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sitions brought about by a thin barrier in the middle of an asymmetric quantum well are

calculated. with a particularly close look at such changes as the middle barrier height ap-

proaches the bound-state energies. It is found that the oscillator strength goes through

a slight change as the barrier height approaches the ground-state energy but an abrupt

change when it approaches the excited bound-state energy. A suitable explanation for this

change is provided. A similar tailoring of the intersubband transitions is also achieved by

placing a delta-function potential in the vicinity of the middle of the well but without any
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In the last decade. enormous effort has been spent in understanding the physics of

quantum well structures 6ecause of their applications to electronic and optoelectronic

devices.' These structures can be fabricated by the molecular beam epitaxy technique.

where the thicknesses and fractional molecular constituents of the layers can be controlled

precisely and the interfaces sharply defined. The most widely used structure consists of

alternate layers of AIlGal_,As and GaAs where AlGal-,As has a direct band gap at the

F-point for Al concentration x less than 0.4. The conduction and valence band differences

in AlrGal-,As and GaAs layers form the barriers and wells. respectively. A GaAs laver

of appropriate thickness sandwiched between the two thick layers of Al, Go - As acts as a

quantum well. which has different bound states depending upon the GaA, layer thickness

and Al concentration x in the AlGal-,As layers. Recently. transitions between the

bound states of the well have received considerable amount of theoretical and experimental

attention because of the applicability to photoconductivity2 and light absorption. 3 -6 It has

also been found that with suitably chosen parameters for the quantum well. the structure

could be used for infrared detection. -10

Very recently. Trzeciakowski and McCombelo performed a theoretical study to tailor

the intersubband absorption by considering a thin layer of Al Ga1 -,A 4 in the middle of

the well. They found that the presence of a thin barrier in the middle of the well shifts

the ground-state energy of the well whereas the first-excited state remains practically un-

changed. By changing the concentration y of Al in the middle layer, which determines the

height of the barrier, they demonstrated that the energy separation between the ground

state and the first-excited state could be changed without appreciably changing the oscil-
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lator strength for the around state to the first-excited state

In the present Letter. we report the results of an investigation similar to that of

Trzeciakowski and McCombe'0 but with a closer look at cases where the height of the

middle barrier approaches the energy of the ground state and the first-excited state. A

different pattern for the change in the oscillator strength as function of barrier height is

found as the barrier height approaches the bound states. It is also found that a similar

tailoring can also be achieved by changing the strength of a delta-function potential placed

in the vicinity of the middle of the well without any appreciable change in the oscillator

strength.

An asymmetric coupled well as shown in Fig. 1 has been considered for investigation.

Some approximations such as neglecting the I7-X mixing when Al concentration y is more

than 0.4 and nonparabolicity effects" which affect the results slightly are made for sim-

plification. We also take a constant effective mass (0.067mo, mo being the rest mass of the

electron) throughout the structure. The well extends from -d/2 to d/2 where d is taken

to be 130 A. The thin barrier in the middle extends from -b/2 to b/2 and three different

values of b (5. 10 and 15 A) are considered in our calculation. For the calculation with

delta-function potential in the vicinity of the middle of the well. three different positions (c

= 0. 5. 10 A) from the middle of the well are used. All the energies are measured from the

bottom of the well. The energies of both the symmetric and antisymmetric bound states

are given by the relation

sin 2 kd .All + KL---n'A12 + A21 + "'R 221

kd L + LR L K LRCOS _['--A-ii AI2 + k--T A21 - .L A22t
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-'siA'dk L - LAR . L -IR AL KR
k41 _A-Ill A -21

