
ECU krTY CLASSIFICATION or THIS PAGE ("o7,n Data En.ord*j
REPORT DOCUMENTATION PAGE READ DiSTRUCTIONS

REPOT DO ENTAION AGE EFORE COhTPLETTNG* FORM'
1. REPORT NUMBER G2. OVT ACCESSION NO. 3. RECIPIENT'S CATALOG NIdUBER

TR 771

4. TITLE (endSubtitle) IS. TyPE Or REPORT a PERIOD COVERED

THE WAKEUP PROBLEM Technical Report

S. "PERFORMING ORG. REPORT NUMBER

7. AUTOR0 CORACT OR GRANT NUMBE()

Michael J. Fischer, Yale
Shlomo Moran, Technion ONR N00014-89-J-1980
Steven Rudich, Carnegie Mellon (se .l of re ort for
Gadi Taubenfeld, Yale other pport

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. 1ASK
Yale University AREA S ,RK UNVT',P,'MS
Dept. of Computer Science
P.o. Box 2158 Yale Station
New Haven, CT 06520-2158

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

.March 1990
13. NUMBEROr PAGES

11
I4 MONITORING AGENCY & ME &ODRESS(#i dtIffrent from Cfntrolling Office) t. SECURITY CLASS. (o# Ie report)

Office of Naval Research
800 North Quincy Street unclassified
Arlington, VA 22217 so. DECLASSIFICATI ON/DOWNGOADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of thile Report)

Approved for pubic release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Che Abstract enl.rd in Block 20, It EtSi.,en bumt Repoft)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue oan revere side ilnecesary wnd identiy bi rblOck sNUmber)
wakeup problem crash failures
consensus theory of knowledge
leader election resiliency
shared memory

20. ABSTRACT (Continue an reveree aide I secesary and Identify 6? block amaher)

We study a new problem ,the wakeup problem that seems to be very
undamental in distributed computating. We present efficient solutions to

the problem, and show how these solution can be used to solve the consensus
problem, the leader election problem, and other related problems. The main
question we try to answer is, how much memory is needed to solve the wakeup
problem? We assume a model that captures important properties of real systems
that have been largely ignored by previous work on cooperative problems. Y-R)

D D " 1473 EDITION O. 'NOV61 I, OBSOLETE
$/N 01020-014-4601 SECURITY CLASIIFICATION OF THIS PAOE DO*het 3 ,RnIM0

The Wakeup Problem
(EXTENDED ABSTRACT)

Michael J. Fischer' Shlomo Morant Steven Rudich2 Gadi Taubenfeld °

Abstract failures, in which a process may become faulty at any
time during its execution, and when it fails, it simply

We study a new problem, the wakeup problem, that stops participating in the protocol.
seems to be very fundamental in distributed comput- In the wakeup problem, it is known a priori by all pro-
ing. We present efficient solutions to the problem and cesses that at least n - t processes will eventually wake
show how these solutions can be used to solve the con- up. The goal is simply to have a point in time at which
sensus problem, the leader election problem, and other the fact that at least r processes have already waked
related problems. The main question we try to answer up is known to p processes. It is not required that this
is, how much memory is needed to solve the wakeup time be the earliest possible, and faulty processes are
problem? We assume a model that captures important included in the counts of processes that have waked up
properties of real systems that have been largely ignored and that know about that fact. Note that in a solution
by previous work on cooperative problems. to the wakeup problem, at least p - t correct processes

eventually learn that at least r - t correct processes are

1 Introduction awake and participating in the protocol.
The significance of this problem is two-fold. First, it

1.1 The Wakeup Problem seems generally useful to have a protocol such that after
a crash of the network or after a malicious attack, the

The wakeup problem is a deceptively simple new prob- remaining correct processes can figure out if sufficiently
lem that seems to be very fundamental to distributed many other processes remain active to carry out a given
computing. The goal is to design a t-resilient proto- task. Second, a solution to this problem is a useful
col for n asynchronous processes in a shared memory building block for solving other important problems (cf.
environment such that at least p processes eventually section 6).
learn that at least T processes have waked up and be-
gun participating in the protocol. Put another way, the 1.2 A New Model
wakeup problem with parameters n, t, r and p is to find
a protocol such that in any fair run of n processes with Much work to date on fault-tolerant parallel and dis-
at most t failures, at least p processes eventually know tributed systems has been generous of the class of faults

that at least r processes have taken at least one step in considered but rather strict in the requirements on the
the past. The only kind of failures we consider are crash system itself. Problems are usually studied in an un-

derlying model that is fully synchronous, provides each
*Computer Science Department, Yale University, New Haven, process with a unique name that is known to all other

CT 06520.
tComputer Science Department, Technion, Haifa 32000, Israel. processes, and is initialized to a known state at time
:Computer Science Department Carnegie Mellon University, zero. We argue that none of these assumptions is real-

Pittsburgh, PA 15213. istic in today's computer networks, and achieving them
This work was supported in part by ONR contract N00014- even within a single parallel computer is becoming in-

89-J-1980, by the National Science Foundation under grant CCR-
8405478, by the Hebrew Technical Institute scholarship, by the creasingly difficult and costly. Large systems do not run
Technion V.P.R. Funds - Wellner Research Fund, and by the off of a single clock and hence are not synchronous. Pro-
Foundation for Research in Electronics, Computers and Commu- viding processes with unique id's is costly and difficult
nications, administrated by the Israel Academy of Sciences and and greatly complicates reconfiguring the system. Fi-
Humanities. nally, simultaneously resetting all of the computers and

communication channels in a large network to a known
initial state is virtually impossible and would rarely be
done even if it were possible because of the large de-
structive effects it would have on ongoing activities.

