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1. Introduction

This final report contains a summary of work accomplished on O. N. R. Contract N00014-
86-K-0370, High-Resolution Radar-Imaging, for the period from 15 January 1989 to 14 January
1990. Also included is a description of research in progress that will be phased out as funding for
this project has been terminated.

+The goal of this project is to formulate and investigate new approaches for forming images
of radar targets from spotlight-mode, delay-doppler measurements. These measurements can be
acquired with a high-resolution radar-imaging system operating with an optical- or radio-frequency
carrier. Work in this reporting period has concentrated on our estimation-theory approach to
forming high resolution images. This approach accounts for measurement noise and for the statistical

properties of radar-backscatter data. Voo Lol
oy f, )

2. Summary of Work Accomplished

2.1 Conventional Approach to Imaging

A computer implementation of the conventional method for forming radar images via the
two-dimensional Fourier-transform has been implemented by Mr. D. Porter, who is an
undergraduate student in Electrical Engineering. This is used to compare and evaluate images
produced conventionally with those produced using the new methods we are studying. There
are two modules in the program.

The first module produces simulated radar back-scatter data. The simulation calculates
ideal samples of a received signal when a stepped-frequency waveform is reflected off of a
target having a specified scattering function and the received signal is mixed with the transmitted
signal and then sampled in quadrature to produce a complex-valued sample. The input of this
simulation includes the scattering function of the target, the desired resolution, and the base
frequency of the transmitted waveform. Complex samples of the received signal form the
output of the program. The computational complexity is O(N4), where N is the number of
resolution cells in one target dimension. While coding efficiencies have been exploited to a
high degree, it may still be desirable to effect a parallel implementation of the calculations for

producing results more quickly for high resolution images when N is large.



The processing of simulated and real-data samples is performed by the second module,
which applies a slightly modified two-dimensional DFT to the samples. The squared magnitude
of the resulting transform is then produced as the target’s image. It is assumed that scatterers
do not migrate out of their resolution cells over the time of data collection, which is an
approximation. When this approximation is not well met, the resulting image is distorted due
to range walk. A number of ways are described in the literature to deal with this problem.
First of all, the transmitted waveform’s base frequency can be chosen sufficiently high so that
the desired cross range resolution can be achieved without requiring a wide variation in view
angle over the data collection interval. Since only a narrow angle is required, scatterers will
remain within the confines of their original resolution cell. Secondly, the effect of range walk
can be seen as equivalent to collecting polar-formatted data in the spatial frequency domain,
yet transforming it as if it were in a rectangular format. Interpolation using, for example,
cubic splines in order to reposition the data samples onto a rectangular grid in the spatial
frequency domain is a method of "focusing" the image, thereby reducing the error due to range
walk. This focusing method, which we are using, is described by D. Wehner [High Resolution
Radar, Artech House, pp. 311-317, 19871

In addition to the two main modules of the program, additional utility modules have been
developed for the generation of scattering function files, the display of images on MASSCOMP
and SUN workstations, and the conversion of data between the different formats used on the

different computers used in our study.

2.2 Estimation-Theorv Approach to Imaging

Significant progress has been made on the method we are developing for producing images
of low visibility targets modeled as a diffuse scattering object. The problem of estimating the
scattering function of a diffuse target is ill posed, with the result that estimates are unstable
having a the rough appearance of an object with strong speckle noise. Thus, regularization is
required in order to stabilize estimates of the scattering function, which is a two-dimensional
power-density spectrum. Of particular importance in our work over the reporting period is

the identification of a method for regularizing estimates via the method of sieves introduced




by U. Grenander (Abstract Inference, Wiley, 1981). We expect that this will be an important
development not just for radar imaging but also for any problem where a power-density
spectrum must be estimated from noisy data. The asymptotic properties of this method of
regularization have also been instrumental in the identification of a computational method for
producing target images practically. The inversion of large matrices is not required under some
conditions that are met is practice, which removes a major impediment previously existing with
our method.

The following paragraphs contain the abstracts of publications describing our results.

Details are given in the appendices, which contain reprints of the publicaticns.

2.2.1 Abstract of: D, Spyder, J. O'Sullivan, and M. Miller, "The Use of Maximum Like-
lihood Estimation for Forming Images of Diffuse Radar Targets from Delay-Doppler
Data,” IEEE Trans. on Information Theory, Vol. 35, pp. 536-548, 1989; see Appendix 6.1

for a reprint.

This publication gives the model and fundamental estimation equations for the method
we are developing. The abstract is:

"A new approach to high resolution radar imaging is presented. The starting
point is a model of the radar echo signal based on the physics governing radar
reflections. This model has been used several times in the past for describing radar
targets that are rough compared to the wavelength of the transmitted radiation.
Without specifying precisely what the transmitted signal is, a general estimation-based
procedure is derived for obtaining images. After discretizing the model, the radar
imaging problem reduces to the task of estimating discretized second-order statistics
of the reflectance process of the target. Maximum likelihood estimates of these

statistics are obtained as the limit point of an expectation-maximization algorithm."




2.2.2 Abstract of: P, Moulin, D. Snyder, and *Sullivan, "Maximum-Likelihood
Estimati ¢ Periodic P c Noisy Data.” P 1989 CISS Conf
Johns Hopkins University, Baltimore, MD, March 1989; see Appendix 6.2 for a reprint.

"We have developed a new approach to maximum-likelihood spectrum estimation
of wide-sense stationary processes from noisy data. A statistical model for the data
is defined. The process whose spectrum is sought is wide-sense stationary, periodic
and Gaussian, and its observations are corrupted by an additive white noise [and a
linear transformation]. [For our radar-imaging problem, the Gaussian process models
radar back-scatter data from a diffuse target, the spectrum is the target’s scattering
function, the data are corrupted by additive noise, and the linear transformation
depends on the transmitted signal.] A maximum-likelihood formulation of this
problem has been derived, and the equations are solved numerically via the
expectation-maximization algorithm. This approach presents several attractive
features, an important one being that the noise corrupting the observations is now
taken into account.

We present some recent developments for this problem. The statistical per-
formance of the new maximum-likelihood spectrum estimator is studied both
theoretically and numerically. Comparison with traditional estimators, such as the
periodogram, highlight several strong points of the method. We also identify certain
limitations, namely the instability of estimates for high noise levels, [which is due
to the ill-posed nature of the spectrum estimation problem]. These limitations can
be alleviated if a priori information about the signal is available. Two such problems
are discussed [in Appendix 6.2] in which the information at hand has the form of
a constraint on the input signal-to-noise ratio.

We show [in Appendix 6.2] how such information can be incorporated in the
maximum-likelihood estimation procedure. First we assume the signal power to be

known. Theoretical issues of existence and uniqueness of the solution are discussed.



We proceed with a problem in which the information is less complete, when only
an upper bound and/or a lower bound on the signal power are available. The

statistical performance of both constrained estimators is quantitatively studied."

2.2.3 Abstract of: J, A, O'Sullivan, D, L. Snyder, and P. Moulin: "The Role of Spectrum
Estimation in Forming High-Resolution Radar Images", Proc. ICASSP 1989, Glasgow,
U.K,, May 1989; see Appendix 6.3 for a reprint.

"We have developed a new approach to forming high-resolution images of radar
targets from delay-doppler, spotlight-mode radar data. This approach is based on
a model for the target's reflectivity in terms of wide-sense stationary, uncorrelated
scatterers having complex-valued Gaussian statistics. The imaging problem is to
estimate the target’s scattering function in terms of radar-echo data acquired with
a series of target illuminations. We develop [in Appendix 6.3] a method for solving
this multidimensional spectrum estimation problem through the use of maximum-

likelihood estimation implemented via the expectation-maximization algorithm.”

2.2.4 Reprint of: P, Moulin, D. L, Snyder, an A, O'Sullivan; "A Sieve-Constrained
-Likeli i "

Allerton Conference, Urbana-Champaign, IL, Sept. 1989; see Appendix 6.4 for a reprint.
"Maximum-likelihood spectrum estimation is an ill-posed problem. In this
paper, we use of a method of sieves for addressing this issue. The estimate of the
spectrum is constrained to a subset of some Hilbert space of functions over which
a complete set of nonorthogonal basis functions is defined. The estimate is then
represented by a countable set of coefficients in a nonorthogonal series expansion.
By defining an appropriate sieve on this countable set, our problem reduces to
maximum-likelihood estimation of the parameters in the sieve. Three main attractive
features of this approach are: (1) the nonorthogonal expansion is a convenient
framework for defining the sieve and including a priori information; (2) mean-square

consistency of the estimates can be expected; and (3) we have derived a tractable

alternating maximization algorithm for estimating the parameters. The setup of this




problem is general and can be applied without major difficulties to the estimation
of higher-dimensional spectral functions, as occurs, for example, in imaging radar

targets from delay-doppler data."

2.2.5 Abstract of: J. A, O'Sullivan, P. Moulin, D. L. Snyder, and S. P. Jacobs, "Computa-
tional Considerations for Maximum-Likelihood Radar Imaging." Proc. 1990 CISS, Prince-
ton University; see Appendix 6.5 for a reprint.

"Recent papers have outlined a new approach for spectrum estimation and radar
imaging based on expectation-maximization algorithms for structured covariance
estimation. Performance of this approach has been promising for the problems
studied. Application of this approach to real data sets has been limited, however,
due to the need to invert a matrix whose dimension equals the size of the data set.
For radar applications where an image is to be formed, data sets can be on the order
of 2'* for 128x 128 images. This makes the use of the new approach difficult in
its previously described form. This paper proposes both approximation methods for
inverting typical matrices and constraints on radar transmitted signals which make
maximum likelihood image estimation viable. These constraints may be satisfied
for real signals used in radar imaging systems. Simulations are shown to demonstrate
the performance of the aigorithms. Finally, motivated by the images resulting from

the simulations, regularization methods are discussed."
3. Other Project Activities

3.1 Optical Radar Workshop

At the request of Dr. W. J. Miceli, Office of Naval Research, Boston MA, we organized
and hosted a one-day workshop on laser radar imaging on April 12, 1989. The purpose of the
meeting was to discuss various tomographic image reconstruction methods, their applicability
to laser radar imaging, and their implementation via a suitable real-time signal processing

system. The goal was to provide technical interaction among researchers interested in the topic.



Most participants were funded through O.N.R. and/or SDIO/T/IS. The approximately twenty
attendees were from government laboratories and organizations, university research laboratories,

and industry.

3.2 Invited Presentations

In August 1989, a special program on the subject of signal processing was held at the
Institute for Mathematics and Its Applications, of the University of Minnesota in Minneapolis.
We were invited to present our work on the radar imaging problem and to prepare a chapter
for a book to be published by the I. M. A. This chapter, coauthored by J. O'Suilivan and D.
Snyder and titled "High Resolution Radar Imaging Using Spectrum Estimation Methods," will
appear during 1990; a preprint is in Appendix 6.6. As a result of the interest in radar detection
and imaging problems that developed during this program, a second program on the topic of

radar and sonar has been organized and will take place in June 1990 at the I. M. A.

4. Work in Progress

4.1 Real-Data Experiment

An effort to collect real data with which to test and compare our methods for radar imaging
has been initiated in collaboration with the McDonnell-Douglas Company in St. Louis. A
sphere having a diameter of one meter and a rough surface was placed on a rotating pedestal
in a compact radar test-range, and data were collected at several values of signal-to-noise ratio.
This object was selected because of its simplicity and the fact that its scattering function can
be predicted analytically, thereby providing a test object having known characteristics with
which to compare results. These data have only recently been acquired and have not yet been

processed.
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4.2 Graduate-Student Theses

4.2.1 Pierre Moulin
Pierre Moulin is presently writing his doctoral dissertation on the subject of estimation
methods for forming images of diffuse radar targets. It is anticipated that this thesis will

be completed in May 1990.

4.2.2 Kenneth Krause

Kenneth Krause is presently pursuing research for his doctoral dissertation on the
subject of forming images of specular radar targets. A goal is to develop a method that
accommodates both diffuse and specular components in the radar echo. It is anticipated

that this thesis will be completed in 1991,

4.2.3 Steven Jacobs
Steven Jacobs is presently writing his master’s dissertation on the subject of compu-
tational issues associated with forming radar images using the estimation methods we have

developed. It is anticipated that this thesis will be completed by August 1990.

5. Personnel
The personnel who participated in this research project during the reporting period are the
following.

Steven Jacobs
-Graduate Research Assistant in the Electronic Systems and Signals Research Laboratory

- M. Sc. candidate in the Department of Electrical Engineering
- received no support under the O.N.R. Contract

-task: examine computational issues in radar imaging and develop parallel implementation
strategies




Kenneth Krause
-Part-Time Graduate Assistant in the Electronic Systems and Signals Research Laboratory

- Employed by the McDonnell-Douglas Astronautics Co.

- Ph. D. Candidate in the Department of Electrical Engineering

- received no support under the O.N.R. Contract

- task: include specular components in the maximum-likelihood method

Pierre A. Moulin
-Graduate Research Assistant in the Electronic Systems and Signals Research Laboratory

- Ph. D. Candidate in the Department of Electrical Engineering

- received support as a Graduate Research Assistant under the O.N.R. Contract

- task: analyze performance of the maximur-likelihood method, include sieve and
signal-to-noise ratio constraints for regularization, examine computational issues to make

the method practical

Joseph A. O’Sullivan
- Faculty Research Associate in the Electronic Systems and Signals Research Laboratory

- Assistant Professor of Electrical Engineering
- received support as a Senior Research Associate under the O.N.R. Contract
- task: participate in all aspects of the research project
Donald Porter
- Undergraduate Research Assistant in the Electronic Systems and Signals Research

Laboratory

- BS.E.E. and B.S.C.S. degree candidate in the Electrical Engineering and Computer
Science Departments

- received no support under the O.N.R. Contract

- task: implement conventional radar imaging algorithms, implement a computer sim-
ulation of radar echo data based on a given scattering function



Donald L. Sayder
- Principal Investigator

- Director of the Electronic Systems and Signais Research Laboratory
- Professor of Electrical Engineering

- received support under the O.N.R. Contract

- task: participate in all aspects of the research project

Michael Turmon
-Graduate Research Assistant in the Electronic Systems and Signals Research Laboratory

- M. Sc. candidate in the Department of Electrical Engineering
- received no support under the O.N.R. Contract
- task: study implementation of spectrum-estimation methods of use in radar imaging
on a massively parallel computer architecture (1024 element A.M.T. DAP with SUN/4
host)

J. Trent Wohlschlaeger
-Graduate Research Assistant in the Electronic Systems and Signals Research Laboratory
- Ph. D. Candidate in the Department of Electrical Engineering

- rceeived no support under the O.N.R. Contract during the reporting period

- task: study tomographic methods for forming radar images
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Estimation for Forming Images of Diffuse Radar Targets from Delay-Doppler Data, /EEE
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The Use of Maximum Likelihood
Estimation for Forming Images
of Diffuse Radar Targets from

Delay-Doppler Data

DONALD L. SNYDER, rFeLLow, IEEE, JOSEPH A. O’'SULLIVAN, MEMBCR, IEEE,
aND MICHAEL 1. MILLER

Abstract —A new approach to high-resolution radar imaging is pre-
sented. The starting point is a model of the radar echo signal based on the
physics governing radar reflections. This model has been used several
times in the past for describing radar targets that are rough compared to
the wavelength of the transmitted radiation. Without specifying precisely
what the transmitted signal is, a general estimation-based procedure is
derived for obtaining images. Alter discretizing the model, the radar
imaging problem reduces to the task of estimating discretized second-order
statistics of the reflectance process of the target. Maximum likelihood
estimates of these statistics are obtained as the limit point of an expecta-
tion-maximization algorithm.

I. INTRODUCTION

ADAR SYSTEMS can be used to produce high-reso-
lution images of a reflecting target. This is accom-
plished by illuminating the target with a series of puises
and observing the return echoes. Each patch on the target
introduces a certain amount of propagation delay and
Doppler shift to a pulse it reflects, the amount depending
on the range and velocity of the patch relative to the radar
transmitter and receiver. The beamwidth of the radar
antenna relative to the size of the target is an important
consideration. Images can be produced by scanning a
narrowly focused beam over the target in some type of
raster pattern and then displaying the received power in
delay and Doppler or, equivalently, range and cross-range
coordinates. Images can aiso be formed by illuminating the
entire target in spotlight mode with a wide, relatively
unfocused beam. The received signal for each illumination
is then a complicated superposition of the echoes received
from all the patches that make up the extended surface of
the radar target. Our concern will be with forming images
of rotating rough targets using a spotlight-mode radar.
We will denote the complex envelope of the signal
transmitted by the radar by (2 E;)!/%s.(t), where E is the

Manuscript received June 9. 1987; revised April 1, 1988. This work was
supported by the Office of Naval Research under Contract N00014-86-
K0370. The material in this paper was partially presented at the 1988
Conference on Information Sciences and Systems, Princeton University,
Princeton. NJ, March 1988.

The authors are with the Department of Electrical Engineering, Box
1127, Washington University, St. Louis, MO 63130.

{EEE Log Number 8928182.

transmitted energy, and s,(¢) is normalized to unit energy.
The particular form of this signal will not need to be
specified. The expressions we obtain for producing an

-image can then be specialized for any signal of choice,

including the stepped-frequency and wide-band chirp
waveforms used in practice, as discussed by Wehner [1]
and Mensa (2] and the chirp-rate modulated waveforms
discussed by Bernfeld [3] and Snyder er al. [4).! When
specializing s,(¢), it should be kept in mind that this
represents the entire sequence of transmitted pulses that
illuminate the target. )
Walker [5] gives a clear intuitive description of the radar
imaging problem. He considers a small nonfluctuating
reflector rotating counterclockwise at the rate of f, revolu-
tions per second on a circle of radius r centered at a
distance R, from the radar transmitter/receiver, as shown
in Fig. 1. The distance to the reflector at time ¢ is given

y. cross range
[
|

Mnector
|

! : Ro \\—i\}/ X, range
i RADAR I
| T/®
—_—

Fig. 1. Geometry for small reflector.

approximately by
R(t) = Ry+ xqcos(2nf.t) + yosin(27f,2),

provided R, r=(x3+ y})'/%, where (x,,y,) is the
(x, y) position of the reflector at time ¢=0. Then the
radar echo signal s,(r) received following an illumination
by the transmitted signal will be of the form

salt) ={TE7sp(t = 7)b

where r=2R(t)/c is the two-way propagation delay to

' Note added in proof: It has come to our attention since submitting this
manuscript that chirp-rate modulation is also discussed by E. Feig and A.
Grilnbaum in, “Tomographic methods in range-Doppler radar,” /nverse
Probeims, vol. 2, pp. 185-195, 1986.

0018-9448 /89 /0500-0536801.00 ©1989 IEEE
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SNYDER et al.: FORMING IMAGES OF DIFFUSE RADAR TARGETS

the reflector, with ¢ being the propagation velocity. The
quantity b is a complex-valued scale factor which models
the strength of the received echo. This scale factor will be
called the reflectivity. It includes the effects of inverse
square-law attenuation experienced by the propagating
radiation and, importantly, the properties of the reflector
that are significant in the electromagnetic scattering inter-
action, including its shape, size, and surface properties.
More generally, the reflectivity can vary with time because
the aspect, and therefore, the scattering interaction with
the reflector will vary as it rotates. If, as discussed by
Walker {5], the radar data si(¢) are examined over a small
interval of time, then the delay r and Doppler shift f; can
be approximated by

122¢" YRy + xg)

and
2dR 2
/o= X a = ;"}’027’/"

where A is the wavelength at the carrier frequency of the
radar. Thus the reflectivity b, range x,, and cross-range y,,
relative to the coordinate axis, can be determined from the
amplitude, delay, and Doppler information contained in
the radar data. Extracting this information permits the
formation of an image of the reflector by displaying || or
|b] at the appropriate location in range and cross-range
coordinates. The maximum delay and Doppler shift are
determined by the distance (x3 + y?)!/2 of the reflector
from the coordinate center about which it rotates and the
rotation rate f,; more generally, the extent of a reflector in
delay and Doppler is determined by the physical extent of
the reflector and the rotation rate.

Now consider a spatially extended target that is rotating.
A patch on the surface with a two-way delay in the interval
(7, 7+ Ar) reflects a signal that is incident on the patch at
time ¢t with a reflectance strength b(¢, v) Ar. Consequently,
the complex envelope of the received echo signal sp(¢)
following the illumination of the target by s(¢) is given by
the following superposition of returns from reflecting
patches at all the two-way delays

sp(1) =‘/2-E—Tf;:sr(l—r)b(t— %T,T) dr. (1)

The total received signal r(¢) is also assumed to be cor-
rupted by an independent additive noise

r(e) =sa(t)+w(e) (2)

where w(¢) is a complex-valued white Gaussian process
with a mean of zero and a covariance function defined by

E[w(t)w*(1)] = N8 (¢ - ') (3)

where the asterisk denotes complex conjugation. We refer
to b(¢, r) as the reflectance process. This is a complex-val-
ued random process.

