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ABSTRACT

The following report describes a comprehensive numerical
procedure for predicting tooth separation in a single-stage gear
system, and provides information on its programming and use. This
programmed procedure, named Gearsep, allows any segment of a
spur gear train to be analyzed for the critical operating conditions
under which tooth separation can occur.

Gear tooth separation, as evaluated in this report, occurs when
the varying compliances (or, conversely, the "stiffnesses ") of the
meshing teeth cause the contacting tooth pair to react against the
system's shafts to such an extent that tooth surfaces loose contact
with one another. When the teeth regain contact, they do so with an
impact, causing high tooth stresses and unwanted noise.

The numerical procedure takes readily available gear tooth data
and creates an analytical compliance model for a pair of mating
teeth moving through different contact positions. This model is
then passed to a numerical integration scheme which determines
relative gear motion, and thus predicts separation. The particular
tooth compliance mode! choosen is based on straightforward
strength of materials concepts.

This report also presents a sample gear train investigation and
confirms the accuracy and stability of the numerical integration
algorithm by comparing it with an analytical solution of a

simplified gear system.
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Chapter 1

INTRODUCTION

1.1, Gear Noise Background

The long history of gear noise studies stems from two major
concerns: the effect of noise on the immediate environment and the
effect of noise-producing processes on machinery. Issues in the
work environment center around employee health and safety due to
the potential for physically damaging noise levels emanating from
poorly designed machinery. Other environmental noise concerns are
more common, such as cabin noise in turboprop aircraft and
helicopters [1], and even household appliances [2]. Detrimental
effects on the machinery itself arise from the characteristics of
noise generation, such as abnormally high bearing, shaft, and tooth
loadings which may reach into the billions of cycles. If such
loadings are not anticipated and avoided, machine life could be
drastically reduced, most often from premature fatigue failure [3].

The early efforts in gear dynamics analysis of the 1920's and
30's were mostly concerned with the prediction of tooth stresses.

In the late 1940's, Buckingham described the "separation of elastic
bodies" and their subsequent impact [4]. Mass-spring models of the

1950's were at first employed in the usual search for tooth




stresses, but were then expanded to more detailed dynamics
investigations. The modeling efforts of the 1970's and early 80's
began to include more complicated effects such as three-
dimensional effects, damping, and other nonlinearities. Current
models may apply plate theory and also furnish transient responses
[5]. A comprehensive treatment of the history of gear noise
investigation is available through the referenced work of Ozguven

and Houser [5).

L2, Gear Noise Definit

Gear noise may be precisely defined as that directly produced by
gear teeth or indirectly by other neighboring elements in a gear
train (bearings, etc.). In a broader sense, however, it may be
defined as the transmitted noise produced by a machine as a result
of the vibrations at a gear pair. Mechanical vibrations are
transferred along shafts and through bearings to structural
mountings, while similar acoustic waves propagate through
internal spaces, both finding their way to machinery housings [6].
The housings amplify and re-emit the vibrations and waves into the
working environment as high amplitude airborne noise at the gear
mesh frequency and its multiples, which may easily mask the

actual noise of a gear pair [7).




13 S " S { Gear Noi

Gear noise is a direct product of the unsteady component of the
relative angular motion of pairs of meshing gears [8]. If this
unsteady component is large enough to create a relative angular
gear displacement greater than the tooth deflection caused by the
load on the system, then the contacting surfaces of the meshing
teeth will separate. When the teeth regain contact, they do so with

an impact, causing high tooth stresses and unwanted noise [9].

