedImage(-5.0,1) = -S. OOOOE+000
X'Extended-Image(S.0,2,0) = ' S.OE 00'
X'Extended...Izage(5.0,2,0,0) = I 5.0'

X'ExtendedJmage(5.0,2,0,0,2) = '101.0'
X'.xtendedImage(5.0,2,0,0,2,True) = '2#101.0#w
X'Extended-Image(5.0,2,2,3,2,True) = 12#1.1#E+02"

'ExtendedValue

Usage:

X'ExtendedValue (Item)

Returns the value associated with Item as defined in Text_!O.Float-TO. The Text.O definition

states that it skips any leading zeros, then reads a plus or minus sign if present then reads the

string according to the syntax of a real literal. The return value is that which corresponds to the

sequence input. (LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function with a single

parameter. The actual parameter Item must be of predefined type string. Any leading or

trailing spaces in the string X are ignored. In the case where an illegal string is passed, a
Constraint-Error is raised.

Parameter Descriptions:

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of the input string. Required

Examples:

Suppose the following type were declared:

type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'Extendedalue('5.0') = 5.0
X'Extended.alue('0.SE1') = 5.0

E'.--E-tende- aue('2#1.01#E2) 5.0

3-26 REF.-14TN-V1.1(TJ/68) @ 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

'Extended.Digits

X'Extended.Digits(Base)

Returns the number of digits using base in the mantissa of model numbers of the subtype X.

Parameter Descriptions:

Base The base that the subtype is defined in. If no base is
specified, the default (10) is assumed. Optional

Examples:

Suppose the following type were declared:

type X is digits 5 range .10.0 .. 16.0;

Then the following would be true:

I'Extended-Digits ff= 5

3.8.2.2.4. Fixed Point Attributes

'Extended.Image

X'Txtended.mage(Item,Fore,ARft,Exp,Base,Based)

Returns the image associated with Item as defined in Text.IO.FixedJ1O. The TextJIO definition
states that it outputs the value of the parameter Item as a decimal literal with the format defined
by the other parameters. If the value is negative, a minus sign is included in the integer part of
the value of Item. If Exp is 0, the integer part of the output has as many digits as are needed to
represent the integer part of the value of Item or is zero if the value of Item has no integer part.
(LRM 14.3.8:13, 14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute is a function that may have
more than one parameter. The parameter Item must be a Real value. The resulting string is
without underlines or trailing spaces.

31JUL89 RfEP-1347N.V1.1(U/88)) 1989 TeleSoft _ 5-2?

TeleGen2 Reference Information for UNIX/68K Hosts

Parameter Descri.tions:

Item The item for which you want the image; it is passed to the
function. Required

Fore The minimum number of characters for the integer part of
the decimal representation in the return string. This in-
cludes a minus sign if the value is negative and the base
with the '#' if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore, leading spaces are output first to make up the
difference. If no Fore is specified, the default value (2) is as-
sumed. Optional

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta of
the type or subtype is greater than 0.1, then Aft is 1. If no
Aft is specified, the default (X'Digits-1) is assumed. If
based notation is specified, the trailing '#' is included in
Aft. Optional

Exp The minimum number of digits in the exponent; the ex-
ponent consists of a sign and the exponent, possibly with
leading zeros. If no Exp is specified, the default (3) is as-
sumed. If Exp is 0, no exponent is used. Optional

Base The base in which the image is to be displayed. If no base
is specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned to be
in based notation or not. If no preference is specified, the
default (false) is assumed. Optional

Examples:

Suppose the following type were declared:
type X is delta 0.1 range .10.0 .. 17.0;

Then the following would be true:

X'Extended._mge(5.0) = ' 5.00E+00'
X'Extended Tramae(5.0,I) = 5. OOE+00W
X'Extended-Image(-S.0,1) = '-5.OOE+00
X'Extended...Tmage(5.0,2,0) = ' 5.0E+001
X'ExtendedImage(.0,2,0,0) = I 5.0'
X'Extended-Image(5.0,2,0,0,2) = '101.0W
X'ExtendedImage(5.0,2,O,0,2,True) = '2#101.0#1
X'ExtendedImage(5.0,2.2.3,2,True) '2#1. " 'E+0n'

3-28 REF-1347N-Vl.l(U/88)) 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

'Extended-Value

X'ExtendedValue(Image)

Returns the value associated with Item as defined in TextIO.Fixed..O. The TextJ1O definition
states that it skips any leading zeros, reads a plus or minus sign if present, then reads the string
according to the syntax of a real literal. The return value is that which corresponds to the
sequence input. (LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function with a single
parameter. The actual parameter Item must be of predefined type string. Any leading or
trailing spaces in the string X are ignored. In the case where an illegal string is passed. a
Constraint..Error is raised.

Parameter Descriptions:

Image Parameter of the predefined type string. The type of the re-
turned value is the base type of the input string. Required

Examples:

Suppose the following type were declared:

type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

I'Extendedalue('5.0) = 5.0
X'ExtendedLValue(10.5E1V) = 5.0
X'Extendedc.alue('2#1.01#E2") = 5.0

'Extended_-ore

Usage:

X'Extended.Pore(Base,Based)

Returns the minimum number of characters required for the integer part of the based
representation of X.

31JUL89 R.EF-134TN-V1.1(U/68) ®D 1989 TeleSoft 3-29

TeleGen2 Reference Information for UNC/68K Hosts

Parameter Descriptions:

Base The base in which the subtype is to be displayed. If no base
is specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned to be
in based notation or not. If no preference is specified, the
default (false) is assumed. Optional

Examples:

Suppose the following type were declared:

type X is delta 0.1 range .10.0 .. 17.1;

Then the following would be true:

X'ExtendedFore = 3 -- '-100
X'Extended-Fore(2) = 6 -- U 10001'

'Extended-Aft

X',xtended-.Aft(Base,Based)

Returns the minimum number of characters required for the fr.%ctional part of the based
representation of X.

