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ABSTRACT

The following report describes a comprehensive numerical

procedure for predicting tooth separation in a single-stage gear

system, and provides information on its programming and use. This

programmed procedure, named Gearsep, allows any segment of a

spur gear train to be analyzed for the critical operating conditions

under which tooth separation can occur.

Gear tooth separation, as evaluated in this report, occurs when

the varying compliances (or, conversely, the "stiffnesses ") of the

meshing teeth cause the contacting tooth pair to react against the

system's shafts to such an extent that tooth surfaces loose contact

with one another. When the teeth regain contact, they do so with an

impact, causing high tooth stresses and unwanted noise.

The numerical procedure takes readily available gear tooth data

and creates an analytical compliance model for a pair of mating

teeth moving through different contact positions. This model is

then passed to a numerical integration scheme which determines

relative gear motion, and thus predicts separation. The particular

tooth compliance model choosen is based on straightforward

strength of materials concepts.

This report also presents a sample gear train investigation and

confirms the accuracy and stability of the numerical integration

algorithm by comparing it with an analytical solution of a

simplified gear system.
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Chapter 1

INTRODUCTION

1.1. Gear Noise Background

The long history of gear noise studies stems from two major

concerns: the effect of noise on the immediate environment and the

effect of noise-producing processes on machinery. Issues in the

work environment center around employee health and safety due to

the potential for physically damaging noise levels emanating from

poorly designed machinery. Other environmental noise concerns are

more common, such as cabin noise in turboprop aircraft and

helicopters [1], and even household appliances [2]. Detrimental

effects on the machinery itself arise from the characteristics of

noise generation, such as abnormally high bearing, shaft, and tooth

loadings which may reach into the billions of cycles. If such

loadings are not anticipated and avoided, machine life could be

drastically reduced, most often from premature fatigue failure [3].

The early efforts in gear dynamics analysis of the 1920's and

30's were mostly concerned with the prediction of tooth stresses.

In the late 1940's, Buckingham described the "separation of elastic

bodies" and their subsequent impact [4]. Mass-spring models of the

1950's were at first employed in the usual search for tooth
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stresses, but were then expanded to more detailed dynamics

investigations. The modeling efforts of the 1970's and early 80's

began to include more complicated effects such as three-

dimensional effects, damping, and other nonlinearities. Current

models may apply plate theory and also firnish transient responses

[5]. A comprehensive treatment of the history of gear noise

investigation is available through the referenced work of Ozguven

and Houser [5].

1.2. Gear Noise Definition

Gear noise may be precisely defined as that directly produced by

gear teeth or indirectly by other neighboring elements in a gear

train (bearings, etc.). In a broader sense, however, it may be

defined as the transmitted noise produced by a machine as a result

of the vibrations at a gear pair. Mechanical vibrations are

transferred along shafts and through bearings to structural

mountings, while similar acoustic waves propagate through

internal spaces, both finding their way to machinery housings [6].

The housings amplify and re-emit the vibrations and waves into the

working environment as high amplitude airborne noise at the gear

mesh frequency and its multiples, which may easily mask the

actual noise of a gear pair [7].
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1.3. Separation as a Source of Gear Noise

Gear noise is a direct product of the unsteady component of the

relative angular motion of pairs of meshing gears [8]. If this

unsteady component is large enough to create a relative angular

gear displacement greater than the tooth deflection caused by the

load on the system, then the contacting surfaces of the meshing

teeth will separate. When the teeth regain contact, they do so with

an impact, causing high tooth stresses and unwanted noise [9].

1.3.1. Definition of Separation

Gear tooth separation may be described by a linear system

analogous to the true rotational system. In Figure 1, the series of

frames show a segment of the free oscillation of two forced

masses under the influence of a constant force F. These masses

represent the bodies of the gears in question, and the two springs

correspond to the flexible gear teeth, and are depicted as ending in

flat, massless plates to represent the contacting tooth profiles.

The two masses can therefore be held in a single, mutual system

(spring plates in forced contact) only by maintaining a relative

distance between the masses that is smaller than the combined

unstressed lengths of their springs. If the linear system rebounds

against its springs such that it, reaches this unstressed position
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(middle frame of Figure 1), it will then correspond to a rotational

system with its tooth profiles touching, but with no transferred

force (unforced contact). This condition may be thought of as

impending separation.

SINGLE SYSTEM
(SPRING PLATES IN CONTACT)

APPLIED DIRECION APPLIED
FORCE OF MOtiON FORCE

\\ ~~ ,\\\\\\\\\\\\\\\\\\\\\\1\

UNSTRESSED POSITION
(SPRING PLATES TOUCHING WITH NO

TRANSFERRED FORCE)

SEPARATION

Figure 1 : Linear Separation System

The gears' relative displacement with respect to each other (not

with respect to their initial positions) can be thought of as an

oscillation around a quasi-equilibrium position, albeit in a

complicated fashion. The corresponding block and spring behavior

is a lateral oscillation about the system's center of mass. This is

represented at the top of Figure 2 as the motion of the quasi-

equilibrium or "relative" frame within the "global" frame.
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By defining the datum of each block (and also each gear) in the

relative frame at its respective unstressed, initial positon, and

continuing to ignore rigid body motion, a straightforward

definition of separation may be established based on the previous

discussion. Specifically, if no separation is to take place, the

motion of the right-hand block must not exceed that of the left-

hand block as viewed from the global frame. The blocks or gears in

question must remain within the confines of their quasi-

equilibrium datums as viewed in Figure 1. Again, if the system

elements return to their datums, any continued outward movement

will result in a separation of the contacting surfaces. From

Figure 2, which shows both forced contact and separation in the

relative frame, it is possible to define a actual quantity called

separation as the value of the relative displacement of the

elements. This is depicted explicitly in the bottom frame of

Figure 2. To further quantify "separation," consider the area of

Figure 2 labeled with a" + " and note that the elements are located

at their respective datums, implying that the plates are in contact,

but the springs are not compressed. If element 1 were to move in

the positive direction a distance of, say, five units, while

element 2 were to move in the same direction, but only three units,

the plates would remain in contact, held there because of a total

spring compression of two units. By defining separation as that

measure found by subtracting the distance moved by element 2
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APPLIED LOAD DIRECTION APPLIED LOAD
OF MOllON

SINGLE SYSTEM

DIRECTION
OF MOTION/ \

F- +

THE EVET SEPARATION

Figure 2: Separation in the Linear System
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from that moved by element 1, the scenario just described would

produce a separation value of positive 2. Thus defined, positive

separation values of elements in the linear displacement system

imply that the plate surfaces have remained in contact. Conversely,

a negative separation implies that plate surfaces have lost

contact, as shown in the last frame of Figure 2. In an analogous

angular system, positive separation values imply that the tooth

surfaces of a pair of meshing gears have remained in contact.

Conversely, a negative separation implies that tooth surfaces have

lost contact due to the relative angular displacement of their

associated gear bodies.

1.3.2. Details of Separation

As previously stated, separation is caused by the unsteady

component of relative angular gear motion. Mark [8] goes on to say:

This unsteady component is caused by the periodic
variation in the stiffness of the gear mesh that is
attributed to the periodic variation in the numbers of
teeth in contact, and the variation in the stiffness of
individual tooth pairs as the location of their mutual
line of contact changes during rotation. The
intentional tooth-face modifications, machining
errors and wear, and tooth deformations all provide
non-negligible contributions to the deviation from
exactly uniform relative angular motion of pairs of
meshing rotating gears. (p. 1409)
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These deviations are collectively known as static transmission

errors (STE's) after the technique used to find them in which

measurements are taken of the relative rotational displacements

of statically loaded gears [10]. These errors are most often defined

along the line of action (the locus of all contacting points for a

gear pair: see Figure 46a) and in displacement units [10]. Despite

their collective label, STE's should be considered to lie in two

separate groups as indicated by Mark; deformation oriented errors,

and those errors caused by physical imperfections of the gear

teeth, either intentional or accidental.

Separation brought about solely by deformations of the tooth

profile occurs because of the variation in tooth stiffness. This

variation is in turn caused by the changing tooth thickness and load

position that occurs as the teeth move through different positions

in mesh. Figure 3 shows a single tooth pair entering mesh and

leaving mesh, which are the two extremes of its range of contact.

As tooth 1 moves through mesh, the point of mutual contact moves

from its thick section and travels up the tooth profile to the

tooth's narrow section at the tip, with the converse variation

occurring to tooth 2. Unfortunately, the resulting opposite changes

in stiffness do not cancel each other to produce a constant

deflection. Rather, their sum creates the aforementioned unsteady

component of rotational motion, causing the teeth to push against

the system's shafts with a varying strength, possibly to such an
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LEAVING
~MESH

TOOTH 1: /1 /TOOTH 1:

THICK CANTILEVER/ NARROW CANTILEVER/
STRONG I WEAKTOOTH 2@ TOTH2

NARROW CANTILEVER/ THICK CANTILEVER/

SYSTEM SYSTEM
ROTATION ROTATION

~~MESH /

Figure 3: Variation of Tooth Thickness and Load Position with

extent that tooth surfaces lose contact with one another. This can

be visualized by considering the action between a diving board and

a diver. Imagine the diver standing on the board and causing it to

oscillate up and down while keeping his feet in constant contact

with the board surface. Such motion can continue indefinitely, until

he correctly varies the "stiffness" of his legs, causing feet and

board to separate.

Relative gear motion is further complicated by the fact that

most gears are designed to have more than one pair of teeth in

contact at one time in certain regions of mesh. As a result, a pair

of meshing gears that alternate between one and two contacting

tooth pairs will experience both the continuous, unsteady motion
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from the previously described stiffness variations, and the sudden

and repetitious rising and falling of the overall stiffness level

owing to transitions to and from dual tooth pair contact.

Physical errors incur separation by introducing either true or

effective raised areas to the tooth profile. Upon contact with the

mating tooth surface, these raised areas produce rigid body

rotations of the gears as a whole, which may be great enough to

cause separation. This occurs in much the same way an unexpected

bump may "separate" a bicycle, along with its rider, from a

previously smooth road surface. Origins of true raised areas have

already been considered (modifications of the tooth profile, etc. as

discussed by Mark [8]), and effective errors may originate in the

mispositioning on the gear body of entire teeth or in the

misforming of the gear body itself during manufacture [11]. It

should be noted again that while provisions have been made to

include separation due to such physical errors, the bulk of this

investigation will be aimed at separation caused by the changes in

stiffness inherit in the relative positional changes of meshing gear

teeth (as shown in Figure 3).

1.3.3. Post-Separation Behavior

After tooth surfaces loose contact, two related chains of events

may occur, depending on the system's physical characteristics.
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Common to each event is a degeneration of the single-stage system

into two momentarily independent single shaft systems, with the

division occurring at the separated teeth (just as a diver and a

board separate into two dynamically independent systems).

Figures 1 and 2 presented the linear analogy to this degeneration,

while that of the rotational system is depicted in Figure 4: The

insert shows the teeth of a gear pair still moving apart just after

tooth separation, where the large arrows give the rotational

direction of the system as a whole, and the smaller arrows

indicate the relative tooth motion.

GEAR

MOTOR

LOAD MASS

t GEAR TEETH OUT OF

, CONTACT:

SINGLE-STAGE SYSTEM
HAS BECOME TWO
DYNAMICALLY SEPARATE
SYSTEMS

Figure 4: Degeneration of One System into Two Isolated
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1.3.3.1. Contacting Surface Impact

The first post-separation event that will be considered requires

that the energy partially dissipated in the separation of the two

tooth surfaces be completely expelled in twisting the system's

shafts. At that point, the gears involved will stop their relative

forward rotation and begin a relative backward motion, opposite to

the directions of the smaller arrows in the inset of Figure 4. This

is similar to the diver falling back towards the surface of the

diving board.

When the teeth have moved back through the distance that had

separated them, their contacting surfaces will meet with an

impact, as described in reference [4]. The ensuing dynamic

separation load can cause, in addition to the large vibrations which

propagate through the system as previously described, tooth wear

and general loss of performance (12] and may produce the largest

load value encountered in the mesh cycle. This will cause obvious

problems if only static loads are considered when designing tooth

strength. It should also be noted that a dynamic load will occur

even if there is no separation [4]: The unsteady relative gear

motion produces a dynamic acceleration load even if the teeth

retain contact, as indicated by the spring deformations in the

oscillations of the linear system shown in the top of Figure 2. This

is the oscillating load caused by a bouncing diver that deflects the
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diving board past the point of static deflection from the divers

weight alone. The key point is that this oscillating load will occur

even if the diver's feet never leave the board.

