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13 ABSTRACT (MAXIMUM 200 WORDS)

A supersonic, aerodynamic computational model, which is the basis of the NANC code,
has been extended to compute dynamic derivatives. The extension is to the inviscid co-.ti-
bution of constant angular rates and axial accelerations.

The body geometry limitations are the same as for the steady-state model. Here, a
pointed body or equivalent pointed body is assumed for low Mach numbers; at higher Mach
numbers, the effect of axial acceleration is neglected and the body may be blunt. The body
may be noncircular with planar discontinuities, including inlets, with fins (up to six per fin
set), which lie on a cylindrical coordinate ray.

For the low Mach number range, the original second-order potential model has been
extended for angular rate derivative prediction. For the acceleration rate derivatives, a
"hybrid" first- and second-order model has been developed.

For the high Mach number range, an equivalent angle-of-attack vector is defined and
combined with local solution models.

Computational comparisons are made with experimental data, primarily for pitch and
roll damping derivatives..
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FOREWORD

This work represents an extension of the work reported in Naval Surface
Warfare Center (NSWC) TR 86-253. The latter report presented computational
methods for predicting aerodynamic loading for supersonic Mach numbers on non-
axisymmetric flight vehicles at constant or steady incidence. The extension is for the
prediction of aerodynamic loading or dynamic derivatives associated with constant
body axis angular rates and/or acceleration. The resulting computer program allows
one to predict roll and pitch damping, fin Magnus, and other dynamic derivatives for
the preliminary and intermediate design stage.

Support for the work was provided by the following sponsors:
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nology Program Project Numbers RA1 1G13/RU1 1G14.
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1.0 INTRODUCTION

Preliminary design requires the estimate of aerodynamics for a large set of
free-stream and geometric variations. To keep computational costs reasonable,
rapid (but reasonably accurate) methods are sought and utilized.

For cruciform finned, axisymmetric bodies at low angle of attack, component
buildup methodsl, 2 can be utilized for a restricted range of configurations and free-
stream conditions that are applicable to current designs.

Linear surface singularity methods 3,4 have been highly developed for complex
configurations, including high angle-of-attack vortex modelling. Set-up and run
times are fairly long.

The second-order Van Dyke model5 , which corrects for compressibility effects,
was extensively modified and adapted for noncircular bodies with planar discon-
tinuities, including inlets, and multi-sets of fins. 6-9 The NANC codelO- 12 includes
the second-order potential model plus a local solution model based on the methods of
Reference 13.

Dynamic derivative estimates are calculated in the NSWC Aeroprediction code
of Reference 1. Body-alone contributions are given by an empirical data fit. Fin-
alone contributions are given by thin-wing theory. Interference modelling is incom-
plete when compared with the static case. Thin-wing theory is based on conical
solutions that are not valid for small aspect ratio fins.

Dynamic derivative estimation is primarily of interest for unguided appli-
cations. Pitch damping is usually ignored for guided applications since the autopilot
provides control surface moments, which are proportional to the pitch rate and
significantly larger.

Classical unsteady aerodynamics is based upon the unsteady linear potential
equation. 14 The unsteady potential equation may be applied to harmonic analysis of
the rigid motion or to aeroelastic applications. The harmonic gradient method of
Reference 15 is a singularity collocation code utilizing a complex potential. The total
pitch damping for low frequency is the same as for the constant pitch and accel-
eration rate estimate.

The NANC code is modified in this report to compute forces and moments
which are a function of constant axial rotation rates and moment center accel-
erations. The remainder of the report assumes that the reader is familiar with the

1
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earlier work summarized in Reference 10 and concentrates on the dynamic
derivative modifications.

2.0 GEOMETRY, FREE-STREAM VELOCITY
AND FORCE CONVENTIONS

Assumptions concerning body and fin geometry are the same as in Reference
10. Figures 1 through 3 are taken from Reference 10. However, the body is assumed
to have a pointed nose for the low Mach number range.