There are two images that may be displayed as the resuit
of processing r(¢) with an estimation procedure. One is an
estimate of the reflectance process b(¢, r) itself, and the
other is an estimate of the covanance or, equivalently, the

537

spectral density of this process. These may be regarded as
conditional first- and second-order statistics of the reflec-
tivity process, respectively, in terms of the radar data (2).

If (¢, ) is deterministic, define ¢( f, ) to be its Fourier
transform in the ¢ varable,

e(fry= [ "blem)e e (4)

The function ¢(f, v) then contains information about the
target in delay = and Doppler f coordinates. An image of
the target is obtained by placing the magnitude or squared
magnitude of this function into delay and Doppler bins.
We refer to this as the reflectance image. This transform
can be obtained in a variety of ways, depending on the
signal sp(r) selected to illuminate the target. For the
stepped-frequency signals used in practice, the usual ap-
proach consists of two operations described by Wehner [1].
The first is to place the data into delay (or range) bins by
separately Fourier transforming N sample values of the
received signal acquired for each transmitted group of ¥
stepped-frequency pulses. The resulting delay-binned data
are placed in the rows of an N X N matrix where each row
contains the transformed data from one pulse group. In
the second operation, the columns of this matrix are
Fourier transformed to obtain a Doppler (or cross-range)
profile at each delay. The resulting two-dimensional array
is intended to be a discrete version of ¢(f.r) in delay
(range) and Doppler (cross-range) coordinates. This pro-
cessing based on two-dimensional Fourier transforms is
derived using a strictly deterministic analysis and so does
not account for statistical properties of the reflectance
process or for noise that may be present. A similar process-
ing is employed for the linear FM-chirp signals also used
in practice for radar imaging [1}, {2).

For situations in which the target’s surface is rough
compared to the wavelength at the carrier frequency. 5(¢, 7)
may be taken to be a complex-valued Gaussian random
process, as discussed by Shapiro er al. 6] for radar systems
operating at laser frequencies and Van Trees [7] at mi-
crowave frequencies. If there are no glint or specular
components in the echo, then this is a zero mean process
with covariance

E[b(e.7)b* (', )] =K(t=1t',7)8(r=1). ()

The delta function in this expression results from postulat-
ing that each reflecting patch introduces an uncorrelated
contribution to the echo signal. That the function
K(t—1t’,7) depends only on the difference of ¢ and ¢’, and
not on ¢ and ¢’ separately, results from postulating that
the reflectance process is wide-sense stationary for each
delay. A reflectance process with these properties is said
by Van Trees [7] to possess wide-sense stationary uncorre-
lated scatterers (WSSUS). Assuming that the reflectance
process has these properties, the delay-Doppler data asso-
ciated with the radar target may be obtained from the
Fourier transform of K(¢, r) in the ¢ vanable,

S(f,7) =/‘”K(z,r)exp(—jzw/z)d:.

-0

(6)
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The function S(f.r) is called the scattering function of
the target and, as a function of f, is the power-density
spectrum of the reflectance process at each delay r.
S(f.7)AfAr is the mean-square strength (or power) of the
reflectance of all patches on the target having a Doppler
shift in the interval [f. f + Af) and a delay in the interval
7.7+ Ar). The scattering function may be viewed in delay
and Doppler coordinates as an image of the target. We call
this the scattering function image.

Our approach to forming radar images will be to use
maximum likelihood methods with the data model in (2) to
estimate the scattering function. We will also obtain an
estimate of the reflectance process. Model-based ap-
proaches that use statistical estimation theory techniques
to derive image-formation algorithms appear less fre-
quently in the literature about radar imaging than the
deterministic approaches outlined above. One example is
that of Frost et al. [8), who uses a multiplicative model and
Wiener filtering techniques. The approach we will describe
differs in that the model (2) we adopt of the echo signal is
more complicated than a simple multiplicative one and
depends explicitly on the transmitted waveform through a
spatial integration over the reflecting target. We also do
not restrict the processing to be linear; in particular, we
show that the processing of the received data for produc-
ing the maximum likelihood estimate of the scattering
function and a corresponding estimate of the reflectance
process is not linear. An approach for estimating scattering
functions of spread channels is given by Gaarder (9}, who
cites earlier work on the subject by Green [10], Kailath
(11), Gallager [12], Hagfors [13], [14), Price [15], Levin [16],
Abraham [17], Sifford {18), and Reiffen [19]. Gaarder
assumes a specific processing architecture in the form of a
cascade of a linear filter square-law envelope detector and
another linear filter and claims that this processing is
either more general than or equivalent to those of most
previous authors. Our approach differs in that no particu-
lar processing is assumed in advance; rather, we derive the
processing to produce the estimates, starting from a model
for the received data and applying recent resuits in maxi-
mum likelihood estimation. The processing which resuits is
quite distinct from that discussed by Gaarder.

For our new approach to radar imaging, we adopt the
WSSUS model of a diffuse radar target described by
Shapiro et al. [6] and Van Trees [7]. We treat both the
reflectance process and its second-order statistic, the scat-
tering function, as unknown quantities. The iterative ap-
proach we develop for forming images yields the maxi-
mum-likelihood estimate of the scattering function and,
simultaneously, the conditional-mean estimate of the re-
flectance process based on statistics which are consistent
with the estimated scattering function. Thus both of the
quantities treated separately in other imaging schemes are
produced simultaneously with our new approach, which is
a unique and important aspect of our approach.

We will develop a necessary condition, called the trace
condition, which the maximum likelihood estimate of the
target’s scattering function must satisfy. This equation
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appears to be very hard to solve analytically. As a conse-
quence, we reformulate the imaging problem using the
concept of incomplete—complete data spaces and then use
the expectation-maximization algorithm of Dempster et al.
[20] to derive an iterative algorithm for producing the
maximum likelihood estimate of the scattering function.
The technique we use to accomplish this parallels that
described by Miller and Snyder [21] for power-spectrum
estimation and extends their work to include indirect mea-
surements of the process whose spectrum is sought; the
process is now measured following the linear transforma-
tion and additive noise seen in (2). As shown by Turmon
and Miller {22), this is a high-resolution approach to spec-
trum estimation which results in estimated spectra with
smaller bias and mean-square error than other recently
developed approaches discussed in the literature. We ex-
pect that similar improvements will be seen in radar im-
ages of scintillating, diffuse targets when this new tech-

" nique is used.

II. MaxiMuMm LIKELIHOOD IMAGING FOR THE
INCOMPLETE DATA MODEL

For reasons that will become evident in the next section,
we term the data r(¢) in (2) the incomplete data for the
radar-imaging problem. The model given in the Introduc-
tion for these data consists of the sum of the radar echo
signal sg(r) of (1) and an independent white noise process
w(t). We may, therefore, state the problem of imaging a
diffuse radar target as that of estimating the scattering
function S(f,r) or equivalently, the covariance function
K(t,7) given radar-return data {r(¢), 7,<t<T;} on an
observation interval (T, T;). In this section, we first dis-
cretize the model for the incomplete data and then derive
and discuss a necessary condition, called the trace condi-
tion, which the maximum likelihood estimate of the dis-
cretized version of K(t, v) must satisfy.

Discrete Model

In anticipation of using discrete-time processing of radar
data to produce images, we now state the discrete version
of our model as follows. We are given N samples of the
complex-valued radar data corresponding to (2),

r(n) =sg(n)+w(n), n=0,1,--N-1 (7)
where w(n) is a white Gaussian sequence with zero mean
and covariance

E[w(n)w*(n)] = Ny$, . (8)

where § . is the Kronecker delta function, and the signal
samples corresponding to (1) are given by

suln) =(TE; T sp(m.ib(n.i).

= =30

n=01,--,N-1. (9)

In this expression, we define sy(n.i) and b(n.i) in terms
of the transmitted signal and the reflectance process, re-
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spectively, according to

sp(n,i)=s;(nAt~iAr) (10)

and

1
b(n,i)=b nAt—'z‘iAT,iAT)AT (11)

where At and Ar are the sampling intervals adopted in the
discretization in time and delay, respectively. We assume
that the target has a finite extent in range; thus b(n, /) and
therefore terms forming the sum in (9) are zero for i
outside the I (here, he subscript R denotes range) values
m,m+1,.. -, m+ Ip—1 starting from the minimum two-
way delay corresponding to m. This discrete reflectance is
a Gaussian sequence with zero mean and covariance given

s7(0, m + j) 0

] sp(l,m+ j)
S = 0 0
0 0

by

E[b(n,i)b*(n,i)] =K(n=n",i)s, .. (12)

The discrete scattering function S(v,i) is the Fourier
transform of K(n,i) in the n variable,

S(v,i) = E K(n,i)exp(— j2mvn).

nes —o

(13)

The imaging problem for the discrete model is to estimate
S(v, i) or, equivalently, the covariance function K(n, i),
for all frequencies v spanning the target in Doppler, and
for all delays i spanning the target in the delay, given the
radar data {r(n), n=0,1,---, N—=1}.

Matrix Model

These discrete equations may conveniently be written in
matrix form as follows. Define r to be the received-signal
vector of dimension N,
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where the N-dimensional vectors s, and w are given by

SR(O) w(0)
=1 SRSI) _ w(:l) (15)
sx(N=1) w(N-1)

Also, define S* as the NIy X N rectangular matrix ex-
pressed in column-block form in terms of I, separate
N X N matrices according to

So
Sy

S*= (16)

Ste-1

where S, is an N X N diagonal matrix containing sample
values of the complex envelope of the transmitted signal
ST(‘)’

o - - 0
o - - 0
0 . (17)

Further, define the reflectance vector b of dimension N/,
in the column-block form of /5 vectors according to

b(0)
(1
b= (: ) (18)
b(’n—l)
where each b(i) is a vector of dimension N,
b(0,m+i)
b(1l,m+i
p(iy=| Sbm*D) (19)
b(N-1,m+i)

Using (9) and these definitions, we can now express the
N-dimensional signal vector s, of (14) and (15) as

se={2E;S*b (20)

where a superscript plus sign denotes the Hermitian-trans-
pose operation. In terms of these defined matrices, the
received vector has zero mean and covariance

r(0) K, = E(rr*) = E(sgsg )+ E(ww*)
r(1) =2E,S*E(bb*)S+ Nyl. 21
r= : =Srtw (14) Then, since " ’ =
r(N=1) E(b(i)b*(j)) = K(i)§, (22)
where K(i) is the Hermitian-symmetric Toeplitz matrix
KO,m+1i) K*(1,m+i) K*(N=-1,m+i)
K(1,m+i) K(0,m+i) X
K(i)= . , (23)
K(N=1,m+i) K(0,m+i)
-15 -
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it follows from (21) that the covariance K, of r is given by
K. =2E.STKS+ NI (24)

where K is the block-diagonal NI, X NI.-dimensional ma-
trix defined by

KO) 0 o0 - 0
k| 0 K@) 0 - 0 . (@25)
0 0 0 K(Iz-1)

The ith diagonal block K (i) of K is the covariance matrix
of the reflectance process at the ith delay bin.

The Estimation Problem

We will use the following definition.

Definition: Let K denote the set of all NIgX NI,
block-diagonal matrices (25) with each block K(i) an
N X N Hermitian-symmetric Topelitz matrix (23). Let @ C
K be a specified convex subset of K. Any matrix K €Q is
termed admissible. A variational matrix §K € K is called
an admissible variation of K for a fixed K €Q if there
exists an a > 0 such that X + 83K €Q for all 8 satisfying
0<B<a.

The problem is to form an admissible estimate of the
covariance matrix K of (25) given the data vector r of (14).
The radar image then viewed is the discrete scattering
function, an estimate of which may be obtained from the
estimate of K by use of (13).

In the foregoing definition the constraint that K be in Q@
is used to obtain a “reasonable” setup of the problem.
Here we assume that the scattering function S(f, r) in (6)
is only nonzero for frequencies f satisfying |f} < fo.. for
some finite upper frequency f... and for all delays i. This
is equivalent to the assumption of a target of finite cross
section and rotation rate. The discrete-time scattering
function S(v,i) of (13) is then a periodic function of v
consisting of a sum of shifted replicas of S(f, 7) scaled in
amplitude by 1 /At and in frequency by At, where A¢ is the
time between samples of r(t). The replicas of S(f, r) are
centered at every integer on the v scale. To guarantee that
there is no aliasing, assume that the sample rate 1/A¢ of
r(t) satisfies the Nyquist condition 1/A¢>2f,,.. Then
S(v, i) will be nonzero between —1/2 and +1/2 only for
v satisfying {v] < Uy = foue 82. The output of our algo-
rithm is S(v, i) discretized in frequency v. For a resolution
having at least Iy (here, the subscript CR denotes cross
range) samples in the frequency range — v, SUS Up,,, 2
total of

Ien
28tf 0

samples of v between —1/2 and +1/2 are required.

The model of the incomplete data ~ of (14) is that r is
normally distributed with zero mean and covariance speci-
fied in (24). Given the incomplete data, we wish to esti-
mate the covariance K of the reflectance process, as de-
fined in (25). To do this, we adopt the maximum likelihood

P>
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method of statistics, which selects K to maximize the
incomplete data log likelihood

Ly(K)=—-In(det(2E;S*KS + NyI))
—r*(RE;SYKS+ NyI) 'r (26)

where the maximization is subject to the constraint that K
be an admissible matrix.

Lemma [: A necessary condition for an admissible X
in the interior of @ to be a local maximum of L ,(KX') over
all KeQis

tr((2E;S*KS + NoI) ~'(rr* =2E;S*KS = Ny1)
(QE;S*KS+ Ny1)"'S*8KS) =0 (27)

for all admissible variations §K.
The proof of Lemma 1 in the Appendix is based on the

. fact that the necessary condition for an admissible X to

maximize L (KX) is that, for all admissible variations 8X,

Li K+a8K —Li K
i L )= Li( )S

all* a

0. (28)

We call (27) the trace condition. Burg et al. [23] have
studied an equivalent problem of Toeplitz-constrained
covariance estimation and have derived the trace condition
using a different approach.

[f Q= K, there are NI, unknowns in K. Since 6K € X,
there are NI, parameters in 8K that can be varied for this
case. These variations in the trace condition generate N/,
equations in the unknown elements of K. Thus, in princi-
ple, the trace condition produces enough equations to
determine the unconstrained maximum likelihood estimate
K. However. the equations are complicated due to the
inverse matrices appearing in (27); thus it does not appear
feasible to determine X directly from the trace condition.
This motivates the development of the iterative approach
presented in the next section. A sequence of estimates that
increase the likelihood at each iteration stage is identified,
and we demonstrate that stable points of the iteration
satisfy the trace condition.

The trace condition is only a necessary condition that
the estimate X must satisfy. For it to be sufficient as well,
the second derivative must be negative along all admissible
variational directions §X.

Lemma 2: Sufficient conditions for an admissible ma-
trix K in the interior of @ to be a local maximum of
L (K) are that, first, the trace condition (27) is satisfied
for all admissible variations 8K and, second, that

tr(K7'S* 8KSK:Y (2E,S*KS
+ Nyl =2rr* )K7'S*8KS) <0 (29)

for all admissible variations 6K.

The proof of Lemma 2 is given in the Appendix. Equa-
tion (29) is just the second derivative of L,(K) in the
direction 8§K.

16 -




SNYDER e¢f al.: FORMING IMAGES OF DIFFUSE RADAR TARGETS

III. MaxiMUM LIKELIHOOD IMAGING FOR THE
INCOMPLETE /COMPLETE DATA MODEL

The fact that the trace condition (27) cannot be solved
directly for the maximum likelihood estimate of X moti-
vates the indirect approach we now take of embedding the
imaging problem in a larger, seemingly more difficult
problem. The result will be an iterative algorithm which,
when implemented, produces a sequence of admissible
matrices K@, K® ... K% ... with the property that
the corresponding sequence of incomplete data log likeli-
hoods L [K®], L4[K®],---, Ly(K™]),--- is nonde-
creasing at each stage.

Fuhrmann and Miller [24] have recently shown that
maximum likelihood estimates of Toeplitz-constrained co-
variances which are positive definite do not always exist
when given only one data vector r. A necessary and
sufficient condition for the likelihood function to be un-
bounded, and therefore for no maximum likelihood esti-
mate to exist, is that there be a singular Toeplitz matrix
with the data in its range space. For our imaging problem,
this condition is that an admissible X exists with

2E.S*KS+ Nyl
singular so that
r=(2E;S*KS+NyI)a (30)

for some complex-valued vector a. In fact, with only a
Toeplitz constraint on K, a sufficient condition that a
singular estimate for K be obtained is that N, =0 and that
a singular K exist with r in the range space of 2E;S*KS.
The argument for this mirrors that of Fuhrmann and
Miller in [24, theorem 1] but is applied to the complete
data log likelihood given in (A7) of the Appendix.
Fuhrmann and Miller also showed that, even if the true
covariance had eigenvaiues bounded from above and be-
low, the probability that a singular Toeplitz matrix exists
with the data in its range can be very close to one. By
restricting the search to Toeplitz matrices with circulant
extensions, they were able to show that the probability a
singular circulant Toeplitz matrix has the data in its range
space is zero. Thus, for maximum likelihood estimates to
be nonsingular with probability one for all nonnegative
values of N, we may restrict the class of admissible
Toeplitz matrices to be those with circulant extensions of
period P, where P is equal to or greater than the number
N of data samples available P > N. This is not a severe
restriction because the set of all Toeplitz matrices is ap-
proached by the subset having circulant extensions of
period P as P tends to infinity. What we envision in
adopting this constraint is that for each delay i, the N
sample values of the reflectance b(n,i), n=0,1,---, N -1,
are from a stationary process that is periodic with period
P, where P could be some large but finite value; a lower
bound on P in terms of a desired cross-range resolution is
discussed above. These N sample values of the reflectance
enter the incomplete data r according to (14) and (20). By
using the expectation-maximization algorithm of Dempster
et al. [20], we shall develop a sequence of admissible
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matrices that have the maximum likelihood estimate of K
subject to this circulant extension as a stable point. The
approach parallels that of Miller and Sayder (21] for
estimating the power spectrum of a time series from a
single set of data. An important benefit of introducing the
periodic extension and using the expectation-maximization
algorithm is that estimates of both the scattering function
and the reflectance processes are obtained simultaneously
and can be readily viewed as target images in range and
cross-range coordinates; thus the procedure proposed may
be considered natural for the imaging problem because
both types of images considered separately in the past are
obtained directly. As a final comment regarding our use of
a circulant extension for K, we note that in estimating a
discretized version of the target’s scattering function, the
class of admissible X is restricted automatically to consist
of those with circulant extensions. For completeness, we
also include in the Appendix the equations obtained using
the expectation-maximization algorithm for estimating
general Toeplitz matrices when the assumption of a circu-
lant extension is not made.

We shall introduce a modification of our notation to
indicate that the N samples of the reflectance process are
from a stationary periodic process of period P. To this end
let by (i) denote the N-dimensional vector b(i) of (19). We
now think of b, (i) as an N-dimensional subvector of the
P-dimensional vector bp(i) formed from samples of the
reflectance process over a full period.

b(0,m+1i)
b(l,m+1i)

bp(i) = (31)

b(N—l,m+i)

b(P-1,m+1i)
If Iy is the N X N identity matrix, and J; the P x .V
matrix defined by

(32)

then

by (i) =Jg bp(i).
Also, let b, denote the N/-dimensional vector b of (18),

and b, the Pl-dimensional vector with ith block element
bp(i). Then,

by=Mgb,
where M, is the PI, X NI, block-diagonal matrix
J 00 - - 0
M= |0 0O (33)
0 0 0 - - /g

Furthermore, let X (i) denote the ¥ x N Toeplitz covari-
ance matrix K(i) of by (i) defined in (23), and K,(i) the
P X P circulant covariance matrix of bp(i). Then, the
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Toeplitz matrix K,(i) is the upper left block of the
circulant matrix Kp(i), as given by

Ky (i) =Jg Kp(i) Jp.
Lastly, let K, denote the PI, X PI, block-diagonal matrix
in the form of (25) with the ith diagonal block being

Kp(i). Then, if K, denotes the Nip X NI, matrix K of
(25),

Ky=M;K My

Let W denote the P X P discrete Fourier-transform ma-
trix scaled so that the columns are orthonormal,

0 0 . . 0
WP WP WP
1 0 k 'Zk (P.— 1k
W= 7—P— Wp Wp Wp Wp (34)
0 pP-1 . . (P=-1XP—-1)
Wp w Wp

where wp = exp( = j2#/P). Also, let W, be the PIp X PI,
block-diagonal matrix

w o0 0 - - 0
w,=[0 W 0 - -0 (35)
o o0 0 - - W

Then, b, can be represented in rotated coordinates accord-
ing to

a(0)
ap=Wpbp= a(;l) (36)
a( IR.- 1)

where a(i) = Wb,(i). The assumption that bp(i) orngi-
nates from a periodic process implies that the P/lg-dimen-
sional vector a, is normally distributed with zero mean
and diagonalized covariance

AP=E(GPG;)=WPKPW;. (37)

We will denote the ( p + iP)th diagonal element of 4, by
a:(i ); this is the pth diagonal element of the P x P
diagonal matrix E{a(i)a* ()]

Let S(v,i) be discretized in frequency with P samples
taken for 0 < v <1. These samples may be obtained from
(13) as

P 27np

s(;, ) - :g‘,;K,.(n,i)exp(—j—P—) (38)

for p=0,1,---, P —1. The pth such sample is just the pth
entry in the vector
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Substituting (37) into (39), we get
VP WK,(i)e=VP A(i)We, (40)

but P/?We is a P-dimensional vector of ones, and there-
fore

s(-f;,i) = o3(i), (41)

which, according to the above definition, is the (p + iP)th
diagonal element of the diagonal matrix A,. The entries of
the diagonal matrix 4, in (37) are then samples of the
scattering function.