Our new model of computation makes none of these

assumptions. It consists of a fully asynchronous collec- 1.3 Space Complexity Results
tion of n identical anonymous deterministic processes The main question we try to answer is, how many values
that communicate via a single finite sized shared reg- v for the shared register are necessary and sufficient to
ister which is initially in an arbitrary unknown state. solve the wakeup problem? The answer both gives a
Access to the shared register is via atomic "test-and- measure the communication-space complexity of the
set" instructions which, in a single indivisible step, read measue of the co icisa ly of thethe value in the register and then write a new value that problem and also provides a way of assessing the cost
can depend on the value just read, of achieving reliability. We give a brief overview of ourcan eped onthevale jut rad.results below.

Assuming an arbitrary unknown initial state relates
to the notion of self-stablizing systems defined by Di-
jkstra [8]. However, Dijkstra considers only non- 1.3.1 Fault-Free Solutions

terminating control problems such as the mutual ex- First we examine what can be done in the absence of
clusion problem, whereas we show how to solve decision faults (i.e., t = 0). We present a solution to the wakeup
problems such as the wakeup, consensus and leader elec- problem in which one process learns that all other pro-
tion problems, in which a process makes an irrevocable cesses are awake (i.e., p = 1 and r = n), and it uses a
decision after a finite number of steps. single 4-valued register (i.e., v = 4). The protocol for

Before proceeding, we should address two possible achieving this is quite subtle and surprising. It can also
criticisms of shared memory models in general and our be modified to solve the leader election problem. Based
model in particular. First, most computers implement on this protocol, we construct a fault-free protocol that
only reads and writes to memory, so why do we consider reaches consensus on one out of b- possible values using
atomic test-and-set instructions? One answer is that a 5-valued register. Finally, we show that there is no
large parallel systems access shared memory through fault-free solution to the wakeup problem with only two
a communication network which may well possess in- values (i.e., one bit) when T > 3.
dependent processing power that enables it to imple-
ment more powerful primitives than just simple reads 1.3.2 Fault-Tolerant Solutions: Upper Bounds
and writes. Indeed, such machines have been seriously
proposed [23, 44]. Another answer is that part of our We start by showing that the fault-free solution which
interest is in exploring the boundary between what can uses a single 4-valued register, mentioned in the pre-
and cannot be done, and a proof of impossibility for vious section, can actually tolerate I failures for any
a machine with test-and-set access to memory shows a r < ((2n - 2)/(2t + 1) + 1)/2. Using many copies of this
fortiori the corresponding impossibility for the weaker protocol, we construct a protocol with v = 81+ 1 that
read/write model. tolerates I faults when r < n - I. Thus, if I is a con-

A second possible criticism is that real distributed stant, then a constant sized shared memory is sufficient,
systems are built around the message-passing paradigm independent of n. However, the constant grows expo-
and that shared memory models are unrealistic for large nentially with I. An easy protocol exists with v = n that
systems. Again we have several possible answers. First, works for any t and r < n-I. This means that the above
the premise may not be correct. Experience is showing exponential result is only of interest for I < log n. Fi-
that message-passing systems are difficult to program, nally, we show that for any I < n/2, there is a I-resilient
so increasing attention is being paid to implementing solution to the wakeup problem for any r < Ln/2J + 1,
shared memory models, either in hardware (e.g. the Flu- using a single 0(t)-valued register.
ent machine [45]) or in software (e.g. the Linda system
[5]). Second, message-passing systems are themselves 1.3.3 Fault-Tolerant Solutions: A Lower Bound
an abstraction that may not accurately reflect the reali-tiesof he ndelyin hadwae. or eampe, essge- We prove that for any protocol P that solves the wakeupties of the u n derly ing h ard w are. For exam ple, m essage- p r b e fo p a m t rs n I a d r, h e u b r of h r d
passing systems typically assume infinite buffers for in- problem for parameters n, i and r, the number of shared
coming messages, yet nothing is infinite in a real system, memory values used by P is at least W , where p =
and indeed overflow of the message buffer is one kind of (iVi - t)/(n - I) and c1 = 1/(Iog 2(j-g- + 3)). The proof
fault to which real systems are subject. It is difficult to is quite intricate and involves showing for any protocol

see how to study a kind of fault which is assumed away with too few memory values that there is a run in which

by the model. Finally, at the lowest level, communi- n - t processes wake up and do not fail, yet no process

cation hardware looks very much like shared memory. can distinguish that run from another in which fewer

For example, a wire from one process to another can than r wake up; hence, no process knows that r are

be thought of as a binary shared register which the first awake.
process can write (by injecting a voltage) and the second
process can read (by sensing the voltage).

2

1.4 Relation to Other Problems no process wrote into the register. A register r is said
to be local if there exists an i such that r E R, andWe establish connections between the wakeup prob- for any j 6 i,r V R. A register is shared if it is not

lem and two fundamental problems in distributed corn- local. In this paper we restrict attention to protocols
puting: the consensus problem and the leader elec- which have exactly one register which is shared by all
tion problem. These two problems lie at the core of the processes (i.e., IRi n ... fl Rl = 1) and all other

many problems for fault-tolerant distributed applica-

tions [1, 7, 10, 13, 16, 20, 21, 32, 34, 43, 42, 48]. registers are local. If S' is a prefix of S then the run

We show that: (1) any protocol that uses v values (f' ') is a prefix of (f, S), and (f, S) is an extension of

and solves the wakeup problem for t < n/2, r > n/2 (f, S'). For any sequence S, let S be the subsequence

and p = I can be transformed into t-resilient consensus of S containing all events in S which involve qi.