1.3.1._Definition of § i

Gear tooth separation may be described by a linear system
analogous to the true rotational system. In Figure 1, the series of
frames show a segment of the free oscillation of two forced
masses under the influence of a constant force F. These masses
represent the bodies of the gears in question, and the two springs
correspond to the flexible gear teeth, and are depicted as ending in
flat, massless plates to represent the contacting tooth profiles.
The two masses can therefore be held in a single, mutual system
(spring plates in forced contact) only by maintaining a relative
distance between the masses that is smaller than the combined
unstressed lengths of their springs. If the linear system rebounds

against its springs such that it reaches this unstressed position




(middle frame of Figure 1), it will then correspond to a rotational
system with its tooth profiles touching, but with no transferred
force (unforced contact). This condition may be thought of as

impending separation.
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The gears' relative displacement with respect to each other (not
with respect to their initial positions) can be thought of as an
oscillation around a quasi-equilibrium position, albeit in a
complicated fashion. The corresponding block and spring behavior
is a lateral oscillation about the system's center of mass. This is
represented at the top of Figure 2 as the motion of the quasi-

equilibrium or "relative” frame within the "global" frame.




By defining the datum of each block (and also each gear) in the
relative frame at its respective unstressed, initial positon, and
continuing to ignore rigid body motion, a straightforward
definition of separation may be established based on the previous
discussion. Specifically, if no separation is to take place, the
motion of the right-hand block must not exceed that of the left-
hand block as viewed from the global frame. The blocks or gears in
question must remain within the confines of their quasi-
equilibrium datums as viewed in Figure 1. Again, if the system
elements return to their datums, any continued outward movement
will result in a separation of the contacting surfaces. From
Figure 2, which shows both forced contact and separation in the
relative frame, it is possible to define a actual quantity called
separation as the value of the relative displacement of the
elements. This is depicted explicitly in the bottom frame of

Figure 2. To further quantify "separation,” consider the area of

Figure 2 labeled with a " + " and note that the elements are located
at their respective datums, implying that the plates are in contact,
but the springs are not compressed. If element 1 were to move in
the positive direction a distance of, say, five units, while

element 2 were to move in the same direction, but only three units,
the plates would remain in contact, held there because of a total
spring compression of two units. By defining separation as that

measure found by subtracting the distance moved by element 2
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from that moved by element 1, the scenario just described would
produce a separation value of positive 2. Thus defined, positive
separation values of elements in the linear displacement system
imply that the plate surfaces have remained in contact. Conversely,
a negative separation implies that plate surfaces have lost

contact, as shown in the last frame of Figure 2. In an analogous
angular system, positive separation values imply that the tooth
surfaces of a pair of meshing gears have remained in contact.
Conversely, a negative separation implies that tooth surfaces have
lost contact due to the relative angular displacement of their

associated gear bodies.
1.3.2. Details of S .

As previously stated, separation is caused by the unsteady

component of relative angular gear motion. Mark [8] goes on to say:

This unsteady component is caused by the periodic
variation in the stiffness of the gear mesh that is
attributed to the periodic variation in the numbers of
teeth in contact, and the variation in the stiffness of
individual tooth pairs as the location of their mutual
line of contact changes during rotation. The
intentional tooth-face modifications, machining
errors and wear, and tooth deformations all provide
non-negligible contributions to the deviation from
exactly uniform relative angular motion of pairs of
meshing rotating gears. (p. 1409)




These deviations are collectively known as static transmission
errors (STE's) after the technique used to find them in which
measurements are taken of the relative rotational displacements
of statically loaded gears [10]. These errors are most often defined
along the line of action (the locus of all contacting points for a

gear pair: see Figure 46a) and in displacement units [10]. Despite
their collective label, STE's should be considered to lie in two
separate groups as indicated by Mark; deformation oriented errors,
and those errors caused by physical imperfections of the gear
teeth, either intentional or accidental.

Separation brought about solely by deformations of the tooth
profile occurs because of the variation in tooth stiffness. This
variation is in turn caused by the changing tooth thickness and load
position that occurs as the teeth move through different positions
in mesh. Figure 3 shows a single tooth pair entering mesh and
leaving mesh, which are the two extremes of its range of contact.
As tooth 1 moves through mesh, the point of mutual contact moves
from its thick section and travels up the tooth profile to the
tooth's narrow section at the tip, with the converse variation
occurring to tooth 2. Unfortunately, the resulting opposite changes
in stiffness do not cancel each other to produce a constant
deflection. Rather, their sum creates the aforementioned unsteady
component of rotational motion, causing the teeth to push against

the system's shafts with a varying strength, possibly to such an
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extent that tooth surfaces lose contact with one another. This can
be visualized by considering the action between a diving board and
a diver. Imagine the diver standing on the board and causing it to
oscillate up and down while keeping his feet in constant contact
with the board surface. Such motion can continue indefinitely, until
he correctly varies the "stiffness" of his legs, causing feet and
board to separate.