The constraint from Section II that the scattering func-
tion S(v,.i) be nonzero only for |v| < f., At = v,,,, for
values of v between —1/2 and +1/2, may be incorpo-
rated at this point in the development. Since A, is a
diagonal matrix of samples of the scattering function, we
restrict A, to have nonzero values only in its top left and
bottom right comners. More precisely, let /- be the small-
‘est odd integer satisfying

Icg > 2000 P.

Iy is the number of cross-range resolution cells implied
by P and v,,,,. Then, let Jog be the Iy X P matrix

J L 0 0
R0 0 1,
where [, is an [(/cg +1)/2]X[(Icg +1)/2] identity matrix

and 7, is an [(Icg = 1)/2]X[(Icg —1)/2) identity matrix.
Let Moy be the Icglg X PI, matrix

Jr O 0 - - 0
Meg = 0 Jg O - - O
0 0 0 - - Jug
Define Z, to be the diagonal matrix
Zp=MqAp M.

The diagonal elements of £, are the potentially nonzero
diagonal elements of A4,. Recognizing that some elements
of the diagonal matrix 4, are zero and using the defini-
tion of My, we conclude also that

AP = M(;REP‘MCR‘

The set @ referred to in the definition in Section II can
now be specified. We restrict consideration to those covari-
ance matrices generated by Z, from above, so

Q‘ (K eK:K'M;W;JWgREPMCRWPAMR}.

For use with the expectation-maximization algorithm,

VP WK,(i)e (39)  we identify the complete data as (c,, w), where w is the
where e is the P-dimensional unit vector N-dimensional noise vector defined in (15) and ¢, is
defined by
1
0 cp=Mcpap.
en|0]. Since elements of a, corresponding to the zero diagonal
elements of A, are almost surely zero, we see also that
0 ap,= Mcpcp.
- 18 -
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Using this fact, we note from (14) and (20) that the
incomplete data r can be obtained from the complete data
according to the mapping

(42)

where we define the I;/.p X N matrix (which appears
throughout the development that follows):

T'=\2E; McgWpM,S.
The log likelihood function L 4(Z,) of the complete data
as a function of =, the diagonal covariance matrix of ¢,
is given by
Ly(Zp) = —In(det(Z,)) - cz Z5'c,
Te=1 feg —1

=-2 Y ¥ In(o(i))

i=0 p=0

r=T"cp+w

In=11Icg~1

- T I oo

im0 p=0

(43)

where all terms that are not a function of Z, have been
suppressed and c,(i) is the pth element of the /-x-dimen-
sional vector cp(i) = Jega(i).

The expectation-maximization algorithm for estimating
the covariance of the reflectance process K, from the
incomplete data r is an alternating maximization proce-
dure in which a sequence of estimates T, =0,...,
2, ... of Z, is obtained first, where the expectation-
maximization procedure specifies how to obtain T{*V
from 2 for k =0,1,---. If 4 denotes the estimate of
2, at stage k, then there is a corresponding term

KiO = W M&GELMRW,
in a sequence of estimates of K. Likewise, to the kth term

K $® of the sequence of estimates of Kp, there is a corre-
sponding term

KiP = My KoM,
KE*9(0) 0
kgen=| 0 KETP(Q)
0 0

in a sequence of estimates of K. These have increasing
log likelihoods Ly(KP]1< Lig[KP1< <+ < Lig[ K]
< - --. We show that stable points of this sequence satisfy
the necessary trace condition for the maximum likelihood
estimate of K, where K is a stable point if K{*/) = K
for j=1,2,- -

Each iteration stage of the expectation-maximization
algorithm has an expectation E step and a maximization M
step that must be performed to get to the next step. The
E-step requires evaluation of the conditional expectation
of the complete data log likelihood (43) given the incom-
plete data r and assuming that the covariance defining the
complete data is T4,

Q[ZHZ¥] = E[Leg(Zp)Ir, 2] (a4)
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Since L4 in (43) is a function of the nonrandom matrix
2. the result of this conditional expectation is a function
of Z,. Itis also a function of %’ because the expectation
is performed assuming that ¢, is normally distributed with
covariance 4, We have indicated this dependency of the
conditional expectation on both =, and =%'' in the defini-
tion of the function Q in (44). From (43). we have that

Ie=1Icg -1
o[zi2]=-2 L L In(o,(1))
im0 p=0
Ie-1lcp -1
= L X E[le()fir 3]0
i=Q p=0

(45)

The M-step yields the estimate S *!" at stage k +1 as the
choice of Z, that maximizes this conditional expectation,

¢+ = argmax [Q(S,H1=0)]. (46)

subject to the constraint that the maximizer be a diagonal
covariance matrix. From (45), this maximization yields the
diagonal matrix ¢ *1 with ( p + i/cg )th diagonal element

ANk +1) v
(apz(:)) =E[|cp(l)|°|r.2‘,."’]. (47)
Thus, we may write S%*" as
v(lu-n_ E[CPCP |r, S (48)

where the 4 over the equal sign means that the diagonal
terms in the matrix on the left side equal the diagonal
terms in the matrix on the right side and that all the off
diagonal elements on the left side are zero.

Expression (48) appears to be complicated because of
the several matrices we have defined, but it produces a
sequence of covariance estimates having a straightforward
interpretation. If we form the matrix Ki**! according to

K40 = Wy MEGEE* DM W, (49)
we then find that
0 - - 0
o0 .
0 - - KEU(I.-1)

where K§**V(i) is a P X P circulant matrix interpreted as
the estimate at stage k +1 of the covariance K ,(i) of the
P-periodic reflectance process at delay m +i. Miller and
Snyder {21) show that the (n, m)-element of this circulant
matrix is given by

1 P!
= Z E[6(p.0)0*(p+m=n)p )l K] (51)
p=0

where (a), =amod P. Equation (51) has an intuitively
appealing form. If the reflectivity process b(n. i) could be
observed for all instants n =0,1,---, P -1 in a period and
for each i independently, then the maximum likelihood
estimate of the covariance K,(:/) would be the anthmetic
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average of the lagged products

1 P-1
> L b(p.i)b*((p+m=n)p.i). (52)
P
Equations (50) and (51) indicate that one should simply
substitute the conditional mean estimate of an unknown
lagged product into this expression to form the maximum
likelihood estimate of the covariance when only the incom-
plete data are known.

Estimating £, and K,

The maximum likelihood estimate of Z, is a stable
point of the sequence defined in (48). The terms on the
right side of this equation can be evaluated as follows. Let
the conditional-mean estimate of ¢, in terms of the incom-
plete data r be defined at stage k by

&0 = E[cplr 2. (53)
Then, (48) can be rewritten in the form

S 4E [(‘-‘P - &0)(cp— &) "I E(Pk)] + &gt
(54)

Now examination of (42) shows that forming the condi-
tional-mean estimate (53) of ¢, from r is a standard
problem in linear estimation theory. From Tretter [25, ch.
14], for example, we find that

&0 = ST [T 2T + NI ] 7'r, (55)

Furthermore, the first term on the right side in (54) is the
covariance of the estimation error when ¢, is estimated
from r. Also from Tretter {25, ch. 14}, we have

E[(cr— ) (cp- ) 1r, 2]
=S - SWT[T*IPT + NI | T'T* 2. (56)

In summary, the following steps are performed to pro-
duce a sequence P, S, . I ... of estimates of =,
fo which the corresponding sequence of likelihoods is
nondecreasing;

1) set k =0, selecting a starting estimate ={”;

2) calculate the estimate of ¢, according to (55);

3) calculate the error covariance according to (56);

4) update the estimate of Z, according to (54);

5) if *“last iteration” then stop, else replace k£ by k +1
and go to 2.

The starting value in step 1 can be any positive-definite
diagonal covariance matrix of dimension [pfcg X Iglcg. A
sequence of estimates of K, having increasing likelihood
is obtained from the sequence of estimates of Z, accord-
ing to (49).

Forming the Scattering-Function Image

From (41), the diagonal elements of the [p/cg X Iglcp-
dimensional matrix 2, are sample values of the scattering
function, with the scattering function samples at delay
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m + i given by the /o diagonal elements of the ith [-g X
I-g-dimensional diagonal block of Z,. We may, therefore,
simply regard £ as the stage & estimate of the scattering
function. The stage-k scattering-function image of the
target in range (i coordinate) and cross range ( p coordi-
nate) can be displayed as follows. Let £4(i) denote the
ith Icg X Icg-dimensional diagonal block of ¢, and
denote the pth diagonal element of Z49(i) by s(p,i) =
[a2(i))* for p=0,1---, Icg—1. Then, s(0,i) is dis-
played at range m + i and cross range corresponding to a
Doppler shift of zero; s(1,i) and s(lcx —1,i) are dis-
played at range m + i and cross range corresponding to a
Doppler shift of v=1/P and v=~1/P, respectively;
s(2,i) and s(Icg —2,i) are displayed at range m +{ and
cross range corresponding to a Doppler shift of v=2/P
and v = —2/P, respectively; and so forth, with s( p, i) and
s(Icg — p,i) displayed at range m+i and cross range
corresponding to a Doppler shift of + p/P for p=

N 1,2,‘ * ~.(1CR—1)/2 When ICR iS Odd.

Forming the Reflectance-Process Image

It is interesting to note that the kth stage conditional-
mean estimate of c,, given the measurements r and assum-
ing that the second-order statistics of reflectance are given
by the kth stage estimate of the scattering function, is used
to form the estimate of £, at stage k+1 when the
expectation-maximization algorithm is used. This estimate
is of very much interest in its own right because, from (36)
and its definition, the /-, elements of c,(i) are the poten-
tially nonzero Founer-transform coefficients of the re-
flectance process bp(i). The target’s reflectance image at
stage k is formed by placing these elements at range m +
and cross range in the same manner as described above for
the scattering-function image.

Convergence Issues

There are some important properties of the iteration
sequence (48) which are worth mentioning. First, each step
is in an improving direction in the sense that the log
likelihood increases at every step and continues to do so
until a stable point is reached. This is shown by writing
(54) out as

e £ 500 4 SgUISE (57)
where
8k m LKW =Y (pr* - KW)KO-IT* (58)
and where
K@ =T*S¥T + NI (59)

is the kth estimate of the covariance K. of r. Next, the
trace condition (27) which the maximum likelihood esti-
mate must satisfy is reexamined. From the assumption of
the P-periodicity of the reflectance process and the matrix
definitions given, the admissible variations 6K must be of
the form

8K = M} W3 MR8 McpW, M, (60)
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Here 62 is a diagonal matrix of the same dimensions as Z.
The trace condition (27) then becomes

(2E;) " 'tr(KMN(rr* =T*S,T = NyI)KS'T*82T) =0.
(61)

Using the fact that tr(AB) = tr(BA) and evaluating this
trace at the kth iterate, we see that the trace on the left
side of (61) is equal to

(2E;) e (6W§3). (62)

According to (57), =4 is changed at each stage by adding
the diagonal elements of

k k) (k)
pAQITOMIL

(63)

to =), Define

T 2 ZhgITR (64)
as these diagonal elements. Then, evaluating the trace at
this variation gives

r(6WEZ®) >0, (65)

This shows that the variation §2*) is in an improving
direction. Furthermore, we are guaranteed that the incom-
plete data log likelihood is nondecreasing as a result of the
M-step of the expectation-maximization algorithm be-
cause, at this step, the conditional expectation of the
complete data log likelihood, given the incomplete data
and the last iterate for Z,, is maximized over Z,. As
shown in [20] and [21], this implies that the incomplete
data log likelihood is nondecreasing,.

Lemma 3: Assume that N, >0 and = is positive defi-
nite. Then 1) =4 is positive definite for all k; and 2) all
stable points satisfy the trace condition (27) for all admis-
sible variations (60).

The proof of the first part of Lemma 3 is in the
Appendix. For the second part, since the diagonal ele-
ments of =) are positive, (65) holds with equality if and
only if the diagonal elements of ©¢*? are zero. Notice that
if Z%+D =3 then the diagonal elements (64) are zero.
This implies that the diagonal elements of %) are zero
and hence that

tr(8™8Z) =0 (66)

for all diagonal 8Z. Thus all stable points satisfy the trace
condition (27) for admissible variations. From (55), stable
points of the sequence Z{*) yield stable points of the
sequence of conditional-mean estimates of the reflectance
process.

Computational Considerations

The computations required to produce radar images
with our method are specified by (54)-(56). The number of
iterations of these equations required to produce an image
near the convergence point is presently unknown. Our
experience in using an iterative algorithm to produce maxi-
mum likelihood images for emission tomography suggests
that 50-100 iterations may be necessary, but this is only a
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guess that will not be verified until some experiments are
completed. Some form of specialized processor to accom-
plish each iteration stage efficiently will probably be needed
to produce images in practically useful times. One possible
approach is the following. The matrix product

[ =2E MW, MyS

is required at each iteration stage and does not change.
This Izlcq X N-dimensional matrix can therefore be com-
puted once off-line, stored, and then used as needed dur-
ing on-line computations. Then, at iteration stage k, the
following on-line computations can be performed:

1) compute the ¥ X N-dimensional matrix A4 defined
by A=T*ZT + N, [;

2) compute the /g/-g X N-dimensional matrix B de-
fined by B =Z{OT;

3) compute BA ~!r and the diagonal elements of =4 ~
BA~'B*,

The computations in 3) can be accomplished in about
4N + IIp —2 time steps using the systolic array de-
scribed by Comon and Robert [26] augmented. as they
suggest, by one row to accomplish the postmultiplication
of BA~! by r and by Iq/cg rows to accomplish the
postmultiplication by B*. The matrix muitiplications in 1
and 2 for determining 4 and B can also be performed
rapidly on a systolic array. More study of implementation
approaches is needed. but it does not appear that the
computational complexity of our new imaging algorithm
needs to be a limitation to its practical use.

The choice of N, I, and I.p is important for the
computations. These parameters are selected to achieve a
desired range and cross-range resolution and are. there-
fore, problem dependent, but the same considerations used
with other approaches to radar imaging can be used in
selecting them. Choosing the product //-g to be of the
order of N will, in some sense, make the imaging problem
well-defined because the number of unknown parameters
IpIcg that need to be estimated to form the image is then
comparable to the number of measurements N. On the
other hand, the choice of P is unique to our approach. As
stated, we need P > N, but no upper limit is given. In [24],
it is shown that as P increases toward infinity, so does the
maximum value of the incomplete data log likelihood
function, with probability one. Thus P cannot be made
arbitrarily large from a theoretical standpoint. Any com-
putation involving a matrix with one dimension equal to P
can be performed off-line.

IV. Concrusion

The expressions we have obtained for forming images of
diffuse, fluctuating radar targets are based on the model
stated in Section Il. The target reflectance is assumed to
introduce wide-sense-stationary uncorrelated scattering of
the transmitted signal with no glint or specular compo-
nents present. The reflectance process is assumed to be a
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WSSUS Gaussian process with unknown second-order
statisiics given by a delay-dependent covariance or scatter-
ing function. Echoes of the transmitted signal are received
from all the reflecting patches that make up the target,
with each patcn introducing some propagation delay,
Doppler shift, and random amplitude-scaling into the sig-
nal it reflects. The superposition of the echoes from all the
patches is received in additive noise. Thus the reflectance
process is only observed indirectly, following a linear su-
perposition and in additive noise; thus neither the re-
flectance process nor its second-order statistics are known.
Target images are made by displaying estimates of either
the reflectance process or its second-order statistics
(scattering function) based on processing the received sig-
nal. In Section II, we derived the trace condition which the
maximum likelthood estimate of the covariance of the
reflectance must satisfy, and we concluded that this condi-
tion is too complicated to solve explicitly for the estimate.
This motivated the introduction in Section III of the
incomplete-complete data model and the use of the expec-
tation-maximization algorithm, which results in a sequence
of estimates of the scattering function having increasing
likelihood. A corresponding sequence of estimates of the
reflectance process is also obtained.

A number of issues have yet to be resolved for the
approach to radar imaging we have presented. One of the
most important is resolving how glint and specular compo-
nents in the return echoes should be modeled and accom-
modated in the formation of the images. The selection of
transmitted signals to produce good images is an impor-
tant subject about which little study has been made. The
quality of target images obtained with our new approach is
not known at present; to study this issue, we are presently
implementing a computer simulation so that comparisons
to alternative processing strategies can be made. The equa-
tions we have developed are computationally demanding
because the matrices involved can be of large dimension
and the tteration must be performed repeatedly until a
stable point is approached. It is therefore important to
determine the conditions under which our approach yields
radar images of sufficiently improved quality compared to
existing approaches to warrant the development of special
processing architectures that will make it practical. The
computer simulations should be of some help in this. At
this time, however, the only experimental results suggest-
ing the efficacy of our method are those reported in [21]
and [22] for estimating power-density spectra in one di-
mension.
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APPENDIX
Proof of Lemma 1

From the definition of the log likelihood function in (26), we
have

1
;(Lid(K*"’SK)"Lm(K))
1 + + -1 -1
--=r ((K,+a2E;S* 8KS) ™' = K ')r

1
~ = In(det(K, +a2E;S” 8KS) det( ;1)) (A1)

where K, is the covariance of the incomplete data r as given in
(26). Examining the first term on the right, we have

1 -
- ;r*x;‘((nazfrs* SKSK:Y) = 1)r

1 -
-=r K \(a2E;S* 8KSK')(1+ a2 E,S™ 8KSK:Y) ™ 'r

=r*K-12E.S* 8KSKS'r + O(a). (A2)
Examining the second icrm on the right in (Al), we have
1
—-;ln(det([+a2£,-3‘ SKSK:'))

1

- ln(det( ] + aB))
1

=—;ln(l+atr(8)+ -+ + a"det( B))

= —tr( B) +O(a) (A3)

where B is defined in the first equality. For any K €Q to be a
local maximum, a small variation in K in an admissible direction
cannot increase L (X)), or

lim i( Ly(K+adK)-L,(K)) <0

o (A4)

for all admissible variations 8K. If X is an interior point, then
-8K is also an admissible variation and (A4) becomes an
equality. Substituting (A2) and (A3), we get

rr K '2E-S* 8KSK'r —w(2E; ST 8KSKS ) =0, (AS)
which is the trace condition (27).

Proof of Lemma 2

Suppose that K satisfies (27) and (29) for all admissible
variations 8K. We now show that (29) is simply the second
derivative of L4(K) in the direction 8K by taking the limit

lim l—i-‘u((zs,s* (K+adK)S+NyI) ™"
(rr* = Nyl =2E;S* (K + a8K)S)
(2E;S*KS +a2E,S* 8KS + NyI)™'S* 8KS
- K" = Nol - 2E,S* KS) K7 'S” 8KS)
=tr( K7 \2E.S* 8KSK;\(2E,S* KS
+NoI=2rr" ) K7 12E,S* 8KS). (A6)
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Thus the conditions of Lemma 2 are the standard sufficient
conditions for a point K to be the local maximum of L (K).
Equation (27) says that the first derivative of L (K) is zero at
K. Equation (29) says that the second derivative is negative
definite along admissible variations from K. A necessary condi-
tion for K to be a relative maximum is that this last expression
evaluated at K to be equal to or less than zero for all admissible
variations 8K. Under the assumptions in Section [V, admissible
variations are given by (60). Substituting (60) into (A6) and
evaluating for all diagonal matrices 8% gives the second-order
necessary condition.

Estimating a General Toeplitz Matrix

In Section IV, we derived a sequence of estimates for a
covariance matrix subject to the constraint that the estimates be
circulant Toeplitz matrices. For completeness, we develop and
discuss the equations for estimating a covariance matrix subject
to the weaker constraint that the estimates be general Toeplitz
matrices. Similar equations for other constraints on the Toeplitz
matrices are easily obtained by mimicking the steps in the main
body of this paper.