and leader election protocols which use 8v values; and Definition: Computations (f, S) and (f', S') are equiv-
(2) any I-resilient consensus and leader election protocol alent with respect to qj, denoted by (f, S) L (f', S'), ifr
that uses v values can be transformed into a t-resilient Si = S .
protocol which uses 4v values and solves the wakeup We are now ready to define the notion of knowledge in
problem for any r < [n/2J + 1 and p = 1. a are mory eine the ollownge in

Using the first result above, we can construct effi- a shared memory environment. In the following, we use
cient solutions to both the consensus and leader election predicate to mean a set of runs.
problems from solutions for the wakeup problem. The Definition: For a process qi, predicate b and finite run
second result implies that the lower bound proved for p, process q, knows b at p iff for all p' such that p . p,
the wakeup problem holds for these other two problems. it is the case that p' E b.
As a consequence, the consensus and the leader election
problems are space-equivalent in our model. This is For simplicity, we assume that a process always takes
particularly surprising since the two problems seem so a step i is s d p e that k
different. The difficulty in leader election is breaking infinitely many steps in a run is said to be correct insymmetry, whereas consensus is inherently symmetric, that run; otherwise it is faulty. We say that an infinite

run is I-fair iff at least I processes are correct in it.

2 Definitions and Notations 2.2 Wakeup, Consensus and Leader

2.1 Protocols and Knowledge Election Protocols

In this subsection we formally define the notions of t-
An n-process protocol P = (C, N, R) consists of a resilient wakeup, consensus and leader election protocols
nonempty set C of runs, an n-tuple N = (qj, ... ,qn) (0 < I < n). We say that a process qj is awake in a
of process id's (or process, for short), and an n-tuple run if the run contains an event that involves q,. The
R = (R,,..., R,,) of sets of registers. Informally, R, predicate "at least r processes are awake in run p" is the
includes all the register that process qj can access. We set of all runs for which there exist r different processes
assume throughout this paper that n > 2. which are awake in the run. Note that a process that

A run is a pair of the form (f, S) where f is a fails after taking a step is nevertheless considered to he
function which assigns initial values to the registers in awake in the run.
R1 U ... U R,, and S is a finite or infinite sequence of
events. (When S is finite, we also say that the run is A wakeup protocol with parameters n, t, r and p is
finite.) An event e = (qj, v, r, v') means that process qj, a protocol for n processes such that, for any (n -I)-
in one atomic step, first reads a value v from register fair run p, there exists a finite prefix of p in which
r and then writes a value v' into register r. We say at least p processes know that at least r processes
that the event e involves process qj and that process qj are awake in p.
performs a test-and-set operation on register r. It is easy to see that a wakeup protocol exists only

The set of runs is assumed to satisfy several proper- if max(p, r) < n - I, and hence, from now on, we
ties; for example, it should be prefix closed. Because of assume that this is always the case. We also assume
lack of space, we do not give a complete list here but that min(p, r) > 1.
point out that these properties capture the fact that In the following, whenever we speak about a solu-
we are assuming that the processes are anonymous and
identically programmed, are not synchronized, and that to te a eu p p
nothing can be assumed about the initial state of the
shared memory. A t-resilient k-consensus protocol is a protocol for

The value of a register at a finite run is the last value n processes, where each process has a local read-
that was written into that register, or its initial value if only input register and a local write-once output

3

register. For any (n - t)-fair run there exists a fi- preted as two bits which we call the "token bit" and the
nite prefix in which all the correct processes decide "See-Saw" bit. The two states of the token bit are called
on some value from a set of size k (i.e., each cor- "token present" and "no token present". We think of
rect process writes a decision value into its local a public token slot which either contains a token or is
output register), the decision values written by all empty, according to the value of the token bit. The two
processes are the same, and the decision value is states of the See-Saw bit are called "left side down" and
equal to the input value of some process. "right side down". The "See-Saw" bit describes a vir-

In the following, whenever we say "consensus" tual See-Saw which has a left and a right side. The bit

(without mentioning specific k) we mean "binary indicates which side is down (implying that the opposite

consensus", where the possible decision values are side is up).

0 and 1. Each process remembers in private memory the num-
ber of tokens it currently possess and which of four

* A t-resilient leader election protocol is a proto- states it is currently in with respect to the See-Saw:
col for n processes, where each process has a local "never been on" "on left side", "on right side", and "got
write-once output register. For any (n - t)-fair run off". A process is said to be on the up-side of the See-
there exists a finite prefix in which all the correct Saw if it is currently "on left side" and the See-Saw bit
processes decide on some value in {0, 1}, and ex- is in state "right side down", or it is currently "on right
actly one (correct or faulty) process decides on 1. side" and the See-Saw bit is in state "left side down".
That process is called the leader. A process initially possesses two tokens and is in state

"never been on".

3 Fault-free solutions We define the protocol by a list of rules. When a pro-
cess is scheduled, it looks at the shared register and at

In this section, we develop the See-Saw protocol, which its own internal state and carries out the first applica-

solves the fault-free wakeup problem using a single 4- ble rule, if any. If no rule is applicable, it takes a null

valued shared register. Then we show how the See-Saw step which leaves its internal state and the value in the

protocol can be used to solve the k-valued consensus shared register unchanged.

problem. Finally, we claim that it is impossible to solve Rule 1: (Start of protocol) Applicable if the scheduled
the wakeup problem using only one shared bit. process is in state "never been on". The process