A static blunt body model establishes a matching plane of velocity component
data by matching a modified Newtonian pressure distribution and utilizing conical
potential functions and other assumptions. A blunt body model for the plunging
acceleration problem was not deemed feasible. A model for pure axial rotation is
only somewhat more feasible.

Computations utilize a cylindrical coordinate system and the "thin-fin" approx-
imation with the fin midplane lying on a cylindrical coordinate ray. The body is
divided into sections by planar discontinuities (including planar inlets). Any section
except the first may have a set of fins with up to six fins. See Reference 10 for a more
detailed discussion.

Force convention is the same as used in earlier work. The axial force, FA, acts
in the x direction; the normal force, FN, acts in the z direction; and the side force, Fy,
acts in the negative y direction. The roll moment, Me, acts in the negative x
direction; the yawing moment, Mn, acts in the negative z direction; and the pitching
moment, M, 1 , acts in the negative y direction.

The main difference between the current work and earlier work is the body-
axis oriented equivalent dimensionless free-stream velocity vector. In Cartesian
coordinates, the velocity vector relative to body axes, in dimensionless form, is given
as

IU  t  - 'z r'

q LL + V + Cos. cos[j'

v0t  -r'(x - x') + p'z I+ V +V+ sin[o' j' (2-1)

o
WO '  p ' y  

+
4  q ( x  -  

0
t

+ + - + sina coso' k'V V

- (,. +- (lt lifflt -4
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Note that the time derivatives of the axial rotation rates could be included as well,
but are neglected. p', q', r' are the axial rotation rates in the negative x, y, and z
directions, respectively, and ti0, v0, and vo are the corresponding acceleration rqtes.
For the total pitch damping problem, q' and o are the pertinent input terms. a and

are the angle of attack and side slip, respectively.

An additional symmetry operation variation for LM (defined in Reference 10) is
introduced here. LM = 1 is for axial force as the only nonzero force term. LM = 2 is
for axial force and rolling moment as the only nonzero forces. The new symmetry
value for LM = 2 is for a circular body with quarter-plane symmetric fin distribution
and a roll control deflection or constant roll rate. For the LM = 2 case, the
computation is LM = 1 before the first fin set and LM = 2 subsequently. LM = 3 is
for the axial force, normal force, and pitching moment nonzero. LM = 5 is for axial
force, side force, and side moment nonzero. LM = 6 is for a full plane computation.
LM is defined for each section of the body and must increase or remain the same as
the computation is marched down the body.

3.0 THEORETICAI )EVEIOPMENT

3.1 FIRST- AND SECOND-ORDER POTENTIAL EQUATIONS

The full nonlinear, dimensionless, potential equation is

a-7- Q IQ Q.VQ (3-1)
2 t2 V at 2

Here, a is the speed of sound divided by a. and Q = V4P is the dimensionless velocity
vector. Equation (3-1) is appropriate to a body moving through a fluid at rest. It is
derived from the continuity equation, momentum equations, and the Bernoulli
relationship. For body-fixed coordinates,

a a - V. V(3-2)
at at

V (3-3)

In addition, the relative velocity, q, = Q - V, is introduced. The continuity
equation then becomes

+V .V)p 0. (3-4)

V t " p r

3
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The Bernoulli relationship for body coordinates becomes

V Vt 2 ,

The density may be eliminated from Equation (3-4) by using Equation (3-5) to yield

-22{ ( IQ 1 (3-6)
2) V2  at 2  )t 2 t

2(( )
2 +12V2 2 dt (3-7)

2 MV

A small disturbance from the static free-stream dimensionless velocity vector is
given by

Vr= i + (q( -Vi) + ( I ' + q',+ q. (3-8)

Substitution of Equation (3-8) into Equation (3-6) and neglecting higher order
terms yields the first-order wave equation

V ,1J2~- 1 1 + 2(-'++. 2~
q=at 2  t ox

qj is the first-order velocity vector, uI the x component ofq', and 4 ' the corresponding
potential function.

The first-order problem may be further broken down into three steady prob-
lems.

