
qEcunsTY CLASSIFICATION OF THIS PAGE (When oels Cnfe,ed)

REPORT DOCUMENTATION PAGE BRE COMPLETRUGTORM
Ln I. RErPORT NUmear'- i2. GOVT ACCESSION NO. S. RECIPIENT*S CATALOG NUMBER

M NW-LIS-89-12-04 I

0 4. TITLE (.nd Sbtialle) 1. TYPE Of REPORT I PERIOO COVERED

Balance in Architectural Design Technical

0 . PERFORMING ORG. REPORT NUMUCER

V. t AUTNOR(q) S. CONTRACT OR GRANT NUMgER(#)

Samuel Ho, Larry Snyder N00014-88-K-0453

.ERFORMING ORGANIZATION NAME AND O0ES 10. PR Ro.T

Northwest Laboratory for Integrated Systems
University of Washington
Dept. of Comp. Science, FR-35 Seattle, WA 98191

. CONTROLLING OFFICE NAME ANO AOORESS I. REPORT OATS

DARPA- ISTO December 1989

1400 Wilson Boulevard 1. 6NUMOER OF P AGES
Arlln~ton. VA 22209 16

14. ONITORIiNG AGENCY NAME A AOORESS(II dlllerent free Conlrellind Office) IS. SECURITY CLASS. (of thl 10911j

Office of Naval Research - ONR Unclassified
Information Systems Program - Code 1513: CAF
800 North Quincy Street Is.. OckAS$'ICAIION/IOWNGRAOINGo-
Arlington, VA 22217 -CH

17. DISTRISUTION STATEMENT (of ohs oeftect entered In Stock 20, it different fhow RSPGerl).

IO.1 SUPPLEMENTARY NOTES

IS. KEY WOROS (Cenfine on rove, @ ide It noc erY end Iden f,Y 6y block num6er)

Architectural design, VLSI theory, price/performance ratio, VLIW
processor architecture, bit serial, wotd-parallel, RISC, CISC.

10. AGSTRIACT (Cnebm. an revr el aide 8I necessary and Identify by block mi ,br)

We introduce a performance metric, "normalized time," which is closely
related to such measures as the area-time product of VLSI theory,
and the price / performance ratio of advertising literature. This
metric captures the idea of a piece of hardware "pulling its own
weight," i.e, contributing as much to performance as it costs in
resources. We then prove general theorems for stating when the size

Continued on back page....

DDo 1473 E01TION OF I NOV 65 0S O§SOLET
S/N 0102.LF-014-6601 SE[CU ITY CL.AIFI CATION OF TIS PAG E[(ImeA Defe I lee)

#20 Abstract, (continued from front page)

of a given part is in balance with its utilization, and give specific
formulas for commonly found linear and quadratic devices. We also
apply these formulas to an analysis of a specific processor element,
and discuss the implications for bit-serial vs. word-parallel,
RISC vs. CISC, and VLIW designs.

Accession For

NTIS GRA&I

DTIC TAB
Unannounced
Justification

By . . .

Distribution/

Availicllity Codes

Avail and/or

Dist SpocIai

90O41 6

Balance in Architectural Design -

V " \Abstract

We introduce a performance metric, normalized tim w ch is closely
related to rsich mea. ures as the area-time product of eory, and the
price / performance ratio of ad ertising literature. Thi metric captures
the idea of a piece of hardware pulling its own weight, i.e. contributing
as much to performance as it costs in resources. We then prove general
theorems for stating when the size of a given part is in balance with
its utilization, and give specific formulas for commonly found linear and
quadratic devices. We also apply these formulas to an analysis of a specific
processor element, and discuss the implications for bit-serial vs word-
parallel, RISC vs CISC, and VLIW designs. -.- __

1 Introduction

Architectural design - in buildings - demands both art and engineering from the
architect. Architectural design of computers also requires art and engineering,

but, to date, the rationale for computer designs seems not to be founded on
either a clear artistic basis, a matter which we do not consider further, nor a
clear engineering basis, a matter which we will.

