« 3 n
UNCLASSIFIED
. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS.
REPORT DOCUMENTATION PAGE BEFDRE COMP_ETEINS FOPY .
1. REPORT NUMBER |2. GOVT ACCESSION NO. [3. RECIPIENT’S CATALOG NUMEEX
N 4. TITLE (and Subntie) 5. TYPE OF REPORT & PERIOD COVERED
o Ada Compi 3 i :
piler Validation Summary Report:TeleSoft, 26 Nov. 1 .
c,) TeleGen2 Ada Development Systems for Hewlett-Packard 9006' bd 9%% to 26 Nov. 1990
/370 (Host & Target), 8S1126I1.10217 6. PLRFOMMING DRG. REPORT WUMBLR
-0 M .
‘éﬁ 7. AUTHOR() 8. CONTRACT DR GRANT WUMZLR()
Ottobrunn, Federal Republic of Germany,
< 9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PRCJECT, TASK
1 AREA & WORK UNIT WUMZERS
IABG,
C:l Ottobrunn, Federal Republic of Germany.
‘i 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
xAJda nggt l:rogéam ngxcg ¢ Def
nite tates Department © efense T RORETR O PESTS
Washington, DC 20301-3081 o o
34. MONITORING AGENCY NAMZ & ADDRESS(if different from Controlling Office) 15, SECURITY CLASS (of this report)
UNCLASSIFIED
IABG,
Ottobrunn, Federal Republic of Germany.

15s. gégksgﬂVICATION/DOVNSRADING

16. DISTRIBUTION STATEMENT (of thus Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMINT (of the abstract entered

1n Biack 20 71 different from Report)
g??“UNCLASSIFIED D ! ! C
cly ®

A FLECTE
G R
1, | 18. SUPPLEMINTARY NOTES o
T 3 A
LJ‘ - D
-
S b |

%i._i - smmeem e
[\Xz,g' 19. KEYWORDS (Continue onreverse si0e «f netessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Repcrt, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada

Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and dentify by block number)

TeleSoft, TeleGen2 Ada Development System, Version 1.4, Ottobrunn West Germany,
Hewlett-Parkard 9000/370 under HP/UX 6.5 (Host & Target), ACVC 1.10.

DD 't 1473
1 M 73 -

S/N 0402-LF-014-6601 UNCLASSIFIED
\ AN nA o4 ned

SECURITY CLASSIFICATION OF THIS PAGE (when Dats Entered)

EDITION OFf § NOV 65 1S5 OBSOLETE

<!

g

aVF Control Mumber: AVP-TABG-049

ida COUPTLER
YALIDATION SUMMARY RIPART:
Certificate Number: #8%i1243731.1G217

TaleSoft

Complation of On-Sdite Tasting:
26 November 1939

Praparsd 5
2BG mbH, Abt. 227
insteinstraisss 20
N-3G12 Ottebrunn

Yest Garmany

-

L8
-
£

Preparad For:
2da Joint Prograp Offica
Inited States Departmapt of Dafense

-
H

Yashington 2C "G6361-3631

-«

Ada Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Development System

Version 1.4

Certificate Number: #89112671.10217

Hewlett-~Packard 9000/370
under HP/UX 6.5

Host and Target:

Testing Completed 26 November 1989 Using ACVC 1.10

This report has been reviewed and is approved.

o UL

IABG mbH N Abt. SZT
Dr. S. Heilbrunner
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

3 Validation Organization-
a2ctor, Computer & Software Engineering Division

«.itute for Defense Analyses
~andria, VB 22311

b Joaid[), &//M i

. Ada Joint Program Office
¢ Dr John Solomond
Director

Department of Defense
Washington DC 20301

‘Accesion Fo,
NTIS CRA&I
0T 7B 0
Lhe nan: oegd 0
Jh.t?'fl\:.l:’\-..
e e
L:
Dostistmsaon]
Avatlabin *, Coges
* _ZVL'.I' u-u'lof
'Dﬁf‘ Spcazl
1
A1l | WY

CHRPTER 1 TITRODGCTION
1.1 PURPOSE OF THIS WILIDATION SIWHIRY STPORT
1.2 USE OF THIS VALIDATION SWMRY RFPORT |
£, IEFIREUCES
1.4 DEFINITION OF TERHS
1.5 ACYC TTST ChLASSES

CHAPTER 2 CONFIGURATION INFORMATION .
2.1 CONFTGURATION TESTED .o
2.2 IHPLEHMENTATION CHARACTERISTICS

CHAPTER

>
-3
ixg
wn
...l
i
32
31
O
2
Y

.

SUMHARY OF TZST RESY
SUMMARY OF TEST RESULT ..
VITHEDRANN TE”T? . C e e e e e e e e
TNRP“L CABLE TESTS e e s

TEST, PROCESS ING, AND EVALUrTIGN dODIFICATIOdS
KDDITLONAL TESTING INFORMATION
i Prevalidation
2 Test Hethod
3 Test Sit2

3 .

W W WL WwWw
. . .
~3 N T b D

.

3.7
3. 7
3.7.

APPENDIX A DECLARATION OF CONFORI{ANCE
APPENDIX B APPEﬁDIX F OF THE Ada STANDERD
APPENDIX C TEST PARAMETERS

APPENDIX D YITHDRAWN TESTS

LY
u
u
152
=%
o
-

3
[o3]

COMPILER AUD hIPKER OSTIGCHS

12

W) s

A e Be

o
Jr

]

b o2 DO O VY

1D DO 0D 1D 1D h=b had =b ok 4o

INTRODUCTION

CHAPTER 1

THTRODUCTION

RS,

This Validation Summary Report ﬂTV*RT' dascribes ithe axtent rc vhich A
specific Ada compiler conforms to fihe 2da qtandard, A g

This report explains all technical terme used «~ithin it anpd rhornr
reports the vresults 2§_,£esxigg this «~owpiler using ths Ada Connlt
Validation Capability JEACY¥E)L “An Ada cowpiler nust be 1mplcmented
according to the Ada Standard, and any implementation-dznendent features
must conform to the requirnmnnfs of the 3da Standard, The 2ad~ Standard
must be implemented in its entirety, and nothing can Ha iapismented that is

not in the Standard;:>

Even though ail validated Ada compilers conform to the Ada Standard, it
must be understood that some differsnces do sxist hetween implementations.

The Ada Standard permits some implementation denendencizs--for axamnpiz, the

maximum length of identifiers or the waximwn values of intager iypes.
Other differences between compilers rasult from the charactaristics of
particular -operating systems, hardware, or implementation strategies. All
the dependencies observed dnring the process of testing this cowpil=r are

-given in this report.*)

<

The information in this renort is derivad from the test rasults prndHCen
during validation testing. The validation process inclundes subwitiing a
suite of standardized tasts, the ACVC, as inputs to an Ada «conpiler and
evaluating the results.~ Thz »urposz of validating is to ensurz confovai
of the compiler to the Ada Standard by testing that the compiler propar
implements Tegal language constructs and that it identifies and rajec
illegal langnage constructs. The testing also identifies bzhavior that
implementation- dependent,§ but is permitted by the Ada Standard. S$Six
classes of tests are usad. \”hsse tzsts ars desiqned to perform checks at

compile time, at link tinme, aQg~32£lzg~:iiiiiiii;u__\

1.1 PURPOSE OF THIS VALIDATION SUNMARY REFORT

...
=
-r
Sl

This VSR documents the resuits of the walidarion fasting va2vformed on an
Ada compiler. Testing was carrizd ont for the following purposas:

. To attempt te id=utify any ianguage conpstrners supportad hy tha
compiler that do not ronform to the Ada Standapd

. To attenpt to identifv any langnage conetrncts not <upportad by
the rompilar bnt vauanired bhv the Ada Standard

To datermine that the impiementation-dzpendznt hahawior is Aliowed
bv the Ada Standarvd

Tasting of this compiler was conducrted by tre IVF According to
procedures astablished by vhe Ada Joint Program Gffice and Aadninistaered by
the Ada Yalidation Organization (aV0Q).

1.2 USE OF THIS VALIDATION SUMMARY RFPORT

Consistent with the national Yaws of the origqinating conntry, the AVQ nmav
nake full and fres pubiic disclosure of this rvaporf. In the United States,
this is nrovided in accordance with +he "Freedom of Tnformation Act”
{5 U.5.C. #552).. The resuits of this wvalidation arpiy only to tha
conputers, operating systems, and compiler versions identified in this
report.

The organizations represaented on the signature pagée of this ra2pmort do not
represent or warrant that a3l statements set forth in this raport ave
accurate and complete, or that the subject compil=r has no nonconformities
to the Ada Standard other than those presentad. Copies of this raport arve
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE /

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3031

or from: .]
TABG mbH, Abt. SZT
‘Einsteinstr. 20
D-3012 Ottobrunn
Vest Germany

Questions regarding this raport or the vwalidation test rasults shonid be
directed to the AVF listed above or to:

Ada Validation Organization
Institutsz for Defense fnalyses
1301 inorth Ba2aureqard Strazat
wlexandria vA 22311

J—
-3

ACYC

ada

Refarence Manual for the Ada Prngrammwn LAangnage,
ANSI/hI STN-1815A, February 1933 and 1850 8652-1587.

ida Compniler Validafion Procedures and cuidelinss, ida Joint
Program Office, 1 January 1987.

Ada Compilzr Validation Canability impismenters' Guide, SofTarh,

inc., December 1984,

Ada Compiler Validation Capvahility i{Jser's Gnide, December 1985.

DEFINITION OF TERNS

The Ada Compiler Validation Capabilitv. The set of Ada
vrograms that tests the conformity of an 2da compiler to the

Ada prograwming language.

an Ada Commentary contains all inforwation velevant to the
Commentary point addressed by A comment on the Ada Standard. These
comments are given a unisue identification avmber having the

form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISC 8552-1987.

Anplicant

AVF

AVO

Compiler

Failad tast An ACVC test for which the compilsr generatss a result that

The agency requesting validation.

The 3da Validation Facility. The AVF is responsible for
conducting compilar wvalidations according *to procednres
contained in the Ada Compiler Validation Procedurss and

Guidelines.

The Ada validation Organization. The AVO has oversight

authority owver all AVF practices for the purpose

maintaining a aniform bprocess for ralidation of Ada
compilers. The 1&V0 providés administrativs and tachnieal

$upbort for ida +—alidations to shsure consistent oractices,

A processor for the Ada languagz. In the contaxt of rhix

J

report, a compiler is any ’1angnag» nrocessor, including

cross-compilers, translators, and intsrpr eter

demonstratas ponconforaity to the 2da Standard.

-w' e

he computsr on vhich Fhe rompilay resides

Inapplicable An ACVC rest rhat ns=zg faaturas of the langnage Fhat &
test compiler is not required to support or wmay leaitipately
support in a wav other than the nnsz =xpected hy the bzst.

Passed tast An ACVC test for which a compiisr wenerates the sepected

result.

Target The computer vwhich =xecentes the code asnerated by Fhae
compiler.

Tast A program that checks a rompiler's confornitvy ragarding 3

particular feature ov a combination of f2atnures to the Ada
Standard. In the context of this raport, the term ig used to
designate a single test, which ~ay comprise ope or wore

files.
Yithdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorract

bécause it has an invalid test objective, fails to meet its
test objective, or contains illegal or arroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains bhoth legal and illegal Ada programs structured into six test
classes: A, B, C, D, €, and L. The first letter of a test name identifies
‘the class to which it belongs. Class A, €, D, and E tests are executable,
and special program units are used to report ‘their results during
exeention, Class B tests are expected to nroduce compilation =rrors.
‘Class L tests are expected to produce errors hecause of the way in which a
program library is used at link time.

Class A tests =znsura the successful compilation and execution of legal Ada
programs with certain language constructs which cannot he verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved vords of
another language (other than thosé already ressrved in the Ada language)
are not treated as raserved words bv an Ada compiler. & Class A test is
passed if no errors are detected at compile tims and the program =sxecutes
to produce a PASSED message. '

Class B tests rheck that A compiler deatacts illiegal language nusags,
Class B tests ars not executablz. Each tzst in this class is coppilad and
the resulting compilation iisting is sxamined ro verify that evervy syntax
or semantic error in the test is detected. 2 Class 3 test is passed if
2very illeqgal construct that it contains 1s detacted by the compilar,

Class C inmsts check the run time svatanm to znsurz that lzgal 32da osrograans
can be correctly coapiled and axecntad. Rach Class § test is self-vhacking
and produces a PASSED, FAILED, or ¥GT APPLICLRLE nessage indicating the
resylt when it is executed.

Class D tests check the comnilation and execution capacities of A coppilszr
Since there are no capacity requiraments placed on a compiler by bhe 34da

Standard for some parameters--for pxanple, ihe numbar of ddepfificrs
narmitted in a compilation ov the number of wnits in a iibravy--3 conpiiar
may refuse to compile a Class N test and siill ha x conioraing r~owniler,

Therefore, if a Class D test fails #o cowpilz becaus2 rha capacity of Fas
compiler is 2xceeded, the test is classifizd as inapnlicabhla., Tf a Class D
test compiles successfully, it is self-cheching and nroduces a PASSED or
FAILED message during execution.

Class E tasts are expected to axecut: successfully and check
implementation-dependent options and resolutions of ambiguities in the 3da
Standard. BEach C(Class E test 1s salf-checking and »produces 1 HMOT
APPLICABLE, PASSED, or FAILED umessage when it is compilad and sxecuted.
However, the Ada Standard permits an 1implementation to reject nrogranms
containing some features addressed by Class E tasts during compilation.
Therefore, a Class E test is passed hv a compiler if it dis «compiled
successfully and executes to produce a FASSED vessage, or if it is rziectad
by the compiler for an allowable reasomn.

Class L-tests check that incompléte or 1illegal ada proarans -4involwving
multiple, separately compiled units aras detzctad and not allowad to
execute. Class L tests are compiled separately and execution is attempted.
A Class L ‘test passes if it is rejscted at link time--that is, an attempt
to execute the main program must -generatz an error message bhefore any
declarations in the main program or any units referenced by the main
program are -elaborated. In some casés, an implementation may legitimately
detect errors during compilation of the tast.

Two library units, the package REPORT and the procedure CHECK_EILE, support
the self-checking features of the exacutabls tests. The package REPORT
provides the mechanism by vhich executapie tssts veport FAS3ED, FAILED, or
NOT APPLICABLE results. It also providass a set of identity functions nsed
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FTLE is usad fo
check the contents of text files written bv sowe nf the Class C tasts for
Chapter ¥4 of the Ada Standard. The oparation of REPORT and CHECK_TILE is

checked by a set of executable tests. These tasts produce messages that
are examined to verify that the units ars operating corrsctlv. If these
units are not operating correctly, then the validation is noft attemprad.

The taxt of 2ach tast in the AC?F £ llnws conventions that are intznded rio
ensure that the tests are reasonablv nortable without wodification. For
example, the tests make use of nnly the basic set of 55 characters, wcontain
Yines with a maximum length of 72 characters, nse small numeric walues, and
tests. However, «<ome kLasts reatain walnes fhat requirs the test to be

customized according to implementation-specific valuwes--for «xamplz, Aan
illegal fils name. A 1list of the wvalues nsed for this validation is
provided in Appendix C.

A compiler must correctly nrocess each of the tests in tha suite and
denonstrate conformity to the 2Ada Standard by esither meeting the pass
rriteria given for the test or by showing Lhat tha tast is inappiicable to
the implementation. The applicability ~f 2 tast to an impiementation is
considered each time the implementation is walidated. % tast that s
inapplicable for one wvalidation is a0t neczesarily inapplicabie For a
subsequent validation. &ny test that was detsrmined to contain an illaeal
langnage construct or an erroneous lanquaga construct is vithdrawn from the
ACVC and, therefore, is not wused in testing a compiler. Tha tests
withdrawn at the time of this validation are given in Anpendiz D.

CHAPTER 2

COUFIGURATION THFORMATIOH

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was rested under the
following configuration:

Compiler: TeleGzn2 Ada Development System
Version 1.4

ACVC Version: 1.10

Certificate Number: #89112611.30217

Host Computer: 7
Machine: Hawlett-Packard 9000/3707
Operating System: HP/UX 6.5

Hemory Size: 16 HegaBytes

Target Computer: same as nost

COUFTANRITTON THRARUSTION

2.2 THPLEHMENTATION CHARACTERIZTICS

One nf the purposes of validating compilers is to detarmine the hshavior of
a compiler in those areas of the Ada Standard rhat permit implementations
to differ., Class D and E tests specifically vheck for sweh impizwentation
differencas, However, tests in other classes 1lso rharacterize =
implementation. The tests demonstratz the following charactavigtice:

a. {apacities,

1} The compiler correctly nrocasses 3 soanilation
containing 723 variables in the sare declarative part. (See
test D29002K.)

2) The conpiler correctly opyocesses fests rontaining
loop statements nested to 65 lavels. (See tests D55AN3ALLH
(8 tests).)