M2 xM21
¢i= 1 +  -2 ( a + V  t - _2 (Pb (3-10)

Here PI is the potential function associated with the angle-of-attack problem and
axial rotation rates. 4 a and 4)b are equivalent steady potential functions associated
with the plunging rate problem. Equation (3-10) satisfies Equation (3-9) when 4j,

Pa, and 4b satisfy the steady first-order wave equations

2 aue(V q = 0 (-1
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(V x qf) 0 (3-12)

e = 1, a, b; c stands for the crossflow plane and componerts.

As in earlier work, an improved solution to the first-order prblem is obtained
by evaluating the neglected nonlinear terms using the first-order solution and
solving a nonhomogeneous potential equation. Only time-independent terms are
considered.

2 ll 2 (3-13)(v q2c -[ 2ax "

(V x q) = 0 (3-14)

Q i + Q (3-15)

x 2q - 6 2~ 2 x (

+ V' M U2 + 2 + (3-16)+qu2+ 2 " Iu+q + q 'qI

'2 2
- ) , 9

2+ -- (y - 1) 1 - +cl x(q kxq)(17

Boundary conditions for first- and second-order problems are

(q e +q )-n = 0 (3-18)
f = 1,2

The equivalent steady problem boundary conditions for the 4l problems are

(q + n0 (3-19)

qa 4 - n = --"1 body
( + xV ax V (3-20)

Fi

( ;fin
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Here, 6rbl/ix and t, are body and fin slopes, respectively.

3.2 COMPUTATIONAL COORDINATES AND GRIDS

The region between the body and the Mach cone is mapped to the rectangular
region shown in Figure 2 by the shearing transformation

r- _ 
(3-21)x/[1 - r-1)

Further clustering transformations " Q,(, and cD = ((O) are used for nonuniform
gridding of the 0 and , variables. The functional dependencies are not given
explicitly. See Section 3.2 in Reference 10 for more details.

3.3 NUMERICAL METHODS

Most of the numerical methods are as reported in Reference 10. However. sme
of them have been changed.

The implicit formulation for the first body section is as in earlier work. The
velocity vector advancement Equations (3-11) through (3-14) are single second-order
equations in a potential, 4) = xF.6.7 F is known as a conical potential function.
However, actual conical similarity for the total pitch damping problem requires the
functional form ofP = x (G + xH). The pressure distribution on a cone is now linear
with x instead of constant. Therefore, the computation uses more than two steps for a
solution for a cone. The solution at x = 0 is assumed to be conical. However, the
resultant computation for a numerical solution using a few marching steps does not
vary significantly from a solution developed based on the true conical similarity of (P

Sx (G + xH) and two marching steps.

At body planar discontinuities and supersonic leading and trailing edges, the
jump in various velocity components is obtained by application of the method of
"weak solutions" 16 combined with a downstream boundary condition and conser-
vation of the velocity component tangent to the discontinuity edge condition. At a
subsonic leading edge, the solution for the velocity jumps does not exist and the
conservation relationship provided by the method of "weak solutions" must be
replaced by a heuristic one. The "weak solution" conservation relation is modified
due to the modified Equation (3-13).

For all sections, except the first, the conservation velocity vector advancement
equations are solved using a MacCormackl 7 predictor-corrector scheme for points not
on a solid surface. Body and fin surface velocities are advanced by characteristic
compatibility relations (two in number) combined with a solid surface boundary

6
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condition.18 At a corner where the fin and body meet, no unique solution is possible.
The advancement equations for the fin-body junction have been modified. The fin-
body junction line is assumed to be a streamline. Therefore, fin and body boundary
conditions and one other condition are needed to solve for the three velocity
components.

One estimate of the axial velocity component, u, can be obtained from one body
advancement quantity and the body boundary condition.