Parameter Descriptions:

Base The base in which the subtype is to be displayed. If no base
is specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned co be
in based notation or not. If no preference is specified, the
default (false) is assumed. Optional

Examples:

Suppose the following type were declared:

type X is delta 0.1 range .10.0 .. 17.1;

Then the following would be true:

X'ExtendedAft = 1 - "1" from 0.1
X'Extended..Af t(2) = 4 - "000.1" from 2#0.0001#

3-30 REF-1347N.Vl.l(U/68) (g 1989 TeleSoft 31JUL89

LR.M ANNOTATIONS

3.8.3. Package System. The current specification of package System Lb provided below.

package System is

type Address is access integer;

type Subprogram-Value is private;

type Name is (TeleGen2);

System.Name : constant name TeleGen2;

Storage..Unit : constant := 8;
Memory-Size : constant (2 *. 31) -1;

System-Dependent Named Numbers:

- See Table 3-2 for the ualue, for attributes of
types Float and Ln ..Flog a

Min-Int : constant := -(2 ** 31);
Max_Int : constant (2 ,- 31) -1;
MaxDigits : constant : 15;
Max.antissa : constant := 31;
Fine.Delta : constant := 1.0 / (2 ** Max-Mantissa);
Tick : constant := 10.0E-3;

-- Other System-Dependent Declarations

subtype Priority is integer range 0 .. 83;

MaxObjectSize : constant := ax Int;
MaxRecorcLCount : constant : MaxInt;
Max.Text.IlCount : constant : MaxInt -1;
Maxext-.IField : constant := 1000;

-private

end System;

31JUL89 1tEF-1347N-VI.1(U/68) @ 1989 TeleSoft 3-31

APPENDIX C

TEST PARAZ!ETERS

Certain tests in the ACVC make use of implementation-dependent ualues, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value nust be substituted for each ,of these names
before the test is run. The values used for this validation are given
below:

Fame and 'ceaning Value

SACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIGIDI 199 * 'A' & '
An identifier the size of the
maxioum input line length which
is identical to $BIG_TD2 except
for the last character.

SBIGID2 199 * 'A' & ' '
An identifier the size of the
maximum input line length which
is identical to SBIGTDI except
for the last character.

SB!G TD3 t00 * ' ' 'I, 9 A '%'

An identifier the size -f t
maximum input line length ,hich
is identical to SBIG !D4 except

Name and i1eaning V;hke

for a character near the middle.

$BIG_D4 100 * '%' * '4' &9 *
An identifier the size of the
maximum input line length which
is identical to SBIG_!D3 except
for a character near the miidlt.

$BIGINTjIT 197 "
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAJIT 195 * ' & "690.0"

A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIGSTRING1 " & 100 * 'A *V

A string literal which when
catenated with BIGSTRING2
yields the image of BIGIDl.

$BIGSTRING2 '" & 99 * 'A' & & t

A string literal which when
catenated to the end of
BIG.STRINGl yields the image of
BIGIDI.

$BLANKS 180 * ' '

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2_147_483_646
A universal integer
literal whose value is
TEXTIO.COUN;T'LAST.

$DEFAULTj4EMSIZE 2147483647
An integer literal whose value
is SYSTEH.MENORYSIZE.

$DEFAULTSTORUNIT
An integer literal ,hose ialue
is SYSTEH.STORAGEUIT.

PrIT ?ARA* T"S

Name and I1eaning Value

SDEFAULTSYSYAHE TELEGEN2
The value of the constant
SYSTEM.SYSTE14.AME.

$DELTADOC
A real literal whose value is
SYSTEM.FINEELTA.

SFIELD_LAST l0 0
A universal nteger
literal whose value is
TEXTIO.FIELD'LAST.

$FIXED-NAME O SUCFTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT NAME 14OSUCHTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORTFLOAT, or
LONGJLOAT.

SGREATERTHANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHAN DURATION-BASE LAST 131_073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH.RIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEII.PPIORITY.

$ILLEGALEXTERNALFILE TAMEl BADCHAR*/%
An external file name which
contains invalid characters.

$ILLEGAL EXTERNALFILE A4!E2 !/ Ci O*E/lTPECTMPY
;n external file name which
is too long.

Name and M'eaning Value

$INTEGERFIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

$INTEGERSAST 32797
A universal integer literal
whose value is ITTEGER'LAST.

$INTEGER LAST-LUS_
A universal integer literil
whose value is INTEGER'LAST + 1.

$LESSTHANDURATIOIT -100200.0
A universal real literal that
lies between DURATTON'BASE'FTRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATIONBASEFIRST -131073.0
A universal real literal that is
less than DURATIOfl'BASE'FIRST.

$LOWPRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSADOC 31
An integer literal whose value
is SYSTEI.MAXJ4ANTISSA.

$MAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXIN LEN 200
Maximum input line length
permitted by the implementation.

$NAX_.IMT 2147.1 6 7
A universal integer literal

whose value is SYSTE1.4AX ITT.

$MAXINT_.LUS1 2_147_483A-8
A universal integer literal
,;hose value is sYsT ::.t4AXIITT+l.

Name and Meaning Value

$.AXjEN_1NTBASED_.LITERAL "2:" & 195 * '0' & "11:"
A universal integer based
literal whose %ralue is 2#11#
with enough leading :ernes in
the mantissa to be !tAXTNLEN
long.

$.MAX_LEN REALBASEDLITERAL " : q3 E,' & ".
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be M.AXjNj EN long.

$IAXSTRIiTG'UITERAL '"' & 198 * '' loo
A string literal of size
MAX__.NLEN, including the quote
characters.

$S.!INIJT -21474836d,
A universal integer literal

whose value is SYSTEM.!1N_INT.