1.3.3.2. Double Impact

The second possible event after the teeth have separated

requires that the energy of separation be greater than that required

to simply counter-rotate the system's shafts. This will produce a

relative gear rotation equal to the gears' backlash (the clearance or

play between adjacent pairs of teeth). When this occurs, there will

be a second dynamic loading in addition to that previously

described: Because shaft stiffnesses are no longer large enough to

stop the gears' motion in "mid air," the back sides of adjacent teeth

will impact [13]: This is analogous to an unfortunate diver hitting

the underside of the board one level above him before returning to

land on his own. Although much of the separation energy may be

expelled by the time the tooth flanks meet, resulting in a less

severe impact than that which will occur to the front sides a

moment later ( completing the "double" impact), the teeth will still

be stressed in the direction opposite to that which occurs during

normal operation, and due to the nature of bi-directional loadings,

the chances of fatigue failure will increase. While this type of

impact will not be included in this analysis, it nevertheless gives
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support for the usage of a separation analysis program to predict

and avoid gear tooth separation.

1.4. Program Description

This report presents a programmed numerical procedure wLich

employs an established gear tooth compliance model for the

prediction of the critical operating conditions under which gear

tooth separation can occur in single-stage segments of spur gear

systems. This task is accomplished with a set of programs

collectively titled Gearsep, for "gear separation." There are two

autonomous Gearsep program parts, the first using the

aforementioned model to evaluate the varying compliances of the

meshing tooth pairs (Gearsepl), and the second using this

compliance information in a dynamic model of the single-stage

system (Gearsep2).

Gearsep's focus will be on deflection induced separation,

although provisions have been made to include the effects of the

physical errors previously discussed. The reasoning for exclusion

of these topics from the main flow of the program development is

that such physical imperfections change from gear to gear and

from system to system, so the selection of any one of these

criteria would be completely arbitrary, and might only apply in

limited circumstances. The requirements for deflection induced



15

separation, however, exist in all spur gear systems, and as such,

this may be thought of as a global trial case for the Gearsep

procedure.

1.5. Program Constraints

For a complete system analysis, a spur gear pair with involute

tooth profiles and a contact ratio range between one and two is

assumed. Such an analysis begins with common, elementary gear

data, and implies no foreknowledge of the tooth compliance.

However, experimental data or external analytical compliance data

may be input directly into Gearsep2 (the dynamics section of

Gearsep), which again is constructed to operate autonomously from

the section which calculates the varying tooth compliance. Other

constraints are discussed throughout Chapter 6.

The overall Gearsep program is designed to analyze a

single-stage system, a component found in many common gear

mechanisms. The single- stage system is composed of a driving

mass and shaft, two gears in mesh, and a driven shaft and mass,

where shaft bending is assumed to be negligible, eliminating the

need for treatment of Coriolis and gyroscopic gear effects [14].

A single-stage system was used in Figure 4, and as is now

presented in detail in Figure 5, where the driving mass is an
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electric motor, and the driven mass. or load. is a compressor.

MASS 4

MASS 1 G

GEAR SET MASS 2

MASS 3

COMPRESSOR
(DRIVEN MASS OR LOAD)MOTOR

(DRIVING MASS)

Figure 5: Typical Single-Stage Gear System

For a more complicated system where a discrete mass value for

one or more of the end masses does not exist, effective inertias

may be used to assemble a corresponding single-stage system [15].

This would be a necessary pre-Gearsep analysis for a dual system

such as that shown in Figure 6, where a small power generator is

being driven by a third gear mounted in tandem with the original

two. This type of system would require two separate applications

of the Gearsep analysis, one for each of the system's two gear

meshes.
4
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SECONDARY GEAR SYSTEM GENERATOR

ORIGINAL L..-------
........./ ...... GEAR PAIR

/ COMPRESSOR
MOTOR (DRIVEN MASS OR LOAD)

(DRIviNG MASS)

Figure 6: Dual Single-Stage Gear System
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Chapter 2

ANALYTICAL SOLUTION OF THE GEAR SYSTEM

2.1. Chapter Overview

The following is a summary of the precursory analysis

necessary to confirm the analytical model of the single-stage spur

gear system shown in Figure 1. Details may be found in Appendix C.

The true gear system is first idealized and simplified by

assuming that the gears are perfect rolling elements, which

transfer uniform rotary motion with no unsteady components from

tooth dynamics. This allows the single-stage system's four

equations of motion to be rewritten as three representative

equations of motion, a form that is solvable using standard

techniques: For this analysis, generalized coordinates are used to

create the analytical model [16].

2.2. Equations of Motion

For the analytical solution of a single-stage gear system, shown

in lumped mass form in Figure 7, the gears are assumed to be, as

stated, perfect rotational elements.
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transferred force is nothing more that the instantaneous tooth pair

stiffness tooth pair stiffness as a function of position in mesh

(KTooTH PAIR: see Chapter 3) multiplied by the relative

displacements of the two gears (02 and 83). Substituting this for F

in Equations 1 a through 4a, the equations of motion become:

J101= k1(02" 01) + C (02 - 1) Equation lb

S0 0I 0

J202= k2(01" 02) + c (01 - 02) - KTOOTH PAIR (0 2-" 3) Equation 2b

J303= k( 4 - 3) + c (04- 03) - KTOOTHPAR (03 - 0 2) Equation 3b

of 0 0

J 464 = k2(63 - 64) + c (63- 64) Equation 4b

Note that it is this set of equations that is actually solved by the

numerical integrator (see Chapter 4) to predict separation.

Equations 1 b through 4b must be altered slightly to allow an

analytical solution benchmark. For the analytical solution, all

damping is assumed negligible (c - 0) and mass moments of inertia

are established in an arbitrary manner as described in Appendix D.

The solution is found for a set of arbitrary initial displacements of

the lumped mass system shown in Figure 7, where mass 1 and

mass 4 correspond to the motor and load masses, respectively.

Because mass 2 and mass 3 in Figure 7 are assumed to be

perfect in their transfer of rotary motion for the analytical
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system, the transferred force F is constant for the benchmark

solution. Through the algebraic elimination of F, Equations 1

through 4 may be combined to produce a reduced set of equations as

follows:
of r3

JI1 + kj( -r-'1 0 Equation 5

r22 r [(r3 2 1
[3+ 3- k 1  r2 k, + k2163 - k2 04 =0 Equation 6

J4()4+ k0(64- O) = 0 Equation 7

At first, Equation 6 appears to be fairly obscure in its origin.

However, its appearance simplifies by noting the placement of the

gears' radii ratio r3/r2 when the four equations of motion reduce

to three: Equation 6 must describe a single fictitious rotational

body comprising the characteristics of the two original gears.

Thus, mass and stiffness terms in Equation 6 may be regarded as

effective quantities, numerically weighted by the radii ratio.

Having removed all reference to 02 from the equations of

motion, the mass numbering system will now be redefined as

shown in Figure 8. Notice that the positive direction of the load

mass has been reversed from that of Figure 7.
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Figure 8: Reduced Lumped Parameter Gear System Model

2.3. Homogeneous Solution Components

The two homogeneous solution components necessary for

obtaining the particular solution are the natural frequencies and
the mode shapes, both of which are obtained by solving the

eigenvalue problem with standard techniques as discussed in
Appendix C. The natural frequencies in quadratic form become:

O 2 2 ac Equation 8
C~r 2 2a
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with:

a = J1J4 (J3 + J2 R2) Equation 9

b = -R2 [J1J2k2+ kJ 4 (J 1 +J 2)] - k2Jl(J3+J 4 )-hJ3J4 k, Equation 10

c = kjk2 [RI JI + J2) + J3 + J4] Equation 11

The modal matrix lists the naturally occurring mode shapes by

column, and is normalized by defining the first row with unit

displacements. All other elements are functions of the system's

inertias, natural frequencies, shaft stiffnesses, and the gear radii

ratio r3/r2 as contained in the set of variables Aij , where the

subscripts represent row and column positions. For an unrestrained

(free rolling) single-stage system, the modal matrix will take on

the following form:

A 1 *
A22 A23  Equation 121 A32 Al I

where the entries of row 1 (what would more generically be A11,

A12 , and A13) are unit displacements. Notice that the first column

(entries A11 , A2 1, and A3 1) of Equation 12 indicates that the first
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mode shape is made up of unit displacements of all of the

elements. This is indicative of an unrestrained, or semi-definite

system where the first displacement mode is a simple rigid body

rotation [17], and the first natural frequency is zero (see

Appendix C).

2.4. Particular Solution

Solving for the particular solution using generalized

coordinates, the modal equations of motion are obtained:

2M1* 1 + M1wO1ql = 0 Equation 13

M2 2+ M2 Co2q 2
= 0 Equation 14

M3 43+ M3 (03q3= 0 Equation 15

where the generalized coordinate q is defined by:

10(t)}I = [ I q(t) I Equation 16

The modal equations are then solved by assuming a solution of the

following form:

qn(t)= En Sin(wht)+Gn Cos(ont), n = 1,2,3 Equation 17
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Finally, by assigning initial conditions and solving for the E's and

G's in Equation 17, and substituting the resulting qn(t)'s into

Equation 12, the analytical solution of the system is obtained in

the form (shown here for the displacement of the first mass only):

0 1( t ) =All ql1(t ) + A12q q2t) + A13q q3t)

= (A1n)(G)cosawjt + (A2nXG 2)coso02t + (A3n)(G 3)COso)3t

n = 1,2,3 Equation 18

e2 (t) and 03 (t) are solved for in a similar manner.

Notice that no En's from the assumed generalized solution

(Equation 17) appear in the final system solution: With initial

conditions taken at time t = 0, the Enos can only survive if there is

a non-zero initial velocity. In foresight of the types of initial

conditions which will be chosen for the analytical benchmark (see

Chapter 5), the initial velocities for all masses are assumed to be

zero, thus simplifying the analysis.
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Chapter 3

TOOTH COMPUANCE MODEL

3.1. Chapter Overview

This chapter presents the model used for the compliance of a

pair of meshing gear teeth. Again, the principle source of gear

excitation is assumed to be the deflection of the teeth from their

unstressed positons, and that excitation is most naturally

described in terms of displacements [18]. In this light, the model

selected is that of Cornell (19], which predicts linear tooth

deflection both at and in the direction of the tooth loading for any

given tooth load. The tooth pair compliance is calculated (rather

than the stiffness) in order to maintain continuity with Cornell and

the majority of works in this area, both past and present.

Furthermore, all work in this section, unless otherwise specified,

is attributed to Cornell.

The total tooth pair deflection is calculated as a summation of

tooth and fillet area cantilever beam deflection (bending and

shear), foundation deformations, and Hertzian and localized tooth

body deformations. In the discussion to follow, variables directly

involved in the deformation equations are followed by qualitative

descriptions, with a comprehensive treatment of all variables,
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direct and indirect, available in reference [19].

It should be noted that the model chosen is not the most

sophisticated available. Modeling techniques which relied on

Fourier series or Legendre polynomial representations are avoided

in favor of confirmed and straightforward relations based on

strength of materials and common gear geometries. This is done to

produce an analysis technique that is aimed less at pure gear

dynamics research and more at an engineering application, with

mathematics that may be readily understood and, more

importantly, readily altered.

3.2. Beam Compliance

The tooth beam compliance YB is comprised of both cantilever

and shear deflection, with all deflections defined at the load point

and in the loading direction. The deflection equation itself comes

from strength of materials, and is an integral over the length of

the tooth cantilever. In numerical terms, this translates to a

summation of a series of discrete elements. From Cornell [19]

(p. 449):

nYBli _"cos+ ' I i i +j 2

EL =i - - Equation 19

i-1
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where:

n: the number of summation element increments

into which the tooth cantilever is divided.

L: the load on the tooth: This is taken to be unity.

a localized pressure angle at the loading point:

This results from using tooth centered

coordinates where the tooth is horizontal to

the viewer, as opposed to gear centered

coordinates where the position of the tooth

depends on its location in mesh (compare

Figure 9 with Figure 3).