Specifically, we will conceptualize a computer as a collection of its compo-
nents, e.g. a datapath, ALU, register file. etc., capable of running programs.

New components, added to this base architecture, will carry a cost and, pre-
sumably, deliver a performance improvement. Using this point of view, a math-
ematical formulation of principles of computer design can be developed. One
such principle emerges stating that optimal designs must be balanced.

Balance: The cost of a given part relative to the cost of the entire
system must be equal to the time on the critical path spent by that
part, relative to the total running time.

The principle that computer parts have to pull their own weight" clearly
makes sense. However, by giving it mathematical precision, we are able to
quantify many aspects of computer design. Thus, qualitative statements such
as "'CISC machines have too much control," which have been bandied about
in connection with the RISC / CISC controversy, can be made quantitatively
precise to "four decimal places."

The basis for our mathematical formulation is a concept of normalized tzme
which we developed from a concept of normalized analysis [-S89] developed by
Holman in his doctoral dissertation [H88].

In his thesis [1988] Holman analyzed parallel computer processor elements.
He had to measure both cost and performance improvement. To expose the
performance improvement due to a component, such as a floating point copro-
cessor, he compared machines whose PE's had the component with machines
whose PE's did not. A difference in performance could then be ascribed to
this component. To keep the machines on the same cost basis, he allowed the
parallel machine without the feature to have more PE's until the total amount
of hardware was the same in both machines. Comparing the two machines on
benchmarks showed either a performance improvement for the enhanced PE's,
suggesting it to be a worthwhile addition to a parallel machine, or a perfor-
mance lose, showing it to be worthless. Thus, Holman's normalized analysis
[HS89] compared PE enhancements with a "no action" alternative, added par-
allel PE's.

There were two problems with normalized analysis. First, it applied only
to parallel computer processor elements, since it is necessary to equalize the
costs of the two machines by adding additional parallel processors to the one
without the enhancement. Second, normalized analysis applied to computer
components on a "take it or leave it" basis, i.e. a PE either has a multiplier or
not; considering, say, the benefit of a smaller multiplier couldn't be done, except
by tedious independent analyses. But the idea of downsized components makes
sense from a cost performance point of view. Holman observed: Reducing the
width of a shifter by half reduces its area by a factor of four. but cuts performance
by only a factor of two [H88].

The first problem, the limitation to parallel PE's, was solved [HHS89] by
introducing the concept of normalized time. (See next section.) The solution
of the second problem, scaling components, is a contribution of this paper. We
introduce parameterized enhancements.

We develop a theory of parameterized enhancements and prove two funda-
mental theorems about normalized time for computer components: One applies
to components whose cost grows linearly, such as adders, buses, register files,
etc. and the second applies to quadratically growing components such as mul-
tipliers, shifters, etc. We also show how to evaluate waiting time in evaluating
a design for parallel machines. Another contribution of this paper is to illus-
trate the theory by applying it to a specific set of components designed in 34m
CMOS. Though the examples are necessarily sensitive to the VLSI implemen-
tation, they show how the theory is applied, and suggest trends that might be
inore general. As an example, our numbers show that the optimal size of a
VLIW machine is about 7 instructions wide, the width of the (small) Multiflow
machine [M87].

The paper begins with a definition of normalized time, an analysis of waiting
time, and a derivation of the Balance principle. There follows a mathematical

2

development for linear and quadratic components. The theorems are then illus-
trated in an extensive applications section that is interspersed with discussion
about the relationship of the results to matters such as bit serial vs word parallel,
RISC vs CISC, and optimal VLIW.

2 Normalized Model

The first order of business is to fix the environment for the analysis. All analyses
will be conducted with respect to some target computation, which is fixed in
advance. A standard benchmark does well in this application, but all the usual
warnings about the applicability of measurements taken from a benchmark ap-
ply. Clearly, some designs are more suited to some problems than others.