3) The compiler «correctly ©processes tasts conptaining
block statements nested to 65 levels. (Ses tresc NRA0O01B.)

4) The compiler correctly procasses tests containing
recursive nronadures saparately compiled as subunits nested to
17 levels. (See tests D6JANOSE. .G (3 tests).)

b. Predefined types.
1) This implementation supports the additional predefined ¢

LONG_INTEGER and LONG_FLOAT in the package STANDARD.
tests B86NOiIT..Z (7 tests).)

Nas

ye
{See

¢. Expression evaluation.

The order in which exXpressions are evaluated and the time at which
constraints are checked are not defined hy the langnage., “hils
the ACVC tests do not epecifically atterpt ta lztermine the order
of evaluation of expressions, test results indicate the following:

1) Some of the defanlt initialization axpressions
for record components are evaluated before anyv =alne is
checked for membership in a cowmponent’s subtype. {Sea fast
C321177.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See tast C357128,)

3} This implewentation nses nn sextra hits for w=atra v

alt

¥
and uses no extra bits for extra range. i(Sze Lest 3819

T v o N CAEEENTIREE R SAPRT P
g g 8, MRS UEERRTE RGN RS
A L

= =
)

A B [
¥ B . "

COUFTSURATION THFORMATION

4) NUMERIC_ERROR is raised for larcg2st intzger comparison and
membership tests and no exception is raised for prz-defined
integer comparison and membershin ‘tests when an integer
literal operand in a comparison ov »enbership test is ontside
the range of the hase type. (See fz2st C452321.)

5) WMUMERIC_ERROR is raised =~hen & ‘“itsral o»nevand in A
fixed-point comparison or membarshin rest is outside th: range
of the bhase type. (See tast CI582%37%.)

8) Underflow 1is gradual. (See r=sr3 (55243, 7 {74 tasts).)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the iC¥C tzosts do not specificsliy
attempt to determine the method of rounding, the test vresults
indicate the following:

1) The method nsed for rounding %o integer is round to even.
(See tests C46012A..2 (26 tests).)}

2) The method nsed for rounding to longest int=ger is ronad
to even. (See tests C460121..Z (26 tzsts).)

3) The method used for rounding to integer in statiec nniversal
real expressions is round avay from zero. (See test C4A014R.)

Array types.

An implementation is allowed to raise IIUMERIC_ERROR or
CONSTRAINT_ERROR for an array having A 'LENGTH that exceeds
STAIIDARD . INTZGER ' LAST and/or SYSTEH.WAX _IIIT. Tor this
implementation:

1) Declaration of an array type or subtype declaration sith anre
than SYSTEM.HAX_INT components raises NUNERIC_ERROR for a
two dimensional array subtvpe vhere the large dimension is the
second one. (See test C36003A)

2) CONSTRAINT_ERROR is raised when 'LENGTH is applied to an
array type with TIHTEGER'LAST + 2 components. (See tast
C362021.)

3) NUMERIC_EZRROR is ¢ I
SYSTEM.HAX_INT + 2 components is declared. (Se»
€362028.)

Aised «~hen an Array tvps with
s b

BT R AR U S F T e P A

5)

6)

7)

8)

JOUPIGHRATTION THRORIATION

A packed BOOLEAN array having a 'LRVWSTH exceeding THTEGER'LAST
raises no exception, (3ee taost €5 %

A packed two-dimensional BOOQLEAN array with wore than
INTEGER'LAST vomnponents raises CONSTRAINT _ZRROR when the
length of a dimension is calculated snd 2xneeds IHTEGER'LAST.
(See test €52104Y.)

In assigning one-dimensional array fypes, the =zxpression
evaluated in its entirsty bdefore COUSTRATHT_ERROR

raised when checking whether the 2Xxpression's subtyp=
compatible with the target's subtype. (See test 520132.)

jeie =le
n u

oy
U

In assigning two~dimensional array types, the aupression
18 not evaluated in its entirety hefore CONSTRAINT_TRROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See rest C532013A.)

A null array with one dimension of length greater than
INTEGER'LAST ray raise UBUMERIC_ERROR or CONSTRAINT_ERROR
either when declared or assigned. Alternatively, An
implementation nmay accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52i03Y.)

Discriminated types.

1)

In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT_FRROR is raised
when checking whether the =xpression's subtype is compatible
with the target's subtvpe. (See test C520133.)

Aggregates.

1)

2)

3)

In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are
made as choices are evaluated. (S2e tests C43207A and
C432078B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test B432125.)

CONSTRAINT_ERROR is raised after all rhoices are
avaluated when a bhound in A non-null cange of a non-null
aggrzgate does not belong to an index subtype, (Sem test
243211B.)

h.

i.

CONFIGURATION INFORMATION

Pragmas.

1)

The pragma INLINE is supported for procedures and for non-
library functions. (See tests LA3004A..B (2 tests), EA3004C..D
(2 tests), and CA3004E..F (2 tests).)

Generics.

This implementation creates a dependence between a generic body
and those units which instantiate it. As allowed by IA-408/11, if
the body is compiled after a unit that instantiates it, then that
unit becomes obsolete.

1)

2)

3)

4)

5)

6)

7

Generic specifications and bodies <can be compiled
in separate compilations. (See tests CA1012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

Géneric¢ subprogram declarations and bodies can be
compiled in separate compilations. {See tests CA1012A and
CA2009F.)

Generic 1library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CA1012A.)

Generic non-library package Dbodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

Generic non~-library subprogranm bodies . can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

Generic unit Dbodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

Generic package declarations and bodies ¢an be
compiled in separate compilations. (See tests CA2009C,

[y
L]

[I 2
-

9)

CONFTGURATION THFORMATTON

B8C3204C, and BC3205D.)

Generic library package specifications and bodizs can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

Generic nnit hodies and theiy supunits can he
compiled in separate compilations. [(See test CA30113.)

Input and output,

1)

2)

3)

4)

5)

6)

7

8)

9

10)

11)

'y
i~
rd

The vackage SEQUENTIAL_TO ~annot be instantiated with uncon-
strained array typzs or record tvpes with discriminants with-
out defaults. (See tests AE2101C, TEZ201D, and EE220:iE.)

The package DIRECT_IO cannot be instantiated with wncon-
strained array typ2s or record types with discriminants with-
out defaults. (See tests AE2101iKH, ¥®E24N1D, and EE2401G.)

Modes TIN_FILE and OUT_FILE are supnortad for SEQUENTIAL_IO.
(See tests CE2102D..E, CEZ102N, and CE2107P.)

Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, C2Zi02I..J {2 tests), CE2102R,
CE2102T, and CE21i02Y.)

Modes IN_FILE and OUT_FILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

RESET and DELEZTE operations are supported for
SEQUENTIAL_IO. (See tests CE2102¢ and CE2102X.)

RESET and DELEZTE operations are supported for DIRICT_TO.
(See tests CE2102K and CE2102Y.)

RESET and DELETE operations Aare supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, TE3110A, and
CE31144.)

Overvwriting to a sequential file doss not truncate the f£ile.
(See test CE2208B.)

Temporary sequential files Aare given names and not
deleted when closed. (See test CE21081.)

Temporary direct files are given nawes and not deleted when
closed. (See test CE2108C.)

Temporary text files are given- wnames and aot dzleted

13)

14)

15)

PRI T
R

A

capsTan: a-'mr ‘PU?GRAWTOW
when closed. (See test CE31123.)
More than one internal file rcan be associated with
each exterpal file for sequential files when reading
only. {(See tests CE2107A..%8 (5 tesrs), CE2102L, CE211i0B, and
CE2111D.)
More +han one internal £ilsz «can e agsociated “ith
each external file for direct filzs vhen r2adiug only (See
tests CE21077..H (3 tests), CE2110% and CE2111H.}
More than one internal file can he assoniatad with
each external file for text files when rzading only (See
tests CE3111A..E (5 tests), (E3I114B, and TE3115A.)

CHAPTER 3
TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACYC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn hecause of test errors. The AVF
determined that 314 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported Dby the implementation. Hodifications to the code,
processing, or grading for 15 tests were required to successfully
demonstrate the test objective., (See section 3.6.)

The AVF concludes that the testing rassults demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D g L

Passed 127 1129 2018 17 23 45 3339
Inapplicable 2 9 297 0 5 1 314
Vithdrawn 1 2 35 0 6 n 44

TOTAL 130 1140 2350 17 34 46 U7

3.3 SUHMARY OF TEST RESULTS BV CHAPTER

RESULT TEST "HSPTER
"7] 3

e 4y - > e oy s S0 s b

Passed 198 573 544 245 172 99 140 332 1722

/A 14 76 136 3 0 0 5 0 3

TOTAL 213 650 680 248 172 99 1486 334 137

3.4 WITHDRAWN TESTS

102 - - - - - S A A G - S e e

rd

[2)Y
(A
I
(93)
[49
>
tbe
w2
(L%
(9]
(WS]
~3
S
<3

The following 44 tests were withdrawn from ACVC Version 1.10

at the time of this validation:

E28005C A390056 B97102E C97116A BC
CD2A63A CD2A53B CD2263C CD2R63D D
CD2266C CD2266D CD2AT3A CD2A738]
CD2A76A CD2A76B CD2A76C CD2A76D co
CD2A84N CD2A84Y €D50110 CD2B15C)]

CD50073 ED7004B ED7005C
CD7105A CD7203B €D7204B

ED7005D ED
CD7205D CE

30098 CN2XAZD
ZARRA CNZARGR
2373¢ CDZA73D
25316 CD23836G
7265¢C €D2D11B
T00AT ED7006D
2157T CE3111C

CE3301a

CE3411B

See Appendix D for the reason that each of these tasts was withdrawn.

3.5 INAPPLICABLE TESTS

Souwe tests do not apply tn all enwpilers hecanse thay
that a compiler is not required by the Ada Standard to

nake nse of fzablites
support, Others way

depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered

each time a validation is attempted. A test that is i
validation attempt is not necessarily inapplicabl
attempt. For this walidation attempt, 314 tzsts w

a. The following 201 tests are not annlicable

napplicable for one
e for a swubseguent
ere inapplicable for

becanse thay have

floating-point tvne declarations ~vequiring »nore digits than

SYSTEH.HAX_DIGITS:

€24113L..7Y (14 tests) C35705L. .7 (14
C3570AL..T (14 fests) C35707h. .7 (14

tasts)
tasts)

[
.

TIST TUFQORMATTON

C25708L..Y (14 rests) £35802%..7 (15 tests)
C45222%..Y (14 tasts) €4532i0..7 (14 tests)
C45421L..Y (14 tests) ~45521%..2 (15 tests)
€45524L..2 (15 tests) C45621L..7 (15 tests)

C45641L..Y (14 tests) C4AJ12L..Z !15 tests)

355081, €3%508J, C35508M, and 355088 ar2 not applicable hecauss
they include enmnmeration representation clauses for BOOLEAN tvpes
in vhich the rspresentation walues are other than (FALIE = 0,
TRUE => 1). Under the terwms of 3I-00323, this implementarion is
not required to support such representation clauses.,

€£357022 and B36001T are not anplicable hecause this implementation
supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable bhecanse this
implementation does not support a predefined type SHORT_THTEGER:

€452318B £45304B €455023 455038 C45504B
C45504E C45611B C45613F C456148 C456318B
C456328 B52004E C55B07B B55B09D B8600LV
CD7101E

C455314..P (4 tests) and C45532i..?7 (4 tests) are not applicable

because they acquire a value of SYSTEM.MAX_MANTISSA greater than
32,

C86001F is not applicable because, for this implementation, the
package TEXT_IC 1is dependent upon package SYSTEi. These tests
recompile package SYSTEHN, making package TEXT_IO, and
hence package REPORT, obsoleta.

B86001X, €45231D, and CD7101G are not applicahle because this
implementation does not support anv nredefined integer type with a
name other than INTEGER, LOWG_IVUTEGER, or SHORT_INTEGER.

B86001Y is not applicable because this implementaticn supports no
predefined fixed-point type other than DURATION.

B86001Z is not applicable because this implementation supports ao
predefined floating-point t*yme with a pname other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

CA2009C, CA2009F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic hody
and those nunits which instantiate it (See Sesction 2.%.i Aand
Appendix ¥ of the Ada Standard).

LA3004B, EA3004D, and CA3004F Aars not anplicable becanse thig
implementation does nnt support nragea IPNLINE for ‘ibrary

n.

]

A I T s “ SRR -,

TTAT THFORMATTON

functions.

CD1009C, CD2A41A..B (2 tasts), CD2A41E and CD23a42A..J (10 tests)
are not applicable hecause of restrictions on 'STZE length clauses
for floating point tynes.

CD2AA1I..J (2 tests) are not applicabl- hacause of rastrictions on
'SIZE length clauses for array rvpes.

CD2A84B..I (8 tests) and CN2A24K..0L (2 tasts) are not applicahle
because of restrictions on 'SIZE langth clanses far asress types.

CD40412 is not applicable hecause of vrestrictions on record
representation clauses with 32 bit alignment.

AE2101C, ®©E2201D, and EE220lE use instantiations of packaga
SEQUENTIAL_IO with unconstrained arvav types and record tynes with
discriminants without defaults. Thesc instantiations are rejected
by this compiler,

AE2101H, EE2401D, and EE2401G wse instantiations of packags
DIRECT_IO with unconstrained array tynes and record types with
discriminants without defaults. These instantiations ars rajectad
by this compiler.

CE2102D 1is inapplicable because this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E is inapplicable because this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL_IO.

CE2102F is inapplicable because this implewentation supports
CREATE with INOUT_FILE mode for DIRECT_IO.

CE2102T is inapplicable becanse this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

CE21023 is inapplicable because this implementation supports
CREATE with OUT_FILE mode for DIRECT_IO.

CE2102N 1is inapplicable because this implementation suppnrts OPER
with IN_FILE mode for SEQUENTIAL_TO.

CE21020 is inapplicable because fthis implarentation supports RESET
with IN_FILE mode for SEQUENTIAL_IO.

-

CBE2102P is inapplicable hecansz this implamentation supperts OFF
with OUT_FILE mode for SEQUENTIAL_IO.

C£2102Q is inapplicables bhecause this impl-mentatrion supporrs RESET
with OUT_FILE node for SEQUENTIAL_TO.

Ad.,

ah.

ac,

ad.

ae.

af.

ago

ah.

ai.

aj.

ak.

al.

anm,

an,

40,

CE2102R is inapplicable bscause this iaplementatinn supports OPEW
with INOUT _FILE mode for DIRECT_IC.

CE21028 is inanplicable hecause this implewentation supports RESET
with IIIOUT_TILE mode for DIRECT_IN.

21027 is inapplicable because this iwmplementatian supnorts OPEN
7ith IN_FILE mode for DIRECT_IO.

CE2102U is inapplicable hacause this implementaticn snprorts RES®ET
with IN_FILE mode for DIRECT_IO.

CE2102V is inapplicable because this imnlewantation supports OPEN
with OUT_FILE mode for DIRECT_IO.

CE2102W is inapplicable because this implementation supports RESET
with OUT_FILE mode for DIRECT_IO.

CE21073..,E (4 tests), CE2107L, CEZ21108, and CE2111D aAre not
applicable because aultiple internal files cannot bLa associatad
with the same external file when one or more files is writing
for sequential files. The vproper =exception 1is raised when
nultipie access is attempted.

CE2107G..H (2 ktests), CE21i0D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same
external file when one or mors files is writing for direct files.
The proper exception is raised when multiple access is attempted.

CE3102E is inapplicable hecause text file CREATE with IiI_FfILE mode
is supported by this implementation.

CE3102F is inapplicable bzcause text file RESET is supported by
this implementation.

CE3102G is inapplicable because text file deletinn of an external
file is supported by this inplementation.

CE3102I is inapplicable because text file CREATE with OUT_FILE
mode is supported by this implementation.

CE3102J is inapplicable because text fils OPEN with IN_FILE mode
is supported by this implementation.

CE3102% is ipapnlicable becauss .axt file OPEN with OUT_FTLE mode
is supporred by this implementation.

CE3111B, 7E2311iD..8 (2 tests), CE3

1148, and CE3il15RA are not
applicable because nuitiple infernai

!
files rannot hHe agsociated

R EER T
Foa o

e

-

E N - SR NS R

with the same axternal fil: vhen one or more fil-
text €iles. The proper sxception is raissd whan 'tultiple =crzss
is attempted.

3.6 TZST, PROCESSING, 3IMD EVALUATION HODITICATIONS

catings of code,
2 Tor Cegitizate

-
n

it is =xpected that some tzsts il reanive ndifi
processing, ovr ~vwaluation in ord-r to ocpensar
implementation hahavior. Modifications ave wade "y ihe 3
legitimate ipplementation hehavior wmrevents the successful roanlction of 2n
(otherwise) applicable test., FExamnles af <uch andifications ineclude:
adding a length clanse to alter tha default size nf a collection; =plitting
a Class B test into subtests so that =31 <rrars sv2 detected; and
confirming that nessages vproduced hHy an -xernkable tast dJduroustrate
conforming behavior that was not anticiparad by the test (such as raising
one exception instead of another).

in cagss whare

Hodifications were required for 15 Lests.