$.I1_ TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAIE 1OUCH_YP E_.AT LAS LE
A name of a predefined numeric
type other than FLOAT,.INTEGER,
SHORTFLOAT, SHORT -INTEGER,
LONG FLOAT, or LO.GINTEGER.

$NAINELIST TELEGEN2
A list of enumeration literals
in the type SYSTE.4. MAKE,
separated by commas.

$NEGBASED_. NT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTE!.1AXII;T.

773 P;AMTERS

Name and Heaning V;iue

$NEWIEN SIZE 2147483647
An integer literal whose value
is a permitted argument for
pragma ME.MORY_STZE, other than
$DEFAULT?,EM-MSIZE. If there is
no other lalue, then use
$DEFAULTJ4EH_SIZE.

SNEV STOR UNIT
An integer literal whose value
is a permitted argument for
pragma STORAGEUITIT, other than
$DEFAULTSTOR_.UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEWSYS AME TELEGEN2
A value of the type SYSTEM.NANE,
other than $DEFAULTSYSjNAME. If
there is only one value of that
type, then use that value.

$TASK_.SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a. single entry with one 'IN OUT'
parameter.

STICK 0.01
A real literal whose value is
SYSTER.TICK.

--T11DRAV14 TESTS

APPENDIX D

VITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --

63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component -4!ause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming i,.plemnentation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the ecution of task CHANGING-
OF THE GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's gize
be no greater than 10 although its sobtype's size was specified
to be 40 (line 137).

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, C"2n'A..D £13 tests] Thp~e
tests wrongly Attempt to check the size ,Nf objects of a lerlivelr
type (for which a 'SIZE length clause is giren) by passing them
to a derived subprogram (which implicitly converts them to thp
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribiitv, uhose interprt~tion is
considered problematic by the UG9 AFG.

h. CD2ASIG, CD2A83G, CM2A84N & 1. , *S0110 r5 tests] Thes'e tests
assume that dependent tasks till lr~i.nate 0Ahi . m in pro-
gram executes a loop that siTply pests for task ternination; this
is not the case, and the main proqran .!lay loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

i. CD2Bl5C & CD7205C These tests expect that 4 *STOAGE SIZE
length clause provides precise control otter the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2D1IB This test gives a SHALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, ill model numbers of a
derived fixed-point type must be representable ,ralnes of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D t5 tests] These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A This test requires that successive calls co CALENDAR.-
CLOCK change by at least SYSTE!M.TICK; howevrr, by Col-entary
AT-00201, it is only the expected frequency rf change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

n. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

o. CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

p. CE2107T This test requires that objects of two similar scalar
types be distinguished when read from a file--DATAERROR is

expected to be raised by an attempt to r.ead on$. ohj ,ct is of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE311C This test requires tertain hthirior. -4he.n uo files are
associated irith the same external file, that is not required by
the Ada standard.

r. CE3301A This test contains several calls t. n ND OF .51. :E F
END OFPAGE that have no ppra.Aeter: these cAlls were ir, tendpd
to specify a file, not to refer to STANDARDTITPUT (lines 103,
107, 118, 132, & 136).

s. CE3411B This test requires that a text file's column nur'ber be
set to COUNTTLAST in order to check that LAYOUTERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lark of available disk
space, and the test would thus encumber validation testing.

CO1IPILER AND TIITER OPT!TT,,,

References And page nurbers in thi *s Appendix ire
consistent with comnpiler docum~entation And not with this
report.

'I"',MAAON TO O

COMPILATION TOOLS

2. COMPILATION TOOLS

This chapter discusses the commands to invoke the TeleGen2 components that are
associated with the process of compilation. The components are the compiler (invoked by the
ada command; see Section 2.1) and the linker (invoked by the aid command; see Section 2.2).

Optimization is part of the compilation process as well. In the TeleGen2 documentation
set, however, optimization is discussed separately from compilation. In this volume, the
commands associated with optimization (ada -0; aopt) are discussed in the "Other Tools"
chapter. (One exception is the Option Summary table below, where aopt options are included for
comparison.)

Table 2-1 summarizes the options that are used by the compilation tools. Note that several
options are common to the commands shown.

24AUG89 lir &o INTRO-1381N-V1.2(UNIX-H) () 1989 TeleSoft 2-1

TeleGen2 Command Summary for UNIX-Based Host Compilers

Table 2-1. Compilation Tools Option Summary

Option -Comma d
I da id aopt

-I(ibfile x x X
-t(emplib X ---- x
-V(space..size X X X

-b(ind-~.only - x -

-C(arzcext x - -

- D(elay-.NonPreempt X
-d(ebug X
-E(rror-abort x
-e(rrors-~.only x
-F(ie-oxly..errs x - -

-G(raph X - X
-l(niine X X
-i(rzhibit X -

-k(eep x - X
-L(ist x
-m(ain x
N(ame X

-O(ptixnize x X
-o(utput - x -

C3 -s~oftware-float X X X
-T(raceback - X

-u(pdate-lib X
-w(I"timeslice" - X -

- X(ception-.show
- X

- X(ecution -rofile X X
-Y and -y - X

Note
a: The functionality of the -S option of ada and the -Soption of aid is somewhat different. Refer to the text.

2.2 INTILO-1381N..V1.2(UNLX-H) @ 1989 TeleSoft 24AL(;89

COMPILATION TOOLS

2.1. The Ada Compiler ("ada")

The TeleGen2 Ada Compiler is invoked by the ada command. Unless you specify otherwise,
the front end, middle pass, and code generator are executed each time the compiler is invoked.

Before you can compile, you must (1) make sure you have access to TeleGen2, (2) create a
library file, and (3) create a sublibrary. These steps were explained in the Getting Started section
of the Overview. We suggest you review that section. and then compile, link, and execute the
sample program as indicated before you attempt to compile other programs.