We make all of our comparisons relative to a reference design known as
the base architecture. As such, the units specified for the time T and cost
C are irrelevant, since they will cancel when making any comparisons. For
convenience, we set the time and cost of the base architecture To and C0 to be
unity.

The normalized time of a program running on a specific machine is the
product of its time and cost, TC, when running on that machine. Normalized
time allows trading time for cost, and vice versa. So, for example, a parallel
machine whose processor elements are half as fast, but cost half as much as
another machine's PE's can compensate by having twice as many. Or, replacing
an ALU with one that costs twice as much but runs twice as fast won't change
the normalized time of a program. In each case, there is an assumption that the
change in hardware can be used: Adding processor elements assumes there is
sufficient parallelism in the program; accelerating the ALU assumes operations
get done faster and are not inhibited by other factors.

Such assumptions are often reasonable, at least over small ranges. As with
any theory, however, the extent to which the assumptions are realized must be
assessed when interpreting the results.

To the base architecture we will add an enhancement, such as a multiplier,
floating point unit, or the like. By analogy to Amdahl's law JA671, we assume
that some fraction f of the total computation time is affected by the enhance-
ment, and the rest is left undisturbed. This fraction would be the fraction of
time spent multiplying for multipliers, and so forth. We also assume that the
affected part of the computation speeds up by a constant factor S, and that the
improvement carries a cost c.

Definition 1 An enhancement affecting a fraction f with speedup S and cost c
results in time I

T= 1-1+-s

and cost
C 1+ c.

3

At this point, we generalize from a single enhancement to a range of en-
hancements. This is the simple expedient of adding a parameter u which pa-

rameterizes the value of the speedup S(u) and cost c(u). We assume that the

affected fraction f remains constant, since the family of enhancements should
be closely enough related that they affect the same operations.

For many types of enhancements, the family of potential enhancements is

discrete, but still large. An example is the varying widths of multiplier or

shifter elements. In these cases, we may approximate the discrete parameter by

a continuous one, bearing in mind the possibility of intermediate results which

lie between values of the discrete parameter.
In addition to this categorization of the total time into the parts affected

or unaffected by the enhancement, there is another important effect, especially

for parallel systems. In a parallel computer, a processing element may often

find itself without anything to process, because it is waiting for something to

happen.
Let us assume that the base architecture spends a fraction WO of its time

waiting. We also denote the waiting time in the modified architecture by W.

Then, the modified running time is given by
I

T =l1- Wo - f + W +-

The waiting time can, in principle be an arbitrarily complicated function.

However, a linear function is a reasonable approximation. Such a function con-

tains two major terms. The constant term wo represents waiting that does not

depend on the speed of the rest of the computation, such as communication

delay. The linear term wT is proportional to the speed of the computation, and

encapsulates waiting associated with acquiring results from other subcomputa-

tions. This results in waiting time

W = wo +wT.

Substituting this into our original formula gives

T 1-wo - w -f+wo +wT + .

From this, bringing terms dependent on T to the left yields

(-w)T - w-w-f- ,

which is f f

- (1-w)S

This is equal to
4,T- 1- f'+

4 III

if we define an adjusted fraction

I'--

Thus, the constant term of waiting is indistinguishable from computation
that is not affected by the enhancement, and the linear term is equivalent to
an adjustment in the fraction affected by the enhancement. In the remainder
of the discussion, we make no further mention of waiting time, but include it
implicitly, by the adjustments described above.

3 A General Principle

Now, let us recall that we have described the time and cost of an enhancement
by using a parameter. The first theorem expresses the conditions for which the
normalized time is at a local minimum. This occurs when the fraction of cost
added by a further step is equal to the fraction of time removed by that step. At
this point, small changes in the size of the enhancement exactly balance small
changes in its cost. In general, though, there may be many such points, which
may be maxima, minima, or points of inflection. Furthermore, if the range of
the parameter is restricted, the absolute minimum may lie at an end point,
instead of a local minimum.