E: Young's modulus

8i: the summation element increment: This is the

width of the interval of summation which

takes the place of a continuous integral.

I ,: the location of 8i at each summation step

it : the material's Poisson's ratio

(1- i2): anticlastic term as applied to a "wide" tooth:

Cornell defines such a tooth as one whose

ratio of its width to it thickness (measured at

pitch) is greater than five [19]. Anticlastic
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terms take into account the possibility of

anticlastic curvature in the teeth, where usual

lateral bending gives rise to a longitudinal

bending of opposite sign.

A: anticlastic tooth cross section area term at

each summation point

I: anticlastic section modulus term at each

summation point

Note that the "barred" quantities (A,I, etc.) have a direct

geometric relation to the base of the tooth cantilever. The tooth

cantilever geometries are shown in Figure 9, with hdefined as the

height or thickness of the base of the tooth cantilever:

LOAD

/ L CL

-------- hLtan -'L2

Figure 9: Geometry for Tooth Cantilever Beam Deflection
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As a side note, anticlastic curvature is easily demonstrated

with the aid of a "Pink Pearl" bar-type eraser. By holding the era-3er

with fingers and slowly bending it in half, the normally flat sides

can be seen to curve in the opposite directing of, and at a right

angle to the principal curvature.

3.3. Fillet and Foundation Compliance

The total fillet and foundation deflection YF is divided into

fillet beam and shear bending YFB, and foundation flexibility YFF.

Fillet deflection is based on the assumption that the fillet region

may be considered to be a stout cantilever beam, thus allowing

Equation 19 to be reused. The equation for the foundation

deformation from Cornell [19] (p. 449) is:

'_ [ xJ - ) - 4 tan2 (eL) I1

Y Lcos2(L0 1 6.6 4LF+ 2( 2ik1 + 1.53 1 + Equation 20
WE h hi2.4(1+

where: W: the tooth's facewidth and also the gear

thickness

El, C2" the terms carrying the anticlastic properties

of the tooth (see Appendix B, Section 11)
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I f : the location of the inboard boundary of the

fillet region

h f : the fillet thickness at If

All other variables are as described for Equation 19.

Foundation and fillet geometries are shown in Figure 10.

SLOAD

2 L

Rr

Fiaure 10: Geometry for Fillet Cantilever and Foundation Deflection

Although the bulk of Equation 20 is based on simple gear tooth

and body geometry, there exists no expression for the actual size

of the fillet cantilever, which is described by the angle YF in

Figure 10. Cornell contends that this should be the angle which

produces the maximum deflection at the load point and in the

direction of loading. It is therefore also the angle which causes YF

to be a maximum in the following:
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YF =YFF + YFB Equation 21

where both YFF and YFB are dependent on yF-

Although Cornell presents a variety of computed YF values for

various gear forms that may be directly used in the analysis,

Gearsep will calculate the actual value of the angle, the details of

which are in Appendix A.

3.4. Localized and Hertzian Deformations

This final deformation type includes both the Hertzian surface

deformation and the tooth body compression between the point of

contact and the tooth centerline. Cornell offers three choices for

the expression of these localizeOldeformations. After presenting a

comparsion of each choice with experimental results, a closed

form solution was suggested, in part because of its handling of

nonlinear effects. From Cornell [19] (p. 450):

Yhetz -I (1n b 22

Equation 22
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In Equation 22:

p & g: subscripts indicating varibles for the pinion

and gear, respectively: By convention, the

"pinion" is the driving gear, while the "gear"

is the driven gear.

In: the natural logarithm function

: thickness at the base of the tooth cantilever

b: Hertzian half-contact width: This is defined

by Cornell as:

4L ___ I
b Ir E ( Eg Equation 23

In Equation 23, r is the local radius of curvature of the involute

profile, and all other variables are as previously described.

Figure 11 shows the geometries for these local deformations.

3.5. Assembled Compliance Model

Because the described deflections are for unit loads, the total

compliance of a pair of meshing teeth may be obtained by simply

inverting the sum of all individual deflection types for that pair.
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This, however, provides a compliance value at only one point in

mesh. As the process of calculating the unit load deflection for

every iteration point would be too time consuming (Chapter 6 will

show that there may easily be thousands of points per tooth mesh)

the deflection will be calculated at five specific compliance points
along the line of action. A five-term power series will then be used

to represent the changing tooth pair compliance and will thus

supply an easily solvable analytic compliance expression. A
compliance function plot is shown in Figure 12; this particular plot

is associated with the sample analysis system of Chapter 6.

\\ , ' _..CL

hL h 2 a2...

- RB

Figure 11-: Geometry for Localized and Hertzian Deformations
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Figure 12: Power Series Comoliance Function

Cornell provides an in-depth confirmation of the proposed

compliance model, in which calculated deflections are compared to
both finite element and experimental data. The conclusion drawn is

that the compliance model presented is "probably as accurate as

any available" [19].
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Chapter 4

NUMERICAL INTEGRATION

4.1. Chapter Overview

The following is a brief overview of the numerical integrator

chosen to solve the single-stage equations of motion (Equations 1

through 4), with details of the routine given in Appendix D. All

work in this section, unless otherwise noted, is attributed to

Katona [20].

For the actual prediction of separation, a numerical solution

was chosen over an analytical approximation to permit arbitrary

time varying loads and experimental tooth compliance data, along

with material or bearing damping functions to be incorporated if

desired. Optional inputs such as these would greatly complicate or

make impossible an analytical solution, as they may be nonlinear

expressions or simply be comprised of raw numerical data.

4.2. The Beta-m Numerical Integration Scheme

The numerical integrator used to solve the gear system's

equations of motion is the beta-m method. This is a generalized

form of the well recognized Newmark scheme [21], and solves
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equations of the form:

M- Ci+Kx=f Equation 24

where M is the mass matrix, C is the matrix of damping

coefficients, K is the stiffness matrix, and f is a matrix of forcing

functions.

The beta-m method is developed by expanding Newmark's

integration expressions in a Taylor series, which is then

conveniently apportioned for use in an algorithm format. The Taylor

series takes on the form:

(k) (M)
xrHl =qk + bkAX Equation 25

where, for k = 0, 1,..., m (for an mth order approximation with

Pm rn 1)

qv= xnh k/( -k)! Equation 26
j-k

bk=Pkhmk/(m-k)! Equation 27

and xn+1 is the displacement at the next timestep. The

over-scripts (k) and (j) on x take the place of the ususal "dot

over-script" notation for time derivative ii dices, and m is the
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order of the approximation. In Equations 25 and 26, the qk term is

the Taylor series expansion of xn. 1 up to the term xn (and is thus

termed a "history vector"), and the last term in Equation 25 may be

interpreted as the error in the expansion's approximation of xn. 1.

The beta-m method is easily altered through the use of various I3

values, a sampling of which are provided by Katona. The 3's used in

Gearsep produce a solution of optimal accuracy with a truncation

error order of four. This choice is made in hindsight of the results

of the data analysis of Chapter 6. In that analysis, it shall be seen

that a beta-m method of increased stability would indeed expand

the range of operating conditions under which a stable numerical

response (and therefore usable data) results, but it would not

expand it into the area of the range where separation is mc -t likely

to occur.
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Chapter 5

CONFIRMATION OF THE NUMERICAL MODEL

AND SPECIALIZED PROGRAMMING PROCEDURES

5.1. Chapter Overview

This chapter confirms Gearsep's beta-m numerical integration

solution by comparing it with the analytical solution of the

reduced single-stage system presented in Figure 8. This is the

semi-definite (unrestrained) lumped three mass system reduced

from a four mass single-stage system as discussed in Chapter 2. It

should be noted that an actual Gearsep analysis solves the true

gear system of Figure 7 (as described by Equations 1 through 4),

not the reduced system (three equations of motion). It should also

be noted that the driving force for the system is the torque applied

to mass 1 (Figure 7): mass 1 represents the motors internal shafts

and rotating armature.

Also discussed in this chapter is the use of a special case model

for systems with an extreme difference of mass moment of

inertia values between its elements (the J's of Chapter 2). If in a

particular system the difference between, say, the J value of the

motor and that of the driving gear is too large, round off errors

will occur in the numerical routine and its supporting algorithms.
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To characterize the range of relative J values under which this can

occur, the top system of Figure 13 will be solved for various

motor/load J values with a fixed J value for the gear pair, and the

results compared with the solution of the special case model with

the same gear pair J. The form of this model is shown at the

bottom of Figure 13, which represents a system whose the outer

masses are so large in comparison to the gears that they may be

assumed to not affect the response, and so, are replaced by fixed

supports.

Ji(MASS 1) J3 (MASS 3),/\

K1  J2 (MASS 2) K2

WALLS

Figure 13: Semi-Definite and Fixed Gear Systems
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5.2. Three Mass System Benchmark

5.2.1. Analytical Solution

The benchmark system used to confirm the numerical procedure

will be one with symmetric masses and shafts as shown at the top

of Figure 13. Note again that this corresponds to the reduced four

mass single-stage system of Chapter 2, where R is the radii ratio

of the gears at pitch. For the four mass system let the arbitrary

system parameters be given as follows:

J1 =J 4=10 J2=J 3=5 k1=k 4=200 R=1

([ft lbl/unit angular acceleration) ([ft lb]/radian)

This would roughly correspond to a system with outer masses of

2.8 inch thick steel disks with 4 inch radii, inner masses of 4.4

inch thick steel disks with 3 inch radii, and 9 inch long steel

shafts with radii of 0.2 inches. For the reduced, three mass

system, with subscripts adjusted according to Figure 8:

J=J 2 =J3 =lO k,=k 2=200

([ft lb]/unit angular acceleration) ([ftlb]/radian)

The relatively high shaft stiffness values are choosen to make the

form of the system response more congruous with that of the full
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system analysis presented in Chapter 6.

Following the procedures of Chapter 2 as detailed in Appendix C,

this system has the following natural frequencies:

02=0 =2=20.0 (o)2=60.0

and an eigenvector matrix of the form

1i 1 1 ,
S 0-2 Equation 28

with arbitrarily choosen initial displacements of:

3== Equation 29

Note that for a true system with the characteristics described

above, such large initial deflections would probably cause plastic

deformations: It should be realized that these numbers are not

representative of any existing system, but rather, were choosen (in

hindsight) because of the simple forms of their results. Equally

simple are the system's mode shapes, as depicted in Figure 14.

Using the natural frequencies and the initial displacements to

solve the derived displacement relation (Equation 18) is solved, the

response of the system's mass 2 is obtained as shown in Figure 15.
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Figure 15: Resoonse of Analytical Three-Mass System

As expected, the system's response is simply a repeating

sinusoidal wave, and were it not for the high shaft stiff nesses, the

plot would show a superimposed variation in amplitude from the

interactions of masses 1 and 3 with mass 2. The phase-plane plot

for mass 2 is shown in Figure 16, with a clockwise trace direction.

The two-dimensional phase-plane response is in the anticipated

form of an ellipse, and shows no signs of instability in either the

diaplacement or velocity. This, of course, is indicative of a closed

form solution.
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Figure 16: Phase-Plane Plot of Analytical Three-Mass System

5.2.2. Numerical Solution

The beta-m method is now used to solve the three mass system

of Figure 8, using the same J's and stiffness values as in Sec. 5.2.1.

The numerical response is taken out to twenty cycles, which in

hindsight is approximately twice the number of cycles needed to

comfortably affirm or disaffirm separation in a true analysis (see

Sec. 6.2.3.). Figure 17 shows a series of numerical responses for

mass 2 plotted against a section of the analytical solution

(originally given in Figure 15) as they approach the end of their

twentieth cycle. Time increments for the numerical plots begin at

0.1 seconds and decrease by a factor of ten for each subsequent
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Figure 17: Numerical vs. Analytical Response for

Three-Mass System

plot in Figure 17, thus increasing the accuracy of the

approximation and forcing the numerical solution to approach the

analytical solution. The timestep size was decreased in this

manner until the numerical response was within 0.01% of that of

the analyticat solution, which occurred at a timestep size of 0.001

seconds.

As will be shown later in this section, the largest timestep

used in Figure 17 becomes numerically unstable, but still provides

an accurate estimate of the response. A timestep size largerthan

this by a factor of ten was attempted, but the result became

immediately unstable. It should be noted that each factor of ten

stepsize reduction requires an increase in the number of
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computations by the same factor.