The following tests were split because syntax <rrovs at ona poipt veenlied
in the compiler not detecting other errors in thz tast:

B71001E B71601K B71001Q 71001V ARR3N0AA BA300AB
RR30078 BA3008A BA3008B B330132 (6 apd T}

Tests C34005G, 340050 and C34006D returned the rasult FAILED becauss of
false assumptions that an element in an array or a record type may unt e
rapresented more compactly than a single object of that type. Tha AVO has
ruied these tests PASSED if the only message nf failure acenre from the
requirements of T'SIZE due to the above assumptions (T is the array type).

In tests CD2C11A and CD2C11B the size snecification in 'he represzntation
clause for the task storage size for task type TTYPE was increased from
1024 to 2042 because 1024 bytes were insufficiznt for this cowpiler.

3.7 ADDITIONAL TESTING INFORMATION
3.7.1 Prevalidation

Prior to validation, a sat of test results for ACVC Ver<eion 1.10 produced
by the TeleGen2 Ada Development Systew for 3 computing system hasad on
the same instruction set architecture was submittad to the AVE by the
apnlicant for review., Analysis of these resnite demenstrated that the
TeleGon? System successfully passed all applleable tasts, And i
exhibited the sxpected hehavior on all inepplicahi. rusts. The applicant
certifisd that testing results for the compnting system of this ~validation
would be identical to the ones submitted for review prior re salidation.

o]
2

3.7.2 Test Hechod

Testing of the TeleGen2 Ada Development Systew using ACVC Tarsion 1,10
was conducted ~n-site hy a walidation traam from the AVF. The
configuration in which the testing was pevformed s described hy the
following designations of hardware and softwavs cowmvonsents:

Host: Hewlett=-Packard 9000/370
under KP/UX 6.5

Target: same as host

A cartridge containing the customized test «nite was 'oaded onto 3 SUN-3
and transferred via Ethernet to an intermediate computer whose ilisks were
accessible via Ethernet for the host computer. The full set of tests were
then compiled, linked and executed on the host computer. Results were
collected on the host computer and transferred via Ethernet to yet another
computer for evaluation and archiving.

The compiler was tested using command scripts nrovided by TaleSoft
and reviewed by the validation team. The tasts were cowmpiled using the
command

ada =0 D ‘filepamed
and linked with ti: command

ald <main wnito
The -L qualifier was added to the compiler call for class B, =xpanded and
modified tests. See Appendix F for explanation of comviler and linker
switches.
Tests were compiled, linked, and executed (as appropriate) using one com-
puter. Test output, compilation listings, and job logs were captured on
cartridge and archived at the AYF., The listings ~vamined on=-site by the
validation team were also archived.
3.7.3 Test Site

Testing was conducted at TeleSoft, San Diego, "SA, and was completed on
26 NMovember 1989,

AT AR TRE SRS e B Rt TRt Sp AL | A e e S TROSETTES Y
B A e I I 3 s o e R iy - b

$TE T e ;Tﬁ:gﬂ"; 3 ¥, e ':ﬁ;’-.‘g?\ils}z‘?ﬂ
. A - B

- ARETLARATION OF CANPORNANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft has submitted the following Declaration of Tonformance concerning
the TeleGen2 Ada Development System.

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: IABG, Dept. SZT, D-8012 Ottobrunn
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: TeleGen2 Ada Development System
Version: 14

Host Architecture ISA: Hewlett-Packard 9000/370

OS & VER #: HP/UX 6.5

Target Architecture ISA: Same as Host
OS & VER #: Same as Host

Implementor’s Declaration

I, the undersigned, representing TELESOFT, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. 1 declare that TELESOFT is the owner of record of the Ada language
compilers listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made only in the owner’s corporate
name.

, q’g‘,d/(£ Date: /;?- 7 ‘ﬂ
ELESOFT 4
Raymond A. Parra, Vice*President and General Counsel

Owner’s Declaration

I, the undersigned, representing TELESOFT, take full responsibility for implementation
and maintenance of the Ada compiler(s) listed above, and agree to the public disclosure of
the final Validation Summary Report. I declare that all of the Ada language compilers
listed, and their host/target performance are in compliance with the Ada Language
Standard ANSI/MIL-STD-1815A.

Ei Dlegead o297
TELESOFT /4
Raymond A. Parra, Vice President and General Counsel

B S I e SR ST 5:;;;7;{:7\":,{ TR A Y

APPERDIX F OF THR 2da STINDARD

APPEMDIX R

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation~dependent pragmas, to certain machine-denendent conventions
as mentioned in chapter 13 of the 2da Standard, and fo certain allowed
restrictions on reprasentation clauses. The implementation-dependent
characteristics of the TeleGen2 Ada Development System, as described in
this Appendix, are provided by TeleSoft. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are nct a part of Appendix ¥, are:

package STANDARD is

s 0.

type INTEGER is range -32768 ., 32767;
type LONG_INTEGER is range ~2147483643 .. 2147483647;

tvpe FLOAT is digits 6 range ~1.70141E+38 .. 1.70141E+38;
type LONG_FLOAT is digits 15

range -3.98846567431158E+307 .. 3.98846567431158E+307;
type DURATION is delta 2%1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

CHAPTER 3: LRM ANNOTATIONS

CHAPTER CONTENTS

$ LRM ANNOTATIONS
3.1 LRM Chapter 2 - Lexical Elements
3.2 LRM Chapter 3 - Declarations and Types
3.3 LRM Chapter 4 - Names and Expressions
3.4 LRM Chapter 9 - Tasks
3.5 LRM Chapter 10 - Program Structure and Compilation Issnes
3.6 LRM Chapter 11 - Exceptions
3.7 LRM Chapter 13 - Implementation-Dependent Features ...
Table: Summary of LRM Chapter 13 Features

3.7.1 Pragma Pack.
3.7.2 [LRM 13.2] Length Clauses.
3.7.2.1 (a) Specifying Size: T'Size.
3.7.2.2 (b) Specifying Collection Size: T’'Storage Size.
3.7.2.3 (c) Specifying Storage for Task Activation: T'Storage.Size.cc.cccecercranen
3.7.2.4 (d) Specifying 'Small for Fixed Point Types: T'Small.
3.7.3 [LRM 13.3] Enumeration Representation Clauses.
3.7.4 [LRM 13.4] Record Representation Clauses.
3.7.5 [LRM 13.5] Address Clauses.
3.7.6 [LRM 13.6] Change of Representation.
3.7.7 [LRM 13.7] The Package System.
3.7.8 [LRM 13.7.2] Representation Attributes.
3.7.9 [LRM 13.7.3] Representation Attributes of Real Types.
3.7.10 [LRM 13.8] Machine Code Insertions.
3.7.11 [LRM 13.9] Interface to Other Languages.
3.7.12 [LRM 13.10] Unchecked Programming.
3.8 LRM Appendix F for TeleGen2
Table: LRM Appendix F Summary

3.8.1 Implementation-Defined Pragmas.
3.8.1.1 Pragma Comment.
3.8.1.2 Pragma Linkname. . seessssesssssssessesnsnsssnsesas
3.8.1.3 Pragma Images.
3.8.1.4 Pragma No_Suppress,
3.8.2 Implementation-Dependent Attributes. ..coccccemccciiicsescmenreririiririsisecnanseesueccssses
3.8.2.1 'Address and 'Offset.
3.8.2.2 Extended Attributes for Scalar Types. ..cc..ccccerreescccnsaseene
3.8.2.2.1 Integer Attributes

'$1JULS89 -G8k~ REF-1347N-V1.1(U/68) © 1989 TeleSoft

| S I _ -

3-10
3-10
311
3-12
3.12
3-12
312
312
3-13
3-13
313
3-14
3-15
315
3-16
3-16
3-17
217
317
3-17
3-19

CHAPTER 3: LRM ANNOTATIONS

CHAPTER CONTENTS

3-22

3.8.2.2.2 Enumeration Type Attributes
3.8.2.2.3 Floating Point Attributes

3-25

3-27

3.8.2.2.4 Fixed Point Attributes
3.8.3 Package System.

3-31

REF-1347N-V1.1(U/68) © 1989 TeleSoft

31JULs9

LRM ANNOTATIONS

3. LRM ANNOTATIONS

TeleGen2 compiles the full ANSI Ada language as defined by the Reference Manual for the
Ada Programming Language (LRM) (ANSI/MIL-STD-1815A). This chapter describes the
portions of the language that are designated by the LRM as implementation dependent for the
compiler and run-time environment.

The information is presented in the order in which it appears in the LRM. In general,
however, only those language features that are not fully implemented by the current release of
TeleGen2 or that require clarification are included. The features that are optional or that are
implementation dependent, on the other hand, are described in detail. Particularly relevant are
the sections annotating LRM Chapter 13 (Representation Clauses and Implementation-
Dependent Features) and Appendix F (Implementation-Dependent Characteristics).

3.1. LRM Chapter 2 - Lexical Elements
[LRM 2.1] Character Set. The host and target character set is the ASCII character set.

[LRM 2.2] Lexical Elements,Separators, and Delimiters. The maximum number of
characters on an Ada source line is 200.

(LRM 2.8] Pragmas. TeleGen2 implements all language-defined pragmas ercept pragma
Optimize. If pragma Optimize is included in Ada source, the pragma will have no effect.
Optimization is implemented by using pragma Inline and the optimizer. Pragma Inline is not
supported for library-level subprograms. Pragma Priority is not supported for main programs.

~ Limited support is available for pragmas Memory Size, Storage_Unit, and System_Name;
that is, these pragmas are allowed if the argument is the same as the value specified in the
System package.

Pragmas Page and List are supported in the context of sourcé/error listings; refer to the
Compiler/Linker chapter of the TeleGen2 User Guide for more information.

3.2. LRM Chapter 3 - Declarations and Types

[LRM 38.2.1) Object Declarations. TeleGen2 does not produce warning messages about the
use of uninitialized variables. The compiler will not reject a program merely because it contains
such variables.

[LRM 38.5.1] Enumeration Types. The maximum aumber of elements in an enumeration
type is 32767. This maximum can be realized only if generation of the image tabie for the type
has been deferred, and there are no references in the program that would cause the image table to

be generated. Deferral of image table generation for an enumeration type, P, is requested by the
statement:

pragma Images (P, Deferred);

Refer to “Implementation-Defined Pragmas,” in Section 3.8.1, for more information on pragma
Images.

31JUL89 REF-1347N-V1.1(U/68) © 1989 TeleSoft 221

TeleGen2 Reference Information for UNIX/68K Hosts

(LRM 3.5.4] Integer Types. There are two predefined integer types: Integer and
Long_Integer. The attributes of these types are shown in Table 3-1. Note that using explicit -
integer type definitions instead of predefined integer types should result in more portable code.

Table 8-1. Attributes of Predefined Types Integer and Long_Integer

Type
Long.Integer
-2147483648

1 2147483647
32

11

Attribute

Last 32767
'Size 16
'Width 6

[LRM 3.5.8] Operations of Floating Point Types. There are two predefined floating point
types: Float and Long_Float. The attributes of types Float and Long. Float are shown in Table

- 3-2. This Boating point facility is based on the IEEE standard for 32-bit and 64-bit numbers.

Note that using explicit real type definitions should lead to more portable code.
The type Short_Float is not implemented.)

Table 3-2. Attributes of Predefined Types Float and Long. Float

3.2

. Type

Attribute Float | Long_Float
'Machine_Overflows | TRUE TRUE
'Machine_Rounds TRUE TRUE
*Machine_Radix 2 2
'Machine_Mantissa | 24 53
"Machine. Emax 127 1023
"Machine_Emin -125 ~1021
'Mantissa 121 ’ 51
"Digits 6 15
'Size 32 64
'Emax 84 204
'Safe.Emax 125 1021
'Epsilon 9.53674E-07 8.88178E~16
'Safe_Large 4.25253E+37 2.24711641857789E+307
'Safe_Small 1.17549E-38 2.22507385850721E~308
"Large 1.93428E+25 2.57110087081438E+61
'Small 2.58494E-26 1.99469227433161E-62

REF-1347N-V1.1(U/68) © 1989 TeleSoft

31JULe9

LRM ANNOTATIONS

3.1. LRM Chapter 4 - Names and Expressions

(LRM 4.10] Universal Expressions. There is no limit on the accuracy of real literal
expressions. Real literal expressions are computed using an arbitrary-precision arithmetic
package.

3.2, LRM Chapter 9 - Tasks

[LRM 9.8] Delay Statements, Duration, and Time. This implementation uses 32-bit
fixed point numbers to represent the type Duration. The attributes of the type Duration are
shown in Table 3-3.

Table 3-3. Attributes of Type Duration

Attribute | Value

[“Delta 0.000061035156250
'First -86400.0
'Last 86400.0

[LRM 9.8] Priorities. Sixty-four levels of priority are available to associate with tasks
through pragma Priority. The predefined subtype Priority is specified in the package System as

subtype Priority is Integer range 0..63;
Currently the priority assigned to tasks without a pragma Priority specification is 31; that is:

(System.Priority’First 4 System.Priority’Last) / 2

[LRM 9.11] Shared Variables. The restrictions on shared variables are only those specified
in the LRM.

3.3. LRM Chapter 10 - Program Structure and Compilation Issues

[LRM 10.1] Compilation Units - Library Units. All main programs are assumed to be
parameterless procedures or functions that return an integer result type.

3.4. LRM Chapter 11 - Exceptions

[LRM 11.1] Exception Declarations. Numeric_Error is raised for integer or floating point
overflow and for divide-by-zero situations. Floating point underflow yields a result of zero without
raising an exception.

Program_Error and Storage_Error are raised by those situations specified in LRM Section
11.1. Exception handling is also discussed in the Programming Guide chapter.

04JAN90 REF-1347N-V1.2a(U/68) © 1990 TeleSoft 3-3

TeleGen2 Reference Information for UNIX /68K Hosts

8.7. LRM Chapter 13 - Implementation-Dependent Features

As shown in Table 3-4, the current release of TeleGen2 supports most LRM Chapter 13
facilities. The sections below the table document those LRM Chapter 13 facilities that are either
not implemented or that require explanation. Facilities implemented exactly as described in the

LRM are not mentioned.

Table 3-4. Summary of LRM Chapter 13 Features for TeleGen2

13.1 Representation Clauses

Supported, except as indicated below (LRM 13.2 -
13.5). Pragma Pack is supported, ezcept for dynam-
ically sized components. For details on the
TeleGen2 implementation of pragma Pack, see Sec-
tion 3.7.1.

13.2 Length Clauses

Supported:
*Size
'Storage_Size for collections’
'Storage_Size for task activation
'Small for fixed-point types

See Section 3.7.2 for more information.

13.3 Enumeration Rep. Clauses

Supported, ezcept for type Boolean or types derived
from Boolean. (Note: users can easily define a non-
Boolean enumeration type and assign a representa-
tion clause to it.)

13.4 Record Rep. Clauses

Supported ezcept for records with dynamically sized
components. See Section 3.7.4 for a full discussion
of the TeleGen?2 implementation.

|{13.5 Address Clauses

I

Supported for: objects (including task objects).

Not supported for: packages, subprograms, or task
units.

See Section 3.7.5 for more information.

13.5.1 Interrupts

|

For interrupt entries, the address of a TeleGen2-
defined interrupt descriptor can be given. See “In-
terrupt Handling” in the Programming Guide
chapter for more information.

‘ 13.6 Change of Representation

Supported, ezcept for types with record representa-
tion clauses.

wweees Continued on the nezt page ~----

3-4 REP-1347N.V1.1(U/88) © 1989 TeleSoft 31JULS9

LREM ANNOTATIONS

Table 3-4. Summary of LRM Chapter 13 Features for TeleGen2 (Contd)

PRENESRRRRRERRSEEE T o = T

weeeee Continued from the previous page --ee-

13.7 Package System Conforms closely to LRM model. Refer to Section
3.7.7 for details on the TeleGen2 implementation.

“ 13.7.1 System-Dependent Named | Refer to the specification of package System (Sec-
Numbers tion 3.7.7).

13.7.2 Representation Attributes Implemented as described in LRM ezcept that:
'Address for packages is unsupported.
| 'Address of a constant yields a null address.

13.7.3 Representation Attributes of | See Table 3-2.
Real Types

F
lm.s Machine Code Insertions Fully supported. The TeleGen2 implementation ||
Fz.g

defines an attribute, 'Offset, that, along with the
language-defined attribute 'Offset, allows addresses
of objects and offsets of data items to be specified in
stack frames. Refer to “Using Machine Code Inser-
tions” in the Programming Guide chapter for a fuil
description on the implementation and use of
machine code insertions.

Interface to Other | Pragma Interface is supported for Assembly, C,
Languages UNIX, and Fortran. Refer to ‘“‘Interfacing to Other
Languages” in the Programming Guide chapter for
a description of the implementation and use of prag-
ma Interface.

