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We prove consistency, stability and convergence of the point vortex aprjiMa n the. -2-D
incompressible Euler equations with smooth solutions. -fin*.&hew-hJ the discretization error is
second-order accurate. T-h m.::e ,"'wthe method is stable in/a norm. onsequenly the metho ,
converges in L norm for all time. The con Ergence is also illustratyd by a numerical experiment. ) "e-,/,

/

_ We prove consistency, stability, and convergence of the point vortex approxi-
mation to the incompressible Euler equations in two dimensions. The vortex
method for this problem (see e.g. Chorin [51) has two parameters, the grid length,
h, and the smoothing length (or "blob size"), 8. In computational practice people
usually take 8 - h or 8 = 0 (see [13]) but the convergence theorem of Hald [101
and subsequent work needed the hypothesis that 8 > h, leaving these cases of
computational practice in doubt. In this paper we prove convergence with 8 = 0
under hypotheses that are otherwise similar to those of Hald. This convergence is
also illustrated by a numerical experiment. Of course, we can not claim that the
point vortex method is better than the vortex blob method or vice versa; our
purpose is to show that the point vortex method works in principle. In future
work [9], we shall treat the case 8 * 0 but 8 not much larger than h. We shall
also treat some of the proposed three-dimensional vortex methods; see [11].

The proof follows that of Hald with an improvement (4, instead of 12 norms)
introduced by Beale and Majda [3]. We show that the method is formally
second-order accurate by showing that certain sums are second-order accurate
approximations to the corresponding Biot Savart integrals. Actually, we get an
asymptotic expansion for the truncation error that would allow us to use Strang's
device in [15] and prove convergence for low-order accurate methods in high
dimensions. That is deferred to a later paper. We then prove 1. stability for

SI < p < o by using L. bounds for a related continuous singular integral
operator, much as was done by Hald and by Beale and Majda. Except for this L.
bound, our proof is elementary and selfontained.
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In vorticity formulation, the two-dimensional inviscid incompressible Euler
equations are (see 1101)

(1) W, + (u.- V)W =0,

2)u(X, t) =fK(x y) (y, t) dy

(3) K(x) = 'x2(-X2, X0)

It is known (see e.g. [16]) that for the initial vorticity w (x, 0) - ~0 x) which is
smooth and localized (W E= S, the Schwartz class; see [8]) a solution of (1), (2)
exists for all times (to(., t) r= S for all t > 0). The Lagrangian (or "flow map")
coordinate, J, is defined implicitly by the particle trajectories, y(J, t), which
satisfy

d

If wO e S, then this change of variables is smooth. Since the flow is incompress-
ible, det(8#y/aJ) 9E 1 and therefore the mapping J - y has a smooth inverse
J - (y, t). The point vortex method approximation is to replace (2) and (1) by

(5) vJ(1) = h2EK(xj(t) - kt) ,

and

(6) -ij(t) -V

where xj(O) - h -' j, j (jl, j2) C= Z 2, h C= R is the grid length, and w,
tx().A consequence of localized vorticity is that particles far away move

very little. In particular, for any T we have

lim sup IU )-V 0

From (1) it follows that

The exact particle trajectories y (t) are the Lagrangian images of the original
grid: yj(t) -~j 1)0. We write h -J so that ".(y,(t), 1) - O(Q, - wj The 1
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discretel,. norm is defined by

Recall that v(t) is the approximate velocity field defined by (5). We also write
u= u(yj(t), t), the exact solution. Our result is

TIIEoum A. For all Tand 4 < p< o,here is aC(T, p) such that

(8) I1v(t) - u(t) 11 C(T, p)h'.

TH~oR~m B. Suppose wO r S, 4 < p < oo, and T> 0 are given, and that

(9) IJx(t) -y(t) 11;Sh 2 -1 /4 for 0 t ;ST.

Then there exists an A(T, p) such that

(10) I1v(t) - u(t) 11 .1 A(T, p)I11x(t) - y(t) 11 + A(T, p) h,

for 0 :- t :6 T, where A (T, p) is a nondecreasing fuinction in T.

Remarks. 1. The assumption tJ e S can be replaced by a finite degree of
differentiability and decay.