This section focuses specifically on command-level information relating to compilation, that
is, on invoking the compiler and using the various options to control the compilation process.
Details on the TeleGer.2 compilation process and guidelines for using the compiler most
effectively are in the Compiler chapter of the User Guide volume. (You might want to look at
Figure 3-1 in that volume right now, to give you insight into the TeleGen2 compilation process
and to see how the options mentioned in this Command Summary volume relate to the actual
compilation process.)

The syntax of the command to invoke the Ada compiler is:

ada { <"commonoption">} {<opticn>} <input.spec>

where:

<"common.option"> None or more of the following set of options that are com-
mon to many TeleGen2 commands:

-l(ibfile or -t(emplib

-V(space.size
-v(erbose

These options were discussed in Chapter 1.
<option> None or more of the compiler-specific options discussed

below.

<input-spec> The Ada source file(s) to be compiled. It may be:

" One or more Ada source files, for example:
/user/john/example
Prog_ ..text
ciosrc/calc...mem.ada
calcio.ada myprog.ada

*.ada

A file containing names of files to be compiled. Such a
file must have the extension ".ilf". You can find de-
tails for using input-list files in the User Guide portion
of your TeleGen2 documentation set.

* A combination of the above.

Please note that the compiler defaults are set for your convenience. In most cases you will
not need to use additional options; a simple "ada <input...spec>" is sufficient. However. options

24AUG89 INTRO-1381N-V1.2(UNLX-H) (g) 1989 TeleSoft 2-3

TeleGeu2 Commnand Summary for UNIX-Based Host Compilers

are included to provide added flexibility. You can. for example. have the compiler quickly check
the source for syntax and semantic errors but not produce object code (-e(rrors.only) or you can
compile, bind, and link an main program with a single compiler invocation (-m(ain). Other
options are provided for other purposes.

The options available with the ada command. and the relationships among them. are
illustrated in the following figure. Remember that each of the options listed is identified by a
dash followed by a single letter (e.g., "-e"). The parenthesis and the characters following the
option are for descriptive purposes only; they are not part of the option.

- V(space..size 2000

-v(erbose

-e(rrors-.only copltobjt-

-d(ebug

-i(nhibit <key>t

- k(eep

-O(ptimize <key>f

-S (ource-asm

-u(pdate-lib <~key>',

x(ecution.-profile

-C(ontext I

-E(rror.abort 999

-L(is - ...-nl errs

a -s(oftware-float

-m(ain <unit>

<iut-pTC7

t(1) <key> tar -0: refer to sept. (2) <key>' tar -s: jarrs: * is the defau It. (.) <key> for -i: a ..r certain combinations of
Lac.

2.4 INTRO.I381N-V1.2(UNLX..H) ®g 1989 TeleSoft 24AUG89

COMPILATION TOOLS

The options available with the ada command are summarized in Table 2-2. The default
situation (that is, what happens if the option is not used) is explained in the middle column.
Each option is described in the paragraphs that follow the table.

Table 2-2. Summary of Compiler Options

Option Default Discussed
in Section

Common options:
-l(ibfile <Iibname> Use liblst.alb as the library file. 1.4.1
-t(emplib <sublib...> None 1.4.1
-V(space-size <value> Set size to 2000 Kbytes. 1.4.2
-v(erbose Do not output progress messages. 1.4.3

-d(ebug Do not include debug information in 2.1.1
object code. (-d sets -k(eep.)

-E(rror.abort <value> Abort compilation after 999 errors. 2.1.2
-e(rrors..only Run middle pass and code generator, 2.1.3

not just front end.
-i(nhibit <key>t Do not suppress run-time checks, source 2.1.4

line references, or subprogram name
information in object.

-k(eep Discard intermediate representations of 2.1.5
secondary units.

-m(ain <unit> Do not produce executable code 2.1.6
(binder/linker not executed).

-O(ptimize <key>t Do not optimize code. 2.1.7
a -s(oftware-ioat Use hardware floating-point support. 2.1.8

-u(pdate-lib <key>t Do not update library when errors ara 2.1.9
found (multi-unit compilations).

-x(ecution-profile Do not generate execution-profile code. 2.1.10
Li3ting options:

-C(ontext <value> Include 1 line of context with error 2.1.11.1
message.

-L(ist Do not generate a source-error listing. 2.1.11.2
-F(ile-only -errs Do not generate an errors-only listing. 2.1.11.3

only.
-S(ource..asm Do not generate assembly listing. 2.1.11.4

2.1.1. -d(ebug - Generate Debugger Information. The code generator must generate
special information for any unit that is to be used with the TeleGen2 symbolic debugger. The
generation of this information is enabled by use of the -d option. The use of -d automatically

t (1) <key> for -0: refer to sep$. (2) <key> for -i ior s; is the default. (2) <key> for -c a or certain combination@ of
Inc.

24AUG89 INTRO-1381N.V1.2(UNDC-H) @ 1989 TeieSoft 2-5

TeleGen2 Command Summary for UNIX-Based Host Compilers

sets the -k(eep option. This to make sure that the High Form, Low Form. and debugger
information for secondary units are not deleted.

To see if a unit has been compiled with the -d(ebug option. use the als command with the
-X(tended option. Debugger information exists for the unit if the "dbg-info" attribute appears
in the listing for that unit. The default situation is that no debugger information is produced.

Performance note. While the compilation time overhev-d generated by the use of -d(ebug is
minimal, retaining this optional information in the Ada libr',ry increases the space overhead.

2.1.2. -E(rror-abort - Set an Error Count for Aborting Compilation. The compiler
maintains separate counts of all syntactic errors, semantic errors, and warning messages detected
by the front end during a compilation.

A large number of errors generally indicates that errors in statements appearing earlier in
the unit have "cascaded" through the rest of the code. A classic example is an error occurring in
a statement that declares a type. This causes subsequent declarations that use the type to be in
error, which further causes all statements using the declared objects to be in error. In such a
situation, only the first error message is useful. Aborting the compilation at an early stage is
therefore often to your advantage; the -E option allows you to do it.