To understand the See-Saw protocol, the reader gets on the up-side of the See-Saw and then flips the
should imagine a playground with a See-Saw in it. The See-Saw bit. By "get on", we mean that the process
processes will play the protocol on the See-Saw, adher- changes its state to "on left side" or "on right side"
irg to strict rules. When each process enters the play- according to whichever side is up. Since flipping
ground (wakes up), it sits on the up-side of the See-Saw the See-Saw bit causes that side to go down, the
causing it to swing to the ground. Only a process on the process ends up on the down-side of the See-Saw.
ground (or down-side) can get off and when it does the Rule 2: (Emitier) Applicable if the scheduled process
See-Saw must swing to the opposite orientation. These
rules enforce a balance invariant which says that the ion thendownd the eesaw, s one.or
number of processes on each side of the See-Saw differs more tokens, and the token slot is empty. Thebat most one (the heavier side always being down). process flips the token bit (to indicate that a to-
by aken is present) and decrements by one the count

Each process enters the playground with two tokens, of tokens it possesses. If its token count thereby
The protocol will force the processes on the bottom of becomes zero, the process flips the See-Saw bit and
the See-Saw to give away tokens to the processes on gets off the See-Saw by setting its state to "got off".
the top of the See-Saw. Thus, token flow will change
direction depending on the orientation of the See-Saw. Rule 3: (Absorber) Applicable if the scheduied process
Tokens can be neither created nor destroyed. The idea is on the up-side of the See-Saw and a token is
of the protocol is to cause tokens to concentrate in the present in the token slot. The process flips the
hands of a single process. A process seeing 2k tokens token bit (to indicate that a token is no longer
knows that at least k processes are awake. Hence, if it present) and increments by one the count of tokens
is guaranteed that eventually some process will see at it possesses.
least 2r tokens, the protocol is by definition a wakeup
protocol with parameter r, even if the process does not Note that if a scheduled process is on the down-side,
know the value of r and hence does not know when the has 2k - 1 tokens, and a token is present in the token
goal has been achieved, slot, then, although no rule is applicable, the process

Following is the complete description of the See-Saw nevertheless sees a total of 2k tokens and hence knows
protocol. The 4-valued shared register is easily inter- that k processes have waked up.

4

The two main ideas behind the protocol can be stated 4 Fault-tolerant solutions
as invariants.

In this section, we explore solutions to the wakeup prob-TOKEN INVARIANT: The number of tokens in the lem which can tolerate t > 0 process failures.

system is either 2n or 2n + 1 and does not change at le whi-San tol, pressailures

any time during the protocol. (The number of tokens in The See-Saw protocol, presented in the previous sec-
the system is the total number of tokens possessed by tion, cannot tolerate even a single crash failure for any
all ofthe processes, plus 1 if a token is present in the r > n/3. The reason is that the faulty process mayall of t slooh fail after accumulating 2n/3 tokens, trapping two other
token bit slot.) processes on one side of the See-Saw, each with 2n/3

BALANCE INVARIANT: The number of processes on tokens. When r < n/3, the See-Saw protocol can toler-
the left and right sides of the See-Saw is either perfectly ate at least one failure. As the parameter r decreases,
balanced or favors the down-side of the See-Saw by one the number of failures that the protocol can tolerate
process. increases. This fact is captured in our first theorem.

Theorem 3.1: Let t = 0. The See-Saw protocol uses Theorem 4.1: The See-Saw protocol is a wakeup pro.
a 4-valued shared register and is a wakeup protocol for tocol for n,t, r, where r < ((2n - 1)/(2t + 1) + 1)/2.
n, t, r (and p = 1), where n and r are arbitrary and t = We note that the See-Saw protocol can tolerate up to
0. (Note that the rules for the protocol do not mention n/2 - I initial failures [21, 49]. In the rest of this sec-
71 or T.) tion, we present three t-resilient solutions to the wakeup

In applications of wakeup protocols, it is often desir- problem. Notice that when the number of failures I is
able for the processes to know the value of r so that a constant, it is possible using a constant number of
a process learning that r processes are awake can stop values for one process to learn that n - t processes are
participating in the wakeup protocol and take some ac- awake.
tion based on that knowledge. The See-Saw protocol Theorem 4.2: For any t < n/6, there is a wakeup pro-
can be easily modified to have this property by adding tocol which uses a single 8+l-valued register and works
a termination rule immediately after Rule 1: for any r < n - t.

Rule la: (End of protocol) Applicable if the scheduled Theorem 4.3: For any t < n, there is a wakeup proto-
process is on the See-Saw and sees at least 2r to- col which uses a single n-valued register and works for
kens, where the number of tokens the process sees any r < n - t.
is the number it possesses, plus one if a token is
present in the token slot. The process thus knows Theorem 4.4: For any t < n/2, there is a wakeup pro-
that T processes have waked up. It gets off the See- tocol which uses a single 0(t)-valued register and works
Saw (i.e., terminates) by setting its state to "got for any r < [n/2J + 1.
off".

The See-Saw protocol can also be used to solve the 5 A Lower Bound
leader election problem by electing the first process that
sees 2n tokens. By adding a 5th value, everyone can be In this section, we establish a lower bound on the num-
informed that the leader was elected, and the leader ber of shared memory values needed to solve the wakeup
can know that everyone knows. Now, the leader can problem, where only one process is required to learn
transmit an arbitrary message, for example a consensus that r processes are awake, assuming t processes may
value, to all the other processes without using any more crash fail (thus p = 1). To simplify the presentation,
new values through a kind of serial protocol. This leads we assume that 9 < t < 2n/3 and r > n/3. Also, recall
to our next theorem. that we already assumed that r < n - t. For the rest of

Theorem 3.2: In the asence of faults, it is possible this section, let

to reach consensus on one of k values using a single t2-t t_ -
_1

5-valued shared register. W - U = 4(n- (1)

Finv!y, we claim that the See-Saw protocol cannot be
improved to use only a single binary register. A slightly (2)
weaker result than Theorem 3.3 was also proved by Joe log2(';t + 3.5)(
Halpern [27]. The question whether 3 values suffice is Note that W < U since t > 9.
still open.