Theorem 1 Given the cost C(u) and time T(u), parameterzed by u, the nor-
malized time is minimized at a point where

C'(u) T'(u)

C(u) T(u)

The minimum occurs when the first derivative of the normalized time is zero,
or the equation

0= (TC) = T'(u)C(u) + T(u)C'(u).

Rearranging this equation provides the desired result. 03
This theorem provides a mathematical justification, and a quantitative test,

for the concept of a machine component pulling its own weight. Therefore, we
can state a general principle for choosing the size of an enhancement.

General Principle of Design: To be cost-effective, the additional
cost of an enhancement, relative to the cost of the whole, must be
outweighed by the reduction in computation time resulting from the
enhancement, relative to the total time.

5

4 Common Solutions

Substituting several common functions for the time and cost functions permits
solving for the optimum size of enhancement.

4.1 Linear Speedup

Linear scalability characterizes a large number of circuits. In such circuits,
a circuit of twice the size performs a given operation in half the time. Any
design limited by register transfers or communication will be linearly scalable.
For instance, an k-bit wide adder will require n/k cycles to perform an n-bit
addition. A bus of k wires requires n/k cycles to transmit an n-bit number.

Definition 2 A linear speedup has time given by T(u) = 1 - f + f/u and cost
given by C(u) = 1 - a + au, where a and f are constants between 0 and 1.

The constants a and f represent the fraction of the cost and time, respec-
tively, associated with the enhancement. The remainder of the cost and time is
not affected by the enhancement.

Theorem 2 The width at which the normalized time of a linear speedup is
optimal is given by the formula

U= V (1 f

For a linear speedup, the normalized time is

C(u)T(u) = 1 - + au - f + - + 2cf - afu - af
U U

Setting the first derivative to zero results in the equation

df atf
0 = -(CT) = a - -L - af +

du U2 u2

This produces the quadratic equation

O(1- f)U2 - f(1 _ a) = 0

which has the solution
f(1 - a)

as in the theorem.

6

Verification that this is indeed a minimum comes from examining the sign
of the second derivative, which is

d2 2f 2of 2f(I - a)
du2" Ju3(C T) = u ;3

= u > 0. 1

A corollary to this theorem is that the processor is already balanced with
respect to a linear enhancement when the time and cost fractions are equal. If
these fractions are equal, a small change to the size of the enhancement has
no effect, so there is no need for any departure from the base architecture.
Furthermore, since linear enhancements have normalized time concave upward,
there is no other lower minimum.

Corollary 3 For a linear enhancement, the base architecture is already optimal
in the case when a = f.

Substituting a = f means that the optimal value is at u = 1, or the original
architecture. 3

4.2 Quadratic Growth

A second major class of enhancements is that of the quadratic circuits. The
transitive functions, including multiplication, cyclic shifting, and other prob-
lems, exhibit an area-time tradeoff of the form AT 2 in the VLSI model [T79,
V80]. We shall adapt that argument to find the size which optimizes the nor-
malized time.

The original argument considers the minimum bisection width w. In any
transitive function, there exists some input such that Q(n 2) bits must cross
this bisection, which requires time ((n 2 /w). On the other hand, since any
bisection cuts at least w wires, the total wire area is 0(w 2). This results in the
requirement of AT 2 = (n2).

We use w directly, to parameterize the various circuits. We assume that for
each w, there is a corresponding circuit for the function requiring time 0(n 2/w)
and area O(w2). We also have, as usual, a fraction f of transitive function com-
putation in the circuit, and a fraction a of the total cost charged to the transitive
function circuit. The factor of n2 may be absorbed into these constants, as well.

A transitive function computation obeys the conditions

T(w) = 1- f+ f

w
C(w) = 1-a+aw

2

with the restrictions 0 < f < 1, 0 < a < 1, and w > 0, to avoid singularities.
To find the minimum, we set the derivative to zero, producing the equation

0= -TC= - (.-. -_(,

7

Since both a and f are between 0 and 1, this derivative is negative near w = 0,
and positive at large w. Therefore, there exists at least one point where it is
zero, since the derivative is continuous.