“ 13.10 Unchecked Programming Supported except as noted below (LRM 13.10.2).
13.10.1 Unchecked Storage Deallo- | Supported.
cation

13.10.2 Unchecked Type Conver- | Supported ezcept for unconstrained record or array
sions types.

3.7.1. Pragma Pack. This section discusses how pragma Pack is used in the TeleGen2
implementation.

a. With Boolean Arrays. You may pack Boolean arrays by the use of pragma Pack.
The compiler allocates 16 bits for a single Boolean, 8 bits for a component of an unpacked
Boolean array, and 1 bit for a component of a packed Boolean array. The first figure illustrates
the layout of an unpacked Boolean array; the one below that illustrates a packed Boolean array:

31JUL89 REF-1347N-V1.1(U/68) © 1989 TeleSoft -5

TeleGen2 Reference Information for UNIX/u8K Hosts

Unpacked Boolean array:

Unpacked Bool Arr Type is array (Natural range C..1) of Boolean
U B Arr: “Unpacked Bool Arr Type := (True,False); :

MSB LSB
7 0
Element 0
‘0 | Element 1

Packed Boolean array:

Packed_Bool Arr_Type is array (Natural range 0..8) of Boolean;
pragma Pack (Packed Bool Arr Type);
P_B Arr: Packed Bool Arr Type := (P_B Arr(0) => True,
“P_B Arr(5) = True, others => False);

MSB LSB
Bit: 15 . 0
1{0{0t0lojl1{0
Element: 0 1 2 3 4 5 6 a Tamnsed) —

b. With Records. You may pack records by use of pragma Pack. Packed records follow
these conventions:

1. The total size of the record is a multiple of 8 bits.
2. Packed records may cross word boundaries.
3. Records are packed to the bit level if the elements are themselves packed.

Below is an example of packing in a procedure, Rep_Proc, that defines three records of different
lengths. Objects of these three packed record types are components of the packed record Rec.
The storage allocated for Rec is 16 bits; that is, it is maximally packed.

-6 REF-1347N-V1.1(U/68) ® 1989 TeleSoft 31JULS9

LRM ANNOTATIONS

procedure Rep Proc is

type Al is array (Natural range O .. 8) of Boolean;
pragma Pack (Al);

type A2 is array (Natural range O .. 3) of Boolean;
pragma Pack (A2);

type A3 is array (Natural range O .. 2) of Boolean;
pragma Pack (A3);

s

type ARec is

record
One : Al;
Two : A2;

Three : A3;
end record;
pragma Pack (A_Rec);

Rec : ARuzc;

begin
Rec.One := (0 => True, 1 => False, 2 =) False,
3 =) False, 4 => True, 5 =) False,
8 => False, 7 =) False, 8 =) True);

Rec.Two (3) := True;
Rec.Three (1) := True;
end Rep_Proc;

3.7.2. [LRM 13.2] Length Clauses. A length clause specifies an amount of storage
associated with a type. The sections below describe how length clauses are supported in this

implementation of TeleGen2 and how to use length clauses effectively within the context of
TeleGen2.

3.7.2.1. (a) Specifying Sise: T’Size. The prefix T denotes an object, The size specification
must allow for enough storage space to accommodate every allowable value of these objects. The
constraints on the object and on its subcomponents (if any) must be static. For an unconstrained
array type, the index subtypes must also be static.

For this implementation, Min_Size is the smallest number of bits logically required to hold
any value in the range; no sign bit is allocated for non-negative ranges. Biased representations
are not supported; e.g., a range of 100 .. 101 requires 7 bits, not 1. Warning: in the current
release, using a size clause for a discrete type may cause inefficient code to be generated. For
example, given...

type Nibble is range O .. 415;
for Nibble’Size use 4;

...each object of type Nibble will occupy only 4 bits, and relatively expensive bit-field instructions
will be used for operations on Nibbles. (A single declared object of type Nibble will be aligned on
a storage-unit boundary, however.)

For floating-point and access types, a size clause has no effect on the representation. (Task
types are implemented as access types).

31JULS89 REP.1247N_U1 1/(TT/@a\ /A sno~m s ~ =

TeleGen2 Reference Information for UNIX/68K Hosts

For composite (array or record) types, a size clause acts like an implicit pragma Pack,

followed by a check that the resulting size is no greater than the requested size. Note that the -

composite type will be packed whether or not it is necessary to meet the requested size. The size
clause for a record must be a multiple of storage units.

3.7.2.2. (b) Specifying Collection Size: T’Storage_Size. A collection is the entire set of
objects created by evaluation of allocators for an access type.

The prefix T denotes an access type. Given an access type Acc..Type, a length clause for a
collection allocated using Acc..Type objects might look like this:

for Acc_Type’'Storage_Size use 64;

In TeleGen2, the above length clause allocates from the heap 64 bytes of contiguous memory for
objects created by Acc_Type allocators. Every time a new object is created, it is put into the
remaining free part of the memory allocated for the collection, provided there is adequate space
remaining in the collection. Otherwise, a storage error is raised.

Keeping the objects in a contiguous span of memory allows system storage reclamation
routines to deallocate and manage the space when it is no longer needed. Pragma Controlled can
prevent the deallocation of a specified collection of objects. Objects can be explicitly deallocated
by calling the Unchecked_Deallocation procedure instantiated for the object and access types.

Header Record

In this configuration of TeleGen2, information needed to manage storage blocks in a collection is
stored in a collection header that requires 20 bytes of memory, adjacent to the collection, in
addition to the value specified in the length clause.

Minimum Size

When an object is deallocated from a collection, a record containing link and size information for
the space is put in the deallocated space as a placeholder. This enables the space to be located
and reallocated. The space allocated for an object must therefore have the minimum size needed
for the placeholder record. For this TeleGen2 configuration, this minitnum size is the sum of the
sizes of an access type and a integer type, or 6 bytes.

Dynamically Sized Objects

When a dynamically-sized object is allocated, a record requiring 2 bytes accompanies it to keep
track of the size of the object for when it is put on the free list. The record is used to set the size
field in the placeholder record since compaction may modify the value.

Size Expressions

Instead of specifying an integer in the length clause, you can use an expression to specify storage
for a given number of objects. For example, suppose an access type Dict_Ref references a record
Symbol_Rec containing five fields:

3-8 REF-1347N-V1.1(U/68) © 1989 TeleSoft 31JUL89

LRM ANNOTATIONS - e —— e

type Tag is String(l..8);

type Symbol_Rec;
type Dict_Ref is access Symbol Rec;

type Symbol Rec is
record

Left : Dict_Ref;
Right : Dict_Ref;
Parent : Dict._Ref;
Value : Integer;
Key : Tag;

end record;

To allocate 10 Symbol_Rec objects, you could use an expression such as:

for Dict_Ref’Storage Size use ((Symbol_Rec’Size » 10) +20) ;
where 20 is the extra space needed for the header record. (Symbol_Rec is obviously larger than
the minimum size required, which is equivalent to one access type and one integer.)

In another implementation, Symbol..Rec might be a variant record that uses a variable
length for the string Key:

type Symbol_Rec(Last : Natural :=0) is

record
Left : Dict.Ref;
Right : Dict.Ref;
Parent : Dict._Ref;

Value : Integer;
Key : String(l..Last);
end record;

In this case, Symbol_Rec objects would be dynamically sized depending on the length of the
string for Key. Using a length clause for Dict_Ref as above would then be illegal since
Symbol_Rec’Size cannot be consistently determined. A length clause for Symbol_Rec objects, as
described in (a) above, would be illegal since not ail components of Symbol_Rec are static. As
defined, a Symbol_Rec object could «.oncexvably have a Key string with Integer’Last number of
characters.

3.7.2.3. (c) Specifying Storage for Task Activation: T'Storage_Sige. The prefix T
denotes a task type. A length clause for a task type specifies the number of storage units to be
reserved for an activation of a task of the type. The TeleGen2 default stack size is 8192 bytes.

3.7.2.4. (d) Specifying 'Small for Fixed Point Types: T'Small. Small is the absolute
precision (a positive real number) while the prefix T denotes the first named subtype of a fixed
point type. Elaboration of a real type defines a set of model numbers. T’Small is generally a
power of 2, and model numbers are generally muitiples of this number so that they can be
represented exactly on a binary machine. All other real values are defined in terms of model
numbers having explicit error bounds.

Example:

type Fixed is delta 0.25 range -10.0 .. 10.0;

$1JULS9 REF-1347N-V1.1(U/68) © 1989 TeleSoft 5-9

TeleGen2 Reference Information for UNIX/68K Hosts

Here...

Fixed'Small = 0.25 .- A power of 2
3.0 = 12 * 0.25 - A model number but not a power of 2

The value of the expression of the length clause must not be greater than the delta of the
first named subtype. The effect of the length clause is to use this value of 'Small for the
representation of values of the fixed point base type. The length clause thereby also affects the
amount of storage for objects that have this type.

If a length clause is not used, for model numbers defined by a fixed point constraint, the
value of Small is defined as the largest power of two that is not greater than the delta of the fixed
accuracy definition.

If a length clause is used, the model numbers are multiples of the specified value for Small.
For this configuration of TeleGen2, the specified value must be (mathematically) equal tc either
an exact integer qr the reciprocal of an exact integer.

Examples:
1.0, 2.0, 3.0, 4.0, . . . are legal
0.5, 1.0/3.0, 0.25, 1.0/3800.0 are legal
2.5, 2.0/3.0, 0.3 are illegal

3.7.3. (LRM 13.3] Enumeration Representation Clauses. Enumeration representation
clauses are supported, except for Boolean types.

Performance note: Be aware that use of such clauses will introduce considerable overhead
into many operations that involve the associated type. Such operations include indexing an array
by an element of the type, or computing the 'Pos, 'Pred, or 'Succ attributes for values of the
type.

3.7.4. [LRM 13.4] Record Representation Clauses. Since r« osrd components are subject
to rearrangement by the compiler, you must use representation clauses to guarantee a particular
layout. Such clauses are subject to the following constraints:

= Each component of the record must be specified with a component clause.

= The alignment of the record is restricted to mods 1 and 2, byte and word aligned.
Bits are ordered right to left within a byte.

= Components may cross word boundaries.

Here is a simple example showing how the layout of a record can be specified by using
representation clauses:

package Repspec_Example is
Bits : comstant := 1;
Word : conmstant := 4;

type Five is range 0 .. 16#1F§;
type Seventeen is range O .. 16#1FFFF#;
type Nine is range O .. 511;

type Record_Layout.Type is record
Elementl : Seventeen;

3-10 REF-1347N-V1.1(U/68) © 1989 TeleSoft 31JUL8s9

R e LRM ANNOTATIONS

Element2 : Five;

Element3 : Boolean;

Element4 : Nine;
end record;

for Record_Layout_Type use record at mod 2;
Elementl at OsWord range 0 .. 16;
Element2 at O»Word range 17 .. 21;
Element3 at O+=Word range 22 .. 22;
Element4 at O»Word range 23 .. 31;

end record;

Record.Layout : Record Layout_Type;
end Repspec_Exanmple;

3.7.5. [LRM 18.5] Address Clauses. The Ada compiler supports address clauses for
objects, subprograms, and entries. Address clauses for packages and task units are not
supported.

Address clauses for objects may be used to aczess hardware memory registers or other
known memory locations. The use of address clauses is affected by the fact that the
System.Address type is private. For the MC680x0 target, literal addresses are represented as
integers, so an unchecked conversion must be applied to these literals before they can be passed
as parameters of type System.Addrsss. For example, in the examples in this document the
following declaration is often assumed:

function Addr is new Unchecked Conversion (Long.Integer,System.Address);

This function is invoked when an address literal needs to be converted to an Address type.
Naturally, user programs may implement a different conventios. Below is a sample program that
uses address clauses and this convention. Package System mus¢ be explicitly withed when using
address clauses.
with System;
with Unchecked._Conversion;
procedure Hardware Access is
function Addr is new Unchecked Conversion (Long-Integer, System.Address);
Hardware Register : integer;
N for Bardware_Register use at Addr (16#FFO000#);
egin

end I'Ia.rdwa.rLAccess H

When using an address clause for an object with an initial value, the address clause should
immediately follow the object declaration:

0bj: Some_Type := <init_expr);

for 0bj use at <addr_expr);
This sequence allows the compiler to perform an optimization wherein it generates code to
evaluate the <addr_expr> as part of the elaboration of the declaration of the object. The
expression <init.expr> will then be evaluated and assigned directly to the object, which is stored
at <addr_expr>. If another declaration had intervened between the object declaration and the
address clause, the compiler would have had to create a temporary object to hold the
initialization value before copying it into the object when the address clause is elaborated. If the

31JULS9 REF-134TN-V1.1(U/68) © 1989 TeleSoft 3-11

TeleGen2 Refersnce Information for UNIX /68K Hosts

object were a large composite type, the need to use a temporary could result in considerable
overhead in both time and space. To optimize your applications, therafore, you are encouraged
to place address clauses immediately after the relevant object deciaration.

As mentioned above, arrays containing components that can be allocated in a signed or
unsigned byte (8 bits) are packed, one component per byte. Furthermore, such components are
referenced in generated code by MC680x0 byte instructions. The following example indicates
how these facts allow access to hardware byte registers:

with Systenm;
with Unchecked Conversion;
procedure Main is

function Addr is new Unchecked Conversion (Long.Integer, System.Address);
type Byte is range -128..127;
HW_Regs : array (0..1) of Byte;

for HW_Regs use at Addr (16#FFF310%);

Status_Byte : constant integer := O;
Next_Block Request: constant integer := I;
Request_Byte : Byte := 119;

Status : Byte;

begin

Status := HW_Regs(Status_Byte);

HAW_Regs (Next.Block Request) := Request _Byte;
eand Main;

Two byte hardware registers are referenced in the example above. The status byte is at location
16#FFF310# and the next block request byte is at location 16#FFF311#.

Function Addr takes a long integer as its argument. Long.Integer’Last is 1647FFFFFFF#,
but there are certainly addresses greater than Long_Integer'Last. Those addresses with the high
bit set, such as FFFA0000, cannot be represented as a positive long integer. Thus, for addresses
with the high bit set, the address should be computed as the negation of the 2’s complement of
the desired address. According to this method, the correct representation of the sample address
above would be Addr(~16#000600004).

3.768. (LRM 13.8] Change of Representation. TeleGen2 supports changes of
representation, except for types with record representation clauses.

3.7.7. [LRM 18.7] The Package System. The specification of TeleGen2’s implementation
of package System is presented in the LRM Appendix F section at the end of this chapter.

3.7.8. [LRM 13.7.2| Representation Attributes. The compiler does not support *Addres
for packages.

3.79. (LRM 13.7.3] Representation Attributes of Real Types. The representation
attributes for the predefined floating point types were presented in Table 3-2.

3.7.10. (LRM 13.8| Machine Code Insertions. Machine code insertions, an optional

feature of the Ada language, are fully supported in TeleGen2. Refer to the ‘“Using Machine Code
Insertions™ section in the Programming Guide chapter for information regarding their

3-12 REF-1347N-V1.1(U/68) © 1989 TeleSoft 31JULS89

- . e - LRM ANNOTATIONS

implementation and for examples on their use.

3.7.11. [LRM 13.9] Interface to Other Languages. In pragma Interface is supported for
Assembly, C, UNIX, and Fortran. Refer to ‘“Interfacing to Other Languages” in the
Programming Guide chapter for for information on the use of pragma Interface. TeleGen2 does
not currently allow pragma Interface for library units.

3.7.12. [LRM 13.10] Unchecked Programming. Restrictions on unchecked programming
as it applies to TeleGen2 are listed in the following paragraphs.

[LRM 138.10.2] Unchecked Type Conversions. Unchecked conversions are allowed
between types (or subtypes) T1 and T2 as long as they are not unconssrained record or array
types. ‘

3.8. LRM Appendix F for TeleGen2

The Ada language definition allows for certain target dependencies. These dependencies
must be described in the reference manual for each implementation, in an ‘“Appendix F that
addresses each point listed in LRM Appendix F. Table 3-5 constitutes Appendix F for this
implementation. Points that require further clarification are addressed in sections refererenced in
the table. ‘

31JUL3s9 REF-1347N-V1.1(U/68) © 1989 TeleSoft 3-13

TeleGen2 Reference Information for UNIX/68K Hosts

Table 3-5. LRM Appendix F for TeleGen2

(1) Implementation-Dependent Pragmas

(a) Implementation-defined pragmas: Comment,
Linkname, Images, and No_Suppress (Section
3.8.1).

(b) Predefined pragmas with
dependent characteristics:

implementation-

» Interface (assembly, UNIX, C, and Fortran—
see “Interfacing to Other Languages.”
Not supported for library units.

= List and Page (in context of source/error
compiler listings.) (See the User Guide.)

= Pack. See Section 3.7.1.

» Inline, Not supported for library-level
subprograms.

» Priority. Not supported for main programs.