2. Te h 1 1 'in (9) can be replaced by flx(t) - y(t) 11. ;5 0(h)h for any
vpositive function +(h) with +(h) - 0as h --o0.

3. By a longer consistency argument that uses the asymptotic error expansion
(17) in the manner of Strang [15, the restriction 4 < p < oc can be replaced by
1< P< 0.

4. Our LemmalIto follow is inthe spirit of the remark of Bealel[2]on the
consistency of a 3-D vortex blob method.

5. The techniques in this paper also apply to the deterministic vortex method

.Of rrsltde not forl to the ill-posed vortex sheet problem where

analyticity seems to be necessary for convergence; see [4]..

We choose to present a proof that does not depend on smoothing the kernel
K as in the blob method. We mention, however, that due to the incompressibility
and smoothness of the flow map y(j), the point vortex method can be identified
with the blob method with blobs of size 0(h); see [11]. Consequently, the blob
techniques can be more or less applied directly resulting in a shorter but less
selfoontained proof. We do not present this method to emphasize that no
additional smoothing is necessary.

~. .-- - - - - - - -. .... -
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The statement of direct practical interest is Theorem A, but it is more
convenient to prove Theorem B. Let us indicate how Theorem A follows from
Theorem B.

Proof of Theorem A from Theorem B: For a given h and p, define TP by

It suffices to show that if h : Aep-AT ).Tte T o nta

case (T* > T), we have jfx(t) - y(t) 1j.g h2 -114 for all t .g T. It follows from
(10) that, for t -- T,

-1, I1x(t) - y(t) 11 , 1v(t) - u(t)j 11:gA(T,,p)Iix(t) - y(t)11 + A(T,p~ 2

which, via Gronwall's inequality, proves (7) with C -eA. We get (8) with
C = AeA*T from (7) and (10). Now, if P~ -- T, we have, for all t s-;7*

d - 2Tj Ix(t) - y(t) 11 11~v(1) - u(t) 11 g A(T', p) 11x(t) - y(t) 11+ A(7 , p)h2

by (10), which implies that j1x(t) - y(t) 11;g exp(A(T*, p)T}h 2 for t P by
Gronwall's inequality, But A(T*, p) is a nondecreasing function of 71. By the
choice of h, we conclude that

for all t -- P~, which contradicts the definition of TP.

Proof of Theorem B: First we show that the y. are close to satisfying (5) and
(6). More precisely, define the residual, or " truncation error", p, by

(11) - u(yj(t), t) - h 2 T, K(yj(t) -Yk(t))Cok.

We claim:

LEMMA 1 (Consistency). There is a constant, D(T), such that 11 p t) 116
D(T)h 2 for alltis T.

Proof of Lemma 1: In (2) we change from y to j as variable of integration
and set x - yj~t). Using incompressibility, we have
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Thus p is the error in trapezoid rule integration. Therefore the lemma would be
routine but for the singularity of K. To handle this we split p into its near field
part, a, and its far field part, r. For this, we use a smooth cut-off function, f(s),
of s er , satisfying f(s) a 1 if s ; 1 and f(s) a 0 if s ? 2. Let g(s) - 1 - f(s)
be the complement of f. We split up pjinto aj + rj, where 0 < q < 1 and

aj JK(yj1 y(j))WO(j)f (h-qfj - Ji) dt
(12)

- h" (y - Y)°(f)f(h -

and

+- fK(yj - y(j))wo(j)g(heIjj - I) di

(13)
- h2 E K((y - Yk) 0(k) g(h - _ 4).

kj

For notational convenience, we temporarily take j =- (0, 0) so that j = (0, 0)
and we write y' for y'(0), the derivative of y with respect to J, etc.

To estimate the near field, we must characterize the near field behavior of
K(y(O) - y(j))O,(J) for small 1.

LmIMA2. For any N, we have
~b.

(14) K(-y(j))w0 (J) + mo(s) + ml(f) + ' +O(l*l.),

where b is a 2 × 2 matrix and m. is omogeneous of degree n in : m.(at)-
aam.(j) for all a C R.

The denominator does not vanish since det(y') - 1. The terms b and m.
depend on t, but they as well as the error bound implied in (14) are uniform in
t ;S T. Since the m, are actually rational functions of 4, a need not be positive.
In particular, m.(J) is an even or odd function of J depending on whether n isIeven or odd.