The nature of beta-m's instabilities can be seen by again

examining Figure 17. The peak amplitudes of all responses within

the circled area have the same value to within the resolution of the

plot, indicating that even for the unstable case, amplitude

approximations are qualitatively accurate. The boxed area,

however, indicates that a phase shift exists. This is more clearly

depicted in Figure 18, which is simply an enlargement of the area

in question of Figure 17 (the aspect ratio of the indicated area is

altered for clarity). The marked deflections should occur at the

same time, but instead, they are increasingly delayed as the

timestep size increases, indicating a phase shift.

4.05 - - I I I I I

4.04 -VARIOUS NUMERICALCo 4.03
Z"4= "'-, SOLUTIONS
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Cn 3.94 1 1 I

3.93 STEPSIZE - 0.001 -

3.92 1 1 -
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I  
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Figure 18o Details of Numerical vs. A nalytcal Response for

Three-Mass System
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Figures 19 through 21 show the phase responses for each of the

three numerical approximations in Figures 17 and 18. Note again

that the numerical routine becomes unstable (visible only in

Figure 19). However, as the ultimate goal of Gearsep is to predict

relative displacements, a phase shift resulting from velocity

instabilities is not expected to have a significant effect on the

accuracy of the analysis.

Z :

0 - 1

w -2-

3i 3. 3.-. . . . . .

-41

DISPLACEMENT (RADIANS)
Fioure 19: Numerical System Phase-Plane Plot for

Time Ste9 Size - 0.



49

7

z
0
w

__. -?

z/

0

-5

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

DISPLACEMENT (RADIANS)
Figure 20: Numerical System Phase-Plane Plot for

Time Step Size = 0.01

z

w

z

il 6 . 3. 4

> -7\

S 3 3.2 3.\. . . . . .

DISPLACEMENT (RADIANS)

Figure 21:a Numerical System Phase-Plane Plot for

Tim3e Step Size - 0,001



50

5.3. Special Case Modeling Procedures

As discussed in Sec. 5.1., when the moments of inertia of the

motor and load masses become very large in comparison with those

of the gears, extreme round off errors can'occur, destroying the

accuracy of the solution. It then becomes necessary for Gearsep to

switch from a four mass model to a two fixed-support system.

However, it will be seen that as the ratio of the J's increases, the

four mass system solution converges toward that of the fixed-

support system with considerable accuracy well before significant

round off error occurs. The one mass solution can therefore be used

not only for the extremely high J ratios described, but also down

through some range of intermediate values of this ratio. The

advantage to using the fixed-support system whenever possible is

that Gearsep need only solve two equations, as opposed to solving

four equations for the entire system.

Because the chosen numerical routine has been shown to

accurately represent the analytical response, a tedious analytical

solution for the mass moment ratio analysis is avoided by

numerically solving the fixed-support system as a benchmark. A

step size of 0.001 sec will be used in accordance with the results

of Sec. 5.2.2., providing a benchmark accurate to within 0.01% of

what the analytical solution would be after twenty cycles.

The analysis is similar to that of Sec. 5.2.2., which produced
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Figures 17 and 18, except for the use of the numerical routine

benchmark. J values of the gears are the same as those used in the

analysis of Sec. 5.2.1., resulting in a combined mass 2 with J - 10

(see Figure 13). A single fixed-support benchmark solution is

plotted in Figure 22 as it approaches its twentieth cycle, along

with a series of three mass solutions for motor/load J values of

10,000, 100,000, and 1,000,000. For the plot representing a

maximum difference in J values of five orders of magnitude, as

shown in Figure 23, the error is 0.000626 radians, which is within

0.032% of the system's full oscillation range shown in Figure 21.

For mass moment of inertia ratios at or above five orders of

magnitude, then, the fixed-support solution is considered

sufficiently accurate.
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Figure 22: Numerical vs. Analytical Resoonse for
One-Mass System
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Chapter 6

SAMPLE GEARSEP APPLICATION AND DATA INTERPRETATION

6.1. Proaram Overview

As discussed earlier, the Gearsep program is apportioned into

two components: Gearsepl and Gearsep2. The first calculates the

total compliance of a tooth pair at five selected points along the

line of action, and creates as its output an input file for Gearsep2,

which in turn contains the beta-m numerical integrator and all of

its supporting algorithms. After reading both the input file

produced by Gearsepl and a third input file containing program

control data, Gearsep2 produces for each iteration of the numerical

integrator an output consisting of the present iteration number,

the corresponding time and tooth pair stiffness, and the relative

displacements, or the separation (see Chapter 1, Sec. 1.3.1.), of the

two gears. Details of Gearsep as a whole are given in Appendix B.

The following presents an analysis of a sample gear system

using the Gearsep procedure. Programming features of Gearsep will

also be discussed, along with comments on the program's usage.
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6.2. A System Analysis Based on a Four Suare Gear Testing
Device

The sample gear system is a single-stage component of the four

square system proposed in reference [7]. This device, shown in

simplified form in Figure 24. allows the testing of individual gear

pairs at high shaft loads without expensive high torque motors or

elaborate loading devices. This is accomplished through the use of

a torque flange which counter twists the shafts to produce the

desired load within the four square circuit, as marked in Figure 24.

This system, as presented in reference [7], is designed to test spur

gears described in Appendix E. Note, however, that shaft

stiffnesses and motor/load mass moments of inertia are not taken

directly from reference [7]. Rather, these values were choosen

arbitrarily and were then adjusted so as to produce a spectrum of

responses (to be presented shortly) that spans from simple gear

motion to the transition to separation as system speed rises. It

should be noted, however, that while shaft stiffnesses and

motor/load mass moments of inertia are arbitrary, actual gear

data (various radii and other dimensions, along with material

properties, etc.) are based directly upon reference [7].

The first step in the Gearsep analysis of this or any system is

to collect all necessary gear and system specifications. For the

case of this particular four square tester, these are, again, listed
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GEAR FOUR SQUARE
PAIR CIRCUIT

..............
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,I Ii
_I I:

1 . TORQUE. . . .. ....... . FLANGE

MOTOR
SYSTEM TO BE
ANALYZED

Figure 24: Four Square Gear Tester Layout

in Appendix E. In order to simplify and generalize the analysis,

effective inertias (see reference [15]) will not be used. Rather, the

system will be taken to be that indicated in Figure 24, where the

one "leg" of the four square circuit is made symmetric by attaching

at the location shown a fictitious load mass equal to that of the

motor.

6.2.1. Critical Parameters: Load and Speed

Many common gear systems are designed to operate over a wide

range of loads and speeds. Therefore, before an actual analysis

takes place, some qualitative ideas should be established as to
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where in the ranges of these two parameters the threat of

separation is greatest so that it does not become necessary to

sample the entire span of loads and speeds in search of separation.

To this end, a qualitative investigation is performed based on the

linear model first introduced in Figures 1 and 2, and repeated here

in Figure 22 with the addition of a time varying load attached to

the massless plates.

When the linear model oscillates about its equilibrium position,

it is kept within the confines of its datums solely by the action of

the applied forces F (see Chapter 1). As F is made smaller, the

oscillations of the masses take them closer to their datums, and

the system approaches separation: For a rotational system, the

applied force F corresponds to the system's torque. From Figure 25,

then, as the force F or system torque is made smaller, the block

masses or gears are able to rebound closer to their unstressed

positions, and thus toward separation. This implies that the lowest

operating torque should be chosen to give the greatest possibility

for separation.

Returning again to the linear model, if a time varying force of

very low frequency is applied to one of the plates (Figure 25) and

causes the system to oscillate very slowly, it can be imagined that

the system's dynamics would not be greatly disturbed, and that the

motion would approximate that of a rigid body: Depending on the

spring stiff nesses and the masses involved, the inertias of the
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blocks will not come into play if the entire system is displaced

slowly enough. If, however, the frequency of the time varying force

is increased to a great enough extent, the reactions of the masses

will begin to lag behind the motion of the plates. This will in turn

cause greater compression or elongation in each spring, producing a

growing reaction force against the applied force F. If the time

varying forces from the combination of the varying tooth pair

compliance and the alternating single and dual tooth pair contact

are rapid enough, then, again depending on the system's parameters,

the proper conditions may be created for separation. As such, the

system's highest operating speed produces a worst possible case,

and should thus be chosen as a test parameter.

SINGLE SYSTEM
(SPRING PLATES IN CONTACT)

APPLIED DIRECTION APPUEDFORCE OFORCON ARCE

- - 7

UNSTRESSED POSITION time varying force
(SPRING PLATES TOUCHING WITH NO

TRANSFERRED FORCE)

F- -F

SEPARAtiON

Figure 25: Linear Separation System with Time Varying Force
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6.2.2. System Analysis

6.2.2.1. Characterization of Resoonse

As a preliminary to the analysis of the sample system, the

system's reaction to specific events within mesh is discussed. (A

related discussion may be found in Appendix A, Sec. 3.1., where

particular points in mesh are matched to the procedure for

calculating tooth pair stiffness.) Figures 26 and 27 show a

representation of the system's response and its corresponding

stiffness profile: Note that these two plots share the same

abscissa, and as such, events that take place in the response plot

may be directly traced to their cause in the stiffness profile.

When Gearsep2 first invokes the numerical integration routine,

it is at a point in mesh where there is only one tooth pair in

contact: This will always be the case, and occurs by design as

discussed in Appendix B, Section 15. With just this one tooth pair

in contact, the total tooth mesh stiffness is in its weakest range,

and as such, the contacting teeth are deformed by the greatest

amount. In Figure 26, this translates to a series of peak relative

gear displacements, each of which is labeled as point 1, and where

each of the high frequency displacements (circled and labeled) is a

single tooth pair oscillation. Note that these single contact

deflection peaks take the system away from the point of zero
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relative deflection, or, separation.

As the single tooth pair continues through mesh, the pair behind

it moves toward its initial contact position at point 2. When both

tooth pairs are in full contact, the tooth stiffness is near its

maximum value, and as such, the relative gear motion is subdued,

as seen at point 3. The original tooth pair then leaves mesh (with

the help of another tip relief) at point 4, and the pattern repeats by

returning the relative gear motion to its locally highest point.

Figure 27 shows this pattern of a series of relatively sedate

responses, dipping down and rising back up as the compliance of

the tooth pair changes, and regularly interrupted by the spike of

single tooth contact. Such a response pattern may be termed the

"classic" gear response.

6.2.2.2. Generalized Response Analysis

Gearsep output was collected using the sample system's

maximum torque (which is a departure from a proper analysis as

discussed in the previous section) over a wide range of operating

speeds and timestep sizes. The actual value of the step size is

determined within Gearsep2, and is based on the number of

iterations, or "points" into which each mesh is divided. This

parameter is defined by the user, and is termed the number of

points per mesh, or PPM.
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Figures 28 through 39 present a sampling of the total data

collected in the effort to characterize the full range of Gearsep

responses. Note that the quantity separation (described in

Chapter 1, Section 1.3.1. as the relative angular displacement of

the gear bodies) is now plotted against the number of iterations

performed by the numerical routine, as well as against time. This

underscores the fact that when particular events occur in mesh is

not as important as the magnitude of those events. In addition,

plots containing this iteration information can be used to estimate

necessary computation for the specific computer in use (the data

to follow was generated on a Standard 286 (IBM AT compatable)

personal computer located in Penn State's Applied Research

Laboratory. Furthermore, in reviewing the definition of separation

as it was given in Chapter 1, it may be noted that a separation

value of zero corresponds to a zero relative displacement of the

gear bodies: This is the "impending separation" discussed in

Chapter 1, Section 1.3.1.. As a final note, it should be remembered

that the separation represented in the following figures is

measured in inches along the line of action, just as were the

deflections calculated from the strength of materials equations

presented in Chapter 3.
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6.2.3. Data Analysis

The data set from which the preceding responses were taken

began at 5000 RPM and 100 PPM, but this and other cases using

small parameters produced immediately unstable responses due to

the numerical instabilities discussed in Sec. 5.2.2.. Specifically,

attempted runs at 5000 RPM failed at 100, 500, and 1000 PPM, and

runs at 10,000 and 15,000 both failed at 100 PPM.