Other supported predefined pragmas:

Controlled Shared Suppress
Elaborate

Fredefined pragmas partly supported (see Sec-
tion 3.1):
Memory _Size

Storage_Unit System_Name

Not supported: Optimize

(2) Implementation-Dependent Attri-

butes

'Offset. Used for machine code insertions.

The predefined attribute Address is not supported
for packages. See ‘“Using Machine Code Insertions”
earlier in this chapter for information on 'Offset and
’Address.

’Extended _Image
'Extended_Value
'Extended _Width
'Extended _Aft
'Extended . Digits
Refer to Section 3.8.2 for information on the

implementation-defined extended attributes listed
above.

(3) Package System

See Section 3.7.7.

(4) Restrictions on
i Clauses

Representation

Summarized in Table 3-4.

REFP-1347N-V1.1(U/68) © 1989 TeleSoft

eeeeeas Continued on the next page <~v----
e e

31JULS89

T o - LRM ANNOTATIONS

Table 3-5. LRM Appendix F for TeleGen2 (Contd)

eesees Continued from the previous page -------

(5) Implementation-Generated Names None

(6) Address Clause Expression Interpre- | An expression that appears in an object address
tation clause is interpreted as the address of the first
storage unit of the object.

(7) Restrictions on Unchecked Conver- | Summarized in Table 3-4.
sions

(8) Implementation-Dependent Charac- | 1. In Text_iO, the type Count is defined as follows:
teristics of the I/O Packages. type Count is range 0..System.Max_Text _10_Couns;

-~ or 0..Max_Int—~1 OR 0..2_147_483_846
2. In Text_JO, the type Field is defined as follows:) 1

subtype Field is integer range
System.Max..Text 10 _Field;

3. In Text_1O, the Form parameter of procedures
Create and Open is not supported. (If you sup-
ply a Form parameter with either procedure, it
is ignored.)

4. Sequential_JO and Direct_IO cannot be instan-
tiated for unconstrained array types or discrim-
inated types without defaults.

5. The standard library contains preinstantiated
versions of Text_lIO.Integer_IO for types Integer |
and Long_Integer and of Text.JO.Float.JO for
types Float and Long_Float. We suggest that
you use the following to eliminate muitiple in-
stantiations of these packages: {

| Integer_Text.10
Long_Integer_Text. 10

Float. Text 10 i
" Long_Float_Text_IO -

3.8.1. Implementation-Defined Pragmas. There are four implementation-defined pragmas
in TeleGen2: pragmas Comment, Linkname, Images. and No_Suppress.:

3.8.1.1. Pragma Comment. Pragma Comment is used for embedding a comment into the
object code. Its syntax is:

pragma Comment (<string_literal>);

31JULS9 REF-1347N-V1.1(U/68) © 1989 TeleSoft 3.15

TeleGen2 Reference Information for UNIX /68K Hosts

where “<string.literal>" represents the characters to be embedded in the object code. Pragma
Comment is allowed only within a declarative part or immediately within a package specification.
Any number of comments may be entered into the object code by use of pragma Comment.

8.8.1.2. Pragma Linkname. Pragma Linkname is used to provide interface to any routine
whose name can be specified by an Ada string literal. This allows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma Linkname takes two arguments. The first is a subprogram name that has been
previously specified in a pragma Interface statement. The second is a string literal specifying the
exact link name to be employed by the code generator in emitting calls to the associated
subprogram. The syntax is:

pragma Interface (assembly, <subprogram_name>);
pragma Linkname (<subprogram_name>, <string_literal>);

If pragma Linkname does not immediately follow the pragma Interface for the associated
program, a warning will be issued saying that the pragma has no effect.

A simple example of the use of pragma Linkname is:

procedure Dummy_Access(Dummy.Arg : System.Address);
pragma Interface (assembly, Dummy_Access); '
pragma Linkname (Dummy_Access, "_access?®);

3.8.1.3. Pragma Images. Pragma Images controls the creation and allocation of the image
and index tables for a specified enumeration type. The image table is a literal string consisting of
enumeration literals catenated together. The index table is an array of integers specifying the
location of each literal within the image table. The length of the index table is therefore the sum
of the lengths of the literals of the enumeration type; the length of the index table is one greater
than the number of literals.

The syntax of this pragma is:

pragma Images(<enumeration_type>, Deferred);

pragma Images(<enumeration_type>, Immediate);

The default, Deferred, saves space in the literal pool by not creating image and index tables for
an enumeration type unless the 'Image, "Value, or "Width attribute for the type is used. If one of
these attributes is used, the tables are generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in more than one compilation unit. more

than one set of tables is generated, eliminating the benefite of deferring the table. In this case,
using ’

pragma Images(<enumeration_type>, Immediate};

will cause a single image table to be generated in the literal pool of the unit declaring the
enumeration type.

For a very large enumeration type, the length of the image table will exceed Integer’Last
(the maximum length of a string). In this case, using either

3-16 REF-1347N-V1.1(U/688) © 1989 TeleSoft 31JUL89

LRM ANNOTATIONS

pragma Images(<enumeration_type>, Inmediate);

or the 'Image, 'Value, or 'Width attribute for the type will result in an error message from the
compiler.

3.8.1.4. Pragma No_Suppress. No.Suppress is a TeleGen2-defined pragma that prevents
the suppression of checks within a particular scope. It can be used to override pragma Suppress
in an enclosing scope. No_Suppress is particularly useful when you have a section of code that
relies upon predefined checks to execute correctly, but you need to suppress checks in the rest of
the compilation unit for performance reasons.

Pragma No_Suppress has the same-syntax as pragma Suppress and may occur in the same
places in the source. The syntax is:

pragma No_Suppress (<identifier> [, [ON =>] <name>]};

where <identifier> is the type of check you want to suppress (e.g., access_check; refer to

LRM 11.7)

<name> is the name of the object, type/subtype, task unit, generic unit, or subprogram
within which the check is to be suppressed; <name> is optional.

If neither Suppress nor No_Suppress are present in a program, no checks will be suppressed.
You may override this default at the command level, by compiling the file with the —i(nhibit
option and specifying with that option the type of checks you want to suppress. For more
information on —i(nhibit, refer to your TeleGen2 Qverview and Command Summary document.

If either Suppress or No_Suppress are present, the compiler uses the pragma that applies to
the specific check in order to determine whether that check is to be made. If both Suppress and
No_Suppress are present in the same scope, the praigma declared last takes precedence. The
presence of pragma Suppress or No_Suppress in the source takes precedence over an —i(nhibit
option provided during compilation.

3.8.2. Implernentation-Dependent Attributes.

3.8.2.1. Address and 'Offset. These were discussed within the context of using machine
code insertions, in the Programming Guide chapter.)

3.8.2.2. Extended Attributes for Scalar Types. The extended attributes extend the
concept behind the Text_IO attributes 'Image, 'Value, and 'Width to give the user more power
and flexibility when displaying values of scalars. Extended attributes differ in two respects from
their predefined counterparts:

1. Extended attributes take more parameters and allow control of the format of the output
string.

2. Extended attributes are defined for all scalar types, including fixed and floating point
types.

31JULS89 REF-1347N-V1.1(U/68) © 1989 TeleSoft 8-17 J

TeleGen2 Reference Information for UNIX /68K Hosts

Extended versions of predefined attributes are provided for integer, enumeration, floating point,
and fixed point types:

Integer: 'Extended.Image, ’'Extended_Value, ’'Extended_Width

Enumeration: 'Extended_Image, ’'Extended_Value, ’'Extended_Width

Floating Point: 'Extended_Image, ’Extended_Value, ’Extended_Digits

Fixed Point: 'Extended_Image, ’Extended._Value, ’Extended_Fore,
'Extended_Aft

The extended attributes can be used without the overhead of including Text.IO in the
linked program. Below is an example that illustrates the difference between instantiating
Text_10.Float_10 to convert a float value to a string and using Float’Extended_Image:

with Text I0;

function Convert_To String (F1 : Float) return String is
Temp Str : String (1 .. 6 + Float'Digits);

package F1t J0 is new Text._I0.Float J0 (Float);

begin

F1t_I10.Put (TempStr, F1);
return Temp_Str;

end Convert_To_String;

function Convert_To String No_Text. I0(F1 : Float) return String is
begin

return Float'Extended Image (Fl);
end Convert_To_String No_Text_I0;

with Text_I0, Convert_To String, Convert.To String.No_ Text_I0;
procedure Show_Different._Conversions is

Value : Float := 10.03376;
begin

Text_I0.PutLine (*Using the Convert_To.String, the value of the variable
is : * & Convert_Ta String (Yalue));

Text_I0.Put_Line ("Using the Convert.To.String No. Text.I0, the value
is : " & Convert_To StringNo_Text.ID (Value));

end Show.Different_Conversions;

3-18 REF-1347TN-V1.1(U/68) © 1989 TeleSoft ' 31JULS9

LRM ANNOTATIONS

3.8.2.2.1. Integer Attributes

'*Extended_Image

Usage:

X’Extended _Image(Item,Width,Base,Based,Space_IF _Positive)

Returns the image associated with Item as defined in Text_IO.Integer_IO. The Text_IO
definition states that the value of Item is an integer literal with no underlines, no exponent, no
leading zeros (but a single zero for the zero value), and a minus sign if negative. If the resulting
sequence of characters to be output has fewer than Width characters, leading spaces are first
output to make up the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute is a function that may have
more than one parameter. The parameter Item must be an integer value. The resulting string is
without underlines, leading zeros, or trailing spaces.

Parameter Descriptions:

Item The item for which you want the image; it is passed to the
function. Regqusred

Width The minimum number of characters to be in the string that
is returned. If no width is specified, the default (0) is as-
sumed. Optional

Base The base in which the image is to be dispiayed. If no base
is specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned to be
in base notation or not. [f no preference is specified, the de-
fault (false) is assumed. Optional

Space_If.Positive | An indication of whether or not the sign bit of a positive in-

. teger is included in the string returned. If no preference is
specified, the default (false) is assumed. Optional
Examples:

Suppose the following subtype were declared:
subtype X is Integer Range -10..16;

Then the following wculd be true:

X'Extended Image(5) = "5°
X'Extended_Image(5,0) = "5
X'Extended Image(5,2) = * 5*
I’Extended _Image(5,0,2) = *101*
X'Extended_Image(5,4,2) = * 101*
X’Extended _Image(5,0,2,True) = "24#1013"
X’Extended Image(5,0,10,False) = 5"
X'Extended_Image(5,0,10,False,True) = * 5"
X’Extended_Image(-1,0,10,False,False) = "-1"
X'Extended_Image(-1,0,10,False,True) = ".1"
X'Extended_Image(-1,1,10,False,True) = ".1°

31JUL89

REF-1347N-V1.1(U/68) © 1989 TeleSoft

3-19

TeleGen2 Reference Information for UNIX/68K Hosts

X’Extended_'[mage(-l,0,2,True,True) = ".2414"
X’Extended_Image(-l,10,2,'i‘rue,'1‘rue) =1

'Extended_Value

Usage:
X'Extended _Value(Item)

Returns the value associated with Item as defined in Text_IO.Integer_IO. The Text_IO definition
states that given a string, it reads an integer value from the beginning of the string. The value

returned corresponds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype, this attribute is a function with a single
parameter. The actual parameter Item must be of predefined type string. Any leading or
trailing spaces in the string X are ignored. In the case where an illegal string is passed, a

Constraint_Error is raised.

Parameter Desc..p.ion:

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value js the base
type X. Regusred

Examples:
Suppose the following subtype were declared:

Subtype X is Integer Range -10..16;

Then the following would be trye:

X’Extended_Value("5*) =5
X’Extended_Value (" 5%) =5
X’Extended.Value(Q#lOl#") =5
X’Extended Value("-1*) = .]
X’Extended_Value(" .1%) = .1

‘Extended_Width

Usage:
X’Extended_Width (Bne,Bned,Space_If_Pmitive)

Returns the width for subtype of X,

For a prefix X that is a discrete subtype: this attribute is a function that may have multiple
parameters, This attribute yields the maximum image length over all values of the type or

subtype X.

3-20 REF-1347N-V1.1(U/68) @ 1989 TeleSoft

31JULs9

Parameter Descriptions:

LRM ANNOTATIONS

Base

The base for which the width will be calculated. If no base
is specified, the default (10) is assumed. Optional

Based

An indication of whether the subtype is stated in based no-

is assumed. Optional

tation. If no value for based is specified, the default (false) |

Space If_Positive

An indication of whether or not the sign bit of a positive in-
teger iz included in the string returned. If no preference is

speciiizd, the default (false) is assumed. Optional

Examples:

Suppose the following subtype were declared:
Subtype X is Integer Range -10..186;
Then the following would be true:

X’'Extended_Width =23 ~myom
X’Extended _Width(10) =3 M
X’Extended ¥idth(2) =85 < "10000"
X’Extended Width(10,True) =T - "M104104"
X'Extended_Width(2,True) = 8 - "24k100004"

31JULa9

X'Extended _Width(10,False,True) =3 "o
X'Extended_Width(10,True,False) =7 - "104104"
X'Extended_Width(10,True,True) =T " 104164"
X'Extended_Width(2,True,True) =9 " 2510000%"
X’Extended_Width(2,False,True) =8 " 10000

_ REF-1347N-V1.1(U/68) © 1989 TeleSoft

221

'Extended_Image
Usage:

string width specified.

Parameter Descripticas:

TeleGen2 Reference Information for UNIX /68K Hosts

3.8.2.2.2. Enumeration Type Attributes

X'Extended. Image(Item,Width,Uppercase)

Returns the image associated with Item as defined in Text.JO.Enumeration_]O. The Text.]O
definition states that given an enumeration literal, it will output the value of the enumeration

literal (either an identifier or a character literal). The character case parameter is ignored for
character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute is a function that may have
more that one parameter. The parameter Item must be an enumeration value. The image of an
enumeration value is the corresponding identifier, which may have character case and return

Item

The item for which you want the image; it is passed to the
function. Regquired

Width

“The minimum number of characters to be in the string that
is returned. If no width is specified, the default (0) is as-
sumed. If the Width specified is larger than the image of
Item, the return string is padded with trailing spaces. If the
Width specified is smaller than the image of Item, the de-
fault is assumed and the image of the enumeration value is
output completely. Optional

Uppercase

An indication of whether the returned string is in uppercase
characters. In the case of an enumeration type where the
enumeration literals are character literals, Uppercase is ig-
nored and the case specified by the type definition is taken.
If no preference is specified, the default (true) is assumed.
Optional

REF-1347N-V1.1(U/68) © 1989 TeleSoft

31JULS9

LRM ANNOTATIONS

Examples:

Suppose the following types were declared:
type X is (red, green, blue, purple);
type Y is (’'a’, 'B’, 'e’, 'D’);

Then the following would be true:

X'Extended Image(red) = "RED"
X'Extended_Image(red, 4) = "RED *
X’Extended _Image(red,2) = "RED"
X'Extended_Image(red,0,false) = "red"
X'Extended Image(red,10,false) = "red ’
Y’'Extended_Image(’a’) = Mgt
Y'Extended _Image(’B’) = "'p"
Y’Extended_Image(’a’,8) = Mg
Y'Extended Image(’a’,0,true) = Wigte

'Extended_Value

Usage:
X'Extended _Value(Item)

Returns the image associated with Item as defined in Text_1O.Enumeration_IO, The Text.IO
definition states that it reads an enumeration value from the beginning of the given string and
returns the value of the enumeration literal that corresponds to the sequence input. (LRM
14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute is a function with a single
parameter. The actual parameter Item must be of predefined type string. Any leading or
trailing spaces in the string X are ignored. In the case where an illegal string is passed, a
Constraint_Error is raised.

31JUL89 REF-1347N-V1.1(U/68) © 1989 TeleSoft 3-23

TeleGen2 Reference Information for UNIX/68K Hosts

Parameter Descriptions:

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of X. Regquired

Examgles:

Suppose the following type were declared:
type X is (red, green, blue, purple);
Then the following would be true:

X’Extended_Value("red®) = red

X’Extended_Value(® greexn'") = green
X’Extended_Val 1e(" Purple®) = purple
X’Extended_Value(" GreEn " = green

'Extended_Width

Usage:
X'Extended _Width

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype; this attribute is a function. This attribute
yields the maximum image length over all values of the enumeration type or subtype X.

Parameter Descriptions:

There are no parameters to this function. This function returns the width of the largest (width)
enumeration literal in the enumeratijon type specified by X.

Examples:
Suppose the following types were declared:

type X is (red, grees, blue, purple);
type Z is (X1, X12, X123, X1234);

Then the following wouid be trye:

X’Extended _Width = 8 . "purple"
Z’Extended_Width =85 . "X1004"

3-24 REF-1347N-V1.1(U/68) © 1989 TeleSoft 31JULs9

LRM ANNOTATIONS

3.8.2.2.3. Floating Point Attributes
'Extended_Image

Usage:
X’Extended _Image(Item,Fore Aft, Exp,Base,Based)

Returns the image associated with Item as defined in Text_1O.Float.JO. The Text_IO definition
states that it outputs the value of the parameter [tem as a decimal literal with the format defined
by the other parameters. If the value is negative, a minus sign is included in the integer part of
the value of Item. If Exp is 0, the integer part of the output has as many digits as are needed to
represent the integer part of the value of Item or is zero if the value of Item has no integer part.
(LRM 14.3.8:13, 14.3.8:15)

Item must be a Real value. The resulting string is without underlines or trailing spaces.