Proof of Lemma 2: Note that since y(j, t) and wo(j) are C- functions of J,
we have the expanons

(15) y() - y(o) + y' + y"(1, 4) + ... +O(l")

and

(16) oO(j) 3,O(o) + Wolf + o"(1, ) + ... +O(1419 )
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for any N. The numerator of K has a simple expansion, so we need only study

the denominator
1 __ _

jy(j)
21 Yll + y

2 '

But, using (15), we get

IyI2 y1 2* + 2(y1' -4 *y1"(f, 4) + 2(y2' -4) -y2"(J J) +[ ly'J12

where the successive terms have the orders and smoothness claimed. Once we
have an expansion for K using (15), we can multiply it by (16) to get the desired
expansion for Kw, which proves the lemma.

Consider the integral term in (12). Since f(jD is even, we have

f 1 .'f(h-91jJ) d O = 0,

and

fm.(4)I(h-q11) d4 = o for n odd.

Also, the substitution q = h -q gives, for n even,

fm.()f(h-ej)dj=a,,h(n+2)q where a, = fm.(n1)f(jnj)di.

A similar analysis holds for the discrete summation terms of (12). The odd
order 'terms vanish. For the even terms we have a 'little trick. The sums may be
written as

h2 F m,(hk)f(hs-qlkl) = h S(h),

.-. , kO.

where

S(h) m,(k)f(hI-qjkj)•
koO

Now, since S is a sum with finitely many non-zero terms,

d S,(h) (1 - q) E m.(k)vf(hI''k) • h-qlkl

- (1 - q) h -(+3x'-q- - F. m.(h1-k)ji(h'-qjkj)(h'-),
k*O

k, 7O

*
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where f(y) vy/flyD •yI. The sum is a trapezoid rule approximation to

, fm.(y)f(y) dy.

The integrand is a C;' function of y since vf vanishes at the origin where m. is
singular and vf has compact support. It is well known (e.g. [1], [7], p. 300) that
the trapezoid rule for such integrals has an infinite order of accuracy, that is

(h' -)Z E m.(hl-k)f(hi-qk) = b, + O(hN) forany N.
k-0O

This shows that

dN.
dh S(h) = (I - q) + 0(h

Using this and the integral representation

S.( h) =S.( ) - ih d S

fhd

we obtain

S.(h) c. + b.h-(+ 2Xi-q)+ O( hN) forany N,

where c. is a constant and b. = -b/(n + 2).
Putting all this together and returning to the general case j # 0 gives

S(C2(y t)h' + C4(yj t)h +

+ O(hv) forany N.

The coefficients c. and d. are functions of derivatives of w and y at the point y
which decay rapidly at infinity if t e S. Comparing theexpansion corresponding

i? to I < q < 1 with the expansion coiresponding t6'0 < q < -1, we conclude that
d. - 0 for n even. That is,

S- c2(y, t)h' + c(yj, 1)h +...+O(h") for any N.

The theory of numerical integration tells us that -r, - O(hN) for any N, since
the integrand is without singularities. (thanks to g) anddecays at infinity (thanks

to w).Combining this with our estimate for a,, we conclude that

(17) pj(h) c2(1,,t)h2+c 4 (j,,t)h4 + ... + O(h) forany N.

, .. . . % :;:' "
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Since the coefficients cN(y) are rapidly decaying as y -, oo, summing over j
shows that iliU[ is O(h 2); this proves Lemma 1.

We note that it is possible to obtain second-order accuracy by using the
oddness of the most singular part of the kernel and using straightforward
estimates involving the midpoint rule (see [11D.

We turn now to proving (10). We use the following estimate: For any mesh
function fi,

(18) h2 fI' h2EIfkIP = 11/1';
k

thus

If1 ;g h -"2/pmllfl.

In particular, applying (18) to f = x(t) - y(t) and using (9) gives us

(19) Ix,(t) -y,(t) h2 -1 / 4- 2/ .

We conclude that, for p > 4, the left side of (19), the error in any particular
particle position, is small relative to h, the typical distance between particles.

Another useful fact is Young's inequality (e.g. [8], p. 13). If A = (aik) is an
N x N matrix, and

M, - max .Iajk and M,- mai FLakI,
J k k

(the subscripts r and c stand for row and column, respectively) then

IIAII g max(M,, Mj).