Remnants of the extreme instabilities initially encountered are

apparent in responses run at the lower end of the PPM and RPM

scales, where the timestep calculated in Gearsep2 is small enough

to give a response that is initially stable, but that becomes

unstable before a number of meshes takes place that is sufficient

to affirm or disaffirm separation. Those responses that did become

unstable are plotted up to the point where the instability is

apparent but the data are still useful, insofar as the basic trend of

the response is still apparent.

In Figure 28, the response at 5000 RPM becomes unstable before

a single mesh can be completed, as seen in comparison with

Figure 29, whose response survived approximately half way

through the second mesh. As timestep size decreases, the true

response begins to assemble itself, with each step adding more

detail. This process continues through Figure 31, where the limit

set on PPM is reached. Although this final plot shows three stable
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and very similar meshes that are well away from the zero relative

displacement value that indicates separation, it will cannot be

concluded that this particular set of parameters (RPM and torque)

is a proper one for separation-free system operation. The actual

number of stable meshes of the pattern seen in Figure 31 that is

necessary to predict the character of the system is at the

discretion of the individual investigator, but for this analysis, it is

arbitrarily set to a value of ten.

Increasing the operating speed to 20,000 RPM decreases the

timestep size by a significant amount, but instabilities still occur,

as seen in Figure 32. This response was the first obtainable at the

lowest attempted PPM va!ue of 100, and is indicative of a response

that is all but immediately unstable. At 500 PPM (Figure 33),

however, the classic response pattern emerges, but becomes

unstable after six meshes. Increasing PPM to 1500 gives the plot in

Figure 34, which survives the entire ten meshes stipulated as

necessary to confirm that no separation will take place: Note,

however, that unlike the system operating at 5000 RPM, the

relative gear displacement for this system drops below 2 x 10

inches, and as such is closer to separation at this higher speed.

Figure 35 was generated with a PPM of 2000, and although it

survived well past the required ten meshes, only the first ten are

shown. In comparison with Figure 34, it is obvious that Figure 35

also predicts a separation-free case, but it also shows that for a
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given RPM, as the step size decreases and numerical accuracy of

the solution increases, the response moves farther away from

separation. Thus if a response at, say, 2000 PPM shows that

separation will not occur, the investigator may be confident that a

more accurate (and lengthy) analysis will not reveal the opposite.

Upon reexamining Figures 28 through 31, it is seen that the

system speed (5000 RPM) is such that approximately four tooth

pair oscillations can oc .,,r during the space of time that a single

tooth pair is in contact, as indicated by the sets of four tall peaks.

For an RPM of 20,000, as shown in Figures 29 through 32, meshing

has sped up to the point that only one tooth pair oscillation can

occur during single contact. It may then be theorized that another

large increase in system speed will place the period of single

contact below that of tooth pair oscillation. This indeed is the

case, as shown in Figures 36 through 39 whirh show a complete

departure frum the classic response pattern. Note also the

oscillatory variation in the height of the response peaks from

interaction with the shaft natural frequency (see Figure 34).

In addition to disrupting the classic response pattern, the

aforementioned increase in system speed has also produced signs

of tooth separation, as seen in Figures 37 through 39 where the

plot becomes negative. This particular case is in what may be

termed separation transition, characterized by intermittent

negative response values that do not grow )eyond a small
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percentage of the full response range. It should be noted, however,

that no matter how sma! the tooth separation, it still represents a

nonlinearity in the response of the real system that is not

accounted for in the equations of motion (Equations 1 through 4):

The ensuing impact is not modeled, and nor are the anomalous

dynamics that would occur as the system's damping returns it to

the original response pattern.

In summary, an increase in PPM and/or RPM decreases the size

of the calculated timestep, thus improving beta-m's accuracy. In

moving toward the higher numbers of PPM's for a constant RPM, the

classic pattern of meshing gear teeth begins to emerge, with its

rising and falling from single and dual tooth pair contact. At some

point, the increase in RPM pushes the gear pair into a condition of

tooth separation.

6.2.4. Gearsep Output and Output Conditioning

Unconditioned Gearsep output consists of an increment number,

a time in seconds, a torsional gear pair stiffness, and a separation

value in inches for every iteration performed. As the number of

iterations may easily reach into the tens of thousands, it is

advantageous to have Gearsep return only maximum and minimum

response values. Because an evaluation of Gearsep data focuses on

the magnitude of the response, rather than the details of its twists
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and turns, such truncated output provides the same separation

information as does the full range of data, but without wasting

time and storage space on useless data.

In reconsidering Figure 30, numerical instabilities are seen to

be manifested on the response curve as numerous superimposed

oscillations. The fact that these instability peaks appear on the

plots indicates that Gearsep2 mistakes them for true system

oscillation peaks. This discrepancy, however, is used to the

program's advantage, and lets it monitor the numerical routine's

instabilities by simply counting the number of extremum

("extremum" referring to both maximum and minimum values).

Because the majority of the useful/stable response information is

described by a relatively small number of data points in the stable

area of each plot, an upper limit may be set on the number of

extremum allowed, beyond which Gearsep returns an appropriate

error message and stops computation. Because this upper limit will

change from plot to plot, and would require a trial run to be set

properly, it might seem that it would be more straightforward to

simply reset the PPM so as to produce a smaller timestep size, and

thus a more accurate result. This, of course, is possible at any

point in the analysis, but because it is the nature of Gearsep to

require a series of "dry runs" simply to determine where the

program is stable ,or any particular system, a great deal of

computation effort has probably already been expended by the time
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the response in question is examined. For the data in Figures 24

through 36, the upper output limit number was set to a value of

500 as determined emperically. This, again, allows each response

to develop to the point where it contains all information necessary

to evaluate the case in question without unnecessary and useless

data.

Finally, it should be noted that aside from the limitations of the

machine on which it is used, there seems to be no limitation to the

range of applicability of this model: If numerical instabilities

occur because of low system RPM, they can be "adjusted out" with

an increase in the numerical "resolution" of the model,

accomplished by raising the number of points per mesh (PPM). This

is demonstrated in the sequence of plots from Figure 28 to

Figure 31 (all at 5000 RPM), from Figure 32 to Figure 35 (all at

20,000 RPM), and from Figure 36 to Figure 39 (all at 45,000 RPM).



74

CONCLUSIONS

The Gearsep gear tooth separation program has been designed

to provide the information necessary to predict separation in a

single-stage segment of a spur gear system. Analysis of an

arbitrary sample system has produced response curves which have

been shown to contain all of the correct signatures of gear mesh

for contact ratios between one and two. The response has also been

shown to follow the expected trends as system speed is varied.

The program's output may be directly used in the search for

system natural frequencies and, with slight alterations to the

program's peripheral mathematics, for determining tooth loads

from the calculated deflections of individual teeth. Gearsep may

also be altered to analyze gears with different material properties

in the tooth, fillet, and gear body areas (such as nylon gears with

metallic hubs), and gears with a machined narrowing of the tooth

cantilever near the tip (crowning). Modeling of gears with contact

ratios of two or more is possible, but would require somewhat

in-depth alterations of the way Gearsep handles mesh geometry.

There seems to be no limitation to the range of applicability

of this model aside from the limitations of the machine on which it

is used: If numerical instabilities occur because of low system

RPM, they can be "adjusted out" with an increase in the numerical
"resolution" of the model, which is accomplished by raising the
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number of points per mesh (PPM) as demonstrated in the collection

of response plots.
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Appendix A

GEARSEP PROGRAM FLOW CHARTS

A.1. Generalized Gearsep Program

The figures that follow represent the entire Gearsep algorithm

in flow chart form. Figure 40 is a generalization of Gearsep, with

lettered sections corresponding to the flow charts and descriptive

text given in subsequent sections.

A.2. Iterating to Find YE

As discussed in Sec. 3.3., there is no obvious tooth geometry in

Cornell's compliance model to characterize the size of the fillet

cantilever (see Figure 10). As such, Cornell has conservatively

defined the proper value ot yF to be that which causes the maximum

foundation and fillet deflection (see Equation 19 through 21).

Figure 41 shows the variation of foundation and fillet deflection

over a range of yF'S for all five of the sampled compliance points

along the line of action as calculated with Equations 19 and 20 for

the sample gear of Appendix E. Note that the plot for each of the

contact positions peaks at a different location, corresponding to
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different optimum values of YF. To account for this range of

possible values, Gearsepl will generate each of these curves and

locate the optimum points using the algorithm shown in Figure 42.

C.,
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Figure 41: Foundation and Fillet Deflection vs. "Y

A.3. Calculation of Deflection Due to Bending and Shear

As stated in Chapter 3, the summation term in the equation for

cantilever bending and shear deflection represents an Integral over

the length of the cantilever. There is no contingency, however, for

the number of increments into which this summation should be

divided. Figures 43 and 44 show the trends of tooth and fillet

cantilever deflection (respectively) for a range of numbers of



82

Fvsaio deflectonicurv

F eo e s:FlCar t for finding nopesn



83

6* --

PINION TOOTH

C?