Theorem 5.1: Let P be a wakeup protocol with param-Theorem 3.3: There does not ezist a solution to the eters n, I and r. Let V be the set of shared memory

wakeup problem which uses only a single binary register values used by P. Then sVI Ws.

when r > 3.

5

When we take t to be a constant fraction of n we get Definition: Let V be the set of shared memory values
the following immediate corollary, of protocol P. The reachability graph G of protocol P is
Corollary 5.1: Let P be a wakeup pthe labeled directed multigraph with node set V which
Crlaery 5.1: Lei and be a -- p nprotocol with e has an edge from node a to node b labeled with r iff
rameters n, t and r, where I = n/c. Let V be the has a ed fro e a teoe babe ledtr
set of shared memoryj values used by P and let - a == b holds. (Note that there may be several edges
1/(21og 2 (C + 2.5)). Then, IVI = P(O1). with different labels between the same two nodes. Note1/(2og2(+ .5)) Thn,][=f (nV),also that G is finite since a = b implies that r < I.)

Theorem 5.1 is immediate if V is infinite, so we as, De finit A ice d a noe at r if

sume throughout this section that V is finite. The proof Definition: A graph C is closed at node a w.r.t. G if a

consists of several parts. First we define a sequence of is in C and for every node b in G, if (a, b) is an edge of

directed graphs whose nodes are shared memory values G then b is in C.

in V. Each component C of each graph in the sequence Definition: A multigraph T is terminal w.r.t. G if T is
has a cardinality k, and a weight w,. We establish by a subgraph of G, all of T's components are rooted, and
induction that k, > min(w¢, W)*. Finally, we argue T has a component C with root a among its minimal
that in the last graph in the sequence, every component weight components that is closed at node a w.r.t. G.
C has weight w, > W. Hence, IVI > k, > Wa. In the rest of the section we show that the reacha-

bility graph G of any wakeup protocol with parameters

5.1 Reachability Graphs and Terminal n,t,r has size > i. We do that by constructing a

Graphs multigraph T which is terminal w.r.f. G and has size
> W*. Theorem 5.1 follows from these facts.

Let V be the alphabet of the shared register. We say
that a value a E V appears m times in a given run if 5.2 Reachability Graphs
there are (at least) m different prefixes of that run where
the value of the shared register is a. The reachability graphs are defined for all protocols.

Now we concentrate on such graphs constructed from
a u- b denotes that there exists a run in which at wakeup protocols only. We show that when the weight

most u processes participate, the initial value of of a rooted component, say C, is sufficiently small, an

the shared register is a, and the value b appears at edge exists with a label q from a root of C to a node

least once. not in C, and we can bound the size of q.

a =1* b denotes that there exists a run in which exactly For later reference we call the following three inequal-

u processes participate, each process that partici- ities,

pates takes infinitely many steps, the initial value (i) pq + (p - 1)w < n,
of the shared register is a, and the value b appears (ii) pq >_ n - t,
infinitely many times. (iii) max(q,w) < r

Clearly, a => b implies a -r-+ b but not vice versa. Also, the zigzag inequalities. These inequalities play an im-
for every a, there exists b such that a =L b. portant role in our exposition.

We use the following graph-theoretic notions. A di- Lemma 5.1: Given reachability graph G of a wakeup
rected multigraphl G is weakly connected if the under- protocol P with parameters n, t, r and a rooted subgraph
lying undirected multigraph of G is connected. A multi- C of G with root a and weight w, if there exist positive
graph G'(V', E') is a subgraph of G(V, E) if E' C E and integers p and q that satisfy the zigzag inequalities, then
V' C V. A multigraph G' is a component of a multi- for any node b of G, ifa b is an edge of G then b is
graph G if it is a weakly connected subgraph of G and not in C.
for any edge (a, b) in G, either both a and b are nodes
of G' or both a and b are not in G'. A node is a root Proof: We assume to the contrary that there exists p
of a multigraph if there is a directed path from every and q that satisfy the zigzag inequalities, and there is
other node in the multigraph to that node. A rooted an edge a =* b such that b belongs to C. Let p be a
graph (rooted component) is a graph (component) with q-fair run starting from a in which exactly q processes
at least one root. A labeled multigraph is a multigraph participate and b is written infinitely often. Since b io
together with a label function that assigns a weight in N in C, there is a path from b to a such that the sum of
to each edge of G. The weight of a labeled multigraph all the labels of edges in that path is at most w and
is the sum of the weights of its edges, hence b -2- a. This allows us to construct a run with

We now define the notion of a reachability graph of a pq non-faulty processes starting with a as follows:
given protocol P. Run q processes according to p until b is writ-

'A multigraph can have several edges from a to b. ten. Run w processes until a is written. (This

6

must be possible since b W- a.) Let these w which implies (i).
processes fail. Run a second group of q pro- Finally, we show that inequality (iii) is sa*;sfied. Re-
cesses according to p until b is written. Run call that we assume that t < 2n/3 and r > n/3. It
a second group of w processes until a is writ- follows from these assumptions that r > t/2. Since
ten, and let them fail. Repeat the above until q < t/2, obviously q < r. Also, since w < U and
the pth group of q processes have just been run t < 2n/3, substituting in (1) gives w < n/3, and hence
and b has again been written. At this point, w < r. 0
pq processes belong to still-active groups, and Lemma 5.3: If w < W, then there exists positive inte-
(p - 1)w processes have died. If any processes(pmain, let tesse he dowid.ut If any rocegers p and q that satisfy the zigzag inequalities and
remain, let them die now without taking any

steps. Now, an infinite run p' on the active pro- w(n - t)
cesses can be constructed by continuing to run q < + 3. (5)
the first group according to p until b is writ-
ten again, then doing the same for the second
through p'h groups, and repeating this cycle Proof: Recall that W < U, so in particular, w < U.
forever. Let q' be the smallest positive integer solution to (3).