Similarly, if L(x, y) is an integral kernel with

M'- supfjL(xy)dy and M,- sup fjL(x, y)Idx,

then
IILIIL, g max(M,. MI).

We are now ready to estimate v - u. Using (5) and (11), we have

VJ(t) -,(t) -h2 . (KC(x, - x.) - C(y -Yk))&Ok + Pj"
koj

-~ - - - -_ _. , ' .
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Using a Taylor expansion for each component of K, we can write this as

k *j

where V 2K(x)Iy J stands for the matrix of second partials acting as a quadratic
form on the argument that appears in square braces. From the mean value
theorem, z. is somewhere on the line segmnent connecting xi to y,, and Zk is on
the segment connecting Xk to Yk. (This is an abuse of notation since z, depends
on k and vice versa.) It follows from (19) that

(20) z = Yj+o(h).

Decompose v - u as a sum of T, + T2 + T'3 + p, where

T = h2 ( E:vK( yj- Yok ) (X - Yj),
k*j

T2 =h')E VK(yj -yk)'ik(Xk- Yk),
k~&j

T3 =h2EvK Z,~k) [ix YJ (Xk Yk)] Wk.

LemmalIgives anlI, bound for p. We shall derive I, bounds for each of the T of
the form 11T,11 6 Clix - yll for i = 1, 2,3.

Using the definition (3) of K and (20), we bound the second derivative term
by

JV ~.-Z) C ly C
IvK~J~k)~ IZJ -Zk1'I j Y y-y+ (h) 13 4

Since j is a smooth function of y, and since lY, - ykj ?. C(1)ltj - fk1 k CQt)h for
j 0 k, the right side is bounded by C(t)/(Ij, - fkl'). Estimating the sum by the
corresponding integral gives

h2 E IV2K(zj -zt)W.kI ;S C.'() dI SCth1
k 4i1'jj

S Sk j

4 *"~
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where a(t) > 0. With this, we have, using (19) and Young's inequality,

J1T311 =_ , A(p, T)h'-11/4 21'IIx(t) - y(t) II.

To handle T and T2 we use Haid's trick of dividing space into Lagrangian
boxes. These are defined by (here y = (yl,' y2) and j I (jI, j2)):

Bj(t) = (y(j, t) :max(IJ 1 - hill, lt2 - hi2) =5 21)

and

t= y(, t) max( 1 - hll, I12 - hi2) -5 4h}.

The smaller boxes, B,, seem necessary to keep points in one small box separated
from points in neighboring boxes. Because of the volume preserving property of
i(Y),

(21) Jtdy h2  and f 4h2 "
SJO) BjQf)

We first use the decomposition into boxes to bound the sums in T:

dj= h2E vK(yj Yk)Wk,
k *

which are approximations to

fvK(y - y(j))"'0() dj.

Since T is a diagonal matrix with diagonal entries d. acting on xj - yj, the iP
bound on T follows from the boundedness of the individual d,. First, by the
smoothness of C and y, and the approximate oddness of K (as in Lemma 1), we
have

(22) -jF(jj)f aj1 (y-y)dy +0(h)

f O()K(y - y) y + 0(h) - 0(h).

---- - -.--- - ... .. . ... -
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Now, we integrate over each box (ignoring, as we may by (22), Bj) and sum over
the boxes to get

h1 .VK(yJ- Yk)A- fVK(yj- Y(j))w°(J) dj[

k k*fkoj

by the midpoint rule (see [71), where we have used the fact that Iy( j) - Y(j)I -
a(t)jj - JI ?. a(t)h for y(C) 0 Bj(t).

Thus, we have

IdjI ch21.VK(YJ k (k).

This settles T but leaves T2. For this, we need an I bound for the matrix whose
elements are h2VK(y, - yk)"k. But multiplication by W is bounded, so we only
need:

LEmMA 3 (Stability). The matrix M whose elements are

Sh2K( yj - t yk) if j" k,
j 0 if j = k,

has the 1, bound IIMII C(t p).