A-" '-'22i = O. ( 1 )

where k= V . •IL = Km , = V -n .n is an effective mass. and

A is a 2 x 2 matrix which results from matching the wave functions and their derivatives

at the interfaces of the middle barrier or at the delta-function potential. I'L and V1R are

the depths of the well as shown in Fig. 1. For the middle barrier extending from -b/2 to

l)/2. A is given by

1kb k4
.411 = cos'bcos'bb + -)sin kbsin kbb. (2a)

kb , kb k si2kbsikbA12= sin kbcosk b +(-cs- sn kb (2b)
Lb kb k kbA12 = sinkbcoskbb+( S cosi ) sin kbb. (2c)
k .b 2A1=sin kb cos kbb + (k sin2 2 .- Ck b i k 2

1 Tb k
A 22 = cos kbcos kbb + 1- (- + -) sinkbsin kbb. (2d)

when the barrier height I, is less than E. The same expression can be used when 1' is

greater than E by changing kb to zkb . Here kb = 2m(E- ) For the delta-function

potential located at a distance c from the middle of the well. the matrix A takes the form

A ( 1 - -Lsin2kc -- cos" kc

k .sin2 kc 1 + - sin2kc) (3)

where 6 = .. with 6' as the strength of the delta-function potential measured in eV A.

It is clear from Eqs. (1 )-(3) that for the case where U or 6' is taken to be zero. A reduces

to a unit matrix and Eq. (1) takes the form

RL + KR IKLARkL+K cos kd - ( 1 - KLE- ) sin kd = 0. (4)



which is the condition for the bound states in an asymmetric well of width d. For the

symmetric well. since AL = KR - I. Eq. 4) reduces to

1 A Kcos d - - isin kd=O.2 K k

which is the condition for the bound states in a symmetric well of width d.

The oscillator strength for the dipole transition from a state m to a state n is given

by

.fmn 2m 0(E, -E,) I < nixlin > V.. (6)
- h2

where m 0 is the rest mass of the electrons. E, and E, are the energies of the 17 and n7

states. respectively, and < n hxim > is the dipole matrix element.

Equations (1)-(3) can be used to find the symmetric and antisymmetric states of an

asymmetric well. and the oscillator strength for the transition between these two states

c in be calculated by employing Eq. (6). Depending upon the width and depth of the well.

if there is more than one excited state then a transition between the symmetric states is

forbidden by selection rules. A transition from the ground state to the second-excited state

is not allowed, whereas the transition from the first-excited state to the second-excited state

is allowed if either of the states is populated by some means.

Figures (2) and (3) show our results for a well of width 150 A with left and right

walls 200 meV and 180 meV deep. respectively, and a thin barrier of width 5. 10 or 1

A. Panel (a) of Fig. 2 shows the change in the ground-and the first-excited-state energies

and the oscillator strength for the transition between them versus the barrier height in the

vicinity of the ground state. The insert in the lower half of panel (a) displays the ground

state and first-excited wave functions for the barrier height and width of 18 meV and 15



A. respectively. It is quite clear that the oscillator strength remains practically constant

.or the iower vaiues of 1 '. As I approaches the ground state. the chan e brought by the

")arner in the round-state wave function increases the oscillator strength slightly because

the barner remains practically unseen by the excited state. and also the wave function of

the excited state vanishes in the vicinity of the middle of the well. The results in panel

1 b) of Fig. 2 display the changes due to the barrier height in the vicinity of the excited

state. In this case the wave function of the ground state goes through a minimum in the

barrier region. whereas the wave function of the excited state has an oscillation (due to the

formation of an excited stqte in the small well formed by the excited state and the barrier)

in that region. although the wave function still vanishes in the vicinity of the middle of

the well (see the insert in the bottom half of panel (b) of Fig. 2). This change in the

wave function results in a minimum for the oscillator strength. but the state energies are

not affected. In Fig. 3. we show the results when 1'6 is above the energies of both states.

A smooth variation of the oscillator strength as expected is found. The change in the

ground-state energy and decrease of the oscillator strength results from the minimum of

the ground-state wave function in the barrier region. A similar pattern is also observed

for the transition from the first-excited state to the second-excited state but is not shown

here in the interest of brevity.