E B = L13 B + 0 + V B - C 0w B  (3-22)

a (+ C (3-23)B '0B Oa B 6

v B -- 0w B dx(uB + u - v~o+ ow3-23

Here, u, v, and w are the axial, radial, and 0 components of velocity. eo = l/rb(arb/a0).
The B subscript stands for the body. For the first- and second-order problem, u , v ,
and w' are free-stream velocity components. For the 4b problem, q = 1. For the 4 a
problem, u'. = uxV, - (N, v" = vx/V, and w' = wx/V. UB is obtained from Equa-
tions (3-22) and (3-23). EB is known.

A second estimate of the axial velocity component is obtained from the fin
advancement quantity and the fin boundary condition

E F = + PuF + wF (3-24)

w = -w' + t (U + u') (3-25)

Here, EF is known. uF may be obtained from Equations (3-24) and (3-25). The upper
sign is for the 0 > Of-n side of the fin.

The final values of u, v, w for the fin-body junction are obtained from

U I(3-26)
2 UB + UF)

r , (3-27)v - w (u +u')- v' 4 0-
Ox

w = -w,+ t (u + u') (3-28)x

Note that 4 b need only be determined on the solid surfaces and is needed for the 4 a
problem boundary condition and evaluation of the Bernoulli pressure coefficient
relationship. An advancement equation for 4b is given by

S ar (3-29)
U , + +1 - - +tXw

7
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On a body surface or interior point, tx is set to zero.

A subsonic leading edge requires a modification of the jump relations. For all
cases,

2k U 2 2rk (3-30)Ok,j Ok- 1,j /r 0 l ,j -- rk,j

k is the grid index in the r direction; j is the index in the 0 direction. Equation (3-30)
combined with downstream boundary condition and conservation of the velocity
component tangent to the edge provides a solution for the downstream values of
velocity. The square root ratio is limited to a value of 2. ro is the radius of the
leading edge. Equation (3-30) has the well known square root singularity for a
subsonic leading edge.

3.4 LOADING COEFFICIENTS AND OTHER NUMERICAL CONSIDERATIONS

The axial acceleration rates contribution to velocities in the limit as t -* 0 is
given by differentiation of the last two terms of Equation (3-10).

- - q~ -(3-31)

q 13- 13q qb2 'b

The first- or second-order pressure coefficient is then given by

C =IX 3" - 11/(.7M2) (3-32)

X = I + .2M2 (q - QTe - 2pb(

Qre = q1. + q, + q  (3-34)
C = 1, 2

This is a "hybrid" model for the plunging rate case since qa, is a first-order potential
quantity.

The inviscid loading coefficients are as given in Section 5.0 of Reference 10.

Smoothing of the MacCormack vector quantities is an input option for sections
with fins. It is particularly needed for subsonic leading edges. Q2 1 with qax = 0 is
used as a weighting function for first- and second-order vector terms as in Section
3.11 of Reference 10. Q21 with q, 4 0 is used as a weighting function for the 4a and

4)b problem vector terms.

8
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The explicit marching solution will fail when X becomes negative in Equation
(3-32). For 4,, = 0, x is set to zero or the vacuum value and the velocities are adjusted
as discussed in Section 3.11 of Reference 10. For 4., t 0 and x negative, the solution
is halted and an error message is written to the output file.

3.5 HIGH MACH NUMBER SOLUTION

The potential model breaks down at Mach numbers where the origin Mach cone
crosses the body surface. 4, is set to zero for this local solution model.

The velocity vector, qz, is normalized to 1 as

q'= q,/Iq,,l (3-35)

q' is then used to find the turning angle between an effective free-stream velocity
vector and the local surface normal. These are combined with the local solution
methods of Reference 13. It is expected that these local solution methods will be
inaccurate below M_ = 4. Note that blunt bodies may be considered.

4.0 EVALUATION OFTHE NUMERICAL, METHODS

Evaluation is almost exclusively made by comparison with experimental data.
The data sources are ballistic range data or wind tunnel tests. Dynamic derivatives
must be based on parameter estimation techniques associated with kinematic data
and an assumed aerodynamic model. In general, the accuracy and repeatibility of
the estimated coefficients is much worse than for static coefficients.