w 7

2 ,,

GEAR TOOTH
- I-- -~t~L itii . . . . . . . ..p

2 6 10 14 to 22 26 30 34

NUMBER OF SUMMATION INCREMENTS

Figure 43: Trends of Tooth Cantilever Deflection

O Z 1.2 1\ I I II II I

1*5 -

LLJPNION TOM~

-w

~~~OEM TOOTH "-,i-.. . *

1.4 . -

2 10 14 Is 22 30 34

NUMBER OF SUMMATION INCREMENTS

Figure 44: Trends of Fillet Cantilever Deflection



84

summation increments as calculated by Equation 18. These

deflections are calculated at the first compliance point (see

Appendix B, Sec. B.1 .), where, because of the length of the moment

arm through which the tooth load acts, gear tooth and fillet

deflections are at a maximum, and those of the pinion are at a

minimum. If the two meshing gears are the same (as they are for

the test case), this same analysis applied to compliance point 5

would produce the exact results as presented in the following

figures, except that the roles of the two teeth would be reversed.

The analysis that produced Figure 44 was actually taken out to

fifty summation increments, where it was assumed to have
"sufficiently" converged so as to establish "real" values for the

deflections. As based on this value, Figure 44 represents values of

the separation increment up to the point which produced an error

less than a 21%. These values (the last point of each plot) are those

used in Gearsep.

It is seen in Figure 43 that tooth deflection does not vary nearly

as radically as the range of fillet deflections: Three summation

increments yield a deflection value within 1% of the converged

"real" value. This is rounded up for use in Gearsep to a value of 10,

providing a more conservative and convenient value.

Figure 45 represents the section of Gearsepl that applies the

"strAngth of materials" equations (Equations 18, 19, and 21) taken

from Cornell to either the tooth or fillet cantilever. As stated in
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Chapter 3, this is actually an integration over the length of the

cantilever, and is approximated by a summation.

A.4. Stiffness Values at Mesh Iteration Points

A.4.1. Key Mesh Points

As succeeding pairs of teeth roll into and out of contact, a

pattern of single and dual tooth pair contact develops. Figures 46a

through 46e follow a pair of meshing teeth (tooth pair (1,2)) as

they move along their entire range of contact, which defines the

full length of the line of action. Within this range of motion lie

several points of transition between single and dual contact, where

the mesh behavior takes on different characteristics. These will be

referred to as key points, and may be used as landmarks within the

meshing process because they occur at the same location for every

tooth pair.

In Figure 46a, tooth pair (1,2) has just entered contact, while

the previous tooth pair (3,4) is at some intermediate mesh position

just past pitch (the center point of mesh): Note the direction of

pinion and gear rotation. Figure 46b shows the transition from the

dual contact of Figure 46a to the single contact shown in

Figure 46c. As tooth pair (1,2) moves through and away from pitch,
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Figure 46e: Key Points in Mesh-Leavino Contact

tooth pair (5,6) comes into contact at the bottom of the line of

action, again creating a dual contact condition (see Figure 46d).

Finally, Figure 46e shows the second transition from dual to single

contact, and also the final contact position of tooth pair (1,2).

A-4.2. Definition of a Mesh Cycle

The repetition of single and dual tooth contacts along with the

continuously changing tooth pair compliance, creates the unsteady

relative gear motion that drives separation. Figure 47 is a

representation of the tooth stiffness profile through the range of

motions represented in Figures 46a through 46e, and is labeled in

accordance with these figure numbers. A real stiffness profile
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consists of a succession of approximated stiffness values taken at

each of the hundreds of discrete iteration points into which each

mesh is divided, or, mesh iteration points. Notice that the actual

pattern of repetition does not span the entire length of the line of

action. Rather, it begins where one tooth pair enters mesh, and it

ends where the subsequent pair enters. This range of motion, from

the bottom of the line of action (tooth pair (1, 2) in Figure 46a) to

the point of initial contact of the next tooth pair (Figure 46c) is

defined as one mesh cycle. This definition satisfies the obvious

requirement that the number of mesh cycles in every rotation of a

gear equal the number of teeth on that gear.

FIGURE 46b FIGURE 46e

+  1

ZI AREAOF R I IIFIGURE 46cl II

ONE
MESH CYCLE,

TIME +

Figure 47: Stiffness Profile Mesh Cycle
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It is common in the manufacture of gears to machine away some

of the tooth material at the very tip of the involute profile in order

to ease initial tooth pair contact (as will be shown in Figure 53).

Because this tip relief will vary according to gear design and

application, its effect on kinematics will not be dealt with

directly, but, if desired, it may be easily accounted for in Gearsepl

calculations. Its effect on the tooth pair stiffness would be to

remove the sharp corners from the stiffness profile (see circled

region of Figure 47), thus producing a gradual transition from no

contact to full tooth contact.

A.4.3. Algorithm for Calculating Stiffness Values at Mesh
Iteration Points

Figure 48 describes the procedure for using the five term power

series created in Gearsepl in combination with an analytical

description of single and dual tooth contact to create and store a

complete tooth pair stiffness profile.

A.5. Contact Ratio as a Weighting Term: Application of the Beta-m
Routine

Ideally, initial values for the Gearsep dynamic analysis should

be determined so as to place the system's reponse directly into
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quasi-equilibrium, obviating all transient responses. There are two

possible choices for the initial displacements: those corresponding

to the stiffness of a single tooth pair in contact, and those

corresponding to the stiffness of dual pair contact (see Figure 47).

However, using the smaller, single pair stiffness will yield the

precise quasi-equilibrium condition for a gear pair that has only

single pair contact. Again, this can only happen for a gear pair with

a contact ratio of exactly one, stipulating that exactly one tooth

pair is in contact at any given point in mesh. The converse is true

for dual pair contact, which is indicative of a gear pair with a

contact ratio of exactly two. Continuing this argument, it may be

theorized that when analyzing a gear pair with a contact ratio

lying between one and two, the correct initial conditions are those

which occur for a stiffness which lies somewhere between that of

single tooth contact and dual tooth contact. It would seem then

that the weighting term itself would also lie between one and two:

A logical candidate is the contact ratio itself.

Following the assumptions stated above, primary estimates of

initial conditions are obtained by multiplying the stiffness of a

single contacting tooth pair by the gear pair's contact ratio, and

applying the beta-m numerical integrator through a single mesh

cycle. If these primary estimates are correct, they will be matched

by the response calculated for the end of this cycle. In the test

cases examined, these outputs and inputs were close enough to
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tentatively confirm the use of contact ratio as a weighting term,

and this technique was subsequently confirmed through

reference [22].

As a step towards increasing the accuracy of the initial

condition estimates as based on the contact ratio, it is assumed

that if these are indeed good estimates, but not exact estimates,

then the true initial conditions should lie between the input and

the newly calculated output values. If this output is then averaged

with the input in a bisection scheme and reinserted (for

convergence , the result may be assumed to be a better estimate of

the true initial values. This averaging and reinserting process is

repeated until either the difference between input and output

displacements is within some tolerance or an instability occurs in

the numerical procedure. It should be noted that the tolerance tests

are applied only to the gear displacements, while the averaging and

reinserting encompass the entire range of derivatives handled by

beta-m: displacements and first through third time derivatives.

Figure 49 depicts the procedure lescribed above for finding an

accurate estimate for the quasi-equilibrium initial conditions

using the contact ratio as a weighting term.

Finally, the beta-m routine is iterated to find the system's

response, as depicted in Figure 50. Also included are the various

stopping and error check procedures.
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Appendix B

PROGRAM ALGORITHM

B.1. Sectional Overview

The following is a comprehensive, step by step algorithm

designed to supplement the program flow charts of Appendix A.

This appendix is divided into a series of numbered sections, each of

which contains a series of individual analysis steps, which are

numbered consecutively throughout the chapter. After appropriate

sections, one or more graphical representations of appropriate

variables, expressions, or concepts are presented. Some sections

refer directly to Appendix A, where they are described in detail as

algorithm flow charts. Note that parenthetical variable names are

fortran equivalents of the true variable names, and that they have

been kept to six characters or less, due to the reluctance of

personal computer fortran compilers to recognize the usual eight

character names.

Within the description of each variable, boldfacing will indicate

(if appropriate) lettering in common with the variable name. Note

also that when it is necessary to distinguish between individual

gears within a particular pair, the driving gear will be referred to

as the pinion, and the driven gear simply as the gear. If, however,
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general properties of both are to be discussed, the

all-encompassing term gearwill be used: This convention has

already been used throughout Appendix A. It is also helpful to note

that the pinion (driving) isusually depicted to the left of the gear

(driven), and that variables related to the pinion have a subscript

of 1 or p, while those related to the gear have a subscript 2 or g.

B.2. Gearsep1

B.2.1. Data Input

1) Input the geometries of the pinion and the gear (see

Appendix E).

Ro : outer radius

Rp : pitch radius

Rb: base radius

R r root radius

R f: fillet radius

Tp: circular pitch tooth thickness: If this exact

value is not available, standard tooth

thickness at pitch may be substituted.

N, & N2 : tip relief factors; the percentage for one

mesh of involute tooth profile before tip
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relief comes into contact. See Appendix A,

Section A.3.2..

Wp, Wg : tooth facewidths; also thicknesses of gear.

¢p (phip) pressure angle

Rcl : centerline distance (the constant distance

between the two gear centers)

2) Input the material properties of the two gears, and

the iteration parameters for the deflection calculations.

g(u): Poisson's ratio

E: Young's modulus

nstep: number of increments into which the tooth

cantilever will be divided: Again, the

cantilever deflection equation must be

integrated along the length of the tooth,

which, in numerical term, translates into a

summation of discrete increments.

nstepf: number of increments into which the fillet

area will be divided for its evaluation as a

cantilever
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B.2.2. Calculations of Geometry Related Varibles

3) Calculate the varibles related to the base of the

tooth cantilever (BOTC) for both the pinion and the gear.

This is defined as that point where the fillet circle blends with the

involute tooth profile (see Figure 51).
W'L

EXTENSION OF
INVOLUTE
PROFILE

TOOTH T

SCANTILEVER h
\BASE OF THE... ,,
\TOOTH --

PERPENDICULAR

nLLET CIRCLE

Figure 51" Variables Related to the Base of the Tooth Cantilever

Ri (Rbar(i)) the radial location defining the BOTC

0 (phibar(i)) contact pressure angle at the BOTC; This is

the system's pressure angle fp at the

contact point in question: In this case, the

BOTC.
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*=(Cos) -' Equation 30

(alfbar(i)): included tooth angle of the BOTC: This is

the angle between the tooth centerline to

the radius of the base of the cantilever.

St2RPi+ Tan4i- pi-Tanopi+ 4pi Equation 31

xi (xbar(i)) : the distance along the tooth centerline

from gear center (for both pinion and gear)

to the BOTC.

Xi= RiCos(' i) Equation 32

j (gambar(i)) : the angle defining the BOTC with respect to

the fillet center

yi= Ci ai Equation 33

hi (hbar(i)): tooth thickness at the BOTC

hi= 2Ri sin(' i) Equation 34
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Ii (lbar(i)) distance from the BOTC to the load line

4) Calculate the angles describing the point of initial

tooth pair contact and of tooth pair disengagement. These

are measured relative to pitch for both gears: approach implies

pre-pitch (negative values) and recess implies post-pitch (positive

values).

3ap (BETAap) : the angle of approach for the pinion

Pag (BETAag) : the angle of approach for the gear

rp (BETArp) the angle of recess for the pinion

IOrg (BETArg) the angle of recess for the gear

The equations for these angles are based on the geometry of

mesh as depicted in Figure 52, which shows initial and final

contact for the same tooth pair.

Defining Sapproach as the engagement point's linear distance

along the line of action, applying the Law of Sines and the Law of

Cosines:

Law of Sines Sin() Sin(90-€)
S o R Equation 35
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Fioure 52: Anoles of A oproach and Recess

Law of Cosines R2= Rp+ S -.2RpS Cos(90-$) Equation 36

where:

0: the angular displacement from pitch of an

arbitrary point of tooth contact: For

example, the 0 of the initial point of contact

on the pinion is defined as I3ap.

*" system pressure angle

Rp": pitch radius

R: radius of mutual contact point

S: distance along line of contact from pitch of

the mutual contact point

• • = i i i i iLiAViIiG
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Solving the Law of Sines for Sa gives

R SinO with Sin(90) = Cos(O) Equation 37SamOCos

Substituting into the Law of Cosines gives:

R2= R2 + R2Sin 2 (0) 2RpRSin(e)Sin(O)P Cos 2(o) Cos() Equation 38

where Sin (90 - 0) = Cos (0)

After solving this quadratic for R, solve the Law of Cosines for S:

S 2+ S(2RpSin(o))+ Rp = 0 Equation 39