It follows from Lemma 5.2 that q' exists. Let q be the
The result is a pq-fair run. Moreover, no reliable process smallest positive integer for which there exists a positive
can distinguish this run from p, and hence no reliable integer p such that p and q satisfy the zigzag inequalities.
process ever knows (in p') that more than q processes It follows from Lemma 5.2 that q exists and q _< q'.
are awake. Also, obviously, no faulty process knows that If q = 1 than clearly 1 < t(n - t)/(t + 2) + 2 and
more than w processes are awake. Since max(q,w) < r the lemma holds. Assume q > 1. Since q 5 q' it follows
but at least pq _ n - t_ r processes are awake in p, that
this leads to a contradiction to the assumption that P (q - 1)2 - t(q - 1) + w(n - t) > 0.
is a wakeup protocol. 0

Lemma 5.2: Assume w < U. Then the inequality Thus,
_ tx + w(n - t) < 0 (3) q < t + 2 (6)

has a positive integer solution. The smallest positive By Lemma 5.2,

integer solution for (3) is -lt2-4w(n-t)I(
S-l/ -4w(n - t)[< t (4) 2q = 2__ (4) q tIt 7

S1 Since w < W, we can substitute W for w in inequality
There exists a positive integer p such that p and q satisfy (7) and get that q !5 [V7] < v/t + 1. Thus, q2 <
the zigzag inequalities. t + 2v/t + 1, so it follows from (6) and the assumption

Proof: We first show that (3) has a positive solution. that t > 9 that inequality (5) holds. 03
Using the quadratic formula, we get that the roots of
(3) are 5.3 Terminal Graphs

t - 1,1t2
- 4w(n - t)I and t + it - 4tw(n - t)J In this subsection, we show that the reachability graph

2 2 G of any wakeup protocol with parameters n,t, r, has

Since w < U the discriminant t2 - 4w(n - t) > 1. Since at least one subgraph which is terminal w.r.t. G and
the value of the discriminant is less than 12 it follows has size > W*. We first prove that the weight of any
that the roots are positive. Moreover, the difference rooted component of any terminal graph w.r.t. G has
of the two roots is at least 1; hence there is a positive weight > U. Then we show that this implies that there
integer z satisfying (3), and q is the least such integer, exists a terminal graph w.r.t. G, all of whose rooted
Moreover, since t is an integer, t/2 is either an integer or components have size > W*.
lies exactly half way between two integers, so inequality Lemma 5.4: Let G be the reachability graph of a
(4) holds. wakeup protocol with parameters n, t, r and let T be ter-

Next we show that there exists a positive integer p minal w.r.t. G. Any rooted component of T has weight
such that p and q satisfy the inequalities (i) and (ii). > U.
Let p = rn - I)/ql. The choice of p clearly satisfies Proof: Assume to the contrary that T has a minimal-
(ii). Also from (3) it follows that weight component C of weight w < U. Then, by Lemma

rn.ti n-t+ n + w 5.2, there exist positive integers q and p that satisfy the

- q + q + w zigzag inequalities. From Lemma 5.1, there is a node b

7

not in C and an edge a =!_ b in G. Therefore, T is not rooted component of Ti are both at least 2. Now, sup-
a terminal w.r.t. G, a contradiction. 0 pose the procedure adds an edge of label q from compo-

Lemma 5.5: Let G be the reachability graph of a nent C1 of size k, and weight w, to component C 2 of size

wakeup protocol with parameters n,t,r. There exists a k2 and weight w2. By step 1, the new edge emanates

graph T which is terminal w.r.t. G, all of whose rooted from a minimal weight component, so w, < W2. The
components have size > W0. weight w of the newly formed component is w1 + w2 + q,

h sand the number of nodes k is k, + k2. We show now

Proof: The following procedure constructs T by adding that k > min(w, W)* .

edges one at a time to an initial subgraph To of G un- Clearly, if w2 > W then min(w 2, W)* = min(w, W)*
til step 2 fails. The initial subgraph To consists of all and k2 < k, so by the induction hypothesis we are done.
the nodes of G. For each node a there is exactly one Hence, we assume that w2 < W, so also w, < W. Since
outgoing edge a =6 b in To. We note two facts about w1 < W it follows from Lemma 5.3 that there exist
To: (1) for every edge a := b, a 6 b, and (2) every positive integers p' and q' that satisfy the zigzag in-
component of To has at least one root. Fact (1) follows equalities and q' < (wi(n - t))/(t + 2) + 3; hence by
from Lemma 5.1, choosing q = 1 and p = n - t (w = 0); Lemma 5.1 there is an edge of label q' from any root of
while (2) follows from the fact that the outdegree of any C1 to some node not in C1 . Thus, by the minimality
node is exactly one. Also, it follows from (1) that the of q (the weight of the edge in step 2), it follows that
weight and size of any component of To is at least 2. q < q' which implies that q < (w1 (n - t))/(t + 2) + 3;