Let the complete data be {b,w}, and let b be normally
distributed with zero mean and covariance K, as given in (27).
The complete data log likelihood is

L(Kp) ==ln(det(K,p)) = b5 K;'0p (A7)
where all terms that are not a function of K, have been sup-
pressed. Maximizing this function gives the trace condition

tr( K7Y(bb* - KYK~18K) =0, {A8)
which the maximum likelihood estimate X must satisfy. Perform-
ing the E- and M-steps of the expectation-maximization algo-
rithm yields the following iteration sequence for the elements

K(n, i), n - N =1, of the covariance mat:ix K(i) de-
fined in (23):
K(k*l)(n‘i)
N-n-1
- El Y b(j,m+i)b*(j+n,m+i)r, K%
N-n /=0

(A9)

In matrix form,

Ktkslh o gtk) +ZETK(I¢)SK’UU-1
(rr* =2E;8* KNS = NyI) KRS K5 (A10)
where

K* m2E.8*K™S + N, 1. (All1)
If this iteration converges to a stable point, then the trace
condition is satisfied at this point, as may be shown by using the
same arguments as in Section IV. It is worth restating that the
reason this iteration is not recommended here is that the proba-
bility that the iteration sequence generates a singular estimate for
K approaches one as N gets large. By restricting consideration to
Toeplitz matrices with circulant extensions, the log likelihood
function is bounded with probability one for finite extensions
and a positive definite K is generated with probability one, as
proven by Fuhrmann and Miller {24].
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Proof of Lemma 3, Part |

Assume that the initial guess %' for =, is positive definite
and that N,>0. We will now show that, if Y is positive
definite, then so is S%*! and thus, by mducuon, X s
positive definite for all k. One key to following this derivation is
the matnix identity

B(I+AB) '=(I+B4)"'B (Al12)

This identity is used to rewrite (57) as

T & H( MEPTT 30 + NFZE
+ZOTr T2 H
No(HZPT)(T* 20 H™ )
+(HZPTP)(r T S0OH")
+ NEHEHH (A13)
where we have defined H according to

-1

H=(ZY'TT*N,I) (Al4)

Clearly, all the diagonal elements of (Al3) are greater than or
equal to zero. To show that they are strictly positive, we look at
the last term and get that the ith diagonal element is

Inlcg -1
(NOZHE(PHH‘)H-NOZ Z (H)'/(w“)u(H )/'
j=0

Ielcg -1

‘No2 2

=0

CH) (S8, (AL9)

which is clearly positive when .V, > 0 since H is invertible and all
diagonal elements of 24’ are positive.
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ABSTRACT

We have developed a new approach to maximum-likelihood spectrum estimation
of wide-sense stationary processes from noisy data. A statistical model for the data is
defined. The process whose spectrum is sought is wide-sense stationary, periodic and
Gaussian, and its observadons are corrupted by an additive white noise. A maximum-
likelihood formulation of this problem has been derived, and the equations are solved
numerically via the expectation-maximization algorithm. This approach presents several
attractive features, an important one being that the noise corrupting the observations is
now taken into account.

We present some recent developments for this problem. The statisdcal perfor-
mance of the new maximume-likelihood spectrum estimator is studied both theoretically
and numerically. Comparison with tradidonal estimators such as the periodogram
highlight several strong points of the method. We also identify certain limitations,
namely the instability of estimates for high noise levels. These limitations can be allevi-
ated if a priori information about the signal is available. Two such problems are dis-
cussed in which the information at hand has the form of a constraint on the input signal-

to-noise ratio.

We show how such information can be incorporated in the maximum-likelihood
estimation procedure. First we assume the signal power to be known. Theoretical issues
of existence and uniqueness of the solution are discussed. We proceed with a problem in
which the information is less complete, when only an upper bound and/or a lower bound
on the signal power are available. The statistical performance of both constrained esti-

mators is quantitatively studied.

* This work was supported by contract number N0O014-86-K-0370 from the Office of Naval Research.
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1. Introduction

A promising approach to maximum-likelihood estimation of Toeplit~ constrained covariance
matrices has been proposed recently [1]. Several further developments cai se considered. First, this
method also applies to the dual problem of spectrum estimation. Another issue of interest is that the statist-
ical model can account for the presence of additive noise corrupting the observations and for linear
transformations of the process whose covariance or spectrum is sought. These considerations have
motivated a new approach to high-resolution delay-doppler radar imaging, where a major goal is to pro-
duce estimates of the target’s scattering function {2]. In the special case of a point target and a constant
envelope transmitted signal, this reduces to a spectrum estimation problem.

This paper describes some recent developments for this problem. We study the statistical perfor-
mance of the new maximum-likelihood spectrum estimator both theoretically and numerically. Com-
parison with traditional estimators such as the periodogram highlight several strong points of the method.
We also identify certain limitations, namely the instability of estimates for high noise levels. These limita-
tions can be alleviated if a priori information about the signal is available. Two such problems are dis-
cussed here in which the information at hand has the form of a constraint on the input signal-to-noise ratio.

This paper is organized as follows. Our model is presented in Section 2. A maximum-likelihood
formulation of the problem is given in Section 3, and the equations are solved via the expectation-
maximization algorithm. Section 4 is devoted to a statistical performance analysis of this estimator and a
comparison with two other methods. In Section 5 we show how a priori information on the signal can be
incorporated in the maximum-likelihood estimation procedure. First we assume the signal power to be
known. Theoretical issues of existence and uniqueness of the solution are discussed. Section 5 deals with
a less complete knowledge, where only an upper bound and/or an lower bound on the signal power are
available. The last section is devoted to a quantitative study of the statistical performance of both con-

strained estimators.

2. Model

The following is derived from the model presented in [1] for a point target and a constant envelope
transmitted signal. The observation is an N-vector sample of a wide-sense stationary, periodic, Gaussian

process corrupted by an additive noise :
r=b+w, 2.1

where b contains N consecutive samples of a zero-mean periodic process b, with length P2 N, and w is
an zero-mean white Gaussian noise with variance N, uncorrelated with b. The periodicity assumption is
required to guarantee that the likelihood function is bounded above; therefore, there exists the maximum-

likelithood estimator (1].

* This work was supported by contract number N00014-86-K-0370 from the Office of Naval Research.
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Now we define the spectral process associated with b, to be the DFT of one period of b,. Assume
that we are interested in estimating only M of the components of this spectral P-vector (1 £ M £ P), the
other components being zero with probability 1; let ¢ be this M-vector. This assumption is introduced 10
deal with the bandlimited spectra encountered in radar applications, which arise because radar targets have
finite extent [2]. ¢ is a Gaussian random M-vector with diagonal covariance I, whose entries ¢°(i ), i =
0,..,M-1, are real and positive. ¢ and b are related by a linear transformation :

b=r'c, (2.2)
where we have defined the M xN matrix I, consisting of the first N rows and the outer M columns of the

PxP DFT matix. The superscript T denotes the Hermitian-transpose operator on matrices. Our model for
the observations can now be written as

r=TTc+w. (2.3)

The covariance matrix for r is given by
K, =E[rr|=T'ST + Ny , 2.4

where [y is the NxN identity matrix.

3. Spectrum Estimators

In this section we introduce a maximum-likelihood spectrum estimator for the model (2.3), denoted
by ML1. We also define two estimators which will be analyzed and compared to ours in the next section.
The first one is the maximum-likelihood estimator derived assuming noise-free data, denoted by MLO ; the

second one is the periodogram.

3.1. ML1 Estimator
From (2 }), the likelihood function for X is
L(r.D)=~4Indet T'EC+Noly) ~ % rITIEC + Noly)'r . G.1)
Maximizing the likelihood with respect to I yields the necessary trace condition which the estimate £ must
satisfy [1,2]:

Tr [TTET + Noly) e =TT = Ny XTTET + Noly) ' T785) =0, (3.2)
for all MxM diagonal matrices §Z. This trace condition is a nonlinear equation in £. Generally it cannot be
solved directly in closed-form, so some numerical search procedure must be implemented. An elegant solu-
tion is the expectation-maximization (EM) algorithm used in (1,2]. An initial estimate £ is selected. At
step k+1 (k = 0,1,..) the estimate is updated according to

2D = gremax Q (T 2% (3.3)
where
Q(E|E®y = Mf In 6(i) - % Mf Elle@ )12,1 r2 (3.4)
i=0 i=0 o)
and
ElJc@)?r £2 = [£*) - EOTTEOreN oy )T E® + EPr@’ EPren oy )
x e (CIEBr+N ) ITHED), (3.5
This algorithm produces a sequence of estimates
@) =E(]e@)?]r.E*) (3.6)

having increasing likelihood. It can be shown that the stable points of this algorithm satisfy the necessary
trace condition for a maximizer (2]. The issue of uniqueness is addressed in [3].
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Special case :N=M =P
In this special case, a full period of the process is observed. I is equal to the P xP DFT matrix W,
A closed-form expression for Z can be derived:

&2(i) = max(0, |(W, r)(i)[>~ No) . 3.7

3.2. MLO Estimator

Additive noise corrupting observatons is usually not included separately in approaches to spectrum
estimation. This model was assumed in [1]. The sequence of estimates of I is still given by (3.6) and (3.5),
in which we now let Ny=0. We call this the MLO estimation. Clearly MLO and ML1 are equivalent for

noise-free problems.
Special case : N =M
The problem for which the number of observations (N) is equal to the number of parameters to be

estimated (M) is of some practical interest. It also turns out that the trace condition can be solved in
closed-form in this instance. The matrix I' is then invertible, indicating the existence of a one-to-one map-

ping between r and c. The MLO estimator is simply
o) =T @), (3.3)
where I' denotes (T™!)’.

3.3. Periodogram
The periodogram estimate of the spectrum is defined as the (scaled) magnitude-squared Fourier
transform of the N observations padded with P-N zeroes (3]. The first M spectrum samples are then given

by
&) = (PIN)|(Tr)(E)|? (3.9)
Special case :N=M =P
When N = M =P, the periodogram and MLO0 estimates are the same.

4. Bias Performance Analysis

4.1. Performance Evaluation
In this section, we estimate I for the model (2.3) and study the statistical performance of the three
estimators above. For each method the bias is evaluated, where

Bias[Z)=E[f]- X @.1)

As we shall see in Section 4.3, the performance strongly depends upon the input signal to noise rato
defined by

SNR,, =E¢/ Ny, (4.2)
where E is the average power of the process, defined by ‘
Ey=(1/P)Tr [Z]. 4.3)

In sections 4.2 and 4.3, we evaluate the bias for the estimators derived in Section 3. Whenever
closed-form expressions are not available, computer simulations are performed. Typically 3000 realiza-
tions are generated for each process. For a given estimator, (4.1) is then estimated from the 3000 est-
mates. The analysis is carried out at various input SNR levels. Much effort was made for the special case
M =N, This provides insight into the problem since the MLO equations can be solved in closed form. The

choice of P is free, so longas P2 N [2).
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4.2. Closed-form Expressions for Estimator Bias Performance

(a) ML1
As indicated in Section 3.1, no closed-form expression for the estimator is available, so the evalua-
tion of the bias is obtained by computer simulation.

(b) ML9
Closed-form expressions for MLO can be derived when M = N. The results are presented below.

Combining (2.3) and (3.8), we can write

GG) =|(c +TTw)()|2. (44)
Taking the expectation of (4.4), we get
E[G%()] = 6%(i) + No@TH Y, “5)
which implies
Bias[G*()] = N@ITH ™, . (4.6)

The bias is due to the noise corrupting the observations and is proportional to its variance. The sensitivity
of the bias to the noise is determined by the diagonal entries of the matrix (IT")™!.

(c) Periodogram

Bias
Combining (2.3) and (3.9), we write the periodogram estimates in the equivalent form
&)= (PINY|TT e + Tw)(i)?. @.7)
Taking the expectation of (4.7), we get
E[G%()] = (R IN) AT TT; + N, 4.3)
and
Bias[6°(1)] = [ (PIN) (TT'EIT; - o%(i) 1 + N, . (4.9)

The bias contains two terms. The second is due to the noise and is proportional to Ny, The other term is
independent of N . Even for noise-free observations, the periodogram is a biased estimator of £ unless I'T"
is the identity matrix. This would be the case only for N = M = P (observation of a full period of the pro-

cess) or N/M — oo (infinite data).

4.3. Simulation results
Process 1

The first process we consider is real and has period P = 10. Its spectrum is symmetric and lowpass (M = 5).
All nonzero spectrum samples are identical :

ai)=1, i=0,..4.

The number of observations is N = M = 5. The noise variance N, ranges from 0 to 1. Figure 1 shows the
bias for the estimators of 03(2) as a function of SNR,,, according to the definitions (4.1) and (4.2). In the
absence of additive noise ( SNR;, — ), ML1 and MLO are the same. Both are unbiased estimators. The
periodogram, however, is biased. When N, increases from 0, the performance of the estimators is roughly
constant so long as SMR,, remains above some threshold. For larger N, all three estimators exhibit a strong
degradation in performance. Comparing the thresholds for MLO and ML1, we see the tremendous improve-
ments brought by taking the noise into account in the model. Typically, for a same bias, ML1 will have the
same performance as MLO operating in a 20 dB noisier environment.
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Process 2

As shown in the next section, the periodogram does not perform well for rough spectra. This
motivated our study of a sharply peaked spectrum. The process has period P = 10, and a single nonzero
spectrum component

c?0)=1.

There is just N = M = 1 observation.

The bias for the 2stimators of ¢%(0) is plotted as a function of SNR;, in Figure 2. In the absence of
additive noise, the bias of the periodogram is -90% of 6>(0). Clearly, the conventional estimator is outper-
formed by MLO and ML1. It should also be noticed that for this process, the improvement of ML1 over
MLO is quite reduced.

Computational Considerations

The convergence rate of the EM algorithm depends on several parameters. The computation time for
each iteration is of order M N2 The number of iterations required for convergence of the algorithm grows
as M and N increase. For ML1, more iterations are required as N, increases, especially in the threshold
region and beyond. Typical figures are: for process 1 with Ny=0.1, 30 iterations are required before the
spectrum estimates are stable; when Ny=1, 300 iterations must be performed. Our algorithm is imple-
mented on a Masscomp model 5500. Running the program on 3000 realizations in the latter case is typi-
cally completed in 6 CPU hours. We are presently implementing these algorithms on a mesh-connected
1024 processor (DAP by Active Memory Technology), and we expect a major reducton in the time
required to produce estimates.

4.4. Discussion
The results derived above suggest additional comments on the periodogram. It can be shown that
(4.8) can be written in the alternatve form (4]

E[GG)]) =c%() * Q)+ Ny, (4.10)
where * denotes the discrete convolution operation, and Qy, (i ) is the DFT of the window
o)N(n)=l-L;/-|- (nl<N forP 22N (4.1
P
=0 :N< o~
[n]< 3
o)N(n)=l—%l Hln|<P-N for2N >P 2N
= —S— :P-N <|n|< %

The main lobe of Qy has width % Consider now a process made of sharp isolated spectral peaks, such as
Process 2 above. Equation (4.10) shows that the energy in these peaks is spread out as a result of the con-
volution operation ; consequently, these peaks are grossly estimated when % is large.

5. Constrained maximum-likelibood estimation

5.1. Description of the problem

In this section we focus our attention on ML.1. An examination of Figures 1-4 suggests that MLI
suffers in certain situations. When SNR,, is low, the estimates are biased ; as we shall soon see, their van-
ance is also large. Although the maximum-likelihood estimator is asymptotically unbiased and etficient,
these properties are not guaranteed in the small-sample problems considered in Section 4. This limitaton
can be alleviated if a priori knowledge, such as SVR,,, is available. Since N is known, such a constraint
on the signal-to-noise ratio can be translated into a constraint on the signal power that must be sausfied by
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the maximum-likelihood estimates. Now we show how this constraint can be incorporated into the EM
algorithm. The constrained estimates exist and are unique.

In Section 5.2, SNR,, is known. In Section 5.3, our knowledge is more incomplete, and only an upper
bound and/or a lower bound on SNR,, are available.

5.2. Known SNR;,
The equations for ML1 presented in Section 3.1 can be modified as follows to satisfy the constraint.
At each step of the EM algorithm, we maximize Q (£|£*’) defined in (3.4), subject to the power constraint

M-l
Y &*(i)=PE,=S , (5.1)
i=0

where E | is the signal power. The solution also maximizes

M-
QE|Z®y+A( Zlc'z(i)—S), (5.2)
i=0

where A is a Lagrange multiplier. Taking the gradient of (5.2) with respect to Z, we obtain a quadratic
equation for each spectral component

2A0%i)-c*(i)+C; =0, (5.3)

where
Ci =E[|c()]*|r £*

is calculated according to (3.5). The solution to (5.3) is

l+1i \Jl-8C,l
oXi) = ————— =0

4

= Ci . k= 0 » (5'4)
where [; is either +1 or -1. The equation for A is

M-
4SA-M = ¥ [;N1-8C;\. (5.5)

i=0

In general this nonlinear equation in A cannot be solved in closed-form. Furthermore, an ambiguity subsists
about the choice of the signs /;. The latter problem is solved by application of the following theorem :

Theorem
Assume that Cy > C;,i=1,..,.M-1. Then
09
Ii=-1 :i=1.M-1
M-l
10=+1 1§ <2C0[M - ZI, Vl—(CI/CQ)]
i=l
=-1 :else

(2) A is the largest nonzero solution of

M- M-l
(4SK-M + Zl[" ql—(C,/CQ) )2=1-SCOX, for §= EC, ' (568)

i=l i=l

and
M-1
A=0, for §= Y C. (5.6b)

i=l
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A is upper-bounded by 1/8C,, and (5.6a) can be solved numerically for A. Note that the particular case
(5.6b) is also the solution to the unconstrained maximization problem. Next, 6°(i)**" is calculated from
(5.4). The whole procedure is repeated at each maximization step of the EM algorithm. Note that because
of the highly nonlinear nature of the problem, no analytic expression is available for the constrained esti-
mator, even in the special case mentioned in (3.7).

5.3. Known upper/lower bound on SNR,,

In this section, the a priori knowledge about SNR;, has the form of an upper bound. Our approach
parallels that of the previous section, with the upper bound now expressed as an inequality constraint on the
estimated signal power. At each step of the EM algorithm, we maximize Q (£[£%*’) defined in (3.4), sub-
ject to the inequality constraint

M1,
Y G2) £ PE ax = Smax » (5.7
i=0

where E ,, is the upper bound on the signal power. If the unconstrained solution satisfies the upper bound,
the constraint is inactive and the estimate is given by (3.6). Otherwise, the constraint is active, and as in
Section 5.2, the solution is the maximizer of the expression (5.2).

We can expect the performance of this estimator to be strongly conditioned by the choice of £ ,,,. In
the limiting case E_,,, — o, the constraint is always inactive and the estimator is equivalent to the uncon-
strained estimator. For the other extreme case E ,,, — 0, the constraint is always active. A lower bound or
simultaneous upper and lower bounds are treated in exactly the same manner.

6. Simulation results
In this section, we apply the SINR-constrained estimators derived above to Process 1, and we evalu-
ate numerically both their bias anc mean-squared error, where

Var (£] = E (£} - (E[L))? ®6.1)
MSE [£] = E[(Z-5)* = Var (Z] + (Bias [£])%. (6.2)

The output signal to noise ratio matrix is defined as follows :
SNR,,[£] = E[£] (MSE (2))™ . (6.3)

Figures 3 and 4 give a plot of the bias and SNR,,, for three different estimators of 6%(2) as a function
of SNR,,, according to the definitions (4.1), (4.3), and (6.3). The estimators represented on these figures
are: the two constrained estimators of Section 5, respectively denoted by EQ-MLE and INEQ-MLE, and
defined for the power constraint § = § and S ,, = 15, respectively ; and the unconstrained estimator ML1
of Section 3.1.

In the absence of additive noise ( SNR,, — #), ML1 and EQ-MLE are unbiased. However, the
periodogram is biased, and so is INEQ_MLE. For the latter, this can be understood as follows. The distri-
bution of the sum § of the M estimates 6°(i ) is truncated (t0 S msx = 15), and therefore the sum of all biases
is negative,

When N, increases from 0, the performance of the estimators is roughly constant so long as SNR;,
remains above some threshold. For larger N, all estimators exhibit a degradation in performance. Note
that for the SNR-constrained estimators, each bias is upper-bounded by S, - o=(i), and lower-bounded by
- aX(i), where S, is the constraint. Comparing the SNR,,, performance in Figure 2, we see other favor-
able effects of incorporating SNR constraints into the problem. For low Ny, SNR,,, is improved. This is
due to the estimates having a lower variance, which is the dominant term in SNR,,,. For very noisy data,
the performance of the estimators is clearly improved. We can easily derive a lower bound for
SNR,, [G°()] :

03(5' ) <]
max (S, ~ o ({),c°()]
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This bound is independent of N.