Parameter Descriptions:

Item The item for which you want the image; it is passed to the
function. Reguired

Fore The minimum number of characters for the integer part of
the decimal representation in the return string. This in-
cludes a minus sign if the value is negative and the base
with the '#’ if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore, leading spaces are output first to make up the
difference. If no Fore is specified, the default value (2) is as-
sumed. Optional

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta of
the type or subtype is greater than 0.1, then Aft is 1. If no
Aft is specified, the default (X'Digits-1) is assumed. If based
notation is specified, the trailing '#’ is included in Aft. Op-
tional

Exp The minimum number of digits in the exponent. The ex-
ponent consists of a sign and the exponent, possibly with
leading zeros. If no Exp is specified, the default (3) is as-
sumed. If Exp is 0, no exponent is used. Optional

Base The base that the image is to be displayed in. If no base is
specified, the default (10) is assumed. Optional
Based An indication of whether you want the string returned to be

in based notation or not. Ilf no preference is specified, the
default (faise) is assumed. Optional

31JUL89 REF-1347N-V1.1(U/68) © 1989 TeleSoft . s28

TeleGen2 Reference Information for UNIX /68K Hosts

Examples:
Suppose the following type were declared:

type X is digits 5 range -10.0 .. 16.0;
Then the following would be true:

X’Extended_Image(5.0) " 5.0000E+00"

X'Extended_Image(5.0,1) = "5.0000E+0Q"
X’Extended_Image(-5.0,1) = ".5.0000E+Q0"
X’Extended_Image(5.0,2,0) = * 5.0E+00"
X’Extended _Image(5.0,2,0,0) =% 5.0"
X’Extended _Image(5.0,2,0,0,2) = "101.0"
X’Extended _Image(5.0,2,0,0,2,True) = "2#101.04"
X’Extended _Image(5.0,2,2,3,2,True) = "241.14E+02"

‘Extended_Value

Usage:
) X'Extended_Value(Item)

Returns the value associated with Item as defined in Text_JO.Float_10. The Text_IO definition
states that it skips any leading zeros, then reads a plus or minus sign if present then reads the
string according to the syntax of a real literal. The return value is that which corresponds to the
sequence input. (LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function with a single
parameter. The actual parameter Item must be of predefined type string. Any leading or
trailing spaces in the string X are ignored. In the case where an illegal string is passed, a
Constraint_Error is raised.

Parameter Descriptions:

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of the input string. Reguired

Examples:
Suppose the following type were declared:

" type X is digits 5 range -10.0 .. 16.0;
Then the following would be true:

X’Extended_Value("5.0")
X’Extended_Value("0.5E1"

Y'Extended Yalue{"2#1.01§E2%)

wuun
oo n
eRoNeo)

3-26 REF-1347N-V1.1(U/68) © 1989 TeleSoft 31JULs9

LRM ANNOTATIONS

"Extended_Digits

Usage:
X'Extended_Digits(Base)

Returns the number of digits using base in the mantissa of model numbers of the subtype X.

Parameter Descriptions:

Base The base that the subtype is defined in. If no base is
specified, the default (10) is assumed. Optional

Examples:
Suppose the following type were declared:

type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:
X’Extended. Digits - = 3§

3.8.2.2.4. Fixed Point Attributes

'‘Extended_Image

Usage:
X’Extended_Image(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with [tem as defined in Text_IO.Fixed_IO. The Text_lO definition
states that it outputs the value of the parameter Item as a decimal literal with the format defined
by the other parameters. If the value is negative, a minus sign is included in the integer part of
the value of Item. If Exp is 0, the integer part of the output has as many digits as are needed to
represent the integer part of the value of Item or is zero if the value of Item has no integer part.
(LRM 14.3.8:13, 14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute is a function that may have
more than one parameter. The parameter [tem must be a Real value. The resulting string is
without underlines or trailing spaces.

31JUL89 REF-1347N-V1.1(U/68) © 1989 TeleSoft 3.27

TeleGenZ Reference Information for UNIX /68K Hosts

Parameter Descriptions:

Item The item for which you want the image; it is passed to the
function. Reguired
Fore The minimum number of characte:s for the integer part of
the decimal representation in the return string. This in-
cludes a minus sign if the value is negative and the base
with the '#' if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore, leading spaces are output first to make up the
difference. If no Fore is specified, the default value (2) is as-
sumed. Optional
Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta of
the type or subtype is greater than 0.1, then Aft is 1. If no
Aft is specified, the default (X'Digits-1) is assumed. If
based notation is specified, the trailing '#’ is included in
Aft. Optional
Exp The minimum number of digits in the sxponent; the ex-
ponent consists of a sign and the exponent, possibly with
leading zeros. If no Exp is specified, the defauit (3) is as-
sumed. If Exp is 0, no exponent is used. Optional
Base The base in which the image is to be displayed. If no base
is specified, the default (10) is assumed. Optional
Based An indication of whether you want the string returned to be
in based notation or not. If no preference is specified, the
default (false) is assumed. Optional
Examples:
Suppose the following type were declared:
type X is delta 0.1 range -10.0 .. 17.0;
Then the following would be true:
X’Extended_Image(5.0) = * 5.00E+00*
X’Extended_Image(5.0,1) = '5.00E+00*
X’Extended Image(-5.0,1) = *.5.00E+00*
X’Extended_Image(5.0,2,0) = * 5.0E+00"
X’'Extended_Image(5.0,2,0,0) ="' 50"
X’Extended_Image(5.0,2,0,0,2) = "101.0"
X'Extended_Image(5.0,2,0,0,2,Tr = "24101.04*
X'Extended_Image(5.0,2,2,3,2, = "241. 14E.02¢

3-28 REP-1347N-V1.1(U/68) © 1989 TeleSoft

31JULs89

LRM ANNOTATIONS

Extended _Value
Usage:

X'Extended_Value(Image)

Returns the value associated with Itemn as defined in Text_JO.Fixed_1O. The Text_IO definition
states that it skips any leading zeros, reads a plus or minus sign if present, then reads the string
according to the syntax of a real literal. The return value is that which corresponds to the
sequence input. (LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function with a single
parameter. The actual parameter Item must be of predefined type string. Any leading or
trailing spaces in the string X are ignored. In the case where an illegal string is passed. a
Constraint_Error is raised.

Parameter Descriptions:

Image Parameter of the predefined type string. The type of the re-
turned value is the base type of the input string. Regquired

Examples:
Suppose the following type were declared:

type X is delta 0.1 range -10.0 .. 17.0;
Then the following would be true:

X’Extended._Yalue("5.0")
X’Extended_Yalue("0.5E1")
X'Extended_Value("241.014E2")

§.0
5.0
S.0

'Extended_Fore . _] -

Usage: ;
X’Extended _Fore(Base,Based) -

Returns the minimum number of characters required for the integer part of the based
. representation of X. ’

31JULS89 REP-1347N-V1.1(U/68) © 1989 TeleSoft 3-29

TeleGen2 Reference Information for UNIX /68K Hosts

Parameter Descriptions:

Base The base in which the subtype is to be displayed. If no base
is specified, the default (10) is assumed. Optional
Based An indication of whether you want the string returned to be

in based notation or not. If no preference is specified, the
default (false) is assumed. Optional

Examples:
Suppose the following type were declared:
type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true:

X’Extended_Fore =3 .. ".10"
X’Extended_Fore(2) =6 -- " 10001"
Extended _Aft
Usage:
X'Extended _Aft(Base Based)

Returns the minimum number of characters required for the froctional part of the based
representation of X.

Parameter Descriptions:

Base The base in which the subtype is to be displayed. If no base
is specified, the default (10) is assumed. Optsonal
Based An indication of whether you want the string returned to be

in based notation or not. If no preference is specified, the
default (false) is assumed. Optional

Examples:
Suppose the following type were declared:

type X is delta 0.1 range -10.0 .. 17.3%;
Then the following would be true:

X'Extended Aft 1 ~"1" from 0.1
X’Extended .Aft(2) 4 .- "0001" from 240.6001%

3-30 REF-1347N-V1.1(U/68) © 1989 TeleSoft ' 31JUL89

LRM ANNOTATIONS

3.8.3. Package System. The current specification of package System i provided below.

package Systen is
type Address is access integer;
type Subprogram._Value is private;
type Name is (TeleGen2);
System_Name : constant name := TeleGen2;

Storage_ Unit : constant := 8;
Memory_Size : constant := (2 == 31) -I1;

-+ System-Dependent Named Numbers:

-« See Table 2-2 for the values for attributes of
- types Float and Long_Float

Min Int : constant := =(2 »= 31);
Max _Tnt : constant := (2 == 31) -1;
Max Digits : comstant := 15;
Max_Mantissa : comstant := 31;

Fine Delta : constant = 1.0 / (2 »» Max Mantissa);
Tick : comstant := 10.0E-3;

-- Other System-Dependent Declarations

subtype Priority is integer range O .. 83;

Max_Object_Size : constant := Max.Int;

Max _Record _Count : constant := Max JInt;

Max_Text_I0 Count : constant := Max Int -1;

Max_Text_I0 Field : constant := 1000;
-private

end Sy;;;m;

31JULS9 REF-1347N-V1.1(U/68) © 1989 TeleSoft .31

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-denendent wvalues, such
as the maximum length of an inpnt line and invalid file names, 1A test that
makes use of such values is identified by the extension .TST in its file
name, Actual values to be substituted are veprasented by names rthat begin
with a dollar sign. A value nust be substituted for =2ach «of these nanmes
before the test is run. The values used for this validation ars given
helow:

Mame and Heaning Value

SACC_SIZE 32
An integer 1literal whose value
is the number of bits sufficient
to hold any walue of an access
type.

$BIG_ID1 199 = 'a' & 'L
an identifier the size of the
maxisam input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 189 = 'A* & '
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.
BIG_T93 100 x 2L 0 L %9 &ty
an identifier thz size ~f tha
mavimum input line length which
is identical to $BIG_IDJd «xcept

)
-4

Name and Heaning
for a character near the niddle.

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 =axcept
for a character near the middle.

$BIG_INT_LIT
An integer literal of walue 298
with enough leading =zeroes so
that it is the size of the
maximum line length.

$BIG_REAL _LIT
A universal real 1literal of
value 690.0 with 2nough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING1
A string literal which vwhen
catenated with BIG_STRINGZ
yields the image of BIG_ID1.

$BIG_STRING2
A string literal which vwhen
catenated to the end of
BIG_STRING1 yields the image of
BIG_ID1.

$BLANKS

A sequence of blanks twenty

charactsrs less than the sizz

of the maximum line izngth.
$COUNT_LAST

A universal integer

literal whose value is

TEXT_I0.COUNT'LAST.

$DEFAULT_MEM_SIZE
An integer litaral whose wvalue
is SYSTEM.MENORY_SIZE.

$DEFAULT_STOR_UNIT
An integer literal whose
is SYSTEM.STORAGE_UNIT.

7alua

Yaive

197 * On. l.; “?QS"

195 + 'n’ & "690.0"

e & 100 *

IA' & 1t

[N {8] & 99 % la' & 110 & [N}

180 * * '

2_147_483_646

2147433647

[+2]

TR TN T SRR e TR S e
SE - I

SR T ;

ot B AST c e LNy RERL AT T, e R R B TRG T
e 5,:@7'?, P AT IR T R g SRR S :‘7'5&”‘“‘““
oy T d

“FST DARAVATIRS

ame and Meaning Value

$DEFAULT_SYS_NAME TELEGEN2
The value of the constant
SYSTEM.SYSTEM_NAME.

SDELTA_DGC 241,048~
A real literal whose wvalue is
SYSTEM.FINE_DELTA.

$FIELD_LAST 1060
A universal integer -
literal vhose value is
TEXT_IO.FIELD'LAST.

SFIXED_NANME MO _SUCH_TYPE
The name of a ypredefined
fixed-point type other than
DURATION.

SFLOAT NAME WO _SUCH_TYPE
The name of a predefined
floating=-point type other than
FLOAT, SHORT_FT.OAT, or
LONG_FLOAT.

SGREATER_THAN_DURATION 100_000.0
A universal real 1literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

SGREATER_THAN_DURATION_BASE_LAST 131_073.0
A universal real literal that is
greater than DURATICH'BASE'LAST.

$HIGH_PRIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtypne SYSTEI.PRIOCRITY.

$ILLEGAL_EXTERNAL_FILE_MAME BADCHAR%®" /%
An external file name which
contains invalid characters.

SILLEGAL_EXTERNAL_FILE_IIANE2 IUONARE/DNIRECTORY
in axternal file name which
is ton 1long.

fame and Heaning

$INTEGER_FIRST
A universal intecer literal
whose value is INTEGER'FIRST.
SINTEGER_MLAST
A universal 1integar literal
whose walue is INTEGER'LAST.

$INTEGER_LAST_PLUS_1
A aniversal integer litapal
whose value is INTEGER'LAST + i.

SLESS_THAN_DURATION
A universal real literal that
lies between DURATTION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

SLESS_THAN_DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

SLOW_PRIORITY
An integer literal whose walue
is the lower bound of the range

for the subtype SYSTEH.PRIORITY.

$HANTISSA_DOC
An integer literal whose
is SYSTEM.MAX_MANTISSA.

value

$HAX_DIGITS
Haximum digits supported for
floating-point types.
SHAX_IN_LEN
Haximum input line 1length

permitted by the implementation.

$MAX_INT
A universal
whose value 1is

integer 1literal
SYSTES.HAX_INT.

SHMAX_INT_PLUS_1
4 aniversal integer 1literal
whose value is SYSTEI.HAX_INT+1.

Talue

-32768

12787

-100_000.6

-131_073.0

31

15

2_147_383_Ad8

Name and Heaning

SMAX_LEN_INT_RASED_LITERAL
A universal integer based
literal whose value is 24114
with enough leading zernes in
the mantissa to he WAX_IM_LEN
long.

SHAX_LEN_REAL_BASED_ULITERAL
A universal real based literal
whose value is 16:F.E: with
enongh leading zeroes in the
mantissa to be HAX_IN_LEN long.

SHAX_STRING_LITERAL

A string literal of size
MAX_IN_LEN, including the quote
characters.

SHIN_INT

A universal integer 1literal
whose value is SYSTEM.MIN_INT.

S$HIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL:" as the only statement in
its body.

SNANE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LOMG_INTEGER.

SNAME_LIST
A list of enumeration literals
in the type SYSTEH. NAME,
separated by commas.

$NEG_BASED_INT
A based integer literal whose
highest order nonzero bit
falis 1in the sign bit
position of the rapresentation
for SYSTEM.HAX_INT.

[PR Ay S
. v

Yalue

"2:" & 195 * '0' & 11

"4 & 393 & 'Y g T En

[N} & 198 * .:. & 100

-214748364d8

32

WO_SUCH_TYPE_AVAILABLE

TELEGEN2

Name and Heaning Value

SNEW_MEM_SIZE 2147483647
An integer literal whnse walue
is a permitted argument for
pragma MEMORY_SIZE, other than
SDEFAULT_MEM_SIZE. If there is
no other walue, then use
$DEFAULT _MEM_SIZE.

$NEW_STOR_UNIT 2
An integer literal whose value
is a permitted arqument for
pragma STORAGE_UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE_UNIT.

SNEW_SYS_NMAME TELEGENZ
A value of the type SYSTEHN.NAME,
other than $DEFAULT_SYS_NAME. If
there is only one value of that
type, then use that value,

STASK_SIZE 32
An integer literal whose wvalue
is the number of bits required
to hold a task object which has
a-single entry with one 'IN OUT'
parameter.

S$TICK 0.01
A real literal whose value is
SYSTEH.TICK.

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had heen withdrawn at the time of
validation testing for the reasons indicated. 3 refersnce of the forna
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE., ==
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A390056G This test nnreasonably expects a romponent alause to
pack an array component into a minimum size (line 30).
c. B97102E This test contains an unitended illegality: a select

statement contains a null statement at the place of a selective,
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming iaplementation
may use interleavad execution in sich a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
_OF_THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56,

e. BC30098 This test wrongly expects that circular instantiations
will be detected in several compilation wunits aven though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected nntil execution is
attempted (line 95).

f£. CD2A62D This test wrongly raquires that an array object's size
be no gresater than 10 although its subtype's size was specified
ta be 40 (line 137).

h.

UTTHDRAUN TPETS

CD2A63A..D, CD2Aa66a..D, CD2AT3A..D, CR23T8A..D [14 tests] Theea
tests wrongly attempt to check the size of objeats of a Aderivad
type (for which a 'SIZE length clause is given) by passing thenm
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length nlause and attribute, vhose interpretation i3
considered problematic hy the WGS ARG.