Proof of Lemma 3: Suppose f is any grid vector and g - Mf. We want to
show that IIglB 9 C(t, p)IIf 11. For this (following Hald), we introduce functions
of y. First, F(y) is defined in terms of f by F(y) - 4fj if y e Bj, and by
F(y) - 0 if y 0 UjB1. The factor 4 is such that, in view of (21), lIfll, = IIFIIL,.
In the same way, G(y) is defined in terms of g. Define a pioewise constant
kernel

(VK(yj- yk) ifyE Bj(t),y'EBk(t)andjs'k,
Lk(y, y') (0 otherwise,

and the coresponding "-owt" kernel

L(y, y') =VK(y - y').

t, V
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The characteristic function for By is

1 if y 4EB
(Y) -- 0 otherwise,

and the characteristic function !or UBj is R(y) = Ej(y):
j

1 iffye UBj,
R(y) = i

0 otherwise.

Schematically, the proof is as follows:

Ilgill, = IIGIIL, = 41IR" Lh* FIL, _ 4CILFIIL _ 4C'IIFIIL, = 4C'If II,,

where LF(y) = fL(y, y')F(y') dy'. We must establish the two questioned in-

equalities. The second of them is the Calderon Zygmund inequality (e.g. [111,
p. 29).

The remaining inequality is proved by showing that

IIR(Lh - L)RIIL, _ C(t).

We divide the kernel

R(y, y') = R(y)(Lh(y, y') - L(y, y'))R(y')

into two parts: R = Rt + R 2. First we take the case when y and y' are in the
same small box:

R1(y,y,)=(R(y,y')ifyEBiandy' ej for some j,
(0 otherwise

If R1(y, y') # 0, then L,(y, y') = 0; thus

IIRjFIIf, S: E f )~ F"d .Y.I(j)~.

il J

IILIfEI, jv(If, S llLIt,,,FIf,.

Jp

__(~'7
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By the Calderon-Zygmund inequality, we get 11IiRIL , B(p) < oo. Now we look
at the part coming from different boxes:

R 2(y, y') = (y)(VK(yj - Yk) - VK(y - y'))*(y')
if yeBj and y'EBk and jok.

For R 2, we use Young's inequality. The usual mean value argument gives

IvK(yj - yk) - VK(y - y') 1_ (iyJ - A + IYk - Y') IV 2K(zi - Zk)I,

where, as always, yj - y = 0(h) and Yk -y' = 0(h). Now, since the boxes Bj
and Bk are separated by 0(h), we have the bound

flR2(yY') I dY' _ Ch E f iv2K(zj - Zk)IdY
k~j Bk

;9 Chf, 1p d': t)
--CiL_,lat)hie - ,I3 d~i' < C(t).

This argument is symmetric in y and y' and so it also gives the other bond
needed for Young's inequality,

fIR2(y, 'I dy ;9 CWt).

This completes the proof of the lemma and of the theorem.

A numerical experiment also demonstrates the second-order convergence of
the point vortex method. We started with initial conditions (see [121)

to°(x) = I x12) 7,  o a_ xl_ I ,.

(0, Ixi > 1,

and solved the equations (6) using fourth order Runge Kutta (see e.g. 171, p. 346)
with h = At. It is easy to compute the exact velocity field and Lagrangian
coordinate. The velocity field does not change with time. Particles near the origin
complete one rotation at time t = 41r, while the particles on IxI = 1 complete one
rotation at t-- 32a. The velocity error is E(h, t) = lv - ull. Figures 1 and 2
show the velocity error in maximum and 12 norms, respectively, for h =
0.2,0.1,0.05. The order of accuracy is the power, r, in E(h, t) - C(t)h. In
Figure 3, we plot r(h, t) = log 2(E(2h, t)/E(h, t)), which is an estimate of r.
For sufficiently short times, the second-order accuracy (r = 2) is borne out. In
Figure 4 we compare E(h, t) to lIp(t)IKsee (11)). The agreement of these two
indicates that the method is stable.
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Figure 1. Maximum errors in velocity. h: (- )0.2, (- )0.1, ( ... )0.05.
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0.5-

A

Figure 3. Order of convergence in 12 norm in velocity. h: (- )0.03 vers 0.1, (+ )0.1 vera 0.2.

0.5.

A

Figure 4. Order of convergence in 12 norm in velocity ()vera order of convergence in residualI

* (+)
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