The format of the option is:

-E <value>

where <value> is the number of errors or warnings allowed. The default value is 999. The
minimum value is 1. Caution: If you do not use the -E option, it is possible to have 999
warning messages plus 999 syntax errors plus 999 semantic errors without aborting compilation,
since each type of error is counted separately.

2.1.3. -e(rrors.only - Check Source But Don't Generate Code.' This option instructs
the compiler to perform syntactic and semantic analysis of the source program without
generating Low Form and object code. That is, it calls the front end only, not the middle pass
and code generator. (This means, of course, that only front end errors are detected and that only
the High Form intermediates are generated.) This option is typically used during early code
development where execution is not required and speed of compilation is important.

Note: Although High Form intermediates are generated with the -e option, these intermediates
are deleted at the end of compilation. This means that the library is not updated.

The -e option cannot be used with -S(ource-.asm. since the latter requires the generation of
object code. If -e is ndt used (the default situation), the source is compiled to object code (if no
errors are found). The -e option is also incompatible with -k(eep. -d(ebug, -O(ptimize, and
other options that require processing beyond the front end phase of compilation.

2.1.4. -i(nhibit - Suppress Checks and Source Information. The -i(nhibiL option
allows you to suppress, within the generated object code, certain run-time checks, source line
references, and subprogram name information.

The Ada language requires a wide variety of run-tzme checks to ensure the validity of
operations. For example, arithmetic overflow checks are required on all numeric operations, and
range checks are required on all assignment statements that could result in an illegal value being
assigned to a variable. While these checks are vital during development and are an important
asset of the language. they introduce a substantial overhead. This overhead may be prohibitive

2-6 INTRO-1381N-VI.2(UNIX-H) © 1989 TeleSoft 24AUG89

COMPILATION TOOLS

in time-critical applications.

Although the Ada language provides pragma Suppress to selectively suppress classes of
checks. using the pragma requires you to modify the Ada source. The -i(nhibit option provides
an alternative mechanism.

The compiler by default stores source line and subprogram name information in the object
code. This information is used to display a source level traceback when an unhandled exception
propagates to the outer level of a program: it is particularly valuable during development, since it
provides a direct indication of the source line at which the exception occurs and the subprogram
calling chain that led to the line generating the exception.

The inclusion of source line information in the object code, however, introduces an overhead
of 6 bytes for each line of source that causes code to be generated. Thus, a 1000-line package
may have up to 6000 bytes of source line information. For one compilation unit, the extra
overhead (in bytes) for subprogram name information is the total length of all subprogram names
in the unit (including middle pass-generated subprograms), plus the length of the compilation
unit name. For space-critical applications, this extra space may be unacceptable; but it can be
suppressed with the -i(nhibit option. When source line information is suppressed. the traceback
indicates the offset of the object code at which the exception occurs instead of the source line
number. When subprogram name information is suppressed, the traceback indicates the offsets of
the subprogram calls in the calling chain instead of the subprogram names. (For more
information on the traceback function, refer to the Programming Guide chapter in your
Reference Information volume.)

The format of the -i(nhibit option is:

-i <suboption>{ <suboption>)

where <suboption> is one or more of the single-letter suboptions listed below. Combinations of
suboptions are possible. When more than one suboption is used, the suboptions appear together
with no separators. For example, "-i Inc".

llline.Info Suppress source line information in object code.

niame.infoi Suppress subprogram name information in object
code.

clhecksl Suppress run-time checks - elaboration, overflow,
storage access, discriminant, division, index, length,
and range checks.

aillj ISuppress source line information, subprogram name
information, and run-time checks. In other words, a
(=inhibit all) is equivalent to Inc.

As an example of use, the command...

ada -v -i Ic my...file.ada

...inhibits the generation of source line information and run-time checks in the object code of the
units my.file.ada.

24AUG89 INTRO-1381N-V1.2(UNL'-H) @ 1989 TeleSoft 2-7

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.5. -k(eep - Retain Intermediate Forms. As a default, the compiler deletes the High
Form and Low Form intermediate representations of all compiled secondary units from the
working sublibrary. Deletion of these intermediate forms can significantly decrease the size of
sublibraries - typically 50% to 80% for multi-unit programs. On the other hand, some of the
information within the intermediate forms may be required later. For example, High Form is
required if the unit is to be referenced by the Ada Cross-Referencer (azr). In addition,
information required by the debugger and the Global Optimizer must be saved if these utilities
are used. For these reasons, the -k option is provided with the ada command. The -k option:

" Must be used if the compiled unit is to be optimized later with aopt; otherwise, aopt

issues an error message and the optimizer aborts.

" Should be used if the unit is to be cross-referenced later; otherwise, an error message is
issued when the Ada Cross-Referencer attempts to cross-reference that unit.

• Need not be used with -d(ebug, since -k is set automatically whenever -d is used.

To verify that a unit has been compiled with the -k(eep option (has not been "squeezed"),
use the als command with the -X(tended option. A listing will be generated that shows whether
the intermediate forms for the unit exist. A unit has been compiled with -k(eep if the attributes
high-form and low-form appear in the listing for that unit.

2.1.6. -m(ain - Compile a Main Program. This option tells the compiler that the unit
specified with the option is to be used as a main program. After all files named in the input
specification have been compiled, the compiler invokes the prelinker (binder) and the native
linker by calling aid to bind and link the program with its extended family. An executable file
named <unit> is left in the current directory. The linker may also be invoked directly by the
user with the aid command.

The format of the option is:

-m <unit>

where <unit> is the name of the main unit for the program. If the main unit has already been
compiled, it does not have to be in the input file. However, the body of the main unit. if
previously compiled, must be present in the current working sublibrary.