CD2A81G, CD2A83G, CRHAABAN & M, % 7DSNILD {5 tests] Thass kesls
assume that dependent tasks vill terrinatz vhile the wain pro-
gram executes a ioop that sizply *‘ests for rask ternination; this
is not the case, and the main progran way ‘oop indefinitely
(lines 74, 85, 36 & 96, 86 & 96, and 58, vesn.).

CD2B15C & (CD7205¢C These tests expect that 4+ 'STORARGE_SIZE
length clause provides precise contrnl over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

CD2D11B This test gives a SHALL representation clause for a
derived fixed-point type (at line 30) rhat defines a set of
model numbers that are not necessarily representsd in the
parent type; by Commentary AI-G00%9, 3111 model numbers of a
derived fixed-point tyne wust he raupresentable walues of the
parant type.

CD50078 This test wrongly expects an implicitly declarad sub-
program to be at the the address that is specified for an un=-
related subprogram (line 303). -

ED7004B, ED7005C & D, ED7006C & D [5 tests] Thesas tests check
various aspects of the use of the three SYSTEN pragmas; the AVO
withdraws these tests as being inappropriate for wvalidation.

CD7105A This tast requirss that successive calls (o CALENDAR.-
CLOCK change hy at least SYSTEM.TICR; howeveyr, by Cormentary
2I-00201, it is only the expacted frequency nf change that must
be at least SYSTEM.TICK--particular instances nf change may be
less (line 29).

CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation iz considered problematic by
the UGY9 ARG.

€D7205D This test checks an invalid test objective: it treats
the specification of storage to he reserved for a task's
activation as though it were like tha specification of storaga
for a collection.

821071 This fest requiras that obiscts of two similar srcalar
tvpes he distingnished vwhen read from a4 file--DATA_RERROR is

e e 6 e SRS T s TE e gFT miagmeensh S0 S ety el AR piERe s s e SRR T TR R TS

"TTHDRAYE TESTS

expected to he raised hy an attempt to read one ohieat Aas of
the other rype. However, it is not clear axactly how tha Ada
standard 14.2.4:4 is to be interpreted; thus, this test ahjective

is not considered valid. (line 90)
CE311i¢ This fest requiras reartain behavior, uhen tuo files are
associated with the same external file, that is not regquirad by

the Ada standard.

CE3301A This test contains several calls to END_OF _LINE &%
END_OF_PAGE that have no parateter: these calls were intended
to specify a file, not to raefer to STANDARD_TNPUT (lines 103,
107, 118, 132, & 136).

CE3411B This test requires that a text file's column nuwber be
set to COUNT'LAST in order to check that LAYOUT_ERROR is raised
by a subsequent PUT operation. But the formeyr operation will
generally raise an excention due to a lack of availabhle disk
space, and the test wonld thus encumber validation testing.

IPPEEDTE E

CONPILER AND LIMKER OFTTICHS

References and page numbers in this anpendix

consistent with compiler documentation and not with
report.

Ire
this

e - -
P et s .- Lt R se o s 2. . s s,
e T e AWM AL b e Rl e TR el eI WS L i e e 2 o SRR B e RS s e
—— —te - L

W
COMPILATION TOOLS

2. COMPILATION TOOLS

This chapter discusses the commands to invoke the TeleGen2 components that are
associated with the process of compilation. The components are the compiler (invoked by the
ada command; see Section 2.1) and the linker (invoked by the ald command; see Section 2.2).

Optimization is part of the compilation process as well. In the TeleGen2 documentation
set, however, optimization is discussed separately from compilation. In this volume. the
commands associated with optimization (ada ~O; aopt) are discussed in the ““Other Tools”
chapter. (One exception is the Option Summary table below, where aopt options are included for
comparison.)

Table 2-1 summarizes the options that are used by the compilation tools. Note that several
options are common Lo the commands shown.

24AUGS9 by fst INTRO-138IN-V1.2(UNIX-H) © 1989 TeleSoft 2.1

2.

29

TeleGen2 Command Summary for UNIX-Based Host Compilers

Table 2-1. Compilation Tools Option Summary

Command
ada ald aopt

Option

~i(ibfile
—-t(emplib
-~ V(space_size
-v(erbose

XX x| =
K]l x
K| x K’

.
b ”

~b(ind_only

~C(ontext

~D(elay _NonPreempt

~d(ebug

~E(rror_abort

—e(rrors_only

~F(ile_only _errs

~G(raph

~I(nline

~i(nhibit

~k(eep

~L(ist

~m(ain

~N(ame

~O(ptimize x

~o(utput

~S* x
a—s(oftware_float

~T(raceback

~u(pdate_lib x

~w(**timeslice”

~X(ception_show

~x(ecution _profile X

~Y and -y X

IR]oaeloc]e]n]x

K] x]x
o

»n]| =

k4
bad

Note

a: The functionality of the ~S option of ada and the ~S
opcion of a/d is somewhat differenc. Refer to the cext.

INTRO-ISSIN-VI.Z(UND{-H) © 1989 TeleSoft

24AU89

COMPILATION TOOLS

2.1. The Ada Compiler (‘‘ada’)

The TeleGen2 Ada Compiler is invoked by the ada command. Unless you specify otherwise,
the front end, middle pass, and code generator are executed each time the compiler is invoked.

Before you can compile, you must (1) make sure you have access to TeleGen2, (2) create a
library file, and (3) create a sublibrary. These steps were explained in the Getting Started section
of the Overview. We suggest you review that section. and then compile. link, and execute the
sample program as indicated before you attempt to compile other programs.

This section focuses specifically on command-level information relating to compilation, that
is, on invoking the compiler and using the various options to control the compilation process.
Details on the TeleGen2 compilation process and guidelines for using the compiler most
effectively are in the Compiler chapter of the User Guide volume. (You might want to look at
Figure 3-1 in that volume right now, to give you insight into the TeleGen2 compilation process
and to see how the options mentioned in this Command Summary volume relate to the actual
compilation process.)

The syntax of the command to invoke the Ada compiler is:

ada {<‘‘common_option’>} {<opticn>} <input_spec>

where:

<‘“common_option’’> | None or more of the following set of options that are com-
mon to many TeleGen2 commands:

~I(ibfile or —t(emplib

-~ V(space_size

~v{erbose

These options were discussed in Chapter 1.

<option> None or more of the compiler-specific options discussed
below. :
<input_spec> The Ada source file(s) to be compiled. [t may be:

= One or more Ada source files, for example:
[user/john/example
Prog_A.text
ciosrc/calc_mem.ada
calcio.ada myprog.ada
*.ada
= A file containing names of files to be compiled. Such a
file must have the extension *“.ilf". You can find de-

tails for using input-list files in the User Guide portion
of your TeleGen2 documentation set.

= A combination of the above.

Please note that the compiler defaults are set for your convenience. In most cases you will
not need to use additional options; a simple *‘ada <input_spec>" is sufficient. However. options

24AUG39 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-3

TeleGen2 Command Summary for UNIX-Based Host Compilers

are included to provide added flexibility. You can. for example. have the compiler quickly check
the source for syntax and semantic errors but not produce object code (—e(rrors_only) or you can
compile, bind, and link an main program with a single compiler invocation (-m(ain). Other
options are provided for other purposes.

The options available with the ada command. and the relationships among them. are
illustrated in the following figure. Remember that each of the options listed is identified by a
dash followed by a single letter (e.g., “—e”). The parenthesis and the characters following the
option are [or descriptive purposes only; they are not part of the option.

ada

{)
~I(ibfile <libname> ~t(emplib <sublib>{,...}
1 J

- V(space_size 2000
—v(elrbo‘se
-e(rrox[';.only (compile lto object)
-d(erbug
-i(nhibi: <key>t

|
~k(eep
{
-O(ptimize <key>t
¢
—~S(ource.asm

i
-u(pdate_lib <key>t
|

-x(ecution_profile
|

I
—C(ontext 1
!
=E(rror_abort 999
{

~L(ist —F(ile_only_errs
L]

0 -s(oftware_float
i
—m(ain <unit>
il
| <input_spec> |

t (1) <key> for -~ refer to sopt. (2) <key> for —s: i ors:s s the defayit. (2) <key> f{or ~1: 8 u¢ certain combinations of
lne.

2-4 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS89

COMPILATION TOOLS

The options available with the ada command are summarized in Table 2-2. The default
situation (that is, what happens if the option is not used) is explained in the middle column.
Each option is described in the paragraphs that follow the table.

Table 2-2. Summary of Compiler Options

Option Default D lscus?ed
in Section
Common options:
~I(ibfile <libname> Use liblst.alb as the library file. 1.4.1
—t(emplib <sublib...> None 1.4.1
-V(space_size <value> | Set size to 2000 Kbytes. 1.4.2
—v(erbose Do not output progress messages. 1.4.3
~d(ebug Do not include debug information in 2.1.1
object code. (~d sets ~k(eep.)
~E(rror_abort <value> Abort compilation after 999 errors. 2.1.2
—e(rrors_only Run middle pass and code generator, 2.1.3
not just front end.
~i(nhibit <key>t Do not suppress run-time checks, source | 2.1.4
line references, or subprogram name
information in object.
—k{eep Discard intermediate representations of | 2.1.5
secondary units.
-m(ain <unit> Do not produce executable code 2.1.6
(binder/linker not executed).
-O(ptimize <key>t Do not optimize code. 2.1.7
c—s(oftware_float Use hardware foating-point support. 2.1.8
—~u(pdate_lib <key>t Do not update library when errors arz 2.1.9
found (multi-unit compilations).
-x({ecution_profile Do not generate execution-profile code. 2.1.10
Listing options:
~C(ontext <value> Include 1 line of context with error 2.1.11.1
message.
-L(ist Do not generate a source-error listing. 2.1.11.2
~-F(ile_only _errs Do not generate an errors-only listing. 2.1.11.3
only.
~S(ource_asm Do not generate assembly listing. 2.1.11.4

2.1.1. -d(ebug - Generate Debugger Information. The code generator must generate
special information for any unit that is to be used with the TeleGen2 symbolic debugger. The
generation of this information is enabled by use of the —d option. The use of —d automatically

t (1) <key> for ~O: refer to sopt. (2) <key> for ~u: iore: s is the default. (2) <key> for -« & of certain combinations of
lae.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-5

TeleGen2 Command Summary for UNIX-Based Host Compilers

sets the —k(eep option. This to make sure that the High Form, Low Form. and debugger
information for secondary units are not deleted.

To see if a unit has been compiled with the ~d(ebug option. use the als command with the
-X(tended option. Debugger information exists for the unit if the ‘““dbg_info’’ attribute appears
in the listing for that unit. The default situation is that no debugger information is produced.

Performance note. While the compilation time overhexd generated by the use of ~d(ebug is
minimal. retaining this optional information in the Ada librry increases the space overhead.

2.1.2. -E(rror_abort - Set an Error Count for Aborting Compilation. The compiler
maintains separate counts of all syatactic errors, semantic errors, and warning messages detected
by the front end during a compilation.

A large number of errors generally indicates that errors in statements appearing earlier in
the unit have ‘“‘cascaded’ through the rest of the code. A classic example is an error occurring in
a statement that declares a type. This causes subsequent declarations that use the type to be in
error, which further causes all statements using the declared objects to be in error. In such a
situation, only the first error message is useful. Aborting the compilation at an early stage is
therefore often to your advantage; the ~ £ option allows you to do it.

The format of the option is:

-E <value>

where <value> is the number of errors or warnings allowed. The defauit value is 999. The
minimum value is 1. Caution: If you do not use the —E option, it is possible to have 999
warning messages plus 999 syntax errors plus 999 semantic errors without aborting compilation,
since each type of error is counted separately.

2.1.3. -e(rrors_only - Check Source But Don’t Generate Code. This option instructs
the compiler to perform syntactic and semantic analysis of the source program without
generating Low Form and object code. That is, it calls the front end only, not the middle pass
and code generator. (This means, of course, that only front end errors are detected and that only
the High Form interrnediates are generated.) This option is typically used during early code
development where execution is not required and speed of compilation is important.

Note: Although High Form intermediates are generated with the ~e option, these intermediates
are deleted at the end of compilation. This means that the library is not updated.

The ~e option cannot be used with —S({ource_asm. since the latter requires the generation of
object code. If —e is not used (the default situation), the source is compiled to object code (if no
errors are found). The —¢ option is also incompatible with -k(eep. —d(ebug, —O(ptimize, and
other options that require processing beyond the front end phase of compilation.

2.1.4. -i(nhibit ~ Suppress Checks and Source Information. The —i(nhibit option
allows you to suppress, within the generated object code, certain run-time checks, source line
references, and subprogram name information.

The Ada language requires a wide variety of run-time checks to ensure the validity of
operations. For example, arithmetic overflow checks are required on all numeric operations. and
range checks are required on all assignment statements that could result in an illegal value being
assigned to a variable. While these checks are vital during development and are an important
asset of the language. they introduce a substantial overhead. This overhead may be prohibitive

2-6 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS89

COMPILATION TOOLS

in time-critical applications.

Although the Ada language provides pragma Suppress to selectively suppress classes of
checks. using the pragma requires you to modify the Ada source. The —i(nhibit option provides
an alternative mechanism.

The compiler by default stores source line and subprogram name information in the object
code. This information is used to display a source level traceback when an unhandled exception
propagates to the outer level of a program: it is particularly valuable during development, since it
provides a direct indication of the source line at which the exception occurs and the subprogram
calling chain that led to the line generating the exception.

The inclusion of source line information in the object code, however, introduces an overhead
of 6 bytes for each line of source that causes code to be generated. Thus, a 1000-line package
may have up to 6000 bytes of source line information. For one compilation unit, the extra
overhead (in bytes) for subprogram name information is the total length of all subprogram names
in the unit (including middle pass-generated subprograms), plus the length of the compilation
unit name. For space-critical applications, this extra space may be unacceptable; but it can be
suppressed with the ~i{nhibit option. When source line information is suppressed. the traceback
indicates the offset of the object code at which the exception occurs instead of the source line
number. When subprogram name information is suppressed, the traceback indicates the offsets of
the subprogram calls in the calling chain instead of the subprogram names. (For more
information on the traceback function, refer .to the Programming Guide chapter in your
Reference Information volume.)

The format of the —i(nhibit option is:
—~i <suboption>{<suboption>)}

where <suboption> is one or more of the single-letter suboptions listed below. Combinations of
suboptions are possible. When more than one suboption is used, the suboptions appear together
with no separators. For example, *“~i Inc".

1{line_info| Suppress source line information in object code.

njame_info| | Suppress subprogram name information in object
code.

clhecksj Suppress run-time checks -- elaboration, overflow,

storage access, discriminant, division, index, length,
and range checks.

——

aill] Suppress source line information. subprogram name
information, and run-time checks. In other words, a
(=inhibit all) is equivalent to Ine.

As an example of use, the command...
ada -v -i l¢ my_file.ada

...inhibits the generation of source line information and run-time checks in the object code of the
units my_file.ada.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-7

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.5. ~k(eep — Retain Intermediate Forms. As a default. the compiler deletes the High
Form and Low Form intermediate representations of all compiled secondary units from the
working sublibrary. Deletion of these intermediate forms can significantly decrease the size of
sublibraries = typically 50% to 80% for multi-unit programs. On the other hand. some of the
information within the intermediate forms may be required later. For example, High Form is
required if the unit is to be referenced by the Ada Cross-Referencer (azr). In addition.
information required by the debugger and the Global Optimizer must be saved if these utilities
are used. For these reasons, the ~k option is provided with the ada command. The —& option:

= Must be used if the compiled unit is to be optimized later with aopt; otherwise, aopt
issues an error message and the optimizer aborts.

= Should be used if the unit is to be cross-referenced later; otherwise, an error message is
issued when the Ada Cross-Referencer attempts to cross-reference that unit.

» Need not be used with —d(ebug, since ~k is set automatically whenever —d is used.

To verify that a unit has been compiled with the ~k(eep option (has not been ‘‘squeezed”),
use the als command with the —X(tended option. A listing will be generated that shows whether
the intermediate forms for the unit exist. A unit has been compiled with ~k(eep if the attributes
high_form and low_form appear in the listing for that unit.

2.1.8. -m(ain - Compile a Main Program. This option tells the compiler that the unit
specified with the option is to be used as a main program. After all files named in the input
specification have been compiled, the compiler invokes the prelinker (binder) and the native
linker by calling ald to bind and link the program with its extended family. An executable file
named <unit> is left in the current directory. The linker may also be invoked directly by the
user with the ald command.

The format of the option is:

-m <unit>

where <unit> is the name of the maia unit for the program. If the main unit has already been
compiled, it does not have to be in the input file. However, the body of the main unit. if
previously compiled, must be present in the current working sublibrary.

