]

UNCLASSIFIED .o
v ASSECATION W PA —

[, OECLASSIFICATION / DOWNGRADING SCHEDULE

IMENTATION PAGE potongt vy BN

Q

;:_;- AD_A220 498 1b. RESTRICTIVE MARKINGS

3. DISTRIBUTION / AVAILABILITY OF REPORY

DISTRIBUTION STATEMENT A- Approved for
public release; distribution is unlimited

4. PERFORMING QORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
SM-ALC/SCD-1 HQ AFLC/MMDAS

6a. NAME OF PERFORMING ORGANIZATION 6b. o,;ncs SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
Sacramento Air Logistics |smiaTRSP%Ly | Wrighc-Patterson AFB, OH 45433-5000
Center HQ AFLC/MMDAS

6¢c. ADDRESS (City, State, and ZIP Code) . 7b. ADDRESS (City, State, ang 2'® Code)
SM-ALC/SCDN, McClellan AF Base, Wright~Patterson AFB, OH 45433-5000

CA 95652-5990

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
8c. ADDRESS (Crty, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS
- PROGRAM . | PROJE TASK WORK UNIT
s'E?Sm NO.] NO. a NO. ACCESSION NO.

11. TITLE (include Security Classification)
OOPS IT'S HAPPENING

12. PERSONAL AUTHOR(S)
Mel Fisher .

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT
Magazine Article FROM 10 31 Aug 1989 16

16. SUPPLEMENTARY NOTATION . .
Paper prepared for publication in the SOLE Spectrum magazine as a tutorial

on Object Oriented Programming for logisticians.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Artificial Intelligence, Computers, Application

Object Oriented Programming

Smalltalk (See reverse)

19. ABSTRACT (Continue on reverse if necessary and identify by block number) .
Since the introduction of computers, programmers have been searching for

higher level languages which support a philosophy of quick and wasy
application development and maintenance. In 1977, Xerox developed the
first object oriented language, Smalltalk. This paper describes the
uses and benefits of object oriented programming for the novice.

DTIC

ELECTE g
APR11 1990 &
20. DISTRIBUTION / AVAILABILITY OF ASSTRACT ﬂ 21, ABSTRACT SECURITY CLASSIFICATION
D uncLassiFieounuMITED DIXAME As RPT. [pTic USERs UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL
Roger M. Boan - (513) 257~3201 HQ AFLC/XPS
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY _CLASSIFICATION OF THIS PAGE

90 04 10 o021

18.

Y
Tools, Compuer Programs, Computer Programming, Computer Programs
Programming Languages, Computer Applications

o -',

LA

LEAD IN FOR THE ARTICLE......

INTERESTED IN OOPS?

WHAT IS OOPS?

THIS TWO PART ARTICLE

DISCUSSES THE OBJECT ORIENTED CRAZE THAT IS FOUND ALL OVER
THE COMPUTER INDUSTRY AND GETS YOU INTO THE BUSINESS OF

UNDERSTANDING THE LATEST OOPS TERMS!

NTIS CRA&u‘_\dT

DTIC TaAB

Unannounced

Justitication o

By _._. S J
Disvibution T

Availlability Codes

: Avall andfor
Dist Svecial

h{] |

O0FS 1T '3 HAFPFENING:
By

Mel Fisher

(Y]

Object Oriented Frogramming Svsteme (QOOFS) Fard

(This is the first part of an article on DOFS)

The Software Cricis!
\A
Since the introduction of computers, programmers have been
searching for higher level languages which support =z
philosophy of quick and easy application development and
maintenance. Froblems in the S@°'s and 606's resulted 1in
exttensions being added to computer languages to make them
more modular, thus reducing the problems of having
different parts of a program conflict with each other.
This module or block of code required protection from

other things happening within the program &nd introduced

the concept of an OBJECT and how to protect (encapsulaite)

data used by that<iijiii;)

laun

One of the first chject oriented languages was Smalltalk,

develoced at Xerox FARC in 1277 by Alan kay. It was a
tremendous succese at influencimng the direction of many
commercial products like Apple’'s Lisa and Macintosh.
Similar to the Macintosh, the Smalltalk system ie not just

.

a language: it’'s an integrated programming environment.
Ar object oriented proaramming (00F) environment like
Smalltalk is based on & single universal data structure
{the object), & control structure for sending messages,

. . . , .) /KP«)
and a uniform class descripticon (the clasc hierarchy) .
These terms will make more sense as we tallk about them in

part II nf this article. For now we just need to know that

they are important.

-~

What aood are all these Obaects

The initial appeal of objlect orientation 1< that 1y
provides not so much & coding technique ac T 1& & MeEw
approach to make software (1) better designed, (I ~ure

reusable, and (I) more reliable.