Conclusions

In this paper, we have described an approach to spectrum estimation from noisy data, based upen a
statistical mode! for the observations. First we derive a maximum-likelihood estimator, and evaluate its
statistical performance. A comparison is made with two other methods that do not take the additive noise
into account. One is the traditional periodogram and the other is the maximum-likelihood estimator derived
for a noise-free model. It is shown that the new estimator offers a much better bias performance. The
improvement over the periodogram is particularly noticeable for rough spectra: The bias of the periodo-
gram was as high as 90% for the process #2 we considered.

In general however, the maximum-likelihood estimates are still unstable at high noise levels. In the
second step of our study, we refine our technique to improve the performance when some side information
exists. We have studied one such problem in which some information about the signal-to-noise ratio is
available. The performance for the SNR-constrained estimators has been numerically evaluated, and com-
pared with that of the unconstrained estimator and of the periodogram. The new estimators perform
significantly better than their competitors for low SNR;,. Because of the SNR constraint, the estimates are
not allowed to take on the large values that were produced in the unconstrained estimation problem. This
results in the estimates having a lower variance. One additional feature of our approach, and an attractive
one, is its versatility. Only a slight modification of the (unconstrained) algorithm is required.
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THE ROLE OF SPECTRUM ESTIMATION IN FORMING HIGIH-RESOLUTION RADAR IMAGES
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ABSTRACT

We have developed a new approach to forming high-resolution
images of radar targets from delay-doppler, spotlight-mode radar
data. This approach is based on a model for the target's reflectivity
in terms of wide-sense stationary, uncorrelated scatterers having
complex-valued Gaussian statistics. The imaging problem is to
estimate the target’s scattering function in terms of radar-echo
data acquiréd with a series of target illuminations. We develop
a method for solving this multidimensional spectrum estimation
problem through the use of maximum-likelihood estimation
implemented via the sxpectation-maximization algorithm.

INTRODUCTION

A system for forming the image of a radar target is shown in
Fig. |. There are two modes for collecting data to form the image.
An antenna of sufficient size may be used to focus radar energy

%

I\

FORM
T/R
Detay-Dopoter | IMAGE
| | S|
Radar Datu Display
Image

Figure 1. A radar imaging system.

ontoa patch of the target havmg asize corresponding to a resolution
element. By varying the position of the incident energy in some
form of raster pattern over the target, all reflecting patches may
be illuminated with a series of radar pulses and an image of the
target formed by displaying the return energy for each patch.
Alternatively, in spotlight mode, the energy is relatively unfo-
cused, and the entire target ‘= illuminated simuitaneously by each
transmitted puise. The same »>rm of image of energy versus range
and cross-range coordinates can be formed from the more
complicated echo data by suitable processing which utilizes delay
and doppler-shift variations present in a series of target illumi-
nations. Qur concern is with forming high resolution images from
data acquired in the spotlight mode.

There are at least two uses for high resolution images of a
radar target. One is in developing a catalog of radar cross- section
profiles Yor various target types. Anolher is for target identifi-
cation. The latter use. illustrated in Fig. 2, normally proceeds in
two separate and independent steps. First, the target's image is
formed, and then eatures of the target, such as edges and textures,
are extracied and used with any collateral information that may
be available to identify the target. As illustrated in Fig. 3, we
are also interested in developing a more coordinated approach to

- FEATURE TARGET T
% o L Target
v EXTRACTION IDENTIFICA TION Type
Radar i 3
image ' l
TARGET COLLATEIRAL
TEMPLETS INFORMATION
Figure 2. The use of an image for identification.
l_.__.v
Display
image
A ca«cuu:sr
7" IMAGE FORMATION & ”'c” Target
Detay-0edpler | o\ pyng thlAc'lou i ID[NTIHCAT!O’G Tyre
Ragar Data
AULE-BASED & TARGET rc—o-unuu
W STATISTIC-RASEY TEIMPLETS | | INFORMATION
FEATURL
DESCRIPTION

Figure 3. Coordinated target imaging and feature extraction.

forming an image of the target and extracting features so that
these two processes may interact constructively so as to improve
both. As a result of other developments in our laboratory {4,5],
we believe that the method we have developed for forming target
images is ideally suited for making this potentially important
extension.

Wehner [1] and Mensa [2] describe methods for formmg images
of radar targets from spotlight mode data. A series of identical
radar pulses (or pulse groups) having a linear FM chirp modulation
is used to illuminate the target. The echoes are processed with a
two-dimensional Fourier transform to form the image. This
approach is based on an intuitive, deterministic analysis which
results in accurate target images under high signal-to-noise ratio
conditions. Qur approach differs by incorporating a statistical
model for the target's reflectivity, accommodating receiver noise,
and in using a statistical estimation approach for developing a
method for forming the image. A full development of our method
is contained in (3).

TARGET MODEL
We model the complex envelope of the echo data according to:

r(t)=- (s,(l-r)y(l—t‘t)dréw(l). (@)
where w(!)is a white Gaussian noise with spectral density .V,
s.(1)is the complex envelope of the transmitted signal, and y (. t)

is the reflectivity at time ¢ of all rellecnng patches at two-way
defay t. y(f.t) may be expressed in terms ot all reflectivities at

- 138 -




delay t according to
yoy= [ e e rar, 2)
where ¢(f.t)is the reflectivity of all the points on the target at
two-way delay T which introduce a Doppler shift /. Since targets
are of finite extent, both y(t.t)and c¢(/.t)are zero for T outside
some fixed interval, and c(f.t) is zero for f outside a fixed
interval because the Doppler variabie is equivalent to the cross-
range coordinate of a rotating target.
As we develop in detail in {3], (1) and (2) may be discretized
into the matrix-vector form
r=ltc+w, (3)
where the superscript "h" denotes the Hermitian transpose oper-
ation, rit 1, cit 1, and wit 1 are vectors of samples of ~(1), c(f. 1),
and w(t), respectively, and [ is a matrix each element of which
is the product of a sample of s,(t) and a complex exponential.
We have adopted a diffuse-target model for the reflectivity.
For this, the target is assumed to be comprised of uncorrelated
scatterers each of which introduces a complex-valued, zero mean
Gaussian random variable as a multiplicative factor on the incident
signal reflected by it. The superposition of these according to (1)
and (2) results in the radar echo data. This assumption implies
that the reflectivity vector chas a Gaussian distribution with zero
mean and 'diagonal covariance matrix £=£(cc").  This
covariance consists of samples of the scattering function of the
target, which is the power-spectrum of the reflectivity process
y(t.t). For our approach, the reflectivity is a two-dimensional
Gaussian process, and the scattering function is its spectral
intensity. Further, the received vector r has a Gaussian distribution
with zero mean and covariance matrix
Kp=T"ST+ N, L. 4)

The loglikelihood of the data r may be expressed in terms of this
covariance matrix according to
L(K,:r)=-in(detK,)-r"K;'r. ()

IMAGING PROBLEM

Two different images of the target may be formed, one being
an estimate of the target’s reflectivity c and the other being an
estimate of its scattering function L, both images being displayed
in range and cross-range coordinates. A unique aspect of our
method is that it produces a maximum-likelihood estimate of T
and, also, a conditional mean estimate of cso that both of the
possible images of the target can be displayed if desired.

Maximizing the loglikelihood (5) subject to the constraint that
K, must be of the parameterized form in (4) leads to a trace
condition first discussed by Burg, Luenberger, and Wenger {6]
and, in the present context, by Snyder, O'Sullivan, and Miller [3].
While this trace condition in principle specifies the maximum-
likelihood estimate of the scattering function, it is a highly
nonlinear equation with no closed form solution. For this reason,
we have in [3} adopted the use of the alternating maximization
approach of Dempster, Laird and Rubin (7] for producing the
maximum-likelihood estimate numerically.

A sequence of estimates of the scattering function is obtained.
The estimate at step p + 1 is defined by the conditional expectation

d
Z(h-l)- E[cc"{i””.r]. (6)

o
where “ = " means that the off diagonal terms on the left are zero
and the diagonal terms equal the diagonal terms on the right.
Evaluating the right side of (6) is a standard problem in estimation
theory; it is given by
T e LU« Nl

X(erh = TA P o N A E T N DT TN (7))

Equations (6) and (7) detine an iteration sequence which produces
an estimate of the scattering function at each step. Thus, at each
step, an image of the target may be displayed, and each image
has successively higher likelihood. At each step, the conditional
mean estimate of the reflectance is also generated. At step p, this
estimate is

E[(_:Ztm'r]_z(n)r(rnz(n)r"Vol)-lr- (8)

EXAMPLE

At the present time, we are implementing (6) and (7) to run
on a Distributed Array Processor (DAP) made by the Active
Memory Technology Company, which is 2 mesh connected parallel

computer with 1024 processors. This implementation will permit
comparisons to be made between this maximum-likelihood method
and the more conventional method that employs two-dimensional
Fourier transforms.

We have performed a preliminary computer-simulation study
in which there is a point target that is concentrated at a single
range and crossrange. For this situation, forming the target image
corresponds to estimation of the power spectrum of a time series
having one nonzero spectral component. Fig. 4 shows the result.
The graph on the left in Fig. 4 is the output

\
[ — |

[
T NEw METHOD
rEmicooORAM
l\ \ A\
-
AR I R E s

Figure 4. Shown are the output SNR (left) and bias (right)
for estimating the reflected power of a point target in noise.

signal-to-noise ratio versus the input signal-to-noise ratio, and
the graph on the right is bias versus the input signal-to-noise
ratio, where these quantities were estimated from 3000 inde-
pendent trials and are defined according to

SNR,, = Eo/N,, (9
where £, 1s the average power in each of the P nonzero spectral
components of the reflectivity, as defined by

1
Eo= 5Tr(E):
and
.z
JMSE(S)’

where MSE(E)is the sample mean-square error in estimating Z;
and

SNR (10)

BIAS=£-Z. (1

The estimates of the scattering function for the maximum-

. likelihood method and for the two-dimensional Fourier transform

method (which in one dimension becomes a periodogram) are
compared in Fig. 4. The maximum-likelihood estimates (new
method) are seen to have high output SNR and low bias compared
to the periodogram for input SNRs above 5 dB. This very pre-
liminary result gives us optimism that superior images of diffuse
targets will be obtained with the maximum-likelihood method.

RELATED ISSUES

In (8], we have developed a Cramer-Rao lower bound on the
mean-square error performance of maximum-likelihood estimates
of the scattering function. The Fisher information matrix of this
bound is shown in (8] to play an important role in specifying
conditions for the uniqueness of estimates of the scattering
function and in the selection of radar pulse shapes for achieving
low variance images. Convergence of the iterative sequence in
(6) and (7) is discussed in (9]. In [10], we develop a method for
incorporating equality and inequality constraints on the input
signal-to-noise ratio, which results in improved estimates when
such side information is available.
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ABSTRACT

Maximum-likelihood spectrum estimation is an ill-posed problem. In this paper, we use a method of
sieves for addressing this issue. The estimate of the spectrum is constrained to a subset of some Hilbert
space of functions over which a complete set of nonorthogonal basis functions is defined. The estimate is
then represented by a countable set of coefficients in a nonorthogonal series expansion. By defining an
appropriate sieve on this countable set, our problem reduces to maximum-likelihood estimation of the
parameters in the sieve. Three main attractive features of this approach are: (1) the nonorthogonal expan-
sion is a convenient framework for defining the sieve and including a priori information; (2) mean-square
consistency of the estimates can be expected; and (3) we have derived a tractable alternating maximization
algorithm for estimating the parameters. The setup of this problem is general and can be applied without
major difficulties to the estimation of higher-dimensional spectral functions, as occurs, for example, in

imaging radar targets from delay-doppler data.

1. INTRODUCTION

Maximum-likelihood (ML) estimation of a continuous function, or even of an infinitely countable set
of parameters is known to be an ill-posed problem [1]. In this paper, we use a regularization method for
addressing this issue when the continuous function is the spectral density of a Gaussian process, and this
density must be estimated from one single sample function of the process. The ill-posedness of the estima-
tion problem is often addressed by approximating the model for the process by a simpler one, assuming
temporal periodicity. The spectral density is then discrete. It follows that for bandlimited processes, the.
spectrum is finite-dimensional and can be estimated by means of standard ML techniques. However, the
fundamental difficulties inherent to ill-posed problems remain, indicating that the assumption of a periodic
process is not sufficient. For instance, the length of the periodic extension of the data cannot be made arbi-
trarily large without the estimates becoming very rough. Furthermore, the estimate obtained from the
observation of one single realization of the process is not consistent, no matter how many samples are col-
lected.

The approach we use for estimating the continuous spectral density does not require any approxima-
tion of the model. It is based upon Grenander’s method of sieves, which provides a framework for estima-
tion in an infinite-dimensional parameter space [1]. The estimation is performed in a restricted parameter
set over which the estimates are stable. For an infinite amount of data, this restricted parameter set is dense
in the actual parameter set. This procedure leads to producing stable and, we expect, consistent estimates.

Section 2 of this paper contains a description of the model for the stochastic process whose spectral
density is sought. In Section 3, we briefly summarize some previous results in the literature, in which an
approximation of the model is made; the limitations of these methods are mentioned. Section 4 contains a
short review of regularization methods. The sieve-constrained ML estmator is described in Section S.

* The work described in this paper was supported by contract number N0Q0014-86-K-0370 from the Office of Naval
Research and by grant number MIP-8722463 from the Nadonal Science Foundation.
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2. MATHEMATICAL MODEL

Consider a complex-valued, wide-sense statonary stochastic-process y(¢). Our estimadon pro-
cedure is based upon the following statistical model for the observations. The process is Gaussian with a
mean of zero. Its spectrum §(f) is bandlimited to some f,,, and N samples of one realization of the pro-
cess are observed, with the sampling frequency 1/Ar at least equal to the Nyquist rate 2 f ,,. Furthermore,
the process is observed in complex-valued additdve white Gaussian noise w(¢) with spectral density M.

Under the assumptions stated above, the samples of y(¢) can be represented via the Cramér spectral
representation:

f_
y(nA)= [ exp(=j2nfna)Z(df)  ,0<nSN-1. @.1)
./'_
In this generalized Stieltjes integral, Z(df ) is an orthogonal, Gaussian spectral process with variance
S(fydf [1,p.74).

In the next sections, a ML estimator for S (f) is presented. We shall find it convenient to consider a

discrste; approximation to the integral (2.1). Define a uniform partitioning of the interval [=f o z0 f maxds

{fe) 10’ with partition size Ay, =2f .,,/M . Next define the process

c(k)=@y) [ Z(fe)-Z(f)]  0SkSM-1, (2.2)

This process is Gaussian and orthogonal. The variance of each sample,

ol(k)-—— j S()df 2.3)

M fa
is an approximation to S (f;). Next, approximating the Stieltjes integral (2.1) with a Riemann sum, we get

y(nAr)= '\/—'ﬁ'—*—Zexp(—ﬂnfknAt)c(k) 2.4)

As the partition size tends to zero, y(.) converges to the stochastic integral y (.) in the mean-square sense:
y(nAt)= iii'm' y(nAt) 2.5)

Notice that in the special case of a periodic process with period M At, y(.) =y (.), so that (2.4) is the
exact spectral representation of y (n Ar). This observation has motivated using (2.4) as a model for y () in
[2]. The parameter M is greater or equal to N but is not further specified, but M should be large enough o
ensure that the model approximation is valid. In (2] the issue of ill-posedness is addressed by keeping M
finite. In the next section, we will summarize some known results for this estimator. On the other hand,
the sieve-constrained ML estimator presented here is still based on the representation (2.4), but does not
require M to be finite. As such, this estimator does not involve any model approximation, as shown in
(2.5).

We now specify the model for the observations. Using the same vector notations as in [2], we get,
from (2.4):

r=Tlc+w, (2.6)

where r is the N-vector of observations, w is a noise vector with diagonal covariance N o/, where [ is the
NxN identty matrix, and ¢ is the M-vector formed from the samples of the onhogog§ll process c (k)

defined in (2.2). Since ¢ is orthogonal, its covariance T is diagonal with entries (o°(k)) " FCisaMxN

~exp (~j2nf,nAt); finally, + denotes the Hermitian-transpose

matrix with (k.n) entry given by \/
operator for matrices

* I" can be generalized readily to accomodate a linear transformation of ¥ (.) in the measurement, as occurs in the radar
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The covariance matrix for r is given by
K, =E[rr")=T'2T + Nyly . Q.7

3. UNCONSTRAINED ML ESTIMATOR

In this section, we introduce the ML estimator for the spectral matrix I defined in the model (2.6).
From (2.7), the loglikelihood function for Z is

L(rZ)=-Indet ("I + Noly) = rI(TTEC + Noiy)™'r . G.1)
Maximizing the likelihood with respect to I yields the necessary trace condition which a positive definite
estimate X must satisfy {2]:
Tr (TK e -K KT T85) =0, (32
with
K. =TT+ Ny ,
for all admissible M xM diagonal matrices 8% [2]. This trace condition is a nonlinear equation in £. Gen-
erally it cannot be solved directly in closed-form, so some numerical search procedure must be imple-

mented. An approach is the expectation-maximization (EM) algorithm of Dempster ez al. [3] used in [2].
The complete data are defined as (¢,w). An initial estimate £ is selected. At step k+1 (k = 0,1,..) the

estimate is updated according to

e argmax Q (Z|Z%) (3.3)

where

. M-1 M-t N12) ) k)
Q(EEM) == 3 mo) -y EU@LIrED (3.4)
i=0 i=0 (i)
and

E[|c(@i)?|r,£07 = (E®) - L0 OTE®) 4 SOpg L0 P =Lt S0 (g 5y (3.5)

where

K®=TE0rN gy

This algorithm produces a sequence of estimates
S =E (e ()| r E*) 3.6)

having increasing likelihood. It can be shown that the stable points of this algorithm satisfy the necessary
trace condition (3.2) for a maximizer [2).

The performance of this estimator has been evaluated in previous studies and compared to traditional
spectrum es;imators such as the periodogram (4, 5]. It has been shown that
(1) the ML estimates have a very low bias; .
(2) the ML estimates offer a better trade-off between variance and resolution than the periodogram;
(3) the ML estimates are not mean-square consistent. This unfortunate result is due to the fact that the

dimension M of the parameter space is at least equal to the number of data N. We are actaily deal-
ing with a small-sample ML estimation problem. This observation is one factor that motivated the

study presented in the next sections.

imaging problem {2].
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4. REGULARIZATION OF THE ML ESTIMATES

According to Hadamard's classical definition, a problem is said to be well posed if: (1) it has a solu-
ton, (2) the solution is unique, and (3) the solution varies continuously with the data. A problem is ill
posed if it is not well posed. Small changes in the data can then produce unbounded changes in the esti-
mates. Typical examples are inversion of certain Fredholm integral equations and the reconstruction of
functions from truncated Fourier transforms [6].

The ML estimation procedure produces similar artifacts when the number of parameters (M) is large
compared to the number of data samples (V). The estimates are extremely sensitive to small changes in
the data and exhibit a very rough shape characterized by very sharp peaks and low valleys. We can say
that the problem is practically, if not technically, ill posed. Such a behavior is highly undesirable, and a
regularization of the estimates is required. This concept was introduced by Tikhonov (7). A large bulk of
mathematical literature has been written on this subject; see for instance Bertero (8] for a tutorial.

One possible method for the regularization of estimates is the method of sieves, introduced by
Grenander [1]. According to Grenander’s definition, a sieve in a parameter space A is a family of subsets
S() of A indexed by a positive parameter u called the mesh size. A restricted ML estimate exists over
each set S(). As the mesh size tends to zero the sets S(it) will be large enough to allow the ML solution to
converge to any solution in A (1, p.357]. For the problem at hand, the choice of a "good” value of p will
depend on the data record size, the noise level, and possibly other factors. A major problem is to find
sieves which will make the ML estimates converge and possess some desirable practical features such as
analytical and/or computational tractability. For instance, one might consider a convolution sieve:

S(u)={ oX(i) | %) =n@) * wuG) 0<i SM-I} . @.1)

where g?(i) is the constrained spectrum, 1(i) is any spectrum, and (i) is a convolution kernel, or "win-
dow", with mesh equal to . However, it is not ¢lear that finding spectral estimates within this sieve is
computationally tractable. In 1985 Chow and Grenander recognized that regularizing the ML spectrum
estimates with a convolution sieve appears to be a formidable task, so they studied other types of estima-
tors [9].

Here we recommend a regularizatdon method based on nonorthogonal expansions of the unknown
density function. This approach leads to computationally tractable ML estimates. As discussed in §5.3, we
also expect the estimates to be asymptotically consistent.