In order to obtain a numerical solution, we multiply the derivative by w2,

to get the cubic equation

2a(1 - f)w 3 + af!w 2
- f(1 - a) = 0.

The final numerical value may be obtained from the cubic equation formula
for equations w3 + pw 2 + r by setting the values

f
S2(-

f)

P (1-a)
2b2 -)

1 /f2

1 T2 7-1
6~~ f f ()~ f1

108 1 -if 2a(- f)

A= + -+ -

2 4 27
B = - - 7+2

z = A+B
W - E--.

3

5 Applications of the Analysis

We now turn to several examples of normalized analysis. The first example is
setting up the equations for the quadratic functions of shifting and multipli-
cation. Then, we consider concrete values for scaling a 32-bit processor, first

downward to smaller word sizes, then upward to a VLIW structure. We can

also combine these last two into a single, piecewise linear analysis, covering an

entire span of datapath sizes.

5.1 Quadratic Functions

Here, we make a more careful study of shifters and multipliers. The AT 2 results
provide only a lower bound, not a tight bound. Furthermore, even if the AT 2

tradeoff holds, the lower order terms neglected in the computation can be larger

than the highest order term at the moderate widths seen in actual design.

8

1/0
array rivez:

decode ontro

Figure 1: The Quarter Horse shifter

For instance, we can take the shifter from the Quarter Horse processor [HJK-
STY85], depicted in Figure 1. This is a 32-bit crossbar shifter, of approximately
two million square microns, in the 31m CMOS process. If we examine the actual
design, though, we see that the crossbar array is only 42 percent of the width
of the shifter. The remaining 58 percent consists of the input latches, the array
input and output cells, and the output drivers. In the vertical dimension, the
32 bit-slices make up 90 percent of the shifter height, with 10 percent devoted
to decoders and control logic. Thus, if we set w to be the width, relative to
the 32-bit base architecture, we have cost (0.58 + 0.42w)(0.1 + 0.9w). Thus, the
cost is 0.38w 2 + 0.56w + 0.06. With this cost, the linear term is larger than
the quadratic term until the shifter reaches at least 47 bits. This means that to
test Holman's observations concerning narrow shifters, the linear model is mcst
arcurate for 32 bit words.

This cost function, though is highly sensitive to the VLSI implementation.
The shifter from the RISC II microprocessor [KSPS83] is quite similar, but is
designed in a 4,sm nMOS process. This shifter, though, has a total area of
640,700A2 . This area is divided into 417,200A 2 for the crossbar array, and
223,500A2 for the input latches, drivers, and decoders. The cost function, omit-
ting the relatively small control area, is then 0.65w 2 + 0.35w. The balance of
the linear and quadratic terms has been reversed, compared with the Quarter
Horse shifter. In fact, the quadratic term outweighs the linear term for any size
larger than 17 bits.

Another case is that oi .he multiplier. Pere, while the .4T 2 results require a
lower bound of n2/w for the running time, given a width w, the straightforward
method of accumulating partial products or w bits of the operands produces
a running time of n2 /W 2. If we change our function for the running time ac-
cordingly, to I - f + f/wv , the equation be-omes identical to that for a linear
enhancement, except that w has been replaced by w2 . As a result, the optimal
width is now given by

(I-f)

Both of these cases show how we can adjust the theoretical results given pre-
viously to account in a more detailed way for the actual behavior of a datapath
element. The modified functions can be directly substituted, and solving these
revised equations will provide a better estimate of the optimal size.

5.2 Datapath Width - Smaller Processors

Next, we can consider changing the width of the entire datapath. taken ,-s a
whole. The extremes of this experiment are the bit-serial and word-parallel
processors, but there are several intermediate widths, also. Clearly, the param-
eter must be the width, in bits, of the datapath.