1) BETTER DESIGNED - QOF provides better conceptc ond
tools to model and represent real world problems b
allowing an easier transformation from problem def:n:tion
to system requirements (user ter-ms! and programming
language (computer terms). This transformastion 4rom
problem to computer specification 15 often called
information modeling, where amvy real world object cen bte
represented in a variety of wavs. For e:iample, we can
represent an abstract object (dog) by the table showr

below:

DoG
i Dogs Breed Favorite Birthdate :
iname food '
tFifi Foodle Dry May 21 82 :

{Rover Miyx Mi June 1 83 H

A column in the table represents & characteristic or
ATTRIBUTE of the object dog. Each unique dog represente a

particular instance of the object dog by & row in the

table. Qther obiects of our real world problem could be:
Dog Owner Vet Doctor
i Qwner Address | i Doctor Addrese!

The last thing we need to know is that these objects can
have relationships and communicate., the owner 's name can
be associated with the name of & dog. In our case the dog
is owned by a owner and can be serviced by a vet doctar.
We can hegin to create an information model of our problem
ueing these basic concepts to create ORJECTZE with
ATTRIBUTES which can communicats with other cobiects

through MESSAGES.

2) MORE REUSABLE - Since 0O0OF deals with aobjects and the

ata that works with those objects, this packaging of

28

objects {emcapsulation) allows for the development of
obiect libraries which can be used when developing
applications. These éoftware libraries contain reusable
objectes (data % methods) that can be incorporated into any

rogram by more tharn one orogrammer.,
4 =

) MORE RELIABLE - The biggest protlem Tocs, when

designing systems involves an attitude Lowars Chance. AS
application (end user) needs change, fhe &+vort G vl
to make those changes 1n software 1& ot pert of wr
programming tools, methodologies amd concepti. Tl
natural process of using better gvecigned Code wilh
reucsable software modules will recuit 1 Ccvetems (hat

adjust to change better and be more relirable.

So What is Object Oriented Freograemming’

0

It is & way for real world problems to be reprecented &

5]

[
-+

objects, with preoperties (attributes) about theoese oblrectes
and the operations (messages) permiited tc worlt on chbaect

data structures. Im an O0OF ernvironment. & orogram cbtains

information from an obiect or request an okiect to do
something by sendirg a MESSARE to the cbiscth. Some

-

obiects in amy oroblem will be verv zimilzar and thus
demonstrate a €imilar behavior. The object dog above is
similar to a Deer. It has four legs, a head, tai1l, etc.,

when creating the original object dog i1t would of made

sense to use similar charactericstice of the deer obiect or

inherit its characteristics and not reinvent the wheel.

TRANSITION TO QOFS!

The Lransition to OOF will not necessarily be a smooth
one. There probably will be several shases to go through
before programmers can really incorporate 00F intoc the

mainstream of programming.

m
[}
]

The first phase of the 00F transition will bé to intearate
into existing languages 0OOF features. This incremental
process will allow programmers te build on their existing
knowledge and experiences and use existing code, incre-
mentally using objecte in places where they are needed.
This would include languages like C++, Objective C and
Object Fascal. Eorland and Microsoft recently have
announced their versions of DObiect Fascal while Apple has
had Object Fascal for years. Will ODF features be added

to other traditional langusges (QOF-COROL) 7

=1

he second phase is to have major applicsation uss obliscts

z collections of objects. With this capability, appli-

il

cations cip use obiscts such as a spreadsheet, text or
graphics independent of where they were created. These
toclkite are just now becoming available for the
orogrammers in the form of Dymamic Link Libraries. At
this point, operating systems will have to recaognize these
collections of cbjects. UOperating systems like 05-2 and

Unix offer this in some capacity right now, but 1t needs

to be improved before COFS makes it to the last phase.

The final or third phasc of 00F transition will be tocl
development for end-users. Frogramming toole or larcuvaqes
like Smalltalk or Actor provide this now to & mertain
degree, but some manual coding is still required,
Hopefully, toclzs like tihis will result in end—-users
creating applications with objiect oriented code

genaerators.

00F SOURCES

1. Jownal of Obiect-Oriented Frogramming. 1-80H~T74T-0117.

Z. C++ Report, 1-S@@-345-8S112.
Z. MacTutor Frogramming Jowrnal, (714) &6T0--T7354,

4. ParcFlace, Smalltalk-89, 1-8idE-gE2Z-5T84d.
5. The Whitewater Group, Gctor, (Z12) 491-2774.
[=gl

&. Digitalk, Smalltalk/V (pe/Mac) 1-BBE-G22-£.55.

7. Yourdon Fress, Object-Oriented Systems Arnalvsig b

]

Hlaser and Stephen Mellor.

Sally !
8. Addison-Wesley, Gbhbiject Oriented Frogramming t. Brad
Cox.

9. Addicon-Wesley, "A Little Smalltalk", by Timothv Budd.

L’T.

Yourdon Frece, "(Oblect-Oriented Sveteme Anal veale' bov
Sally Shlaer and Stephen Mellor, 1SZE.
Addison-weslev, "Object Ori1ented Froagr amnnang" by Brad

Co:x, April 1987,
FC Weei, "0OF: A New Ferspective on Cooe and Data'. b

Jeftery Duntemann. Novenrber 14, 1583,

InfoWorld, "lransition to Occur i1n three Waves". b

Stuart J. Johnson. July I, 1989.