The regularization procedure developed in the next section will be applied to the technically ill-posed
spectrum estimation problem in which the ratio M /N tends to infinity, where the approximate model (2.4)
converged to the exact model (2.1). We will show how to solve this infinite-dimensional parameter estima-

ton problem.
S. AMETHOD OF SIEVES BASED ON NONORTHOGONAL EXPANSIONS
The spectrum S (f') belongs to a Hilbert space of functions defined over [~f .., f mas)- Denote by H
this Hilbert space, and by H, the subset of all nonnegative functions in H. Typically H is
L[ —f mexr f mex ) the space of square-integrable functions over [ =f ;... f max ] Our goal is to represent the

spectral functon in H, in terms of a set of basis functions having localized support. This permits a good
local representation of a function. As such, this is related to the concept of wavelets.

5.1. Definition of the sieve

Consider a speceral M -vector a=. To this vector we associate a step function S (f ) according to the
map STy, defined as follows:

M~
STu(G]: RY s H: ¢ - §(f)=STy ()= T i) (). (5.1)
g g Ti=Lg
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M1
where {f;) o is the same uniform partition of the interval (=f ... f mad @ in Section 2, RM is the M-
dimensional Euclidean space, and x; (f ) is the indicator function over the i -th partition interval.

Let {y, ()} =0 be a nonorthogonal set of positive basis functions in H,. Consider the set A of all

functions in the span of the {\,, } ;m.q, With positive coefficients:

A={S(f)|8(f)=ia(m)w,.(f) .a(m)>0}. (5.2)
m=0

We define our parameter set to be A. Clearly A is a subset of H,. It would be desirable to have (y,, ) m=0

be designed so that A is dense in H,. It is well known that this can be achieved with {y,, } =, defined as
indicator functions over a partition of the frequency domain, in the limit as the partition size tends to zero.
How A is made dense in H, for more elaborate designs remains to be investigated.

Now define the following step-function approximation of ,, (f ):

Yy (F)=STy [Wy ol (5.3)

where Wy » is a M -vector of samples of y,(f) taken on the partition of the frequency interval. As
M — o0, Yy, (f ) converges to y,, (f) in the norm of H. We define a sieve S(M,Q) on S(f) in A by trun-
cating the series representation (3.2) to a finite number of terms Q and considering M-step approximations

to the basis functions,
2-1
S(M.Q)={5(f)l5(f)=Za(m)wu,..(f) .a(In)>0}- (5.4)
m=(

The functions in the set S(M,Q) are constrained to be M-step functions of the type (5.1). For the time

being, we keep M finite, but ultimately M will be allowed to tend to infinity. We view {a(m)) ,2;01 as
being @ unknown parameters for which ML estimates are sought.

Why nonorthogonal basis functions?

Before considering the general problem, we mention the special case where the basis functions con-
sidered in (5.4) are Q indicator functions over disjoint intervals covering the frequency domain. In this
instance, the computation of the a(m)'s is straightforward °. However these basis functions have the
major disadvantage that the estimates are step functions, and so display discontinuities that are uncharac-
teristic of spectral densities.

To achieve good representations for a richer class of functions, we have to forgo the aforementioned
restriction on the structure of the basis functions. A possible design of the basis functions might be based
upon dilations and translations of a smooth basic function. Such a design is used in the wavelet literature
because it provides a convenient multiscale representation of the function of interest (10, 11]. This is usu-
ally achieved more easily with nonorthogonal basis functions [11].

Our strategy in using other basis functions will have practical interest if a tractable parameter estima-
tion procedure can be derived. This issue is addressed in the next section.

5.2 Computation of the sieve estimator

To each function S(f) in the constrained set (5.4) is associated a spectral M -vector g’ via the
inverse map
=T [S()]. (5.5)

* The maximization problem (5.7) can then be solved in closed form.
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Since the map 57, ' is linear, we conclude from (5.1), (5.4) and (5.5) that the vector o is constrained as
follows. B

g-1
o= za(m Wotm - (5.6)
The ML estimates of the a(m)'s can be obtained by using the EM algorithm described in Section 3. At

each step the expression (3.4) is maximized with respect to ¢’ subject to the sieve constraint (5.5). This
amounts to finding the maximum with respect to @ of

M- Q-1
Qald®) == In| Tam)yy.@)| -
i=0 m=0

M-l N 121, a(k)
> iEJIC(l)Lka 1 5.7)

= a0
m=0)

This maximization problem is very difficult and must be solved via some numerical procedure. Keeping in
mind that this operation has to be repeated at every iteration of the EM-algorithm, one is hardly attracted
by this prospect. We propose the following method instead.

An EM algorithm has been developed, based on the definition of a'new complete data space for pro-
ducing the estimates. This method is set up as an unconstrained maximization problem in a Q -dimensional
parameter space and, as such, it does not involve any computation in H. Because of the existence of such
an algorithm, our estimation procedure based on nonorthogonal expansions tumns out to be computationally
feasible. This usually represents an impressive computational saving and is a major attractive feature of

this approach.
Completellncomplete Data Spaces

Write ¢ as the sum of Q independent vectors:
g-1
€=YCn, 5.8)
m=0

where ¢, is a M-vector, sample of a 0-mean Gaussian process with diagonal covariance a(m)¥,,, with
¥_ a diagonal matrix made of { Yy ()i € [0.M-1] ). These Q processes are independent. Now
define the J,, -vector c,, as the restriction of ¢,, to its support set S,,. The covariance ¥, of ¢,, is made of
the nonzero entries of ‘P With these notations our model (2.6) becomes

Q-1
r= 21"::‘,,,+w
m=0

g-1
= T, +w. (5.9)
m=Q

We define the complete data as ( {c., )23 ; w). Following this definition we write the loglikelihood
for the complete data as

. 0-t
laa)= Zlnp(cm:a)

=- 2 Indet (a(m)¥,,) - 2 ch@m)¥,) " cn
m=)

Discarding all terms not involving a, we obtain:

@) == Jna(m) - 5 — len @1 (5.10)
Cd(a - ME-O mnam m:()a(m).‘qs. !V}u(l) ’ )

The conditional expectation of [, (a) is then

%1 5 E [Jca()Plr.d®]

(5.11
m-O (m)tﬂs Ywﬂl(l) ¢ )

Q(ald* =~ z Jlna(m)- %
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Taking the partial derivative of (5.11) with respect to a (m), and setting the result to zero yields
1 o Ellea®I?lr4®

d(m)® = 7;_‘2;- Vo (5.12)
Next we evaluate the conditional expectation of |c,, (i)|? in (5.12). Define
W =Elc, |rd®). (5.13)
The conditional expectation in (5.12) is the i-th diagonal element of the matrix
Elcncn|r d®1=E[(cn=¢3") (cn~6i) 1 d® ) + 6,065
= KEKT KB O ek ~kBKTPRE (5.14)

where we denote by K, the conditional correlation £ [xy*|d®’] of two random vectors x and y. Now, the
expectations are evaluated from the model (5.9). Note that because the c,,'s are independent, the condi-
tional expectations on & are simply conditional expectations on 4 (m ). We get

K& =E (cpr'|a®) =d(m)®¥,T, , (5.15a)
g-1
K®=E (rr!a®) = E, AGYOTIT; +Noly (5.15b)
J
(5.15¢)

K& =E (cpctld®)=d(m)®y,, .

Substituting the expressions (5.15a,¢) into (5.14) yields
E{caca|rd®=dm)*¥, +d(m) ¥, Ta K7 O [k 1K O T a0 (m)®, (5.16)

with K,("’ given in (5.15b). Taking the i-th diagonal element of (5.16) and substituting in (5.12), we get

1 1
a-(m )(k+l) — -
Tm 2 Y ®

X[ Do K7 O (rr - KOV KT OT] Lyipg o ()d ()™ ]

[ )00 + )P )

= d(m)® +d(m)® [ 71— % Y@

mie$,
X [T KO (r=K MK OLL); | dm)® . 5.17)
Now defining the NxN matrices ’
PALEY i (480 doyT Al (5.18)
and
K, = 7:— rh, T, , (5.19)

the term between brackets in the right-hand side of (5.17) can be written

L ¥ W@ (ThZ0rL ), = 277 [ 1,20
J"' ieS. jm

=Tr [ —l—r,',\v,,r,,z“)}

Im
=Tr [K,,,Z(")] : (5.20)
Substituting (5.20) in (5.17) we get the update equations at stage k of the algorithm:
dm)y** = G (m)® « d(m)® Tr {Kﬂz(’”] dm)®, (5.21)
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Q-1
K& = 3 d()PK; +Noly . (5.22)
j=0

Comments

(1) The update equations (5.21) and (5.22) highlight the role played by the basis covariances X, in this
representation.

(2) As M — oo, the algorithm for cstimating the coefficients a(m) is well-behaved. The reason is that
the basis covariance X, in (5.21) is then given by the limit of the matrix product (5.19) as M — oo,
which is a matrix of integrals with entry (n .m) given by

/e
Kn(n,m)= [ exp(=j2nf (n-m)At) Y (f)df .
_f_
We can thus let M — e without any loss in stability of the estimates or any increse in computations.

(3) Implementation of the solution:
Each matrix X, is constant and can be computed off-line. At each step the covariance matrix X, in
(5.22) must first be inverted, which accounts for N? operations. Following this, updating each d (m)
just requires N2 multiplications/additions. The complexity of each step of the EM algorithm is then
N3+ ON?, as compared to ¥ + MN 2 in the unconstrained case. The saving is impressive for infinite
M  keeping Q ~N.

(4) Itis easily shown that the trace appearing in the update equation (5.21) is the partial derivative of the
incomplete-data loglikelihood with respect to a (m).

5.3. Some Regularization Aspects

The most attractive feature of this approach is a theoretical one. We are effectively esimating Q
parameters instead of M as in the unconstrained problem. The choice of Q is somewhat arbitrary and
depends on the way we have decided to represent the spectral function. As a rule of thumb it seems desir-
able to have Q (# of parameters) no larger than N (# of data). This can be done while letting M be infinite,
a result that could not have been obtained without regularization of the ML estimates. The process in our
model then approaches the limiting case of a (nonperiodic) stationary process, and as such does not invoive
any model approximation.

Consistency of the estimates

A major goal when defining a sieve is to ensure consistency of the estimates. Although no thorough
study has yet been undertaken for the sieve (5.4), we believe that consistency can be achieved, provided
that Q tends to infinity at a slower rate than N. Typically : Q ~ N, with 0 < @ < 1. Another objective is
to ensure rapid convergence of the estimates. Clearly the issue here is the design of the basis functions,
which is one of our current research areas.

CONCLUSIONS

We have proposed a method for a estimating a spectral function represented by a linear combination
of basis functions. The task of finding the ML estimates of the coefficients of these basis functions looks
formidable at first (refer to the optimization problem (5.7)). However we propose a method based on the
decomposition (5.8) of the spectrai process into a sum of Q independent spectral processes with known
covariance, up to a scale factor. The subsequent reformulation of the complete/incomplete data spaces
leads to the derivation of a powerful algorithm for evaluating these scale factors.
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The main features of this approach are: (1) flexibility. The choice of basis funcdons is wide open. In
particular we can choose the shape of the basis functions, amount of overlap, and support set extent (possi-
bly non-uniform). (2) using an exact model. No approximation of the exact model for the stochastic pro-
cess is needed. (3) computational efficiency. The computational complexity of the algorithm is a function
of the dimension of the parameter space, not of the partition size of the frequency axis. An important result
is that it is now possible to let M — e without any increase in the number of compn*2.iuns

Several interesting questions remain open issues. In particular it is desireu .o wchleve mean-square
consistency of the estimates. As mentioned in §5.2.2, this might be done by letting the sieve grow at o~
appropriate rate as N — oo, The issue of uniqueness of the estimates should also be investigated. Finally,
the design of the basis functions will determine the overall estimator performance. as far as convergence
rate and sensitivity to noise are concemed.

Also note that the setup of this problem is very general and can be applied without major difficuldes
to the estimation of higher-dimensional spectral functions. In particular, the spectra of interest in the
radar-imaging problem described in (2] are two-dimensional. The application of the ideas in this paper to
the radar-imaging problem is another area of active research.
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ABSTRACT

Recent papers have outlined a new approach for spectrum estimation and radar
imaging based on expectation-maximization algorithms for structured covariance estima-
tion. Performance of this approach has been promising for the problems studied. Appli-
cation of this approach to real data sets has been limited, however, due to the need to
invert a matrix whose dimension equals the size of the data set. For radar applications
where an image is to be formed, data sets can be on the order of 2'* for 128x128 images.
This makes the use of the new approach difficult in its previously described form. This
paper proposes both approximation methods for inverting typical matrices and constraints
on radar transmitted signals which make maximum likelihood image estimation viable.
These constraints may be satisfied for real signals used in radar imaging systems. Simu-
lations are shown to demonstrate the performance of the algorithms. Finally, motivated
by the images resulting from the simulations, regularization methods are discussed.

Introduction

New approaches are being studied for maximum likelihood spectrum estimation and radar imaging
which arc based on using the expectation-maximization algorithm [1] for structured covariance estimation
{2-4]. In this paper, we focus on the radar imaging problem, although many of the results hold for similar
spcetrum estimation problems. The limitations of our previous algorithm [4] are very clear for the radar
imaging problem with large data sets. In order to form an image from a data sct of size N, a matrix of
dimension N xN must be inverted. When N is on the order of 2'%, this inversion is not practical without
cxploiting its special structurc or making some approximations.

First, the equations which describe the radar data are defined. Next, the algorithm derived in (4] is
presented.  After discussing the role of the matrix inverse in the algorithm, possible implementations on
massively parallel machines are proposed. Even the huge number of processors available on massively
parallcl machines cannot make the inversion problem tractable without additional assumptions. For practi-
cal radar imaging problems, the matrix to be inverted is Toeplitz-Block Toeplitz, so some savings in com-
putations are possible by exploiting this structure. Other improvements arc possiblc by making further
assumptions about the transmitted signal and the image to be formed. Finally simulations arc presented
and the need for regularization methods discussed.

A model for the received signal in a radar system is given in (5] for reflections at microwave fre-
quencics and in {6] for reflections at optical frequencies. The reflectivity process which characterizes the

+ This work was supporied by contract number N00014-89-K-1508 from the Office of Naval Research.
To appear in Proceedings of the 1990 Confcrence on Information Sciences and Systems, Princeton NJ, March 1990,
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target is a random process which is stationary at each delay. Thus the samples of the reflectivity process
have Toeplitz covariances, and the problem of estimating the parameters of the underlying spectra reduces
to a Toeplitz covariance estimation problem. We take circulant extensions of the covariance matrices and
cstimate spectrum samples.

1. Statistical Model

The target is described in terms of its reflectivity. It is assumed that the radar transmitted signal is a
plane wave at the target so points on the target at a cross-section perpendicular to the line of sight sum up
to contributc to the same return signal. This sum changes as a function of time and is denoted by b (¢,7).
The variable 7 is the distance of points on the target from the transmitter given in time units as the time it
takes for a wave to propagate to the target and back to the transmitter (two-way delay). From this model, it
is not apparent that separate points at the same two-way delay T may be differentiated to obtain an image.
These points may be differentiated if their velocities relative to the transmitter are different. In particular,
if the target is a rotating rigid body, then the velocity of a point in the direction of the transmitter is propor-
tional to the distance of that point from the line of sight. Since the Doppler shift introduced by a point on
the target is proportional to this directed velocity, a delay-Doppler image of a rotating rigid body is
cquivalent to a range-crossrange image. The problem is to determine the power reflected from points as a
function of delay and Doppler and then to display this power function as an image of the target. Even if
this rigid body assumption for the target is not valid, a delay-Doppler image can be a useful image of the
target region.

The reflectivity b (¢,1) is the superposition of all reflectivities at delay t, times the Doppler shift terms
they introduce. It may be expressed as

bty = [c(f e/>df, (1.1)
where ¢ (f ,t) is the reflectivity of the points on the target at two-way delay T which introduce a Doppler
shift f. The target is assumed to have finite extent. This implies that both & (¢,t) and ¢ (f ,T) are zero for t
outside of some fixed interval. It also implies that ¢ (f,1) is zero for f outside of some finitc interval
because the Doppler variable corresponds to crossrange extent of the target.

The literature on radar reflections [5,6] describes statistical models for the reflectivity when the target
is rough in the sense that multiple scattering sites are present in a resolution patch on the target. The model
states that the reflectivity of a patch on the target is a complex valued Gaussian random variable with zero
mcan and is uncorrelated from patch to patch. When our model is discretized with /g x/p resolution cclls
(the subscripts CR and R denote cross-range and range, respectively), this comresponds to the assump-
tions on the reflectivity of patches of the target

Elctk,i)ck’iN)=0
Elctki)yc (k'iN) =0k )8 8;-, 1.2
for —(/cp=V)12<k € (Icg-1)2, 0<i €lg-1. Here, o(k,i) is the real, nonncgative covariance of the

reflectivity of the patch at Doppler & and delay i. The scatterers described by this model are called wide-
sense stationary uncorrclated scatterers (WSSUS) by Van Trees [5] because the assumptions imply that

Elb(ni)p" (n’iN]=K,(n-n"i)3;, (1.3)

where b(n,i) = b(n At—iAt/2,AT) and
(U -1)2

Ky(nji)= Y ok.i)expli2rknfpat], (14
k=—(la-1)2

where f, is the step between successive Doppler samples in the image plane, At is the delay step, and At
is the time between successive samples of 7 (1),

In a radar system, cach signal is typically described as the product of a bascband signal times a com-
plex exponential at the carrier frequency. All of the interactions of interest for narrow band radar systems
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may be described in terms of these complex valued baseband signals which will be called complex
cnvelopes of the signals or simply the signals.

Let sp(¢) and sz (t) be the complex envelopes of the transmitted and received signals, respectively.
The received signal is the superposition of the reflectivity from all two-way delays times the appropriate
transmitted signals,

se(t)= [ sre-vb(~2,0)d. (15)

In Equation (1.5), the 1/2 arises because it takes that long for the reflected signal to return to the receiver.
The available data are the sum of the radar return signal and additive white Gaussian noise

r(t)=sg(t)+w()
r(t) = [spt-b(t~t20dT+w () . (1.6)

This equation forms the basis for our model.

The processing is assumed to be performed digitally so that discretized versions of & and ¢ are used.
Equation (1.1) is substituted into (1.6) and approximated by samples of the signals ¢ and w. The discrete
cquation may be written in vector form as

r=Tc+w, (.7

where T is a matrix whose entries are samples of the transmitted signal times appropriate complex
cxponentials, and the vectors ¢ and w are defined appropriately.

2. Maximume-Likelihood Solution
The loglikelihood function for the data is
L(Kg;r) = ~In(detKg) - v/(Kg)7'r, 2.1)
where Ky, is the covariance matrix for the received datar,
Kp =TTEM + Nl (2.2)

and Z is a matrix with diagonal entires 6(i k). As shown first by Burg, et al. [3], a necessary condition for
a matrix to maximize the loglikelihood function is the trace condition

r (Kz'vr Kz = KKy 1 = 0. (2.3)
The matrix 8Ky is a variational matrix which takes values in all possible additive variations of the matrix
Kz, and may be rewritten as I''$EI, where 8X is a diagonal variational matrix.

An EM algorithm has been derived [4] to estimate the matrix £. The estimate at step p+1 of Z is
given by the diagonal clements of the conditional expectation of cc’or

d
so+) - E[ccflz(.v)'r]’ 29

d
where = means that the off diagonal terms on the left are zero and the diagonal terms on the left cqual the

diagonal terms on the right. The computation indicated in (2.4) is a standard problem in estimation theory.
This equation may be written as [4]

d
e =gy (2.5)

TONTTEPT + N H(rr! - TTE@T = NINT'EOT + NIy ' T 2@,

Equation (2.5) defines the itcration scquence used by the computations. To start the algorithm, O s
chosen as an arbitrary positive definite diagonal matrix.
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There are two possible images which may be displayed. The first consists of estimatcs of samples of
the scattering function. The second consists of magnitudes or squared magnitudes of estimates of samples
of the reflectivity function. The diagonal elements of Z are the values which are displayed as the scattering
function image of the target. Thus, at each stage an image is calculated and may be displayed. Some
appropriate stopping criterion is used to terminate the algorithm. At each stage of the algorithm the condi-
tional mean estimate of the reflectance is also generated. At step p, this estimate is

E[c|E@r]) = ZOT(IZPr + NI)'r. (2.6)

The magnitude or the magnitude squared of ¢ may also be displayed at each stage of the algorithm as an
image of the target. Thus both types of radar image commonly viewed are generated by our algorithm.
We feel this is a unique feature of our algorithm.