10

Component Area
Register File (16) 445,603 A
ALU 404,954 A
Shifter 424,844 A2

Control 466,041 A2

Communication (8) 1,458,000 A2

Tota 3,199,442 Ad

Table 1: Processor element area estimates.

Once we make this choice, we must now divide the time and area of a proces-
sor and program into the affected and unaffected categories. For this example,
we provide some concrete values for the parameters. The analysis below is based
on estimates [HS89] of sizes of elements taken from the Quarter Horse [HJK-
STY85] and Mosaic [LRSS84] processor elements, scaled to a 31m process, for
a hypothetical processor element. See Table 1.

The category of area that is not affected by a change in the datapath width
can be described, loosely, as control and storage. This category includes the
actual control, in the form of random logic, microcode, and the like, as well
as support structures, such as the program counter. Storage is also unaffected,
since changing the storage capacity is a separate question. (We may also study
this question, with structures such as the register windows found in the Berkeley
RISC [PS82]. Here, though, the parameter would be the number of registers,
and not the width of the datapath.)

The parts that are affected by the width include the ALU, as well as any
shifter or multiplier that may be present. Also, many other, less prominent,
parts are also affected. For instance, drivers and latches for bus interfaces and
register bit lines are affected by datapath width. Though these buffers are
smaller than large parts the size of an ALU, there is typically one bus driver
and one latch for each datapath element, so their cumulative effect is significant.

Next, we determine the sizes for a specific processor. As we have postulated
above, the registers, control, and communication are unaffected by changes to
the datapath width. Furthermore, we postulate that the ALU and shifter are
affected linearly. While one might expect the shifter array to be quadratic, its
buffers and bus drivers are linear, and, as we noted earlier, the buffers are actu-
ally larger than the shifter array. This effect becomes even more pronounced as
we move to smaller sizes. This results in a total unaffected area of 2, 369,644 X2 ,
and a total linearly affected area of 829, 798 A2. The ratios are then 0.74 unaf-
fected to 0.26 affected. If we specify the cost in the standard form of 1 -a+0w,
we have a = 0.26, and w defined as the datapath width divided by 32.

Next the value for f is obtained for several benchmarks [HS89]. Since the
original values are for f aad W, we must adjust for the waiting time to give an

11

Program I W fI w
Bitonic Sort .75 .17 .90 162
Matrix Product .94 .03 .97 307
LU Decomposition .76 .17 .92 183
Cholesky Decomp. .25 .73 .89 154
Jacobi Method .91 .04 .95 235
SOR Method .96 .02 .98 377
SIMPLE .71 .27 .97 307

Table 2: Fraction of time affected by data path width.

effective fraction f'. These are shown in Table 2.
We can then use the formula from the linear analysis to find the best data

path width. This is given by

32 l
V, (1 -I)'

The results are also given in Table 2.
The datapath widths shown in Table 2 are enormous, and require some

careful examination. First, even before considering the numbers, observe that
enormous numbers are to be expected based on the values of a = 0.26 and the
f' values of about 0.9 given in Table 2. An architecture is in balance when
a = f', so one fully expects the equations to mandate a dramatic increase in
width when the gap between a and f' is so large.

Second, as explained earlier (Section 5.1), the linear formulation of the shifter
is accurate only to about 47 bits; after that, a quadratic formulation is needed.
Beyond that, the nature of the computation changes after 32 or 64 bits. Dis-
cussion of datapath width concerns operations on values within an instruction.
Most programs have little need for integers suitable for representing the number
of electrons in the universe. When the widths get as large as those shown in
Table 2, we have moved into a VLIW situation - separate instructions operating
on subfields of the datapath. (See Section 5.3 below.) This is simply a differ-
ent case, with different growth. The best way to interpret this analysis is that
normalized time for a datapath diminishes throughout the range of applicability.
This confirms Holman's [1988] analysis (in the range 1 to 32, a datapath of 32
is best) conjectured on the basis of independent tests of a few widths in this
range.