Note: Options specific to the linker (invoked via aid) may be specified on the ada command line
when the -m option is used. With -m, the compiler will call aid when compilation is complete,
passing to it aid-specific options specified with the ada command. For example...

ada -m welcome -T 2 -o new sample.ada

... instructs the compiler to compile the Ada source file. sample.ada. which contains the main
program unit Welcome. After the file has been compiled. the compiler calls the linker, passing to
it the - T and -o options with their respective arguments. The linker produces an executable
version of the unit, placing it in file new as requested by the -o option.

2.1.7. -O(ptimize - Optimize Object Code. This option causes the compiler to invoke
the global optimizer to optimize the Low Form generated by the middle pass for the unit being
compiled. The code generator takes the optimized Low Form as input and produces more
efficient object code. The format of this option is:

-0 <key>

2-8 INTRO-1381N.V1.2(UNC-H) ® 1989 TeleSoft 24AUG89

COMPILATION TOOLS

where <key> is at least one of the optimizer suboption keys discussed in the Global Optimizer
chapter. Please refer to that chapter for all information regarding the use of the optimizer. The
chapter discusses using the optimizer as a standalone tool for collections of compiled but
unoptimized units and using the -O(ptimize option with the ada command. The latter topic
includes a definition of the -O(ptimize suboption key values plus a presentation of two other ada
options (-G(raph and -I(nline..ist, not shown on the ada chart) that may be used in
conjunction with the -O(ptimize option. Note: We strongly recommend that you do not
attempt to use the optimizer until the code being compiled has been fully debugged and tested.

2.1.8. -s(oftware..Aoat - Use Software Floating-Point Support. This option may not
be available with your TeleGen2 system; please consult the Overview portion to see if it is
provided. The Ada linker selects hardware floating-point support by default. If you do not have
hardware floating point support or if you wish to generate code compatible with such machines,
use the -s option. In addition: If you use the -s option. the library file you use for compilation
must contain the the name of the software floating point run-time sublibrary, s-rt.sub. Refer to
the Library Manager chapter in your User Guide volume for more information on the run-time
sublibrary.

2.1.9. -u(pdateJib - Update the Working Sublibrary. The -u(pdateiib option tells
the compiler when to update the library. It is most useful for compiling multiple source files.
The format of the option is:

-u <key>

where <key> is either "s" (source) or "i" (invocation).

i "i" tells the compiler to update the working sublibrary after all files submitted in that
invocation of ada have compiled successfully. If an error is encountered, the library is
not updated. even for source files that compile successfully. In addition, all remaining
source files will be compiled for syntactic and semantic errors only. Implications: (I)
If an error exists in any source file you submit. the library will not be updated, even if
all other files are error free. (2) Compilation is faster, since the library is updated
only once, at the end of compilation.

s (This is the default; it is equivalent to not using the -u(pdate~ib option at all.) "s"
tells .the compiler to update the library after all units within a single source file
compile successfully. If the compiler encounters an error in any unit within a source
file, all changes to the working sublibrary for the erroneous unit and for all other units
in the file are discarded. However, library updates for units in previous or remaining
source files are unaffected. Implications: (1) You can submit files containing possible
errors and still have units in other files compile successfully into the library. (2)
Compilation is slightly slower, since the library is updated once for each file.

2,, UG89 INTRO-1381N-VI.2(UNDC-B) @ 1989 TeleSoft 2-9

TeleGen2 Command Summary for UNIX-Based Host Compilers

Therefore:

Use "u s" (or no -u(pdate option) when:

You're not sure all units will compile successfully.
Compilation speed is not especially important.

Use "u i" when:

You are reasonably certain your files will compile successfully.
Fast compilation is important.

2.1.10. -x(ecution...proflle - Generate Profile Information. The -x(ecutionprofile
option uses the code generation phase of compilation to place special information in the generated
code that can be used to obtain a "profile" of a program's execution. This information is
generated by a facility known as "the profiler." Refer to your User Guide volume for information
on how to use the profiler to obtain execution timing and suhnrogram call information for a
program.

Important: If any code in a program has been compiled with the -x(ecution._profile option,
that option must also be used with aid when the program is bound and linked. Otherwise,
linking aborts with an error such as "Undefined RECORDSCURRENT".

2.1.11. Listing Options. The listing options specify the content and format of listings
generated by the compiler. Assembly code listings of the generated code can also be generated.

2.1.11.1. -C(ontext - Include Source Lines Around the Error. When an error
message is sent to stderr, it is helpful to include the lines of the source program that surround the

line containing the error. These lines provide a context for the error in the source program and
help to clarify the nature of the error. The -C option controls the number of source lines that
surround the the error.

The format of the option is:

-C <value>

where <value> is the number of source context lines output for each error. The default for
<value> is 1. This parameter specifies the total number of lines output for each error (including
the source line that contains the error). The first context line is the one immediately before the
line in error; other context lines are distributed before and after the line in error. Let's say that
trialprog.ada, which consists of the following text...

2-10 INTRO.1381N.V1.2(UNX-H) ® 1989 TeleSoft 24AUG89

COMPILATION TOOLS

package P is
type T1 is range 1. .10;
type T2 is digits 1;
type Arr is array (1..2) of integer; type T3 is new Arr; OK.

package Inner is
type In1 is new TI; -- ERROR: T1 DERIVED.
type In2 is new T2; -- ERROR: T2 DERIVED.
type In3 is new T3; -- ERROR: T3 DERIVED.
type Inarr is new Arr; -- OK.

end Inner;

end P;

...were compiled as follows:

ada -e -C 2 trialprog.ada

(The -e option here is used for error checking and -C(ontext is set to 2 to display two lines of
source.) The output produced would look like this:

7: package Inner is
8: type Inl is new' Ti; -- ERROR: Ti DERIVED.

>>> Illegal parent type for derivation <3.4:15,7.4.1:4>

8: type Inl is new T1; -- ERROR: T1 DERIVED.
9: type In2 is new T2; - ERROR: T2 DERIMED.