Let the comesponding sequence of covariance matrices for the data r be denoted
K =T'Z®r+ Nl Since this iteration is an EM algorithm, it has all of the properties associated with
this type of algorithm. In particular, the incomplete data loglikelihood is nondecreasing in the sequence of
covariance matrices K.

There are obviously issues associated with the appropriate or desired sampling rates of r(¢) and of
c(f,©). Some of these issues are addressed in [4]. The quality of the image obtained and the resolution
achievable are intimately related to the sampling issues.

This section has presented a review of the equations used to produce target images. This approach
starts with a model which accurately accounts for the random nature of radar reflections and adopts the
maximum likelihood method of statistics to estimate delay-Doppler high resolution images of radar targets.
Questions associated with uniqueness of spectrum estimates and convergence of the EM algorithm are dis-
cussed in {4,7]. Equation (2.5) is a computationally demanding update. Some of the issues associated with
this update are addressed in the next section.

3. Implementation of Algorithm

The implementation of the iterative algorithm described in (2.5) involves a number of lincar algebra
opcrations on arrays which may be very large. As a result, the development of efficient and numerically
stable routines, on both serial and massively-parallel machines, to perform these operatons is of great
importance in evaluating this algorithm. Because massively-parallel architectures are relatively new and
higher level software is not yet available, algorithmic development for these machines is more involved.

In order to understand the issues associated with our effort to apply the algorithm of (2.5) to a paral-
lef architecture, one must understand, to a degree, the limitations imposed by our resident parallel machine,
the DAP 510, and its programming language, Fortran-Plus. Fortran-Plus is an adapted version of Fortran
which hides all communication between processor clements from the user by virtue of its data structures.
Scalars, length-32 vectors, and 32x32 matrices are all distinct data types, and arrays of cach may be
formed. Additionally, Fortran-Plus supports no complex data type. Thus, the large, complex matrices
found in our signal model should be represented as 3-dimensional arrays of Fortran-Plus matrices in order
1o take maximum advantage of the parallel nature of the DAP. As we shall see, this in some ways compli-
cates and in other ways simplifics the task of programming.

3.1 Algebraic Operations in Algorithm

If one cxamincs (2.5), it is scen that the indicated itcrations can be performed by making usc of only
the following basic lincar algebra operations:

C=A+B
C=AB
C=A'B
A=vw

w=Aly
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B=A"! 3.1

where A, B, and C are complex matrices, and v and w are complex vectors. The addition operation is
greatly simplified by the data structures of Fortran-Plus; one need only add each of the 32x32 componcnts
of A to the corresponding component of B. Furthermore, each of these 32x32 additions can be accom-
plished by a single statement in Fortran-Plus.

Each of the fcur multiplication operations, although different, can be performed in Fortran-Plus by
following a similar strategy. Consider the first of these, that of performing matrix multiplication, where the
matrices in question are complex and of size 32nx32n, where n is a integer greater than 1. Thus, these
matrices would be represented as an nxn X2 array of Fortran-Plus matrices.

Golub and Van Loan (8] discuss two approaches to the matrix multiplication problem based on the
following partitioning:

nxnx2 3.2)

The more efficient of these two methods is that developed by Strassen, which performs the multiplication
of two M xM matrices via 7 multiplies and 18 adds of M /2xM /2 matrices:

Py =(A; +A»)(B; +By)
P,=(Ay +Ax)B),
Py=A(B;;-By)
Py=An(By - Byy)
Ps=(A1 +Ap)By

Ps= (A2 - A1)(By; +Byy)

P;= (A1~ An)(By + Byp)

Cy=P+P;—Ps+ P,

Ci=Py+Ps
C21 = P2+ P4
C22=P1 +P3—P2+P6 (33\)

This method is particularly useful for application to the DAP, if used recursively to reduce the problem to
that of multiplying and adding a series of 32x32 real matrices, which are straightforward and efficient
opcrations in Fortran-Plus. A slight modification of Strassen’s algorithm is required to handle the scparate
rcal and imaginary submatrices, but the recursive partitioning scheme remains intact.

The issue of matrix inversion within the algorithm is more fundamental, as the choice of algorithm is
not ol_)vious. Press, et. al. {16] discuss the merits of Strassen inversion, which is based on an analogous par-
titioning.

32x32 34
R, = Al-ll
R; = A xR,
R;=RxA,,
Ri=Ay;xR,
Rs=R, - A,
R, = R;'
C,=RyxRg
Cy =RgxR,
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R‘] = R3XC21
sz = —R6 (35)

The recursive partitioning associated with this algorithm makes it particularly attractive for implementation
on the DAP, as all numerical operations can be performed on Fortran-Plus matrices.

3.2 Further matrix inversion issues

In addition to the estimated covariance matrix K, often the matrix I is inverted for the purpose of
comparing the results of the EM algorithm with those obtained from (1.7) in an attempt to reconstruct ¢
using linear processing. This is in the spirit of conventional processing which is based on linear operations.
In addition, this corresponds to the maximum likelihood solution shown in (4.6) in the special case dis-
cussed there. Note that the parallel algorithm for inverting matrices in (3.5) seeks to invert the upper left
block of the original matrix. It happens that, under certain conditions, the upper left block of the matrix I’
may be singular, or at least poorly conditioned. As the partitioning is repeated, the algorithm becomes
numerically unstable for a large class of matrices I'. Other algorithms which first partition the matrix to be
inverted into its real and imaginary parts suffer the same fate.

If one examines the literature, one finds a wide variety of inversion algorithms based on decomposi-
tions. Each seeks to make the problem more tractable by factoring the matrix in question in such a way
that the factors are easily inverted. Many of these decompositions require that the matrix to be inverted
have a special structure which either K, or T do not satisfy. For example, the LU factorization requires
that all principal submatrices of the matrix in question be non-singular, in order for the algorithm to be
stable [8]. As we have already seen, this may not be true for I'.

We have chosen to implement the QR decomposition in Fortran-Plus for this purpose. This routine
factors a square matrix A in in the following way:

A=QR (3.6)

such that Q is unitary (Q'Q =1I) and R is upper triangular. This gives rise to the following inversion algo-
rithm:

A" =R'Q’ 3.7

Thus the inversion problcm has been transformed to the separate problems of calculating the factors,
inverting a triangular matrix, and performing one matrix multiplication. Notc that although this process
docs not reduce the complexity of the inversion problem, it defines the solution in terms of opcrations
which are well known.

Unfortunately, the parallel implementation of this inversion strategy is not as computationaily
cfficicnt as one might hope, as the operations associated with the QR decomposition can rcally only be
applied to columns of data at a time. In order to take maximum advantage of the DAP’s parallel architec-
ture, such operations should be applied to 32x32 matrices at a time. However, the inverse of I' is computed
only once for the purposes of forming the output of conventional processing, while the inverse of Ky is
computed at every iteration of the EM algorithm. Therefore, a significant increase in the speed of the algo-
rithm as a whole may be rcalized if a more efficient parallel routine for computing K is utilized. Certain
special cases for the transmitted signal give rise to such situations, as discussed in the next scction,

4. Improvements in Complexity

From the considerations developed in Section 3, it appears that the task of inverting the covariance
matrix K, is a formidable one. In this section we examine under what conditions the complexity of this
operation is lower than first expected.

4.1 Toeplitz-Block Toeplitz structure

Consider the often-used stepped-freauency waveform (9], The transmitted signal is made of N,
bursts of N, pulses cach. The signal transmitted in pulse p, of burst b, is a complex sinusoid at frequency
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pafT (Where f7 is the frequency step between successive pulses):
sp(t) = exp(-j2np, frt], “.1)

Usually the return signal is sampled at the pulse repetition frequency (1 sample per pulse ; N =N, N,). If
frAt is an integer, we obtain

sr(nAt—i At) = explj 2rp, friAt], 4.2

with n =N, b, +p,, 0<b, <N, ,0<p, <N,. In this instance K; has a special structure, known as
Toeplitz-Block-Toeplitz (TBT) [10]. From (2.2):

la—lly-1
Kp(n,m)= 3 Y o(k,i)explj2mkf,(n—m)At] sy (nAt~i At) s7(m At=i At)

k=0 i=0

Ix=11g=1

= 3 X olk,i) explj2nkf p (n—m)At ] exp(j 2n(p, —p )f 1i AT]
k=0 i=0
Im=11p-1

= Z Zc(k’l) eXpuznka (Np(bn_bm)+(pn_pm))m]x

k=0 i=0

exp[j2n(pn “Pm )leA‘t] . (43)

Thus Kg (n,m) is a function of b,-b,, and p,—p,, only. K, possesses a doubly Toeplitz structure: K; is
made of N, XV}, Toeplitz blocks of dimension N, xN, , themselves arranged in a Toeplitz structure.

Special algorithms have been developed for inverting TBT matrices [10,11]. The complexity of
Wax’s algorithm is min (V2N NNJ). For N, =N, this is equal to N¥2, which is significantly smaller
than N3 for large N. The complexxty of the TBT mamx inversion problem on a parallel machine has not
yet been investigated.

4.2 Special choice of the parameters

In the special case where Ig/cp =N and T is the identity matrix, the covariance matrix (2.2) has
the form

Kp =TT (E+N T . (4.4)
The trace condition (2.3) becomes
Tr [S(Z+N D) (yy'-Z-N HE+N D' =0, 4.5)
where
y=(T"r. (4.6)

The covariance to be inverted in this equation is diagonal. Numerically the inversion problem is now
trivial. Actually this equation can even be solved in closed form. The maximum-likelihood estimates are
given by:

o(k,i)=max [ly(k.i)|2—No,0] . @7

It should be noted that for stepped-frequency waveforms, the design /cg =N, and /p =N, leads to " r’
being the identity matrix. In this instance, |y| is the output of the conventional processmg for the radar
return, based on Fourier transforms [9]. The ML estimator is obtained by subtracting N, from this estimate,
followed by setting negative values to zero.

5. Regularization Methods

The ML estimator presented in Section 2 has been shown to offer lower bias and better resolution
than conventional estimators. However the estimates obtained with the estimation setup of Section 2 are
not mean-square consistent. This unfortunate result is due to the the number of parameters (/o5 /5 ) being at
lcast cqual to the number of data (V) in the method used. We are actually dealing with a small-sample

- 58 -




-8-

MLE problem. The situation becomes worse as Ig/cp is increased in an attempt to improve resolution.
The estimates are extremely sensitive to small changes in the data and exhibit a very rough shape charac-
terized by very sharp peaks and low valleys.

Such a behavior is of course highly undesirable, and we need a regularization of the estimates. This
concept was introduced by Tikhonov [12].

One possible approach for regularization of the estimates is the method of sieves introduced by
Grenander [13, p. 357]. A sieve in a parameter space A is a family of subsets S(u) of A indexed by a posi-
tive parameter p called the mesh size. A restricted ML estimate exists over each set S(it). As the mesh size
tends to zero the sets S() will be large enough to allow the ML solution to converge to any solution in A.
For the problem at hand the choice of a "good" value of p will depend on the data record size and the noise
level, among other factors.

A major problem is to find "good" sieves, which will make the ML estimates converge and possess
some desirable practical features such as analytical and/or computational tractability. Recently we pro-
posed a method of sieves for a spectrum estimation problem [14]. The function to be estimated is
represented by a series expansion, and the restricted set S(Q) is the set of series truncated to Q terms.
Essentially the variational matrix 8K, is now constrained in a Q -dimensional subset which will be much
smaller than the set of all possible variations. This method can be extended to the radar imaging problem
as follows [15].

5.1 Definition of a Sieve

The scattering function c(k,i) can be viewed as a vector in the Euclidean space R=" La
Yimk,i), 0l <l , 0<m <I;, beasetof [ozl; positive basis vectors in R/ 1t is not required
that this set be orthogonal. Consider the set of all vectors in the span of {y,,} with nonnegative
cocflicients:

Ia=11p=1

A = { ok,i)=3Y 3 all,m)y,(k.i) ,a(l,m)zo} . 5.1
=0 m=0

We define our parameter set to be A. The vectors in this set are represented by means of the coefficients

a(l,m) 0l <lcp, 0Sm <ly. We define a sieve S(Qcg.Qr) on o(k,i) by truncating the scrics

representation (5.1) to Qcg O terms. The integers Qcg and Qg are constrained to be no larger than /¢,

and /p, respectively.

=0 m=0

Oen—1 Qa1
S(QCR’QR):={G(k’i)= X X al,m)yk,i),al,m)20,. (5.2)

The vectors in  this subset are represented by means of (QqrQr  cocfficients
a(l,m) 01 <Qcg, 0Sm <Qp. We view these coefficients as being Oz O unknown parameters for
which ML estimates are sought. In [15] we show that consistency of the estimates can be obtained if Qcp
and Qp grow at an appropriate rate with N. Typically the basis functions that are designed arc localized in
range and cross-range (i.c. k and ). Next we show how the ML estimates of the cocfficicnts are com-
puted.

5.2 Algorithm No.1
For each [, m, define the support set D,,, of y,, (k,i). Also construct a diagonal matrix ¥,,, made of
the samples v, (k. {) and a basis covariance matrix
Kim =", (5.3)

It follows that K, subject to the sieve constraint, assumes the form

QOa=10x-1
Kr= Y Y a(l.m)K,, +Nol. (5.4)
(=0 m=0

The estimation problem is now to maximize the loglikelihood (2.1) subjcct to the constraint (5.4). From
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(2.3) and (5.4), a necessary condition for K to maximize (2.1) is the trace condition
r [(K'rr'Kg' -Kg)K,,, 1=0, 0<!1<Qcg, 0<m<Qg. (5.5)

The maximization problem is solved using an EM algorithm similar to the one derived in [14]. The com-
plete data are defined as ({¢;,}, W ), where ¢, , 0</ <Qcp, 0Sm <Qg, is an Icgly-vector with
covariance a(/,m) ¥, known up to the scale factor a(/,m). The estimate at step p+1 of the coefficient
a(l,m) is given by

E [|ci kD)2 r, d(,m)@]
Dim| &, iep. Vim (k,0)
Evaluating the expectation yields the update equation
dl,m)®*V=d(l,m)® + 5.7
2
|D1 l [a‘(l,m)‘”’] r (K e KPP - KK 1.
im

The algorithm is started with positive coefficienis a (I, m). Each matrix K;, is constant and can be com-
puted off-line. At each step the covariance matrix K’ must be inverted, which accounts for N opera-
tions. Following this, updating each d (!, m) just requires N2 multiplications/additions. The complexity of
each step of the EM algorithm is then

N3+QCRQRN2' (-8)

as compared to N3 + Iz Ix N? in the unconstrained case of §2. This saving is important, as it is now possi-
ble to let /-p I, tend to infinity. However the problem of inverting the covariance matrix is just as difficult
as before. In the next section we show how the method is handled in a special case of interest.

5.3 Algorithm No.2

The regularization method described in §5.2 can be applied to the special case presented in §4.2. In
general the trace condition cannot be solved in closed form, yet the computational requirements are drasti-
cally reduced. The update equation (5.7) becomes

[a‘(l,m)(‘”] 2><

al,m)eV=d(l,m)® +
|Dlm|

tr [(Z@+NoD)'yy! (EP 4+ NI - P+ N ™H Y, )

=d(l,m)® +

D] [a‘(l.m)(”)] 2>< (5.9)

5 ly(k,i)|2-o(k,i)®~N,
k.ieDn (6(k,i)P +Ny)?

Yim (k. 0) .

where the vector y is defined in (4.6). The matrix K has been reduced to a diagonal form and the numeri-
cal complexity of cach iteration is equal to
Qan=10a~1

Z ZIDIM‘

=0 m=0

multiplications/additions. This number is the total area of the support scts of the basis functions. For a dis-
cussion on the design of the basis functions and their support sets we refer to [15]. Typically it is required
that the support sets cover the entire range and cross-range domain, so that the complexity is equal to
Qen—1 Qa-1

Y XDy | = Mcrlp = AN, (5.10)

=0 m=0
where the constant A > 1 indicates the amount of overlapping of the support scts. This figure is a major
improvement from the corresponding figure in (5.8).

- 60 -




-10-

The special case that was treated in this section is very important, for it can be shown that the esti-
mates obtained with the algorithms of Sections 5.2 and 5.3 using different values for I Iz are asymptoti-
cally equivalent as N —» o [15]. This result justifies the choice of setting /cp /r = N, followed by using the
latter algorithm, as a valid approach to estimating o(k,i).

6. Simulations

We have performed simulations which will allow us to compare the results of the algorithm
described in section 2, the algorithm of section 5, as well as the results of conventional processing. In the
first of these, we designed a series of routines for a massively parallel machine which would generate simu-
lated radar data according to the indicated diffuse target model, and then implement the algorithms of sec-
tion 2 to estimate the target image. Our results here were quite promising. In every case examined, our
algorithm outperformed the conventional processing, and was especially superior in those cases where the
noise level was significant,

There are two sets of plots shown below. They are computed for a scattering function which is a
square of four by four pixels centered in a square of size eight by eight pixels. The intensities of the
scattering function in each of the regions and of the noise are the parameters in the plots shown. The
transmitted signal is a stepped frequency waveform, with one sample taken per pulse. A total of 64 pulses
are transmitted in the simulations with eight bursts of eight pulses each. The frequency step is chosen such
that 1At equals 0.125.

The first plots show the convergence of the value of the loglikelihood function for single realizations
of the simulation at two background noise levels. The signal to noise ratio indicated on the plots is com-
puted by first taking the ratio of the expected total energy in the signal part of the received signal and divid-
ing by the expected total energy in the noise, and then computing 10 times the log of that number.

The second set of plots shows the summed absolute error between the maximum likelihood image
assuming all of the data (¢) is observed and the maximum likelihood image assuming r is observed. These
plots measure the degradation in performance due to the noise and having to invert I'. These plots show
that the actual values displayed in the image continue to change even after the likelihood function is close
to its maximum. Visually, this effect is manifested in the image becoming rougher as the iterations
proceed. The regularization methods discussed in section S and in [15] take into account more prior infor-
mation known about the scattering function and thus produce less rough images.
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HIGH RESOLUTION RADAR IMAGING USING SPECTRUM ESTIMATION METHODS

JOSEPH A. O'SULLIVAN
DONALD L. SNYDER t

Abstract. This paper summarizes a new approach to high resolution radar imaging based on modem
spectrum estimation techniques. First a statistical model of the radar reflections which properly accounts
for the randomness of reflections by targets which are rough on the order of a wavelength of the carrier
frequency is introduced. The model for the radar return signal is valid for all transmitted narrowband radar
signals. Equations which generate maximum likelihood estimates for the reflectivity power as a function of
delay and Doppler coordinates are derived.

Introduction. This paper presents recent research results in high resolution delay-Doppler radar
imaging based on statistical models obtained from the underlying physics of spotight mode radar
reflections. We present solution equations which may be used to process radar return signals to form
images. These equations bear a strong resemblance to the equations derived in [1] for the generic Toeplitz
covariance estimation problem. This is a result of the fact that the reflectivity process which characterizes
the target is a random process which is stationary at each delay. Thus the samples of the reflectivity
process have Toeplitz covariances and the problem of estimating the parameters of the underlying spectra
reduces to a Toeplitz covariance estimation problem. We take circulant extensions of the covariance
matrices and estimate spectrum samples. There are several aspects of this problem which differ
significantly from the generic problem, but the underlying problem is to estimate Toeplitz covariance
matrices.

The model of the reflectivity process is described first. Since the processing is performed digitally,
the discrete form of this model is examined in detail. Next, the manner in which the transmitted signal
interacts with the reflectivity to form the radar return signal is presented. The imaging problem is reduced
to the problem of estimating the spectrum underlying the reflectivity process given samples of the radar
return signal. A necessary condition for the maximum likelihood solution is obtained and an EM algorithm
approach to solving for the maximum is taken. The results extend those in (1] in three important ways.
First, the samples of the process with a Toeplitz covariance are not available. Instead, the stationary
process is multiplied by a signal matrix. Second, the model includes an additive white Gaussian noise.
Third, the process of interest is a function of two variables. For each value of the delay variable, the
process is Toeplitz. Thus the model from [1] is extended to spectra which change as a function of an
independent variable.

Reflectivity process. The target is described in terms of its reflectivity. It is assumed that the radar
transmitted signal is a plane wave at the target so points on the target at a cross-section perpendicular to the
line of sight sum up to contribute to the same return signal. This sum changes as a function of time and is
denoted by y (¢,t). The variable 7 is the distance of points on the target from the transmitter given in time
units as the time it takes for a wave to propagate to the target and back to the transmitter (two-way delay).
From this model it is not apparent that separate points at the same two-way delay t may be differentiated to
obtain an image. These points may be differentiated if their velocities relative to the transmitter are
different. In particular, if the target is a rigid body and is rotating about a point along the line of sight, then
the velocity of a point in the direction of the transmitter is proportional to the distance of that point from

t+ Both authors are with the Electronic Systems and Signais Research Laboratory, Department of Electrical Engineering,
Washington University, St. Louis, MO 63130. This work was supported by contract number N0O0O14-86-K-0370 from the
Office of Naval Research.
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the line of sight. Since the Doppler shift introduced by a point on the target is proportional to this directed
velocity, a delay-Doppler image of a rotating rigid body is equivalent to a range-crossrange image. The
problem is to determine the power reflected from points as a funcdon of delay and Doppler and then to
display this power function as an image of the target. Even if this rigid body assumption for the target is
not valid, a delay-Doppler image can be a useful image of the target region.