Figure 4 shows the results for a delta-function potential of variable strength placed

at 0. 5 or 10 A away from the middle of the well. The oscillator strength in this case

decreases smoothly. even for a small value of the strength of the delta-function potential.

because the height of a delta-function potential extends to infinity.



In conclusion, we have carried out a theoretical investigation of the intersubband tran-

sitions in an asymrnetric quantum well i 1) by considering a thin barrier of variable height

in the middle of the well or (2) by placing a delta-function potential of variable strength

in the vicinity of the middle of the well. In the case of a thin barrier, significant changes

in the oscillator strength are noticed as the barrier height approaches the bound state

energies. whereas the energies of the states remained unaffected. It has also been found

that the tailoring of intersubband transitions is also possible by changing the strength of a

delta-function potential placed in the -icinity of the middle of the well without appreciably

changing the oscillator strength.

One of the authors (MLR) is grateful to Dr. D.J. Nagel of the Naval Research Labo-

ratory for providing the facitilites to carry out a part of this work during the summe of

1989. This research was supported by the Office of Naval Research.



References

L.L. Chanze. L. Esaki and R. Tsu. Appi. Phys. Lett. 24. 593 (1974).

2. B.F. Levine. IE.I Choi. C.G. Bethea. J. Walker and R.J. Malik.

Appl.Phys. Lett. 50. 1092 (1987).

3. 'I. Olszakier. E. Ehrenifreund. E. Cohen. J. Bajaj. G.J. Sullivan

and D. Miller. Superlattices and Microstructures 5. 283 (1989).

4. R. Cingolani. L. Tapfer. Y.H. Zhang. R. Muralidlharan. K. Ploog

and C. Tejedor. Phys. Rev. B 40. 8319 (1989).

5. L.C. West and S.J. Singh. Appi. Phys. Lett. 46. 1156 (1985).

6. G. Li. W. Wobbelaere. D. Huang and H. Morkoc. Phys. Rev. B 39 (1989).

7. B.F. Levine. R.J. Malik. J. Walker. K.K. Choi. C.G. Bethea.

D.A. Kleinman and J.M. Vandenberg, Appl. Phys. Lett. 50. 273 (1987).

S. M.A. Kinch and A. Yariv. Appl. Phys. Lett. 55. 2093 (1989).

9. R.L. Greene and P. Lane. Phys. Rev. B 34. 8639 (1986).

10. W. Trzeciakowski and B.D. McCombe. Appl. Phys. Lett. 55. 891 (1989).

11. D.F. Nelson. R.C. Miller and D.A. Kleinman. Phys. Rev.

B 35. 7770 (1987).



Figure Captions

Fio.. " Schematic diagram of an asymmetric quantun well structure with a

thin barrier or a delta-function potential. The parameters taken for

the calculation are as follows: I'L = 200 meV. VR = 180 meV. d = 150 A.

b = 5. 10 or 15 A. and c t position of the delta-function potential

away from the middle of the well) = 0. 5 or 10 A.

Fig. 2. Energies of the ground and first-excited states measured from

the bottom of the well and their corresponding oscillator strength

versus barrier height i) in the vicinity of the ground state.

[panel (a)) and (ii) in the vicinity of the first excited state [panel

(b)]. The solid, dashed and dotted curves correspond to barrier

widths of 5. 10 and 15 A. respectively. The insert in the bottom half

of panel (a) displays the ground-state (solid line) and first-

excited-state (dotted line) wave functions from -100 to 100 . spatial

dimension for a 18 meV barrier height and 15 A barrier width.

In panel (b) the wave functions are shown for a 64 meV barrier height

and 15 A barrier width.

Fig. 3. Ground and first-excited-state energies and oscillator strength

as in Fig. 2 but for a barrier height above the first-excited state.

Fig. 4. Energies of the ground and first-excited states measured from

the bottom of the well and their corresponding oscillator strengths as a

function of the strength of the delta-function potential. The solid.
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dashed and dotted curves correspond to c = 0. 3 and 10 A. respectively.

E-xactiy the same results are found for c = -.5 and -10 A.
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