The code development is for nonaxisymmetric bodies with combined angle of
attack, control deflection, rotation rates, and axial accelerations. Data, however, is
mostly available for Cip' and Cmq' + Cm& for circular bodies at zero incidence.
Computations are separate for Clp', Cmq', and Cm .

The dynamic derivatives are given in general form as

,. M (4-1)
1 SRXRQD(OiXD/V-)

SR is a reference area; XR is a reference length; Mi is a force or moment; QD is the
dynamic pressure; xD is a length associated with a reduced frequency; and wi is an
axial roll rate or dimensionless acceleration.

9
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4.1 BODY-ALONE COMPARISONS

The reference area for bodies will be the maximum cross-sectional area.

The first computation is for a 2.98 caliber length cone. The moment center is
located 2.18 calibers from the nose. xR is the maximum body diameter and X[) is the
maximum body radius. Unless otherwise indicated, references will not vary in the
rest of the report. Figure 4 compares Cmq' + Cm4 computational values with values
extracted from the ballistic range data of Reference 19. The usual lack of repeat-
ibility of the data is shown due to different initial yaws and, hence, epicyclic history.
Figure 5 compares Cn,,(' + C1j; computational values for a cone-cylinder and the
ballistic range data of Reference 19.

The next comparison computations are for the Army-Navy Spinner config-
urations. These configurations have 2-caliber secant ogive noses with arc radii twice
that of a tangent ogive and various body lengths and moment center locations.
Figure 6 compares Cmq' + Cm computations with data for a 5-caliber length body.

Note the great differences between different range tests and wind tunnel tests. Also
plotted are Cm and a slender body value. Figure 7 compares Cnq' + Cm; compu-
tations with data for a 9-caliber length body. GE-Spinner refers to the empirical
curve fit of Reference 20.

The final body computational example is taken from Reference 15. xi and XI)
are cone lengths, L, for an elliptic cone. Semi-minor to semi-major axis ratio is a/b =
.75. a/L = .0866, x' = 0. Figure 8 compares CNq' + CN; first- and second-order
computations with that of Reference 15. Figure 9 compares Cmq' + Cm;. Compu-

tations for C.N, show significant differences between first- and second-order order.
The computation of Reference 15 is a first-order computation using different numer-
ical methods. Three computational planes seems to be adequate for this case.

4.2 BODY-TAIL CONFIGURATIONS

The first configuration considered for this section is the Basic Finner of Figure
10.21,22 Figure 11 shows a comparison of data with computation for the roll damping
derivative. The loading for the roll damping problem is low near the body and
increases with span distance. The roll moment loading increases even more rapidly
with span distance. At a side edge, the loading drops to zero. Load integration
routines were modified to try to account for the sharp drop off of loading near a side
edge. This improved Cip, prediction at lower Mach numbers. Figure 12 depicts a
Magnus moment derivative, CNp,', computation comparison with data. A body-
alone estimate using the empirical computation of Reference 20 indicates a variation
of-.4 to 3 for the Mach number range of 1.2 to 3. The computation here only follows
for the data trend but not the magnitude. Figure 13 depicts a total pitch damping
comparison. A trend of being above the data at lower Mach numbers is indicated
here.

10
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The next configuration is that of Figure 14(b) taken from Reference 23. The
equation of the body in calibers is

rb = 511 - (1 - x/6.25)2 13'4  0 < x < 6.25 (4-2)
rb = .5, x > 6.25

Since ari/x and d2 rb/ox 2 are singular at x = 0, the nose is approximated as

rb = .29716844x -. 131673491x + .034340881x3  0 < x < 1 (4-3)

Equation (4-3) matches zero through second derivatives of Equation (4-2) at x = 1.
The total pitch damping comparison is shown in Figure 15. Reference area is the
extended to centerline fin planform area (two fins). Reference XR = 2x) = the mean
aerodynamic chord,

(C2 + C2+ C )2 r t t rd

C,- = (4-4)
3 C+C

t r

Here, Cr and Ct are root and tip chords of the extended fin. The moment center is .2C'
from the apex of the wing extended to the body centerline. Leading and trailing
edges are supersonic and the computation compares fairly well with the data.
Computations were adequate for the configuration of Figure 14(a) for supersonic
leading edges, but very poor for subsonic edges when the moment center is .35C' from
the extended wing apex. The reason is the inaccurate computation of Cm&. For
moment centers which are, more typically, not close to the point of action of CN&, the
sensitivity and accuracy is better.