At any stage of the construction, every component hence,
of the graph built so far will have at least one root.
Added edges always start at a root and end at a node w = w1 + w2 + q (8)
of a different component. After adding an edge (a, b), < (n-t + 1 i+U 2 +3 (9)
the components of a and b are joined together into a (t +
single component whose root is the root of b's compo- (n-t
nent, and the weight of the new component is the sum t +-- + 2.5j W1 + U'2, (10)
of the weights of the two original components plus the
label of the edge from a to b. Let k'1 = w1 , and k2 = W2'. Then k'1 < k2, u 1 =k

Procedure for adding a new edge to T: and w2 k' We claim that

Step 1: Select an arbitrary component C of minimaln - t2
weight and an arbitrary root a of C. (2+ 2.5) W1 + W2

Step 2: Find the smallest integer q for which there is n-t + ,' ,
an edge a = b in G such that b is not in C. This G + 2

step fails if no such edge exists. < (k' 1+kJ). (12)

Step 3: Place the edge a = 6 b into T. It is not difficult to see that since (n - t)/(t + 2)+ 3.5 =

Let T be a graph that is constructed after i applications 213, equality holds for k 1 = k2. As k2 is increased to be

of the above procedure, where To is an initial graph as larger than k, the right side increases more rapidly than

defined above. Clearly, any such sequence {To,T,...} the left side since /# > 1; hence, the inequality holds.

is finite and the last element is terminal w.r.t. G. Finally, by the induction hypothesis, k, ? wl' = kl
We prove by induction on i, the number of applica- and k2 ? w2* = k;. Hence,

tions of the procedure, that for any graph Ti, all of the , ,
components of T are rooted, and for any rooted com- (k + k) < (k + k2Y' - (13)
ponent C it is the case that k > min(w,W)', k > 2 Putting equations (8)-(13) together gives w < V, so
and w > 2, where k is the size of C and w is its weight. k > w0 > min(w, I.V). 0

This together with Lemma 5.4 and the fact that W < U
completes the proof. Theorem 5.1 follows immediately from Lemma 5.5.

Let P = 1/a. As discussed before, each component C
ofTo has a root and has size k at least 2. The component 6 Relation to Other Problems
C consists of exactly k edges with label 1, so its weight
is also k. Hlence, the base case holds since P > 1. In this section we show that there are efficient reduc-

Since To is a subgraph of Ti which also includes all tions between the wakeup problem for r = [n/2J + 1
nodes of T, it follows that the size and weight of any and the consensus and leader election problems. Hence,

the wakeup problem can be viewed as a fundamental

8

problem that captures the inherent difficulty of these ble to simultaneously reset all parts of the system to a
two problems. The following Lemma shows that in or- known initial state.
der to decide on some value in a t-resilient consensus Our results are interesting for several reasons:
protocol, it is always necessary (and in some cases also
sufficient) to learn first that at least I + 1 processes have f They give a quantitative measure of the cost of
waked up, and similarly in order to be elected in a t- fault-tolerance in shared memory parallel.machines
resilient leader election protocol, it is always necessary
to learn that at least I + 1 processes have waked up. An * They apply to a model which more accurately re-
immediate consequence of the lemma is that there is no flects reality.
consensus or leader election protocol that can tolerate
[n/21 failures. e They relate recent results from three different ac-

Lemma 6.1: (1) Any t-resilient consensus (leader elec- tive research areas in parallel and distributed com-

lion) protocol is a I-resilient wakeup protocol for any puting, namely:

r < I + 1 and p = n - I (p=1); (2) For any I < n/3, - Results in shared memory systems [2, 11, 19,
there exists I-resilient consensus and leader election pro- 31, 36, 38, 39, 46, 50, 51].
tocols which are not t-resilient wakeup protocols for any - The theory of knowledge in distributed sys-
r >1+2.- 2.tems [6, 14, 15, 17, 18, 22, 28, 25, 29, 30, 26,
Theorem 6.1: Any protocol that solves the wakeup 33, 37, 40, 41].
problem for any t < n/2, r > n/2 and p = 1, using a - Self stabilizing protocols [3, 4, 8, 9, 12, 24, 35,
single v-valued shared register, can be transformed into 47]
a t-resilient consensus (leader election) protocol which
uses a single 8v-valued (4v-valued) shared register. * They give a new point of view and enable a deeper

From Theorems 6.1 and 4.4, it follows that for any understanding of some classical problems and re-

I < n/2, there is a t-resilient consensus (leader elec- sults in cooperative computing.
tion) protocol that uses an 0(t)-valued shared regis- e They are proved using techniques that will likely
ter. Next we show that the converse of Theorem 6.1 have application to other problems in distributed
also holds. That is, the existence of a t-resilient con- computing.
sensus or leader election protocol which uses a single
v-valued shared register implies the existence of a t-
resilient wakeup protocol for any r < [n/2J + 1 which Acknowledgement
uses a single 0(v)-valued shared register.

Theorem 6.2: Any t-resilient protocol that solves the We thank Joe Halpern for helpful discussions.

consensus or leader election problem using a single
v-valued shared register can be transformed into a t- References
resilient protocol that solves the wakeup problem for any
r < Ln/2J + 1 which uses a single 4v-valued shared reg- [1] K. Abrahamson. On achieving consensus using
ister. shared memory. In Proc. 7th ACM Symp. on Prin-

It follows from Theorem 6.2 that the lower bound ciples of Distributed Computing, pages 291-302,
we proved in Section 5 for the wakeup problem when 1988.

r = Ln/2j + 1 also applies to the consensus and leader [2] B. Bloom. Constructing two-writer atomic regis-
election problems. Finally, an immediate corollary of ters. In Proc. 6th ACM Symp. on Principles of
Theorem 6.1 and Theorem 6.2 is that the consensus Distributed Computing, pages 249-259, 1987.
and leader election problems are space-equivalent. That
is, there is a I-resilient consensus protocol that uses an [3] G. M. Brown, M. G. Gouda, and C.-L. Wu. Token
0(t)-valued shared register iff there is a t-resilient leader systems that self-stabilize. IEEE Trans. on Corn-
election protocol that uses an 0(t)-valued shared regis- puters, 38(6):845-852, June 1989.
ter.