Third, even with an interest in BIGNUMs and a proper mathematical model.
the data are not quite precise enough to make an exact prediction of datapath
speedup. The values for f in Table 2 are the fraction of all instructions using
the datapath, but what we really need is the fraction of the time the datapath

12

is in use. These two numbers would be the same if all instructions took the
same amount of time and all overhead (fetching, decoding, etc.) were hidden,

say in a pipeline. (Of course, getting data of this kind is difficult, but now that
we know what we need, future experiments can be more useful.) So, the proper

interpretation of w, as found in Table 2, is "the datapath should be at least 32
bits wide."

We now turn to the more general question of bit-serial and word-parallel

computers. Given the high fraction of computation affected by datapath width,

the analysis essentially states that control logic is dead weight. As such, it

should be amortized over as large a number of datapath bits as possible. Using

a word-parallel processor meets this requirement. On the other hand, a bit-

serial processor seems to be the worst possible arrangement, with only one bit

of data path per unit of control.
Using SIMD design for bit serial processors solves this problem, of course. A

large part of the fixed cost logic, that dealing with instruction fetch, decoding,

and control flow, is amortized over not one, but 65,536 bits of data path, in the

Connection Machine, for example. Effectively, these parts are now scaled by

neither datapath width nor number of processors, so they disappear from both

sides of the equation. Thus, an SIMD architecture can help greatly in restoring

balance in a processor.
We can also consider this problem from the viewpoint of instruction set

complexity. The RISC vs CISC controversy is not as closely related to the

results of this analysis, but we can describe some of the principle arguments as

attempts to solve the problem of datapath balance.
On the RISC side of the coin, we have seen how most processors have, rela-

tively, too much control for a given amount of data path. The RISC advocates

address this by reducing the amount of control. This reduces the unaffected cost

term in the normalized time analysis. (Using the extra space for another part,

such as the register windows of the Berkeley RISC [PS82] is actually two sepa-

rate changes, first deleting the extra control, then adding the register windows,
which should be analyzed separately.)

On thc CISC side, the argument is that the problem is not so much an excess

of control, but an inability to use a larger data path. Thus, the solution is to

add some more control, and larger instructions, so that there is more chance

to exploit parallelism within an instruction. Having several words in process

simultaneously then effectively allows for a wider data path.

5.3 Wider Processors - VLIW

Even among word-parallel designs, the desired data path widths are still much

larger than the average word size. The VLIW design addresses this concern.

By putting several operations into one instruction word, the effective word size

is larger, allowing use of wider data paths. Meanwhile, the amount of control is

increased by only a small amount.

13

In a VLIW design, though, it is often the case that, because of data or control
dependencies, the extra calculations possible are wasted. Our model can take
this into account, by repeating the analysis, but with a value of f reflecting,
now, the fraction of time that two or more operations are simultaneously ready
to execute. In fact, we can generalize f to a piecewise linear function, and still
carry out the analysis. The data of how many instructions are ready to be
issued at each time step are not exactly known, but the data of Table 2 are for a
64-way parallel computation, so generally, there would be a substantial number.

In our analysis of VLIW processors, we will use the same processor as the
last analysis. We will make a large number of simplifying assumptions, but
the results should still provide at least a general guideline. We assume that the
register file now grows linearly, since each ALU segment needs its own temporary
storage. The ALU, of course, still grows linearly. The shifter is now a linear,
and not quadratic, part, since there is no need to shift data all the way across
the processor, but only within one set of operands. As a result, the width is
fixed at 32 columns, but the height grows with the number of bits of datapath.
We assume that the control and communication sections are affected to only a
negligible degree by the changes needed for the VLIW structure.

These assumptions result in an affected area of 1,275,401A 2 , and an unaf-
fected area of 1, 924,041A2 . When normalized into the form 1 - a + aw, this
is a value of a =0.40. The parameter w is taken as the size, in words, of the
datapath.