The next configuration considered is depicted in Figure 16. A Cmq' + Cm&
comparison for this configuration is shown in Figure 17. Here, the trend of over-
prediction is reversed.

The next body-tail configuration considered is the flechette of Figure 18 taken
from Reference 24. Reference 24 (unpublished) compares one of the routines for

computing total pitch damping in Reference 1 with available data for a large number

of body-alone and body-tail configurations. The XM-144 body end radius of .005
calibers is approximated as .05 calibers. Figure 19 compares computations with data.
For this case, the leading edge of the fins is subsonic below Mach numbers of 3.25.

The data was surprisingly smooth for this configuration. The boat tail has a

significant effect on the computational results.

The final body-tail configuration 2 5 of Figure 20 has six fins and a boat-tail

angle of 2 deg. Figure 21 compares CIp' potential and local computations with the

PNS computations of Reference 25. The sharp rise close to sonic leading edge

conditions is predicted by the thin-fin, fin-alone methods of Reference 1. The boat tail

11
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significantly affects the solution. Figure 22 shows a pitch damping computational
comparison with data for a configuration close to that of Figure 20. The configuration
and data are from Reference 24. Here, the conical nose length is 3.32 calibers and the
moment center is 7.14 calibers from the nose. From Figures 21 and 22, one can see
that the local solution is of limited value.

4.3 BODY-WING-TAIL OR BODY-CANARD-TAIL CONFIGURATIONS

Here, the additional interference of forward lifting surfaces on the tail is the
primary phenomenon. As in earlier work, it is assumed that the velocity vector
downstream of a supersonic trailing edge lies on a constant cylindrical ray plane, 0
= Of.

The first computational comparison is for the B-C-T configuration of Figure 23.
Figure 24 shows a computational comparison with experimental data. The trend at
lower Mach numbers is as noted earlier. Here, the carryover canard to tail of Cm!
grows as the Mach number decreases. Evaluation of the plunging acceleration con-
tribution of Equation (3-31) involves M2/ 32 and differences which probably become
sensitive as the Mach number is decreased. Computations of CIp' also indicate a
carryover effect which is not accounted for by component superposition methods. At
WM, = 1.76, Cip' = -199.3 for the total configuration. For the same Mach number, the
total of individual canard and tail configurations adds up to Cip = -171.1.

Figure 25 compares total pitch da:nping with data and a semi-empirical esti-
mate for the RFL 122 configuration of Reference 26. The ordinate scale was not given
and is inferred here. The Cm* carryover phenomenon seems to be less extreme in this
case. The semi-empirical estimate seems to be worse, assuming the data fit is correct.
A CIp' computation at M, = 1.5 yields -89.5 for the total configuration. The wing
contribution to CIp' at the same Mach number is -94.0.

The final computation is for the B-W-T configuration of Reference 27. Total
pitch damping comparison and configuration are depicted in Figure 26. Geometry
and the moment center location are given in Reference 27. The geometry was scaled
from Reference 27. x' is assumed to be at x' = 8.5 calibers from the nose. The Cm&
carryover phenomenon is noted as before. Missile refers to an Aerospatiale semi-
empirical code.

12
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5.0 CONCLUI)ING REMARKS

The computational methods, developed for computing static aerodynamic
coefficients for noncircular bodies at supersonic Mach numbers, have been extended
to the computation of dynamic derivatives.

Geometric limitations are the same as for the earlier work. However, it is
assumed that the bodies are pointed.