[4] J. E. Burns and J. Pachl. Uniform self-stablilizing
rings. ACM Trans. on Programming Languages and

7 Conclusions Systems, 11(2):330-344, 1989.

We study the fundamental new wakeup problem in a [5] N. Carriero and D. Gelernter. Linda in context.
new model where all processes are programmed alike, Communications of the ACM, 32(4):444-458, April
there is no global synchronization, and it is not possi- 1989.

9

[6] M. Chandy and J. Misra. How processes learn. [19] M. J. Fischer, N. A. Lynch, J. E. Burns, and
Journal of Distributed Computing, 1:40-52, 1986. A. Borodin. Distributed FIFO allocation of identi-

cal resources using small shared space. A CM Trans.
[7] E. Chang and R. Roberts. An improved algorithm on Programming Languages and Systems, 11(1):90-

for decentralized extrema-finding in circular config- 114, 1989.
uration of processes. Communications of the A CM,
22(5):281-283, 1979. [20] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy

impossibility proofs for distributed consensus prob-
[8] E. W. Dijkstra. Self-stablizing systems in spite of lems. Journal of Distributed Computing, 1:26-39,

distributed control. Communications of the ACM, 1986.
17:643-644, 1974. [21] M. J. Fischer, N. A. Lynch, and Al. S. Paterson. Im-

[9] E. NV. Dijkstra. A belated proof of self- possibility of distributed consensus with one faulty
stabilization. Journal of Distributed Computing, process. Journal of the ACM, 32(2):374-382, April
1:5-§, 1986. 1985.

[10] D. Dolev, C. Dwork, and L. Stockmeyer. On the [22] M. J. Fischer and L. D. Zuck. Reasoning about un-
minimal synchronism needed for distributed con- certainty in fault-tolerant distributed systems. In
sensus. Journal of the A CM, 34(1):77-97, 1987. M. Joseph, editor, Formal Techniques in Real-Time

and Fault-Tolerant Systems, pages 142-158. Lec-
[11] D. Dolev, E. Gafni, and N. Shavit. Toward a non- ture Notes in Computer Science, vol. 331, Springer-

atomic era: 1-exclusion as a test case. In Proc. 20th Verlag, 1988.
ACM Symp. on Theory of Computing, pages 78-92,
1988. [23] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P.

McAuliffe, L. Rudolph, and Al. Snir. The NYU
[12] S. Dolev, A. Israeli, and S. Moran. Self stabiliza- ultracomputer-designing an MINID parallel com-

tion of dynamic systems assuming only read write puter. IEEE Thans. on Computers, pages 175-189,
atomicity. submitted for publication, 1989. February 1984.

[13] C. Dwork, N. Lynch, and L. Stockmeyer. Consen- [24] M. G. Gouda. The stabilizing philosopher: Asym-
sus in the presence of partial synchrony. Journal of metry by memory and by action. Science of Com-
the ACM, 35(2):288-323, 1988. puter Programming, 1989. To appear.

[14] C. Dwork and Y. Moses. Knowledge and common [25] V. Hadzilacos. A knowledge theoretic analysis of
knowledge in a Byzantine environment i: Crash atomic commitment protocols. In Proc. 6th ACM
failures. In Theoretical Aspects of Reasoning about Symp. on Principles of Database Systems, pages
Knowledge: Proceedings of the 1986 Conference, 129-134, 1987.
pages 149-169. Morgan Kaufmann, 1986. [26] J. Halpern and L. Zuck. A 'ittle knowledge goes

[15] R. Fagin, Y. J. Halpern, and M. Vardi. A model a long way: Simple knowledge-based derivations
theoretic analysis of knowledge. In Proc. 25th IEEE and correctness proofs for a family of protocols. In
Symp. on Foundations of Computer Science, pages Proc. 6th A CM Symp. on Principles of Distributed
268-278, 1984. Computing, pages 269-280, August 1987.

[16] N1. J. Fischer. The consensus problem in unreliable [27] Y. J. Halpern. personal communication.
distributed systems (a brief survey). In M. Karpin- [28] Y. J. Halpern. Reasoning about knowledge: An
sky, editor, Foundations of Computation Theory, overview. In Theoretical Aspects of Reasoning about
pages 127-140. Lecture Notes in Computer Science, Knowledge: Proceedings of the 1986 Conference,
vol. 158, Springer-Verlag, 1983. pages 1-17. Morgan Kaufmann, 1986.

[17] M. J. Fischer and N. Immerman. Foundations of [29] Y. J. Halpern and R. Fagin. A formal model
knowledge for distributed systems. In Theoretical of knowledge, action, and communication in dis-
Aspects of Reasoning about Knowledge: Proceed- tributed systems: Preliminary report. In Proc. 4th
ings of the 1986 Conference, pages 171-185. Mor- ACM Symp. on Principles of Distributed Comput-
gan Kaufmann, March 1986. ing, pages 224-236, 1985.

[18] . .1. Fischer and N. Immerman. Interpreting log- [30] Y. J. Halpern and Y. Moses. Knowledge and com-
ics of knowledge in propositional dynamic logic mon knowledge in a distributed environment. In
with converse. Information Processing Letters, Proc. 3rd ACM Symp. on Principles of Distributed
25(3):175-181, May 1987. Computing, pages 50-61, 1984.

10