We next assume, in the absence of data to the contrary, that the fraction of
computation f affected by the extra ALU capacity is equal to the fraction of
computation affected by reducing the datapath. In defense of this assumption,
note that the benchmarks are already designed for highly parallel systems, and
so using a VLIW structure is akin to increasing the parallelism. We should
note though, that especially for the larger word sizes, we will need to adjust the
analysis again, to take into account the reduced utilization of highly parallel
systems.

To solve for the optimal number of ALU's in the system, we use our familiar
equation

The results appear in Table 3.

6 Conclusion
Using the model of normalized time, we have created a combined value that
describes both the time and the cost of a processor. In this way, we can evaluate
whether a particular enhancement is cost-effective. By parameterizing a set of
possible enhancements, we can evaluate a range of designs in a single analysis.

14

Program w
Bitonic Sort 3.67
Matrix Product 6.96
LU Decomposition 4.15
Cholesky Decomp. 3.48
Jacobi Method 5.33
SOR Method 8.57
SIMPLE 6.96

Table 3: Optimal width of VLIW datapath (in words.)

Even for the most general case, we show that an enhancement is optimized
when it is "doing its fair share." We can also state quantitatively the meaning
of that intuitive concept.

For more specific cases, we can provide a formula for the optimal size of a
part. After supplying some experimentally determined constants, an optimal
value emerges. The principal impediment to further investigation is the lack

of empirical data. In one sense, this paper is a cal to the experimentalists to
gather more data, and apply the formulae.

In the long-standing RISC vs CISC and bit-serial us word-parallel contro-
versies, the model quantifies the reasoning behind the arguments for each case,
and allows isolation of the aspects of a given processor or problem responsible
for observed performance.

7 References

A67 G. M. Amdahl, "Validity of the single processor approach to achieving
large-scale computing capabilities," in Proc AFIPS Vol. 30, pp. 483-465,
1967.

H85 W. D. Hillis, The Connection Machine, PhD Thesis, MIT 1985.

H88 T. J. Holman, Processor Element Architecture for Non-shared Memory
Parallel Computers, PhD Thesis, University of Washington, 1988.

HS89 T. J. Holman and L. Snyder, "Architectural Tradeoffs in Parallel Com-
puter Design," in Decennial Caltech Conference on VLSI, 1989.

HHS89 S. Ho, T. Holman, L. Snyder, "Normalized Time and Its Use in Archi-
tectural Design," in 27th Allerton Conferences on Communication, Con-
trol and Computhng, 1989.

15

HJKSSTY85 S. Ho, B. Jinks, T. Knight, J. Schaad, L. Snyder, A. Tyagi, C.

Yang, "The Quarter Horse: A Case Study in Rapid Prototyping of a 32-
bit Microprocessor Chip," in Proceedings IEEE International Conference
on Computer Design: VLSI in Computers, pp. 261-266. IEEE, October
1985.

KSPS83 M. Katevenis, R. Sherburne Jr., D. Patterson, Carlo Siquin, "The
RISC 11 Micro-Architecture," in VLSI '83, F. Anceau and E. J. Aas (eds.)
Elsevier Science Publishers B. V. (North-Holland), 1983.

LRSS84 C. Lutz, S. Rabin, C. Seitz, D. Speck. "Design of the Mosaic Ele-
ment," in Conference on Advanced Research in VLSI, Artech Books, 1984.

M8T Multiflow, Technical Summary, Multiflow Computer Incorporated, 1987.

PS82 D. A. Patterson and C. H. Sequin, "A VLSI RISC," Computer, 15(9):8-
21, 1982.

T79 C. D. Thompson, "Area-Time Complexity for VLSI," in 11th annual ACM
Symposium on Theory of Computing, pp. 81-88, 1979.

V80 J. Vuillemin, "A Combinatorial Limit to the Computing Power of VLSI
circuits," in 21st IEEE Symposium on Foundations of Computer Science,
1980.

16