Relative gear motion is further complicated by the fact that
most gears are designed to have more than one pair of teeth in
contact at one time in certain regions of mesh. As a result, a pair
of meshing gears that alternate between one and two contacting

tooth pairs will experience both the continuous, unsteady motion




from the previously described stiffness variations, and the sudden
and repetitious rising and falling of the overall stiffness level
owing to transitions to and from dual tooth pair contact.

Physical errors incur separation by introducing either true or
effective raised areas to the tooth profile. Upon contact with the
mating tooth surface, these raised areas produce rigid body
rotations of the gears as a whole, which may be great enough to
cause separation. This occurs in much the same way an unexpected
bump may "separate” a bicycle, along with its rider, from a
previously smooth road surface. Origins of true raised areas have
already been considered (modifications of the tooth profile, etc. as
discussed by Mark [8]), and effective errors may originate in the
mispositioning on the gear body of entire teeth or in the
misforming of the gear body itself during manufacture [11]. It
should be noted again that while provisions have been made to
include separation due to such physical errors, the bulk of this
investigation will be aimed at separation caused by the changes in
- stiffness inherit in the relative positional changes of meshing gear

teeth (as shown in Figure 3).

133, Post-S fion Behayi

After tooth surfaces loose contact, two related chains of events

may occur, depending on the system's physical characteristics.

10




Common to each event is a degeneration of the single-stage system
into two momentarily independent single shaft systems, with the
division occurring at the separated teeth (just as a diver and a
board separate into two dynamically independent systems).

Figures 1 and 2 presented the linear analogy to this degeneration,
while that of the rotational system is depicted in Figure 4: The

insert shows the teeth of a gear pair still moving apart just after
tooth separation, where the large arrows give the rotational
direction of the system as a whole, and the smaller arrows

indicate the relative tooth motion.

GEAR
PAIR

7
7
LOAD MASS

GEAR TEETH OUT OF
CONTACT:
SINGLE-STAGE SYSTEM
HAS BECOME TWO
DYNAMICALLY SEPARATE
SYSTEMS
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1.3.3.1. Contacting Syrface impact

The first post-separation event that will be considered requires
that the energy partially dissipated in the separation of the two
tooth surfaces be completely expelled in twisting the system's
shafts. At that point, the gears involved will stop their relative
forward rotation and begin a relative backward motion, opposite to
the directions of the smaller arrows in the inset of Figure 4. This
is similar to the diver falling back towards the surface of the
diving board.

When the teeth have moved back through the distance that had
separated them, their contacting surfaces will meet with an
impact, as described in reference [4]. The ensuing dynamic
separation load can cause, in addition to the large vibrations which
propagate through the system as previously described, tooth wear
and general loss of performance [12] and may produce the largest
load value encountered in the mesh cycle. This will cause obvious
problems if only static loads are considered when designing tooth
strength. it should also be noted that a dynamic load will occur
even if there is no separation [4]): The unsteady relative gear
motion produces a dynamic acceleration load even if the teeth
retain contact, as indicated by the spring deformations in the
oscillations of the linear system shown in the top of Figure 2. This

is the oscillating load caused by a bouncing diver that deflects the




diving board past the point of static deflection from the divers
weight alone. The key point is that this oscillating load will occur

even if the diver's feet never leave the board.