Note: Options specific to the linker (invoked via ald) may be specified on the ada command line
when the —~m option is used. With —m, the compiler will call ald when compilation is complete,
passing to it ald-specific options specified with the ada command. For example...

ada -m welcome -T2 -onew sample.ada

...instructs the compiler to compile the Ada source file. sample.ada. which contains the main
program unit Welcome. After the file has been compiled. the compiler calls the linker, passing to
it the =T and -o options with their respective arguments. The linker produces an executable
versicn of the unit, placing it in file new as requested by the —o option.

2.1.7. -O(ptimize - Optimize Object Code. This option causes the compiler to invoke
the global optimizer to optimize the Low Form generated by the middle pass for the unit being
compiled. The code generator takes the optimized Low Form as input and produces more
efficient object code. The format of this option is:

-0 <key>

2.8 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

COMPILATION TOOLS

where <key> is at least one of the optimizer suboption keys discussed in the Global Optimizer
chapter. Please refer to that chapter for all information regarding the use of the optimizer. The
chapter discusses using the optimizer as a standalone tool for collections of compiled but
unoptimized units and using the -O(ptimize option with the ade command. The latter topic
includes a definition of the —O(ptimize suboption key values plus a presentation of two other ada
options (-G(raph and -I(nlinelist, not shown on the ada chart) that may be used in
conjunction with the —O(ptimize option. Note: We strongly recommend that you do not
attempt to use the optimizer until the code being compiled has been fully debugged and tested.

2.1.8. -s(oftware_float - Use Software Floating-Point Support. This option may not
be avatlable with your TeleGen2 system; please consult the Overview portion to see if it is
provided. The Ada linker selects hardware floating-point support by default. If vou do not have
hardware floating point support or if you wish to generate code compatible with such machines,
use the - s option. In addition: If you use the —s option. the library file you use for compilation
must contain the the name of the software floating point run-time sublibrary, s_rt.sub. Refer to
the Library Manager chapter in your User Guide volume for more information on the run-time
sublibrary.

2.1.9. -u(pdate_lib - Update the Working Sublibrary. The —u(pdate_lib option tells
the compiler when to update the library. It is most useful for compiling multiple source files.
The format of the option is:

-a <key>

where <key> is either *s” (source) or “i” (invocation).

i “1" tells the compiler to update the working sublibrary after all files submitted in that
invocation of ada have compiled successfully. If an error is encountered, the library is
not updated. even for source files that compile successfully. In addition, all remaining
source files will be compiled for syntactic and semantic errors only. Implications: (1)
If an error exists in any source file you submit. the library will not be updated, even if
all other files are error free. (2) Compilation is faster, since the library is updated
only once, at the end of compilation.

s (This is the default; it is equivalent to not using the —u(pdate_lib option at all.) “s”
tells.the compiler to update the library after all units within a single source file
compile successfully. If the compiler encounters an error in any unit within a source
file, all changes to the working sublibrary for the erroneous unit and for all other units
in the file are discarded. However, library updates for units in previous or remaining
snurce files are unaffected. /mplications: (1) You can submit files containing possible
errors and still have units in other files compile successfully into the library. (2)
Compilation is slightly slower, since the library is updated once for each file.

2« UG39 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-9

- v - iy e e - PP
. - . h mame A TIA . s ET g 4P s) ERAALTAMR e o o W PRy fAA e £ 0 ML IR 2w S 2 —

TeleGen2 Command Summary for UNIX-Based Host Compilers

Therefore:
Use “u s (or no —u(pdate option) when:

You’'re not sure all units will compile successfully.
Compilation speed is not especially important.

Use ‘*u i”’ when:

You are reasonably certain your files will compile successfully
Fast compilation is important.

2.1.10. -x(ecution_profile -~ Generate Profile Information. The —x(ecution_profile
option uses the code generation phase of compilation to place special information in the generated
code that can be used to obtain a ‘“profile” of a program’s execution. This information is
generated by a facility known as ‘‘the profiler.”” Refer to your User Guide volume for information
on how to use the profiler to obtain execution timing and suhorogram call information for a
program.

Important: If any code in a program has been compiled with the —x(ecution_profile option,
that option must also be used with ald when the program is bound and linked. Otherwise,
linking aborts with an error such as **Undefined RECORDSSCURRENT"".

2.1.11. Listing Options. The listing options specify the content and format of listings
generated by the compiler. Assembly code listings of the generated code can also be generated.

2.1.11.1. —-C(ontext - Include Source Lines Around the Error. When an error
message is sent to stderr, it is helpful to include the lines of the source program that surround the
line containing the error. These lines provide a context for the error in the source program and
help to clarify the nature of the error. The ~C option controls the number of source lines that
surround the the error.

The format of the option is:

~-C <value>

where <value> is the number of source context lines output for each error. The default for
<value> is 1. This parameter specifies the total number of lines output for each error (including
the source line that contains the error). The first context line is the one immediately before the
line in error; other context lines are distributed before and after the line in error. Let’s say that
trralprog.ade, which consists of the following text...

2-10 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS89

e .. of eastl
». e T ewet A TebSaawr et SR UNNEIREALSA M. A o T TRy cdes s 5 PEY IS ST SENORES o N

COMPILATION TOOLS

package P is
type Tl is range 1..10;
type T2 is digits 1;
type Arr is array (1..2) of integer; type T3 is new Arr; -- OK.
package Inner is
type Inl is new T1; -- ERROR: T1 DERIVED.
type In2 is new T2; -- ERROR: T2 DERIVED.

type In3 is new T3; -- ERROR: T3 DERIVED.
type Inarr is new Arr; .- OK. '

end Inner;
end P;

...were compiled as follows:
ada -e ~C 2 trialprog.ada

(The —e option here is used for error checking and ~C(ontext is set to 2 to display two lines of
source.) The output produced would look like this:

7: package Inner is '
8: type Inl is new T1; -- ERROR: T1 DERIVED.

> Illegal parent type for derivation <3.4:15,7.4.1:4>

8: type Inl is new T1; -- ERROR: T1 DERIVED.
9: type In2 is new T2; -- ERROR: T2 DERIVED.

> Illegal parent type for derivation <3.4:15,7.4.1:4>

9: type In2 is new T2; -- ERROR: T2 DERIVED.
10: type In3 is new T3; -- ERROR: T3 DERIVED.

> Illegal parent type for derivation <3.4:15,7.4.1:4>

2.1.11.2. ~L(ist —~ Generate a Source Listing. This option instructs the compiler to
output a listing of the source being compiled. interspersed with error information (if any). The
listing is output to <file spec>.l, where <file_spec> is the name of the source file (minus the
extension). If <file_spec>.| already exists. it is overwritten.

If input to the ada command is an input-list file (<file_spec>.ilf), a separate listing file is
generated for exch source file listed in the input file. Each resulting listing file has the same name
as vhe parent f except that the extension “.I” is appended. Errors are interspersed with the

listing. If you . not use —L (the default situation), errors are sent to stdout only; no listing is
produced. ~L is incompatible with —F.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-11

TeleGen2 Command Summary for UNIX-Based Host Compilers

2.1.11.3. -F(ile_only_errs - Put Only Errors in Listing File. This option is used to
produce a listing containing only the errors generated during compilation; source is not included.
The output is sent to <file_spec>.l. ~=F is incompatible with -L.

2.1.11.4. -S(ource_asm — Generate a Source/Assembly Listing. This option instructs
the compiler to generate an assembly listing and send it to a file named <unit>.<ext>, where
<unit> is the name of the unit in the user-supplied source file and <ext> is the file extension (it
may be “s’ or something else, depending on your configuration). The listing consists of assembly
code intermixed with source code as comments. If input to the ada command is an input-list file
(<file_spec>.ilf), a separate assembly listing file is generated for each unit contained in each
source file listed in the input file. If =S is not used (the default situation), an assembly listing is
not generated.

2-12 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

COMPILATION TOOLS

2.2. The Ada Linker (‘‘ald”)

The TeleGen2 Ada Compiler produces object code from Ada source code. The TeleGen2
Ada Linker takes tle object (of a main program) that is produced by the compiler and produces a
UNIX executable module. The TeleGen2 Ada Linker will be called *‘the linker’ in the remainder
of this manual.

To produce executable code, the linker (1) generates elaboration code and a link script (this
is called “binding” or “prelinking”) then (2} calls the UNIX link editor (Id) to complete the
linking process.

The linker is invoked with the ald command; it can also be invoked with the ~m(ain option
of the ada command. In the latter case the compiler passes appropriate options to the linker. to
Zirect its operation.

In the simplest case, the ald command takes one argument — the name of the main unit of
the Ada program structure that is to be linked ~ and produces one output file — the executable
file produced by the linking process. The executable file is placed in the directory where ald was
executed, under the name of the main unit used as the argument to ald. For example, the
command

ald main

links the object modules of all the units in the extended family of the unit Main. The name of
the resuiting executable file will simply be “‘main™. Important: When using the ald command,
the body of the main unit to be prelinked must be in the working sublibrary.

The general syntax of the a/d command is:

ald {<‘“‘common_option’’>} {<option>} <unit>

where:

<‘common_option’> | None or more of the following set of options that are
commor. to many TeleGen2 commands:

~|(ibfile or —t(emplib
~V(space_size
—v(erbose

These options were discussed in Chapter 1.

<option> None or more of the options discussed in the following
sections.

<unit> The name of the main unit of the Ada program to be
linked.

The options avaiiable with the a/d command and the relationships among them are iilustrated
below.

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1959 TeleSoft 2-13

TeleGen2 Command Summary for UNIX-Based Host Compilers

ald

P 1
~l(ibfile <libname> ~t(emplib <sublib>{,...}
{ J

~V(space_size 2000
-v(e:'bose
-—b(im‘i_only
—o(utput <file_spec>
~P(ass_options ‘string’
~p(ass_objects 'string’
0 -s(oftware_float
-S(“asm'_listing"
—T(racelback 15

}
—-x{ecution_profile

i 1
—~D(elay NonPreempt —w{*timeslice” 0
- -

~X(ception_show
i

~Y 8192 |bytes-long
|

—y 1024 [bytes-nasurall

<unit>

2.2.1. ~b(ind_only - Produce Elaboration Code Only. To provide you with more
control ove: the linking process. the —b option causes.the linker to abort after it has created the
elaboration code and the linking order, but before invoking the UNIX link editor. This option
allows you to edit the link order for special applications and then invoke the link editor directly.
The link order is contained in an executable script that invokes the link editor with the
appropriate options and arguments. The name of the script produced is <unit>.lnk, which is
placed in your working directory. To complete the link process, enter ““<unit>.lnk".

The name of the file containing the elaboration code is <unit>.obm, which is plu..d in the
object directory of the working sublibrary.

For System V versions of UNIX, the fiie names generated as a result of linking are created
by appending the 3-letter extension to the unit name and truncating the result to 14 characters.

2.2.2. -o(utput - Name the Output File. This option allows you to specify the name of
the output file produced by the linker. For example. the command...

ald ~o yorkshire main

...causes the linker to put the executable module in the file yorkshirz.

2-14 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

COMPILATION TOOLS

2.2.3. -P(ass_Options — Pass Options to the Linker. This option allows you to pass a
string of options directly to the UNIX link editor. For example, the command

ald -P '=t ~r’ main

adds the string **—t —r’" to the options of the link editor when it is invoked. The options must be
quoted (double or single quotes).

2.2.4. —-p(ass_objects ~ Pass Arguments to the Linker. This option allows you to pass
a string of arguments directly to the UNIX link editor. For example, the command

ald -p ’'cosine.o /usr/lib/libm.a’ main

causes the link editor to link the object file cosine.o (which it expects to find in the current
working directory), and to search the library /usr/lib/libm.a for unresolved symbol references.
(The location of the libm.a library may be different on your system.) Remember that the link
editor searches a liorary exactly once at the point it is encountered in the argument’ list. so
references to routines in libraries must occur before the library is searched. That is, files that
include references to library routines must appear before the corresponding libraries in the
argument list. Objects ani archives added with the —p option will appear in the linking order
after Ada object modules and run-time support libraries, but before the standard C library
(/lib/libc.a). This library is always the last element of the linking order.

You can also use the ~p option to specify the link editor’s ~! option, which causes the link
editor to search libraries whose names have the form */lib/libname.a” or */usr/lib/libname.a”.
For example, the command

ald -p '-ixyz’

causes the link editor to search the directories /lib and /usr/lib (in that order) for file libzyz.a.

2.2.5. ~S(“asm_listing”” — Produce an Assembly Listing. The -5 option is used to
output an assembly listing from the elaboration process. The output is put in a fie,
<file>.obm.s, where <file> is the name of the main unit being linked. (The file extension may be
different on your system.)

2.2.8. -s(oftware_float ~ Use Software Floating-Point Support. This option may not
be available on your TeleGen2 system. Please consult the Overview portion of this volume to see if
it is provided. The Ada linker currently selects hardware floating-point support by default. This
default situation is provided for users of systems with an arithmetic coprocessor. If you do not
have hardware floating point support or if you wish to generate code compatible with such
machines, use the ~s option. /n addition: if you use the —s option, the library file you use for
compiling and linking must contain the name of the software floating point run-time sublibrary.
s_rt.sub. Refer to the Library Manager chapter in your User Guide volume for more information
on the run-time sublibrary.

2.2.7. ~T(raceback -~ Set Levels for Tracing Exceptions. When a run-time exception
occurs (and is not handled by an exception handler). the name and line number of the unit where
the exception occurred is displayed along with a recursive history of the units which called that
unit. (See the “Exception Handling’ section in the Programming Guide chapter of your
Reference Information volume for a more complete explanation of exception reports.) The -T
option allows you to set the number of levels in this recursive history. For example. the

24AUGS9 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-15

TeleGen2 Command Summary for UNIX-Based Host Compilers

command

ald -T3 main

specifies that traceback histories will be three levels deep. The default value for this option is 13.

When an exception occurs, the run-time support system stores the history in a preallocated
block of memory. Since the size of this block is determined by the — T option, setting this value
to a large number can introduce objectionable overhead in deeply nested, time-critical code. You
may wish to make this value smaller for well-tested programs.

2.2.8. —x(ecution_profile - Bind and Link for Profiling. This option is used for units
that have been compiled with the -z option. Use of -z with ada causes the code generator to
include, in the object, special code that will later be used to provide a profile of the program’s
execution.

If -~z is used with ada, it must be used with ald as well. The -z option of ald instructs the
linker to link in the profiling run-time support routines and generate a subprogram dictionary,
profile.dic, for the program. The dictionary is a text file containing the names and addresses of
all subprograms in the program. The dictionary can be used to produce a listing showing how
the program executes.

Refer to the Ada Profiler chapter in your User Guide volume for a full discussion of the
profiler.

2.2.9. Tasking Options. The following ald options are binding options used for task
execution. They are therefore useful only for linking programs that contain tasking code.

2.2.9.1. -D(elay_NonPreempt - Specify Non-Preemptive Delay. By default, the
TeleGen2 run-time is set for preemptive delay handling. That is, an active task is preempted if
another task is waiting that has a priority equal to or greater than that of the active task.

The - D option allows you to specify non-preemptive delay handling. With non-preemptive
delay, a task is scheduled only when a synchronization point is reached. ~D(elay_NonPreempt is
incompatible with the —w option (see below).

2.2.9.2. -w(“timeslice” - Limit Task Execution Time. The ~w option allows you to
define the maximum time a task may execute before it is rescheduled. The format of the option
is:

-w <value>

where <value> is the maximum time the task is to execute, in milliseconds. before a task switch
occurs between it and a task having the same or higher priority. The default value is 0 (no-
timeslice). If you choose a value greater than 0, it must be a* least as great as the ciock interval
time.

Since rescheduling of tasks is incompatible with interrupt-scheduling, ~w is incompatibie
with —D{elay _NonPreempt (see above).

2.2.9.3. -X(ception_show - Report Unbandled Exceptions. By default, unhandled
exceptions that occur in tasks are not reported: instead. the task terminates silently., The -\
option allows you to specify that such exceptions are to be reported. The cutput is similar to
that displayed when an unhandled exception occurs in a main program.

2-16 INTRO-1381i1-V1.2(UNIX-H) © 1989 TeleSoft 24AUGS9

COMPILATION TOOLS

2.2.9.4. -Y and —y - Alter Stack Size. In the absence of a representation specification for
task storage_size, the run time will allocate 8192 bytes of storage for each executing task. You
can change the amount of space allocated for tasking by using the =Y and —y options.

-Y specifies the size of the basic task stack. The format of the option is:

=Y <value>

where <value> is the size of the task stack in 32-bit (long_integer) bytes. The default is 8192.

-y specifies the stack-guard size. The stack-guard space is the amount of additional space
allocated per task to accommodate interrupts and exception-handling operations. The format of
the option is:

~y <value>

where <value> is the size of the stack-guard size in 16-bit (natural) bytes. The value given must
be greater than the task-stack size. The default is 1052 bytes; this is the amount allocated unless
otherwise specified.

A representation specification for task storage :'ze overrides a value supplied with either
option.

24AUGS89 INTRO-1381N-V1.2(UNIX-H) © 1989 TeleSoft 2-17