>>> Illegal parent type for derivation <3.4:15,7.4.1:4>

9: type In2 is new T2; -. ERROR: T2 DERIVED.
10: type In3 is new T3; -- ERROR: T3 DERIVED.

>>> Illegal parent type for derivation <3.4:15,7.4.1:4>

2.1.11.2. -L(ist - Generate a Source Listing. This option instructs the compiler to
output a listing of the source being compiled, interspersed with error information (if any). The
listing is output to <file _specxl, where <file..-spec> is the name of the source file (minus the
extension). If <file..spec>.l already exists, it is overwritten.

If input to the ada command is an input-list file (<filespec>.ilf), a separate listing file is
generated ror eecth source file listed in the input file. Each resulting listing file has the same name
as the parent F except that the extension ".J" is appended. Errors are interspersed with the
listing. If you not usF -L (the default situation), errors are sent to stdout only; no listing is
produced. - L is incompatible with -F.

24AUG89 INTRO-1381N-V1.2(UNIX-H) @ 1989 TeleSoft 2-11

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.11.3. -F(ileonly.errs - Put Only Errors in Listing File. This option is used to

produce a listing containing only the errors generated during compilation; source is not included.

The output is sent to <file.spec>.l. -F is incompatible with -L.

2.1.11.4. -S(ourceasm - Generate a Source/Assembly Listing. This option instructs
the compiler to generate an assembly listing and send it to a file named <unit>.<ext>, where
<unit> is the name of the unit in the user-supplied source file and <ext> is the file extension (it

may be "s" or something else, depending on your configuration). The listing consists of assembly
code intermixed with source code as comments. If input to the ada command is an input-list file
(<file_spec>.ilf), a separate assembly listing file is generated for each unit contained in each

source file listed in the input file. If -S is not used (the default situation), an assembly listing is
not generated.

2.12 INTR0-1381N-V1.2(UNIX-H) ® 1989 TeleSoft 24AUC,89

COMPILATION TOOLS

2.2. The Ada Linker ("aid")

The TeleGen2 Ada Compiler produces object code from Ada source code. The TeleGen2
Ada Linker takes the object (of a main program) that is produced by the compiler and produces a
UNIX executable module. The TeleGen2 Ada Linker will be called "the linker" in the remainder
of this manual.

To produce executable code, the linker (1) generates elaboration code and a link script (this
is called "binding" or "prelinking") then (2) calls the UNIX link editor (Id) to complete the
linking process.

The linker is invoked with the aid command; it can also be invoked with the -m(ain option
of the ada command. In the latter case the compiler passes appropriate options to the linker, to
.- rect its operation.

In the simplest case, the aid command takes one argument - the name of the main unit of
the Ada program structure that is to be linked - and produces one output file - the executable
file produced by the linking process. The executable file is placed in the directory where aid was
executed, under the name of the main unit used as the argument to aid. For example, the
command

aid main

links the object modules of all the units in the extended family of the unit Main. The name of
the resulting executable file will simply be "main". Important: When using the aid command,
the body of the main unit to be prelinked must be in the working sublibrary.

The general syntax of the aid command is:

I ald {<"common-option">) {<option>) <unit>

where:

<"common-option"> None or more of the following set of options that are
common to many TeleGen2 commands:

-l(ibfile or -t(emplib
-V(spacesize

-v(erbose

These options were discussed in Chapter 1.
<option> None or more of the options discussed in the following

sections.
<unit> The name of the main unit of the Ada program to be

linked.

The options available with the aid command and the relationships among them are illustrated
below.

24AUG89 INTRO-1381N-VI.2(UNE--H) @ 1989 TeleSoft 2-13

0 TeleGen2 Command Summary for UNIX-Based Host Compilers

aid

-l(ibfile <libnarne> -t(emplib <sublib>{,...}

-V(space.size 2000

-v (erbose

-b(in&..only

-o(utput <file...spec>

.-P(ass-.options 'string'

-p(ass..objects 'string'

C3 -s(oftware-float

-S("asmlJisting"

-T(raceback 15

-x(ecution..profile

-D(elay-.NonPreep W4tmsie 0

-X(ception-.show

-Y 8192 lbytos-langl

-y 1024 lbytes-aurall

2.2.1. -b(nd-only - Produce Elaboration Code Only. To provide you with more
control ove: the linking process. the -b option causes. the linker to abort after it has created the
elaboration code and the linking order, but before invoking the UNIX link editor. This option
allows you to edit the link order for special applications and then invoke the link editor directly.
The link order is contained in an executable script that invokes the link editor with the
appropriate options and arguments. The name of the script produced is <unit>.lnk, which is
placed in your working directory. To complete the link process, enter "<unit>.lnk"1.

The name of the file containing the elaboration code is <unit>.obrn, which is pl, in the
object directory of the working sublibrary.

For S'ystem V versions of UNIX, the file names generated as a result of linking are created
by appending the 3-letter extension to the unit name and truncating the result to 14 characters.

2.2.2. -o(utput - Name the Output File. This option allows you to specify the name of
the output file produced by the linker. For example. the command...

aid -o yorkshire main

... causes the linker to put the executable module in the file yorkshi)-e.

2-14 INTRO-1381N-V1.2ft1NIX-H) @ 1989 TeleSoft 24AUG89

COMPILATION TOOLS

2.2.3. -P(assOptions - Pass Options to the Linker. This option allows you to pass a

string of options directly to the UNIX link editor. For example, the command

aid -P '-t -r' main

adds the string "-t -r" to the opLions of the link editor when it is invoked. The options must be
quoted (double or single quotes).