Since the reflectivity y (¢,t) is the superposition of all reflectivities at delay T times the Doppler shift
terms they introduce, it may be expressed as

¥ = [e(f Deimnar, )

where ¢ (f ;1) is the reflectivity of the points on the target at two-way delay t which introduce a Doppler
shift f. The target is assumed to have finite extent. This implies that both y (¢,t) and ¢ (f ,t) are zero for t
outside of some fixed interval. It also implies that ¢ (f,1) is zero for f outside of some finite interval
because the Doppler variable corresponds to crossrange extent of the target. The processing is assumed to
be performed digitally so that discretized versions of y and ¢ are used. Suppose that the resolution cells of
f and 1 are Af and At respectively. Let there be /p bins in the delay or range direction (in delay
coordinates, the target is of length /g At/2) and let there be /cz bins in the Doppler or cross range direction
(so the target is of width IcpAf). If samples of the radar retum signal are taken every At seconds,
Equation (1) may be approximated by
(y=1¥2

y(kAt,nAT) = :(';_mc (m,n)eimmkof s )
where
c(ma)=c(mAf nAv)Af. (3)

The literature on radar reflections [2,3] describes statistical models for the reflectivity when the
target is rough on the order of a wavelength of the carrier signal. The model states that the reflectivity of a
patch on the target is a complex valued Gaussian random variable with zero mean and is uncorrelated from
patch to patch. For our model this corresponds to the assumptions on the reflectivity of patches of the
target

Efc@ik)ec(ma))=0
Elc(ik)e” (m.n)] =00 k)8; mBin. “)

Here, o(i k) is the real, nonnegative covariance of the reflectivity of the patch at delay k and Doppler i.
The scatterers described by this model are called wide-sense stationary uncorrelated scatterers (WSSUS)
by Van Trees [2] because the assumptions imply that

ElyG k)" (m.1)) = Ko Gi-m £)e., )
where y (i k) = y (i At-k At/2,AT) and
Ko(n k)= _i’:ﬁfnc(m.k)e"”"““’“ . ©

Let yg (k) be the vector of samples from delay &
Yo(k) =[y@©0k) y(Lk) y2k) -+ y(G-1k) ] M

The covariance matrix for yg (k) is a Toeplitz matrix Kg (k) whose i m element is Kg(i-m k). The
restriction imposed by the constraint of a target of finite extent is represented by Equation (6). That is, the
only 6(m k) which can be nonzero are for ~(Icpg-1)/2<m S (Icr-1)/2 and 0 Sk < Iz~1. This constraint
on m is only meaningful if Af Atlcg is less than one and it limits the K¢ (k) possible. If Af Az = /N, then
the o(m k) may be thought of as samples of the spectrum of the periodic extension of the covariance
matrix at delay k. Only /cp (Icr <N) of the spectrum samples at each delay are nonzero.

We now introduce larger vectors and matrices so that the results which follow may be written
compactly. The yg (k) are loaded into one Glg x1 vector y;. The covariance of yg is a block diagonal
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matrix K whose k* diagonal block is Kg (k). Define Z(k) 1o be the /cg x/cg diagonal matrix

Z(k) =diag[ o(0k) o(lk) o(2k) -+ o(-2k) o(~1k)] ®)
and define Z to be the /r/cp x/ricp block diagonal matrix whose k# block is Z(k). Then we have
Ko (k) =WEItrZk)IcrWa 9)
where W is an N xN nommalized DFT matrix (N > G,N > Icr), W consists of the first G columns of W,
and
Jer = [Id 8 Pz] (10

where Jcr is IcgxN, I is an identity matrix of dimension (Icg+1)/2, and I» is an identity matrix of
dimension (/cg—~1)/2. Jcgr implements the assumption that some spectrum samples are zero. Having now
defined several matrices, with a little more notation we can give a more precise relationship between the
matrix Z and the matrix K. Let Mcg be the Iplcpx/r N block diagonal matrix each of whose Iz blocks is
Jcr. Let My be the IzNxIzG block diagonal matrix each of whose Iz blocks is Jr (Jr is NxG and
equals [I 0]*). Finally, let W be the NIgxNIr block diagonal matrix each of whose /z blocks equais W.
Then

K = MkW™ME&R EMcr WM. (11)
Except for constraining some spectrum samples to be zero, if samples of yg (k) from each delay &

were directly available, this problem would be very similar to that from [1] and the approach to the solution
almost identical. Instead, for our problem, we have the data r which is described below.

Radar data. In a radar system, each signal is typically described as the product of a baseband signal
times a complex exponential at the carrier frequency. All of the interactions of interest for narrow band
radar systems may be described in terms of these complex valued baseband signals which will be called
complex envelopes of the signals or simply the signals.

Let sr(r) and sz (t) be the complex envelopes of the transmitted and received signals, respectively.
The distance of a point on the target from the transmitter/receiver is measured in time units as the two-way
delay. The received signal is the superposition of the reflectivity from all two-way delays times the
appropriate transmitted signals,

52 () =Isr(t-1)y (=20, (12)

In Equation (12), the t/2 arises because it takes that long for the transmitted signal to get to a point at two-
way delay t. The available data are the sum of the radar retumn signal and additive white Gaussian noise

r()=sr@)+w()
rit)= Isr(t-'t)y (¢-2)dt+w(t) . 13)

This equation forms the basis for our model. We now assume that samples of the data are available and we
wish to estimate the covariance of the reflectivities from patches on the target. The sampled version of

Equation (13) is
-1
rik)= str(kAt-nAt)y(kAl—uAt/ZJlAt)+w(k) . (1)
Given G samples 7 (k), 0sk<G -1, we may write Equation (14) in vector form as

r=Sfy+w, (15)

where r is the vector of samples 7 (k); w is a white noise vector with covariance Nol; y is the G/z x1 vector
of samples of the reflectivity of the target described above; and S# is a G xGlr matrix composed of /x
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G xG submatrices each of which is diagonal:
S+=[S0 81 Sz --- S 11, (16)

where
S. =diag [ st(-nAt) sr(At-nAT) sr(2At-nAT) -+ sT((G-DAt-nAT) 1.
Note that Equation (15) could also be written in terms of samples of ¢ (f ,T) as
r=Ic+w, (17

where c¢ is an Iglcp X1 vector of samples of the reflectivity of the target arranged as /r subvectors each of
length /cg of the samples from each delay and I'" is a G x/g Jcz matrix each element of which is a product
of a sample of sy times a complex exponential. More explicitly, I" is given by

I'= Mgy WM, St. (18)

There are obviously issues associated with the appropriate or desired sampling rates of 7 (¢) and of
c(f ,t). Some of these issues are addressed in (4). The quality of the image obtained and the resolution
achievable are intimately related to the sampling issues.

Since r is the result of linear operations on Gaussian random variables, r is a zero mean Gaussian
random variable with covariance

Kg =STKgSt + Nol =T'"E" + Nol, (19

Maximum likelihood solution. The loglikelihood function for the data is
L (Kg;r) = -In(detKp ) - r(Kg)'r. (20)

As shown first by Burg, et al. [5] a necessary condition for a matrix to maximize the loglikelihood function
is the trace condition

r [(Ki'rr'Ki! - Kz')8Kg]=0. @n
The matrix 8K is a variational matrix which takes values in all possible additive variations of the matrix

Kgr. The set of possible Kg is described by Equation (19). If we rewrite the trace condition in terms of
Kg, then we get

tr [St(S#Kg St + NoD) ™ (rr! — SKG St = No)(SFKG St + Nol) 578K ] = 0. (22)

Equation (22) shows the three ways in which the present spectrun estimation problem differs from that in
(1]. First, there is the signal matrix St appearing in (22) multiplying K wherever it appears. Second, the
additive noise manifests its influence in the equation above through the appearance of Nol. Third, the
matrix K¢ in Equation (22) is a block diagonal matrix with Toeplitz blocks, not merely Toeplitz. Despite
these differences an EM algorithmic approach to the solution can be derived in much the same way as in
(11.

For each delay k, define the complete data vector yn(k) to be the periodic extension of the data
vector yg (k)

ynky =[yok) yalk) ] 23

where y4 (k) is an (N-G)x1 vector which augments yg (k) to obtain a full period sample of the periodic
process. Let yy be the Nz x1 vector made by stacking the yy(k) to form one long vector. The complete
data loglikelihood is

LXy:yn)= - (n(detKy)) - yhKn )y, (24)
where Ky is a block diagonal matrix with each of the Iz blocks being a circulant Toeplitz matrix.
Premultiplying Ky by W and postmultiplying by W! yields a diagonal matrix. This diagonal matrix
consists of the samples of the spectrum, some of which are constrained to be zero by the assumption of a
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target of finite extent, This constraint results in
Kv = WM& IM W. (25)

What this implies is that after rotating the data yy using the orthogonal matrix W, some of the entries of the
resulting vector are zero. These elements may be removed from consideration by multiplying the resulting
data by Mcg, giving a vector of uncorrelated samples of a process whose covariance matrix is given by T

¢=Mcz Wyy (26)
Efccf1=Z . 27

This vector ¢ is the same as in Equation (17). Under the assumptions stated, the matrix Ky is not
invertible. The reflectivity, however, almost surely does not have a component in the null space of Ky so
we can make some sense of the complete data loglikelihood (24). A more correct way to write the
complete data loglikelihood is in terms of the rotated coordinates ¢ and its covariance Z:

L=t  (gx=-1V2 N
LE)=-% fino e+ A (28)

imm{fa-1V2

The EM algorithm is an iterative algorithm which at each step updates the estimate for the £ by
maximizing the conditional expected value of the complete data loglikelihood over £. The E-step of the
EM algorithm performs the expected value of (28) given the incomplete data and the previous estimate for
Z. The M-step consists of maximizing the result of this expectation over the o(i k). Since the complete
data loglikelihood in rotated coordinates separates into the sum of independent samples in (28), the result
of taking the maximum over the spectral values at step p+1 is just

o®@* V(i k) =E[|c (i &)|2|Z@)r]. 29
The estimate of the covariance of yn at step p+1 is found by transforming back to those coordinates

KIP*00=n k) = J 5 E D (m )y <m+i=n >w e K. (30)

This equation makes sense intuitively. It says that to find the maximum likelihood estimate over the
constrained set of Toeplitz covariances, augment the covariance matrix at each delay with the conditional
mean and mean square estimates of the missing lags. At the convergence point of the algorithm, the
covariance estimates equal the conditional mean estimates of the lag products.

Returning to Equation (27), the estimate at step p+1 of T is given by the diagonal elements of the
conditional expectation of cc’ or

£6+D 2 E [cct| 20 1], 3D

where < means that the off diagonal terms on the left are zero and the diagonal terms on the left equal the
diagonal terms on the right. The computation indicated in (31) is a standard problem in estimation theory.
This equation may be written as [4]

TE+) 2 £6) 4 TP + Nol)(rr! = [T = NI )ITZOT + Nol)~ [T, (2)

Equation (32) defines the iteration sequence used by the computations. The diagonal elements of I are the
values which are displayed as the scattering function image of the target. Thus, at each stage an image is
calculated and may be displayed. Some appropriate stopping criterion is used to terminate the algorithm.
It should be pointed out that at each stage of the algorithm the conditional mean estimate of the reflectance

is also generated. At step p, this estimate is
E[c|Z®) x] = ZP)T(TTL®)T + Nol)'r. 33)

The magniwde or the magnitude squared of ¢ are commonly viewed as images of the target. Thus both
types of radar image commonly viewed are generated by our algorithm. We feel this is a unique feature of

our algorithm.
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Let the comesponding sequence of covariance matrices for the data r be denoted
K¥) =720 + Nol. Since this iteration is an EM algorithm, it has all of the properties associated with
this type of algorithm. In particular, the incomplete data loglikelihood is nondecreasing in the sequence of
covariance matrices K#).

This section has presented a derivation of the equations used to produce target images. This
approach starts with a modet which accurately accounts for the random nature of radar reflections and
adopts the maximum likelihood method of statistics to estimate delay-Doppler high resolution images of
radar targets. Questions associated with uniqueness of spectrum estimates and convergence of the EM
algorithm are discussed in the following section.

Convergence issues. This section addresses some of the convergence questions associated with the
the EM algorithms proposed in earlier sections. These results are stated so that they apply to both the radar
imaging problem studied here and the Toeplitz estimation problem from [1]. Let the integer M stand for
Iplcp in the radar problem. The matrix I refers to the I' from the last section or simply to W¢ if we are
discussing the original Toeplitz problem. Also, N is zero for the original Toeplitz problem.

One question of imporance is the uniqueness of estimates of the parameters of interest. This
question is addressed by looking at the Cramer-Rao bounds on the variance of estimates. The Cramer-Rao
bounds are obtained by inverting the Fisher information matrix. When the Fisher information matrix is
singular, these bounds are infinite. It is shown how singularity of the Fisher information matrix
corresponds to nonuniqueness of parameter estimates.

Definition: Let v, denote the k* row of the M xG matrix I'. The M xG2 matrix F has k* row given by
Y @&, where @ denotes the kronecker product.

Theorem 1: The Fisher information matrix for estimating Z given data r is equal to
FKe'®KiHF?t . (34)

Proof: The Fisher information matrix is just the negative of the expected value of the second derivative of
the log-likelihood function. This second derivative is evaluated in the appendix of (4] and taking the
expected value yields the above expression.

Theorem 2: Suppose the Fisher information matrix in (34) is singular and that the matrix Kg is positive
definite. Then there does not exist a T which is positive definite which yields a unique maxmum of the
log-likelihood.

Proof: Since the rank of the matrix K¢'® K equals G2, and by the form of the matrix, the Fisher
information matrix is singular if and only if the matrix F has rank less than M if and only if there exists a
real vector s such that Ffs =0. Such an s exists if and only if there exists a real diagonal matrix D
(D =di :g (s)) such that

IrE+aD ) =TIl (35)

for all r:al o If I is positive definite and maximizes the log-likelihood, then there exists a § such that for
all 0 S a <P the matrix £+ oD is nonnegative definite and yields the same covariance matrix and hence
the samc value for the log-likelihood.

Coroll ry 1: For the spectrum estimation problem from (1], there does not exist a positive definite £ which
yields a unique maximum of the log-likelihood if N > 2G -~1.
Proof: The matrix F constructed above has rank less than or equal to 2G ~1.

Note that this theorem does not say that the estimate of the Toeplitz covariance matrices generated
by the algorithm are not unique. The theorem and its corollary relate to the uniqueness of the spectrum
samples. For some problems the parameters of interest are in the covariance matrix Kz or in the Toeplitz
matrix Kg. There could be (and indeed are for M large enough) many Z which yield the same estimate for
Kg. Theorem 2 can be applied to problems where one desires to know how big to make V. In general, it
is desired to have N as short as possible in order t0 reduce the number of parameters to be estimated. If it
can be shown that with a given N there exists a positive definite matrix which yields the maximum
likelihood estimate for the covariance matrix and the conditions of the theorem are satisfied, then one
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might consider using a smaller ¥ to reduce the size of L.

For some problems, including the radar problem, it is the matrix £ which is of interest. For these
problems, it is very important to know when the estimate is unique. The radar imaging problem is one
example. In the radar problem, the result which is displayed as an image is an array whose elements are
the diagonal entries from Z. In order to be able 10 generate a unique image, the conditions of theorem 2
must be satisfied.

Some of the issues associated with convergence of the EM algorithm for the problems described are
addressed next. The following material is adapted from the material in [1] to be applicable to the radar
problem as well.

Definition: Let K# be the set of positive definite matrices Kg given by Equation (19) whose entries are
bounded by some number a. Let K§ be the closure of K£, the set of nonnegative definite matrices of this
parameterized form.

The important issues for the following theorems are not the matrices which go into I'. What is
important is that any Kz € K¢ may be written as

Ke ='§o(k Yt +Nok, (36)

where ¥ is the £ row of I" which is fixed once the model is specified. The only parameters which must
be found are the o(k) which are specified to be greater than or equal to zero. An element of K# must have
Nq equal to zero. This is an important case for which we wish to guarantee that the estimate of Kg is
nonsingular. Clearly for any fixed b the set K£ is compact.

Theorem 3: Let T be any fixed MxG matrix with complex entries. Let v be an observation of a Gx1 0-

mean Gaussian random vector whose covariance is some positive definite hermitian symmetric mairix.
Then

a) There does not exist a singular Kg € K} such that r is in the range space of Kz, with probability one.
b) The log-likelihood function is bounded from above over the set Kg, with probability one.

Proof: a) Suppose that any G rows of I" are linearly independent. Since K is given by (36), a singular
matrix in this class must be given by

Ki = ,,;,c(k Wit (37N

where J<(0,1,2,....M -1} consists of G-1 or fewer integers which correspond to the nonzero diagonal
entries of Z. Since the true covariance for r is nonsingular, the probability that r lies in the subspace
spanned by {Y{|keJ} is zero. Since there are a finite number of such spaces and the probability that r is in
any one of them is zero, the probability that r is in the range of any singular K in the set is zero. Ifany G
rows are not independent, then singular matrices may be written as the sum of more than G -1 outer
products Y{Y:. But the data would still have to lie in a subspace spanned by fewer than G independent
vectors and thus the probability of this is zero and this part of the theorem follows.

b) This part follows from (6] where it is shown that the log-likelihood function is bounded above when the
data are not in the range space of a singular covariance matrix in the set in question. The proof is based on
the following facts. First, if Kz is nonsingular and its eigenvalues are bounded from above and below, the
log-likelihood is bounded. Second, if Ky is singular and the data are in its range, the log-likelihood is
unbounded above; but this is a zero probability even:. Third, if Kg is singular (with rank n) and the data are
not in its range, the log-likelihood is unbounded from below. This is shown by writing K as the limit as
e =0 of Kg + I[M(eI)l". We examine the loglikelihood (20) when r is not in the range of Kz. The term
~In(det(Kx + eI''T)) has bounded terms and an unbounded component of the form —(G -n )In(g). The term
—t/(Kp + el'M)~'r has bounded terms and an unbounded component of the form —c /g, where ¢ is some
positive number. Then,

lim ~G-n)in(e) - % =0 . (38)

There are more facts needed to prove convergence. One fact is that the log-likelihood is increasing
at each step of the algorithm. Another is that the iterates stay in a bounded set so that the above theorems
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apply. The theorems before this point apply to the problem no matter what algorithm is used to find the
maximum likelihood estimate, while the theorems that follow apply for our particular algorithm.

Theorem 4: The iterates defined by the EM algorithm (32) produce a sequence of log-likelihoods which
are nondecreasing,

LKR*ir) - LKRr) 2 QD 1K) ~ QKA IKP) 20

where L (.;.) is the log-likelihood for the problem.
Proof: This is just a result of the sequence being generated by an EM algorithm (7, 8].

Theorem 5: L (KP*Vir) = L (K@)ir) if and only if ¢+ = £@),

Proof: This is a result of the concavity of the complete data log-likelihood. Take the second derivative
with respect to the variable being maximized, £. For each diagonal entry of I this derivative is either
positive or zero. It’s zero if and only if the previous corresponding entry of I is zero, and this entry would
remain zero. Thus the maximizer is unique and is given by Z¢+)), By the inequality from the theorem 3,
theorem 4 follows.

The one last theorem we would like to have is that the iterates remain in a bounded set. It has been
our experience in computations that the iterates do remain bounded, but we have had trouble proving this in
the general case. We have observed in computations that £ may tend to a singular limit. This is not
precluded by any of the above theorems. In fact, for our radar imaging problem we do not wish to exclude
this possibility since a zero estimate of the power reflected from a point simply means that there is no target
at that point. '

Conclusions. We have presented an algorithm for generating images of radar targets in the delay-
Doppier piane. The approach has been estimation based because of our assumption of targets which are
rough on the arder of a wavelength of the carrier frequency. Some of the theoretical properties of this
approach and uniqueness of estimates have been discussed. Presently we are implementing the proposed
algorithm and performing computational studies. We are also addressing several theoretical issues. One
issue of particular importance is the incorporation of specular components in the algorithm. These points
would have a different statistical characterization than the diffuse components considered here and a
correspondingly altered loglikelihood to be maximized. Computationally, we are examining the
convergence of our algorithm, its computational complexity, and comparing the performance of the
algorithm to other approaches.
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