Finally, Pap is found from one last substitution into the Law of

Sines:

Pap= Sin" (SCRS()) Equation 40

5) Generate the angular and radial locations of the

five compliance points: These are analogous in form to the

angles and radii depicted in Figure 52. As shown in Figure 53, these

angles carry the same pre/post-pitch sign convention as do the



105

angles of recess and approach (see Section 4). Figure 53 also
shows that the first and fifth compliance points are not located at

the extremes of the line of contact. This is done to account for the

aforementioned tip relief (see Appendix A, Section A.3.2.) used to
produce a smooth transition into full tooth contact (see expanded

portion of Figure 53.) Because in a real gear pair, this tip relief

would alter not only the location of full tooth contact, but also the

tooth pair stiffness at engagement and disengagement, the first

and fifth compliance points are moved "in" by a factor which is
input as a percentage of the angles of approach and recess (see

Figure 52). For the results given in Chapter 6, a factor of 90% was

used.

I Ga PAintE

...............

Fiur 530cato fCmlinePit
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The angular compliance point locations with respect to pitch

are:

ePl thru 5 (thetap(1 thru 5)) : angular location of compliance

points as measured on the pinion.

0g1 thru 5 (thetag(1 thru 5)) : angular location of compliance

points as measured on the gear

Op's and Og's are found as were the angles of approach and recess

in Section 4, except compliance point 3 is now defined to lie at

pitch. Therefore:

ep3 =eg 3 =0 Equation 41

Rcpp (Rcpl). radial positions of a compliance point as

measured on the pinion

Rcpg (Rcp2): radial positions of a compliance point as

measured on the gear

Calculation of the radial positions of the compliance points

relative to the pinion utilizes Equation 38. For corresponding radial

values on the gear, advantage is taken of the symmetry of mesh. As
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shown in Figure 52, the two angles Pap and Pag describe two

triangles that share a common side. Thus, for any compliance point

cpi, there exists a common distance from pitch, Si that relates the

geometries of the pinion and the gear. From this relation, the

equation for compliance point radii as referenced to the gear is

obtained:

(Rcpd(Sin(eO) Equation 42
Rcpg~i)= (Sin(Oj))

Note that these and all other points on the line of action are

described only with respect to the pinion.

6) Calculate the variables related to the compliance

points using the same equations as those given in

Section 3. All variables are analogous to those related to the

BOTC as shown in Figure 51.

*ip (PHlip) : contact presure angle for compliance point

I as measured on the pinion; This is the

system's pressure angle at the point in

question

0ig (PHlig) : contact pressure angle for compliance point

i as measured on the gear: As applied to the
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pinion:

ip= Cos' (RbRcpj Equation 43

aip (ALFAip): included tooth angle of the compliance point

i as measured on the pinion; This is the

angle from pitch to the radius of point i.

aig (ALFAig) included tooth angle of the compliance point

i as measured on the gear: Again, with

respect to the pinion:

Ccip= tPP/RP+ Tanop - Op -Tan4j + OiP Equation 44

The previous values are calculated locally in order to find:

O'pi (PHIpmp(i)) the compliance point load angularity for the

pinion; This is the system's pressure angle

Op in localized tooth coordinates.

V'gi (PHIpmg(i)) the compliance point load angularity for the

gear

where:

OP= P- atip Equation 45
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hcppi (Hcpl (i)) : compliance point thickness for pinion

hcpgi (Hcp2(i)) : compliance point thickness for gear

The same thickness equation used in Section 3 is now employed

to find the tooth thicknesses at each of the compliance point for

both pinion and gear.

hcPip= 2Rcpip Sin(aip) Equation 46

I. should be noted that while both the load angularity O'p or g and

the local pressure angle change continuously along the profile, the

system pressure angle Oip or ig does not. The changes in O'p or g and

local pressure angle occur because these quantities are the

projections of the line of action (fixed in global coordinates) onto

a rotating and translating frame (the tooth) as shown in Figure 54,

which may be compared to both Figures 51 and 53.

7) Iterate to find yF as described in Appendix A, Section A.1.

This process follows the same steps as those that would be

necessary to produce Figure 41: Beginning with an initial guess of

0.45 radians (approximately 260) and adding to this increments of

0.0175 radians (approximately 10), calculate fillet and foundation

deflection at each point. The process continues up to a value of

yF - 1.4 radians (just over 800). The initial guess is chosen to be
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15% below the lowest value reported by reference [19], while the

upper iteration boundary is 15% higher than the angle

corresponding to peak deflection at compliance point 3. If these

15% buffers are not sufficient, Gearsep is able to determine

whether the correct YF value occurs above or below the indicated

range, and prompt the user for an appropriate adjustment.

EDIRECTION OFLOAD

OL LOAD

M~lOENTERINGI

MESH ITOOTH
I COORDINATES

/GLOBAL
COORDINATES

Figure 54: Global and Local Pressure Angles

8) Calculate the distance from the BOTC to the point

of intersection of the tooth center line and the line of

action. This point prescribes the load line, which is perpendicular

to the tooth centerline and marks the outermost boundary of what

is to be considered the tooth cantilever (see Figure 55).
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Figure 55: Definition of Load Line

Lip (Lbarp(i)): load line distance for pinion

Lig (Lbarg(i)): load line distance for gear

B.2.3. Deformation Calculations

9) Calculate the deflection of the tooth cantilever at

each compliance point due to bending and shear.

Ypi (Yp(i)) : cantilever tooth deflection at compliance

point I for the pinion

Ygi (Yg(i)) : cantilever tooth deflection at compliance
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point i for the gear

As given in Chapter 3, Cornell's deflection equation is

L ICoS2(ojn
E18

i61

i- 8 + Equation 47

Descriptions of the variables in this equation are available in

Section 3.2..

10) Using the same cantilever deflection scheme,

calculate the bending and shear deformation of the fillet

cantilever. This follows the same development as the previous

step.

11) Calculate the deflection at each compliance point

due to foundation flexibility in the direction of loading.

Yffpffp(i)) : foundation flexibility deflection of

compliance point i for the pinion

Yffgi (Yffg(i)): foundation flexibility deflection of

compliance point I for the gear
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LCos 2(0L

Yff= 
WE

1.7 + ITan2(L
6 )2+ ( If!)+ 1.534(1+ 2.411 4] Equation 48

Descriptions of the variables in this equation are available in

Section 3.3.

The variables Q, and L2 carry the anticlastic properties of the

tooth. If the tooth is determined to be wide enough to require

anticlastic analysis from Cornell [9]):

al=(1 1/2), 2, 1/2) Equations 49

Cornell defines a "wide" tooth as having a ratio of its width to its

thickness at pitch greater than five [19]. Anticlastic terms take

into account the possibility of lateral bending producing a

longitudinal bending of opposite sign. If the tooth is sufficiently

narrow, non-anticlastic constants may be used:

a1 = 1, " 2= 2(1 - g.) Equations 50
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12) Calculate the localized and Hertzian surface

deflections. This requires the local radius of curvature of the

involute tooth profile, and a theoretical estimate of the width of

the deformed Hertzian contacting surfaces (see Figure 11).

rocp (Rlocp) : local involute radius of curvature for the

pinion

rocg (Rlocg) : local involute radius of curvature for the

gear

The involute radius of curvature is, conveniently, an intrinsic

part of the development of the involute curve. From its geometry,

the equation for the involute radius of curvature is obtained:

rloc i = RbTan(€p) Equation 51

where Op is the system pressure angle.

bi (b(i)): Hertzian half-contact width for compliance

point i
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{4L L_ __L

b = ~W ~+i) 2 Equation 52

Yhertz i (Yhertz(i)): Hertzian surface deformation of

compliance point i at the load point and in

the direction of loading

Yhertzj=W'I2 ___ - ~ ( I
2L -2 jln- ( gILE= b 2(1n-- E-Eb 2(1 -- Equation 53

13) Sum all of the calculated deflections for each

compliance point. Because this analysis is performed for a unit

load, each of these total deflections is in fact the tooth pair

compliance for the corresponding point.

Ytoti (Ytot(i)): total deflection at the load point and in the

direction of loading for a unit load at

compliance point I

C i : total tooth pair compliance at point i.

Ci= Ytotj = Ybp + Ybg + Yfp + Yfg+ Yffp + Yffg + Yhertz Equation 54
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Note again that instantaneous total tooth pair compliace is the

sum of all deflections of the point of instantaneous mutual contact

and is defined to be in the direction of loading (see Figure 54.)

B.2.4. Power Series Representation of Compliance

14) Fit a five term power series to the five compliance

values. This is the technique used by Cornell [9] (and as such, it

was choosen somewhat out of convenience) and its result is a

simple analytical expression for tooth pair compliance at any point

in mesh. The alternative to this is to repeat the lengthy compliance

calculation procedure for each of the hundreds and sometimes

thousands of increments into which each mesh will be divided.

The five term (fourth order) power series as given by Cornell

takes the form

C/c 1+ A()P/sj + B )P/j+ C0 PS j3 + D(,s JI Equation 55

In Equation 55:

C i: the compliance at compliance point I
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epi: the angular position of compliance point i

Co: a reference compliance value: compliance

at pitch

SO : a reference angle: from pitch to point to

fifth compliance point (see Figure 53)

Opo : an angular reference value

A,B,C, and D: constant coefficients of the fourth order

equation which will determine the

function's shape

Notice that the variables from Equation 55 need only be determined

with respect to the pinion.

Values for the constants A,B,C and D are determined by applying

a standard Gaussian elimination algorithm to the following system

of equations:
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2: shaft between gear and load

C : a generalized damping (may include bearing

and/or shaft and gear material's damping

properties)

PPM: the number of iteration points into which

each mesh is divided

RPM: system speed in revolutions per minute

Torque: applied system torque in foot-pounds

num: total number of iterations

DR: ratio of the pinion base diameter to the

gear base diameter

e : profile errors in angular coordinates

(optional) [Kumar]

This final variable, e, gives the Gearsep user the ability to

analyze the effect on system performance if there exists a

machining errors in the tooth or if a particle of some sort

becomes attached to the tooth surface. It should be noted,

however, that in its present form, Gearsep contains only the

necessary framework for such an analysis, and does not deal

with it directly.
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B.3.2. Supporting Calculations

16) Calculate the locations of the mesh transition

points: from one pair of teeth in contact to two, and

similarly, from two teeth to one.

Dulptl : the post-pitch initiation of dual tooth pair

contact

Dulpt2 : the pre-pitch initiation of single tooth pair

contact

The two dual points are listed in this order (post before

pre)because the initial mesh iteration position is set at PPM/ 2 ,

which is very close to pitch (compliance point 3) in Figure 53. As

such, meshing begins with one tooth pair in contact, and the first

transition encountered is that at which mesh switches from one

pair of teeth in contact to two, namely, Dualptl (see Figure 46d).

17) Calculate and store stiffness values for all mesh

Iteration points. This is performed before any application of the

numerical integration is made, and the stiffness values retrieved

according to the position of the teeth in mesh.

Note that when the "gear tooth deflection" is calculated using

Equation 54, that deflection is linear It is the linear deflection of

the point of mutual tooth contact in the direction of the applied
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force. Because of this, any spring constant calculated directly from

these deflections will also be linear. However, the system's

equations of motion (Equations 1 b - 4b) require torsional spring

constants, and so, the linear constants must be converted using

Equation 57:

Klinear (lb) R2 ( in2 )= Ktorsional (in Ib) Equation 57in

In Equation 57:

Kiinear : linear stiffness (spring constant)

KtorsionaI : torsional stiffness

R: base radius of pinion

This is based on the gear geometry in Figure 56, where the line

of action is shown extending in both directions, and, at the points

indicated, becomes tangent to the base circle of each gear. Because

the deflections from Equation 54 are defined along the direction of

this line, the calculated linear spring stiff nesses will act along

the same line. As such, the base radius is the moment arm of the

spring force in Equation 57, and Ktorsionai is KTOOTH PAIR as used in

Chapter 2 to derive the reduced equations of motion. (The variable

KTOOTH PAIR as used in the program GEARSEP and in the remaining of
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this appendix will be known simply as Ktotai, implying the total

stiffness of two meshing teeth.)

\\ ACTION/

\\ : BASE RADIUS

PINION GA

Fiaure 56: Gear Geometry and the Line of Action

18) Determine the primary guess for the initial

conditions of the dynamic analysis using the contact ratio

am a weighting term, as discussed in Appendix A, Section A.4.

These initial displacements are given as follows:

O1 =(T2)(2 (CRKa) +-) EquationS58

03i(T/2) (_1_ .(RXto1i .K1 ) Equation 59

03=I R'E K (CXIotN)KA
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03 = (T/2 ) (K- - 1 Equation 60
K2 (CRXKtotal) K1

04= -0 1  Equation 61

This primary guess of initial conditions is run through a single

mesh cycle, after which gear displacement output (02) is compared

with the input (Equation 59). if the relative error between input

and output is within a given tolerance, the primary estimates are

taken as the true initial conditions: The tolerance used by Gearsep