2.2.4. -p(ass-objects - Pass Arguments to the Linker. This option allows you to pass

a string of arguments directly to the UNIX link editor. For example, the command

aid -p 'cosine.o /usr/Ub/libm.a' main

causes the link editor to link the object file cosine.o (which it expects to find in the current
working directory), and to search the library /usr/lib/!libm.a for unresolved symbol references.
(The location of the libm.a library may be different on your system.) Remember that the link
editor searches a liarary exactly once at the point it is encountered in the argument' list. so
references to routines in libraries must occur before the library is searched. That is, files that
include references to library routines must appear before the corresponding libraries in the
argument list. Objects an 3 archives added with the -p option will appear in the linking order
after Ada object modules and run-time support libraries, but before the standard C library
(/lib/libc.a). This library is always the last element of the linking order.

You can also use the -p option to specify the link editor's -1 option, which causes the link
editor to search libraries whose names have the form "/lib/libname.a" or "/usr/lib/libname.a".
For example, the command

aid -p '-Lx-yz'

causes the link editor to search the directories /lib and /usr/lib (in that order) for file libzyz.a.

2.2.5. -S("asm.listing" - Produce an Assembly Listing. The -S option is used to
output an assembly listing from the elaboration process. The output is put in a file,
<file>.obm.s, where <file> is the name of the main unit being linked. (The file extension may be
different on your system.)

2.2.6. -s(oftware..float - Use Software Floating-Point Support. This option may not
be available on your TeleGen2 system. Please consult the Overview portion of this volume to see if
it is provided. The Ada linker currently selects hardware floating-point support by default. This
default situation is provided for users of systems with an arithmetic coprocessor. If you do not
have hardware floaring point support or if you wish to generate code compatible with such
machines. use the -s option. In addition: if you use the -s option, the library file you use for
compiling and linking must contain the name of the software floating point run-time sublibrary.
srt.sub. Refer to the Library Manager chapter in your User Guide volume for more information
on the run-time sublibrary.

2.2.7. -T(raceback - Set Levels for Tracing Exceptions. When a run-time exception
occurs (and is not handled by an exception handler). the name and line number of the unit where
the exception occurred is displayed along with a recursive history of the units which called that
unit. (See the "Exception Handling" section in the Programming Guide chapter of your
Reference Information volume for a more complete explanation of exception reports.) The -T
option allows you to set the number of levels in this recursive history. For example. the

24AUGS9 INTRO-1381N-V1.2(UNLX-H) @ 1989 TeleSoft 2-15

TeleGen2 Command Summary for UNIX-Based Host Compilers

command

aid -T 3 main

specifies that traceback histories will be three levels deep. The default value for this option is 15.

When an exception occurs, the run-time support system stores the history in a preallocated
block of memory. Since the size of this block is determined by the - T option, setting this value
to a large number can introduce objectionable overhead in deeply nested, time-critical code. You
may wish to make this value smaller for well-tested programs.

2.2.8. -x(ecution -profile - Bind and Link for Profiling. This option is used for units
that have been compiled with the -x option. Use of -z with ada causes the code generator to
include, in the object, special code that will later be used to provide a profile of the program's
execution.

If -z is used with ada, it must be used with aid as well. The -z option of aid instructs the
linker to link in the profiling run-time support routines and generate a subprogram dictionary,
profile.dic, for the program. The dictionary is a text file containing the names and addresses of
all subprograms in the program. The dictionary can be used to produce a listing showing how
the program executes.

Refer to the Ada Profiler chapter in your User Guide volume for a full discussion of the
profiler.

2.2.9. Tasking Options. The following aid options are binding options used for task
execution. They are therefore useful only for linking programs that contain tasking code.

2.2.9.1. -D(elayNonPreempt - Specify Non-Preemptive Delay. By default, the
TeleGen2 run-time is set for preemptive delay handling. That is, an active task is preempted if
another task is waiting that has a priority equal to or greater than that of the active task.

The -D option allows you to specify non-preemptive delay handling. With non-preemptive
delay, a task is scheduled only when a synchronization point is reached. -D(elayNonPreempt is
incompatible with the -w option (see below).

2.2.9.2. -w("timeslice" - Limit Task Execution Time. The -w option allows you to
define the maximum time a task may execute before it is rescheduled. The format of the option
is:

-w <value>

where <value> is Lhe maximum time the task is to execute, in milliseconds. before a task switch
occurs between it and a task having the same or higher priority. The default value is 0 (no'
timeslice). If you choose a value greater than 0, it must be a- least as great as the ciock interval
time.

Since rescheduling of tasks is incompatible with interrupt-scheduling, -w is incompatible

with -D(elayNonPreempt (see above).

2.2.9.3. -X(ception.show - Report Unhandled Exceptions. By default, unhandled
exceptions that occur in tasks are not reported: instead, the task terminates silently. The -. V
option allows you to specify that such exceptions are to be reported. The cutput is similar to
that displayed when an unhandled exception occurs in a main program.

2-16 INTRO-13S1i T-V1.2(UNIX-H) @ 1989 TeleSoft 24AUG89

A,

COMPILATION TOOLS

2.2.9.4. -Y and -y - Alter Stack Size. In the absence of a representation specification for
task storage-size, the run time will allocate 8192 bytes of storage for each executing task. You
can change the amount of space allocated for tasking by using the - Y and -y options.

-Y specifies the size of the basic task stack. The format of the option is:

-Y <value>

where <value> is the size of the task stack in 32-bit (long-integer) bytes. The default is 8192.

-y specifies the stack-guard size. The stack-guard space is the amount of additional space
allocated per task to accommodate interrupts and exception-handling operations. The format of
the option is:

-y <value>

where <value> is the size of the stack-guard size in 16-bit (natural) bytes. The value given must
be greater than the task-stack size. The default is 1052 bytes; this is the amount allocated unless
otherwise specified.

A representation specification for task storage .*ze overrides a value supplied with either
option.

24AUG89 INTflOo1381N-V1.2(UNIX-H) @ 1989 TeleSoft 2-1T