The weakest elements in the original code are exaggerated here since moments
are almost exclusively computed. The variation of pressures close to subsonic lead-
ing and side edges is affected by edge singularities. Clp' prediction is poorest for fins
with low aspect ratios. Crnqo + Cm. prediction is poorest when the leading edge is
subsonic and the point of action of CN,1' + CN, is close to the moment center. The
carryover effect for Cm; is overpredicted when the leading edges are subsonic for
bodies with two sets of lifting surfaces.

The methods developed are capable of computing dynamic derivatives that are
usually not computed or measured for in-plane and out-of-plane cases.

Computational comparison with data is fairly good for most cases. In general,
the repeatibility of dynamic derivative experimental values is much poorer than for
static derivatives.

The current computer code, implementing the dynamic derivative models, re-
quires about 330,000 octal storage locations for a 15-by-60 grid for full plane
computations. Computational times for axial rate computations are about the same
as for static computations. Plunging rate computations are about 50 percent longer.
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NOMENCLATURE

a Dimensionless speed of sound

a. Reference speed of sound = free-stream value

Ci General force or moment coefficient

Cp Pressure coefficient

i Grid index for a constant x plane

i' Unit vector in x direction

j Grid index for constant 0 plane

j, Unit vector in y or r direction

k Grid index for constant plane

k' Unit vector in z or 0 direction

LM Aerodynamic symmetry mode

Mi Moment or force

M Free-stream Mach number

n Unit normal vector from a solid surface

p' Rotational rate about the x axis

(NOTE: All q velocities are nondimensional)

q Perturbation velocity vector

q' Rotation rate about y axis

% Velocity vector associated with 4,a potential

qax Velocity vector at t = 0 due to plunging acceleration
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qb Velocity vector associated with 4b potential

q0M Equivalent free-stream velocity vector relative to body axes

qr Q - V, relative velocity

q.. Equivalent free-stream velocity vector relative to body coordinates at t
=0

Free-stream acceleration relative to body axes (dimensionless)

q' Equalsq 0 - '

q, First-order velocity vector, steady part

q'I Total first-order velocity vector

q2 Second-order velocity vector

qj, First-order crossflow vector

Q Total velocity vector of fluid in body axis coordinates relative to gas at
rest

QD 1/2 p" V2, dynamic pressure

QTe Total first- or second-order velocity vector, t = 0

r Radial coordinate

r' Rotation rate for z direction

rb Body radius

ro Body radius to outer fin edge

SR Reference area

t Time

tx Fin slope in x direction

u x component of perturbation velocity

x component ofc. g. acceleration
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u'l  x component ofq,

v r component of perturbation velocity

Vo y component ofc. g. acceleration

V Equals -qo,, velocity relative to gas at rest in body axis coordinates

V," Magnitude of velocity vector of c. g. at t = 0

w 0 component of perturbation velocity

Vo0 z component ofc. g. acceleration

x Cartesian coordinate from nose -- zero incidence direction

x, Moment center distance from nose

xRt Reference length

x) Reference length associated with reduced frequency

y Cartesian coordinate perpendicular to vertical body symmetry plane (to
the right looking downstream)

z Cartesian coordinate perpendicular to x, y plane (up, looking down-
stream)

Angle of attack

Equals V 2 I1

Angle of side slip

Y Specific heat ratio

C(o Equals (Grb/dO) / rb

4 Equals < (), clustering transformation in direction

0 Cylindrical coordinate angle from leeside plane

Equals (r - rh)/(x/3 - r1)), shearing transformation

p Density
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p, Free-stream density

Disturbance potential

C First-order disturbance potential for 4, = 0

Equals 1 + (MoJf32 )4Pa + V[t- xM2/(t 2V )]b

(Total first-order disturbance potential (Pa and NPb are equivalent static
problem potentials.)

4)2 Second-order disturbance potential

(D Equals (D (0) -- clustering transformation in 0 direction

x Absolute temperature ratio

Col General term in computing reduced frequency
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