in the sample analysis (Chapter 6) is a relative error of 1 x 10- 5,

which is a full three orders of accuracy above the computer's

approximate order of accuracy of 1 x 10- 8 , and a full order of

accuracy above the number of significant digits of the gear input

data from reference [7] as listed in Appendix E. If, however, the

error is not within tolerance, the estimates and output are

repeatedly adjusted and reinserted into the numerical integrator

until tolerance is met or until the integrator becomes unstable

(see Appendix A, Section A.2.).

B.3.3. Numerical Integration

19) Perform the dynamic analysis on the single-stage

system using the numerical integrator: This begins with the
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initial conditions just calculated. Iteration variables are

controlled by incrementing a tooth counter, which keeps a running

track of the positions of the meshing gear teeth. As this counter

advances through the various key points shown in Figures 46a

through 46e, corresponding stiffness values (see Figure 47) are fed

to the beta-m integration routine, which generates separation data

by solving the following equations of motion, given in Chapter 2

(see Appendix D for numerical solution details):

° 3

J101+ kl(l-F20)=o 0 Equation 62

J3+ _23 -k +[(r 2kl+k 2 e3 - k 2 e 4 =0 Equation 63

J 4 04 + k2(0 4 - = 0 Equation 64

The output from the numerical integrator is as described in

Chapter 6, Section 6.1., and may be plotted directly from the output

file to yield the system's response.
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Appendix C

ANALYTICAL MODELING PROCEDURE

The modeling procedure used to solve the single-stage system in

Chapter 3 is now reviewed in detail, and all figure and equation

references herein are made directly to that chapter. Furthermore,

all of the following work, unless otherwise noted, is attributed to

Neubert [19].

C.1 - System Elements and Homogeneous Solution

For the analytical solution, the gears are assumed to be perfect

rotational elements. In addition, damping is assumed to be

negligible, masses are arbitrary, and shaft inertias are ignored.

The solution will be found for a set of arbitrary initial

displacements of the lumped three-mass system shown in Figure 8.

The equations of motion are:

s o r 3
J1()I+ kj( I- 0) Equation 65
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IJ 3 +tj F 2k I+k2'J 03 -k2 ()4 =O0 Equation 66

J404+ k2(()4- (U =o Equation 67

These may be written in matrix form as:

01 01
o so

o 3 + J2 632+ A2 j-jk 20

Equation 68

Assuming a solution of the form:

{e r,} = IA ISIN(cot - V4) Equation 69

and substituting into Equation 68 results in the following system

of equations:
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21
2 0r f2r A, 0

o O.W3. 0)2 2 0J + 3~ (1k+k2 -k2 A2  0J2 + 12 ' IA3  10
0 0 k2~j

Equation 70

Because the solution A, - A2 - A3 -0 produces the trivial case, the

determinant of the coefficient matrix must equal zero:

C2J+kr

0 -k2  0)2J 4 k 2

Equation 71

The result is the following quadratic relation:

2 =-b ±42-4c Equation 72
(0 2a

with:

a = JJ4(J3+ J2R 2 Equation 73
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b =-R 2 [j1J2 k2 + klJ 4 (J1 + J2)] - k2Jl(J3 + J4) - J3J4 k Equation 74

C = klk 2 IR2(J1 + J2) + J3+ J41 Equation 75

It should be noted that given the form of the determinant in

Equation 71, the resulting equation is cubic in o 2. However, in the

subsequent algebra, a root is lost, showing that the system is

indeed semi-definite: The lost root corresponds to the trivial mode

of rigid body motion of the system as a whole (simple rolling with

no shaft deflections).

Returning to the matrix equations of motion:

.OIJ3+ (R)2J2 + Rl Akk A2  0 O
0 " " 2 AJ4 3k2  A3 0

Equation 76

The following equations give the system's amplitude ratios, which

are the relative displacements of the masses during natural

motion:

2
A2n= kCOlJ Equation 77

Rk,
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A3  -R(k-+ (J3 + R2J2 ) + R2 kl + Equation 78

n = 1,2, 3

These values make up the eigenvectoror modal matrix, which is

normalized with respect to the displacement of the first mass, as

seen by the unit entries populating row one. All other elements are

functions of the system's inertias, natural frequencies, shaft

stiffnesses, and the gear radii ratio r3/r2, as contained in the set

of variables Aij , where the subscripts are row and column

positions. For the system under consideration:

i~1 1 11

1 A22 A23  Equation 79
1 A 32 A 33

Notice that the first column also shows unit displacements as a

complete mode shape. This is indicative of a semi-definite system,

where the first displacement mode is a simple rigid body rotation

[17], and the first natural frequency is zero.

C.2. Particular Solution:

The equations of motion are solved using generalized
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coordinates so as to produce uncoupled equations of motion. Let

0 (t )) = []{q( t )) Equation 80

0 0(t)} = [ Iq(t)} Equation 81

Substituting these expressions into the equations of motion and

premultiplying by [ 0 ] T gives an elementary form of the modal

equations of motion:

TT
[0]im [$114(t)} + [.] kl ]Ojq(t)} =10) Equation 82

defining the modal mass matrix as

IMn] = [r]mi [$I Equation 83

with

J1 0 0

m = F o J3 +R2J2  0 Equation 84
0 0 J3J

Also define the modal stiffness matrix as:

(KnI= [o]T k 1 [] Equation 85
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However, because of orthogonality between modes:

IK, 1= [011 ki [I [M,,co' Equation 86

This gives the modal equation of motion:

IM" Ilq(t), + [M" 02]1 q( t))I = 10) Equation 87

Assume a solution of the form

{q (t) I= {Ensiflo)n t +G nCOS(int I Equation 88

and the modal equatons become:

n n nnqn~o Equation 89

n = 1, 2, 3

Choosing a set of arbitrary initial conditions:

displacements: let {q nO)}I = [1'1 1001 = [1-3 Equation 90

velocities: let 1q*40)1 =[ 0(01 = 11{}0 Equation 91
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where the displacements are in radians and the velocities are in

radians/seconds.

Evaluating the assumed solution at time t = 0, and then

differentiating to evaluate initial velocities:

(qn(0)) = (Gn) Equation 92a

(Cn(0)) = (En Equation 92b

This yields:

G1 =4.0 E1=0

G2 =-3.5 E2=0

G3= 0.5 E3 = 0

(radians)

Substituting back into the assumed solution and definition of

generalized coordinates (Equation 81) results in the solution of the

single-stage system. The displacement equations are:

01(t) = A11q1(t) + A12q2t) + A 13q3(t)

= (1X4)coscolt + (1X-3.5)cosoj + (1x0.5)cosot

Equation 93
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In a similar fashion to that of Equation 93:

0 4 t) = (1 W4cosco) t + (O)(-3.5)coscjot + (-=X.5)cosw.

Equation 94

04~ t) = (1 X4)cosolt + (-1 X-.5)coscwt + (1 O.5cosowj

Equation 95
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Appendix D

THE BETA-m NUMERICAL INTEGRATION SCHEME

The numerical integration routine used to solve the gear

system's equations of motion is the beta-m method, a generalized

form of the well recognized Newmark scheme. Beta-m is proposed

by Katona [20], the source of all work to follow unless otherwise

noted.

D.J. Background

The beta-m method solves equations of the form:

Mi+Ci+Kx=f Equation 96

where M, C and K are the system's masses, damping coefficients,

and stiff nesses, respectively.

The true Newmark method relates displacement and velocity at

time tn+1 to known values at time tn with the following

expressions:
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(1) (2) (2)

Xn+ 1=xn+hxn+h2 ((1 -213N)Xn+ 2 ONX)/2 Equation 97

(1) (1) (2) (2)

Xn+1 = Xn+hXn+h 2((1"23N )Xn+ 213N Xn+l)/2 Equation 98

where the timestep h = tn+1- tn , and Yn and 3n are Newmark's

integration parameters.

D.2. Method Derivation

Katona develops the beta-m method by writing the Newmark

expressions in a Taylor series expansion:

(k) 20) 2 (2)

xn. 1 =Ylxnh j " k/(j-k)!+13k(h2 - k/(2-k)!&X Equation 99
j-k

where Equations 97 and 98 are written with k = 0 and k = 1,

respectively, and A is the forward difference operator:

(k) (k) (k)

Ax = Xn+1 - Xn Equation 100

It can be seen that Equation 99 has the standard form of a

Taylor series expansion. By definition, then, it is exact to the term

xn with a term approximating xn. The approximating term may be

placed in its usual Taylor expansion form by letting 1o1/3 and
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01=1/2 .However, as Katona points out, "there is nothing sacred

about [the choices made for] 0 and P, because XN is not exact but,

rather, approximated by a forward difference." This implies that

the method itself is adjustable through various 3 values.

Noting that the method order m also gives the highest order of

the time derivative utilized in the method (m = 2 is Newmark;

Gearsep2 uses m = 4), Katona defines the beta-m method in the

following compact form:

(k) (M)

Xn+l = qk + bkA x Equation 101

with

m wj

qk = xnh k/(j-k)! Equation 102
j-k

and

bk = h(m . k)i Equation 103

where the over-script (k) is the time derivative index.

In Equations 101 through 103, the qk term is the Taylor series

expansin of xn+1 up to the term xn, and is thus known as a "history

vector", and the last term in Equation 101 may be interpreted as an
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approximation to the next Taylor series term, and contains an

"unknown increment" Ax for which we will solve. By comparing

Equations 101 through 103 with Equation 99, it is seer that Katona

has simply given a convenient name to each of the various parts of

Newmark's Taylor series expansion, and called them the "beta-m

family of methods."

Implementation of the beta-m method requires that the

unknowns xn+1, xn+l, and Xn+1 be approximated in terms of the

increment Ax. Doing so, the original equation of motion (written at

time tn+1):

Mxn+1 + CXn+1 + KXn+1 = fn+l Equation 104

can be written as

(M)
[b2 M + bjC + boK]Ax = fn+i - {Mq 2 + Cql + Kqo) Equation 105

where the b's and q's come from Equations 102 and 103. Solving

Equation 105 for Ax, the remaining unknowns are updated from

Equation 101.

The following algorithm is adapted from Katona:

1. Given xn, xn,..., xn at time tn, we seek a solution at tn+1.

2. Form the right-hand-side vector of Equation 105:
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R =fn~i-Mq 2 -Cq l -Kqo

3. Solve for the primary unknown, Ax

(M)
[b2M + bIC + boK]x =R

4. Update the solution vectors (i.e. Equation 101)

(k) (M)

Xn+1 =qk+bkAx

5. Advance timestep, and return to Step 2.

Katona performs stability anc; accuracy analyses on the beta-m

method in general, and similar quantitative analyses are performed

on actual separation predictions in Chapter 6.
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Appendix E

GEAR DATA

E.I. Required Data

The following data is taken from reference [7] except where
noted.

W: gear facewidth
W = 1.333 in

Ci: standard distance between gear

centers
C1 = 3.6471 in

Ro : outer radius
Ro = 1.9415

Rp" pitch circle radius

R = 1.8235 in

Rb: base circle radius

Rb = 1.69075 in

E: Young's Modulus of steel
E - 30 x 10 6 psi

N: number of teeth
N - 31

n : gear speed
n - 9000 RPM (max)
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Tp • circular pitch tooth thickness (at
pitch)

Tp - 0.1831

pressure angle

* -22 degrees

r" fillet radius
r = 0.0570

Not given in reference [7]:

p. • Poisson's ratio for steel
p. = 0.3 (from reference [23])

E.2. Calculated Data

As noted in Chapter 6, Sec. 6.6., the values of mass moment of

inertia and shaft stiffness used in the sample analysis a e not

representative of those in reference [7], but rather, it is the

detailed gear geometry that is extracted from this source. To

facilitate the presentation of the analysis results, the true system

dimensions and masses were replaced by a set of qualitatively

chosen values: It was decided to increase the moments of inertia of

the motor and load mass and decrease that of the gears so as to

obtain a system response that focuses mainly on the response of

the gear pair itself, and that is not visually clouded by the coupling

between the masses. By simply editing the Gearsep data input
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files, however, any or all of these quantities may be altered to

exactly describe any single-stage system, including the four

square system in question. However, it is not the object of this

report to affirm or disaffirm any particular gear system, but

rather, to confirm a generalized procedure.

With this approach in mind, the system is described beginning

with the equation for mass (in slugs) of any of its elements (gears

or shafts):

mass m = [ p r2  Equation 106

where:

p: density of steel

r = 0.286 Ibm/in2 (reference [23])

r: radius of system element

I: length of system element

g: gravitational acceleration

g - 32.2 ft/sec2

and:
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mass moment of inertia J = J-mr2 Equation 107
2

([ft lb]/unit angular acceleration)

1) Model the electric motor as a solid steel cylinder,

representing windings and armature. Again, the dimensions chosen

for this model are not those of reference [7]. With the

aforementioned goal of a visually clear response, focusing on the

gear pair rather that the system as a whole, both the motor and

load mass moments of inertia were arbitrarily set to 250

ft lb/(unit angular acceleration): This arbitrary value indeed proved

to provide a response of the desired form. To give a measure of

physical reality to this moment of inertia value, consider that it

may be represented by a solid steel disk of the following

dimensions:

rmotor/ioad - 6.5 in

Imotor/load = 10 in

The gear moment of inertia is chosen based on that calculated

above:

Jgear - 0.002 ft lb/(unit angular acceleration)

This places just over five orders of magnitude between Jgear and
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Jmotor/Ioad" The "half" order of magnitude is based on an assumption

made very early in the investigation that exactly incremental J's

would perhaps create system resonances which would interfere

with the attempt to characterize the model's common behavior.

A gear with the J value given above might have the dimensions:

rgear = 0.75 in

Igear = 0.45 in

Although these dimensions are impossible given outer gear radii,

etc. as given in Section E.I., they provide a sufficient difference

in J values to provide the aforementioned uncoupled response.

2) The shaft stiff nesses were chosen in a similar arbitrary

manner as the J's: K values are artificially high so as to appear

clearly in the analysis of Chapter 6, yet not interfere with the gear

response (see Chapter 6, Sec. 6.2.3.).

Kshaft - 2000.0 ft lb/radian

A shaft with this spring constant might have the following

dimensions:

rshaft - 0.2 in

Ishaft 18 in