Management Informaticn Systems wWeel, "Q0OF: more

smarts, less code', by David Coursey, Jums 12. 192°.
dohn Wilev % Sonz, "Intelligent Databases", by Hamran

Farsave. Mark Chignell, Setrag Khoshafian, and Harrv !

Wong,

1989.

REFERENCES

gorFrs 175 HAFPENING!
Ry
Mel Fisner

Obiect Oriented FProgramming Systems (Q3OFS) F

(This is part 1] of a series of articles

a

rt

on

11

OoFs)

Remember Q0OF3S™

In part 1 of this article we discussed the sctlware cricls
1N des:igning systems with traditional langueages, and how
Object Oriented Frogramming (00F) would provide & new
approach for software to bhe (1) better des:cned, (2) more

reusable and (7)) more reli1abdle.

We also talled about how O0F provides a better wayv tco
represent real world problems as CERJIECTS with propertiec
(ATTRIBUTES) and how oblects can communicate with other

objects by passing MESSAGES.

DOF: New wavs to Look At Code % Data

Now that we know about cbiects, attributes, and messaqges
it is time to add a few more terms to cur Q0 vocabuliary.
Under the OOF paradigam, both code and date are important
as they are brought together to form am object. Since
objects perform actiorms via methods (procedures), one
method might print the object s data on a printer (ie. Qo
print yourcselt). Another method might request new data for

its object which could be a database record object.

This idea of sending messages to objects is intriguing but
only part of the story. The most important part of Q0OF is

the idea of INHERITANCE. When an object is defined, it

becomes part of a2 CLASS of oblect. In our doqg cblect
example in part I, we saw that a dog could have
characteristice nf & Qeneric anima! object. Thige procecs
is called i1nheritance. What thie means 1 that any object
cAan inherit the needed characteristics of anv other object

and then just add the attributes 1t needs for :1tcelft.

Let me state that again because 1t 1€ the most 1mportant
part of OOF that makes 1t dramatically different from eny
procedural language. The actual inheritance occurs when a
new class of object 1s defined bv building upon a

previously defined class.

rFor example: if we create a new object doa, 1t most
likely will have some characteristics of a generic animal
object. Since certain animals have four legs, a tail. a
head and other features, we can use or inherit these
characteristics for our animal object. To make the dogq
look different, we will add some o+ our own methods
(procedures) to the obiject to make it unique and behave

like & dog.

The last thing to know is thgt the class of cbiectes 1¢
structured in a HIERARCHY. When a new class of an object
is created it is considered a descendant of the original
class which in twrn, is an ancestor to the new class Just

created, It's similar to a family tree of objects.

Classes higher in the hierarchy tree represent more
aeneral characteristics, while classes lower in the
hierarchy, represent more specific characteristics common
to obiect clascses. For ewxample: the class animal in &
hierarchy tree would contain more general characteristics

that a dog object which i a certain type of animal.

A Model For Reality

As mentioned earlier in Fart 1, the appeal of O0OF is that
it provides better concepts and tocls to model and
represent the real world. This allows for a more direct
representation of data and modeling of data to the problem

at hand.

This procese of trying to represent the real world in
computer/user terms is called information modeling.
Information modeling itself can be very useful in many
application areas where there is a need to have systematic
processes clarified.

For example, consider a procurement expert within &
company. This person has a great deal of knowledge om the
inner working of how to get items purchased from various
vendors. Information modeling would be helpful here to

extract from the procurement specialist, the processes

which make up his/her approach to procurement problems.
00F allows vou to represent a model of the procurement
problem and the relationships within the problem to assict
in the transition from problem definition to computer

speciftications.

Ore of the first things vou do when building an
information model is to define the conceptual units of the
problem itseld in the form of objects. Tne combination of

all these obliects assists in defining the problems scope.

Why 1¢ this model important? It represents one of the
processes that make up the complete software devel opment
lifecycle. This developmental process is typically made

up of fouwr phases with a varying degree of each:

i. Analysis of the problem (our madel above)

2. Specifications

1
s

vstem design

4, Implementation

Future Directions of 0O0QF7

There are several areas where 00F can be applied:
databases, end-user tools, CASE (Computer Aided Software
Engineering), and toolkits for programmers. Since the
database is the most important part of any information
system, fhis area will benefit the most from incorporating

OOCF.

A database combined with OOF becomes an intelligent
database. To fully utilize intelligent databases,
other tools cam be added such as expert systems,
hypermedia and text management. New information
technologies combined with graphics will play an ever—

increasing role in information systems of the future.

O0F will not be a cure all for future system desiagn, but
it will help reduce the software crisis of todayv by

facilitating software desiagn and maintenance.

&‘.osmphl

Mel Fisher is a Knowledge Engineer in the Artificial Intelligence
Laboratory (AI Lab) at McClellan AFB, Sacramento, California. He has an A.S.
degree in Electronics Technology and a B.S. degree in Instructional
Media Technology from California State University, Chico. Prior to joining
the AI Lab, most of his experience was in the Aerospace Industry wvith Lockheed
and Martin Marietta. His interests include database systems, object
oriented programming, and expert systems.