1.3.3.2. Double Impact

The second possible event after the teeth have separated
requires that the energy of separation be greater than that required
to simply counter-rotate the system's shafts. This will produce a
relative gear rotation equal to the gears' backlash (the clearance or
play between adjacent pairs of teeth). When this occurs, there will
be a second dynamic loading in addition to that previously
described: Because shaft stiffnesses are no longer large enough to
stop the gears' motion in "mid air," the back sides of adjacent teeth
will impact [13]: This is analogous to an unfortunate diver hitting
the underside of the board one level above him before returning to
land on his own. Although much of the separation energy may be
expelled by the time the tooth flanks meet, resulting in a less
severe impact than that which will occur to the front sides a
moment later ( completing the "double” impact), the teeth will still
be stressed in the direction opposite to that which occurs during
normal operation, and due to the nature of bi-directional loadings,
the chances of fatigue failure will increase. While this type of

impact will not be included in this analysis, it nevertheless gives

13
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support for the usage of a separation analysis program to predict

and avoid gear tooth separation.
14 P D infi

This report presents a programmed numerical procedure wi:ich
employs an established gear tooth compliance model for the
prediction of the critical operating conditions under which gear
tooth separation can occur in single-stage segments of spur gear
systems. This task is accomplished with a set of programs
collectively titled Gearsep, for "gear separation.” There are two
autonomous Gearsep program parts, the first using the
aforementioned model to evaluate the varying compliances of the
meshing tooth pairs (Gearsep1), and the second using this
compliance information in a dynamic model of the single-stage
system (Gearsep?2). _

Gearsep's focus will be on deflection induced separation,
although provisions have been made to include the effects of the
physical errors previously discussed. The reasoning for exclusion
of these topics from the main flow of the program development is
that such physical imperfections change from gear to gear and
from system to system, so the selection of any one of these
criteria would be completely arbitrary, and might only apply in

limited circumstances. The requirements for deflection induced
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separation, however, exist in all spur gear systems, and as such,
this may be thought of as a global trial case for the Gearsep

procedure.

1.5, Program Constraints

For a complete system analysis, a spur gear pair with involute
tooth profiles and a contact ratio range between one and two is
assumed. Such an analysis begins with common, elementary gear
data, and implies no foreknowledge of the tooth compliance.
However, experimental data or external analytical compliance data
may be input directly into Gearsep?2 (the dynamics section of
Gearsep), which again is constructed to operate autonomously from
the section which calculates the varying tooth compliance. Other
constraints are discussed throughout Chapter 6.

The overall Gearsep program is designed to analyze a
single-stage system, a component found in many common gear
mechanisms. The single- stage system is composed of a driving
mass and shatft, two gears in mesh, and a driven shaft and mass,
where shaft bending is assumed to be negligible, eliminating the
need for treatment of Coriolis and gyroscopic gear effects [14].

A single-stage system was used in Figure 4, and as is now

presented in detail in Figure 5, where the driving mass is an
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electric motor, and the driven mass. or Inad. is a compressor.

MASS 4

MASS 1\ /

GEAR SET MASS 2
\ /

MASS 3 — &

/ COMPRESSOR /

(DRIVEN MASS OR LOAD)

IANARRRRARA

TN

MOTOR
(DRIVING MASS)

For a more complicated system where a discrete mass value for
one or more of the end masses does not exist, effective inertias
may be used to assemble a corresponding single-stage system [15].
This would be a necessary pre-Gearsep analysis for a dual system
such as that shown in Figure 6, where a small power generator is
being driven by a third gear mounted in tandem with the original
two. This type of system would require two separate applications
of the Gearsep analysis, one for each of the system's two gear
meshes.
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Chapter 2

ANALYTICAL SOLUTION OF THE GEAR SYSTEM

2.1, Chapter Overview

The following is a summary of the precursory analysis
necessary to confirm the analytical model of the single-stage spur
gear system shown in Figure 1. Details may be found in Appendix C.
The true gear system is first idealized and simplified by
assuming that the gears are perfect rolling elements, which
transfer uniform rotary motion with no unsteady components from
tooth dynamics. This allows the single-stage system's four
equations of motion to be rewritten as three representative
equations of motion, a form that is solvable using standard
techniques: For this analysis, generalized coordinates are used to

create the analytical model [16)].

22 Equat { Moti

For the analytical solution of a single-stage gear system, shown
in lumped mass form in Figure 7, the gears are assumed to be, as

stated, perfect rotational elements.

L

e




Jy (MASS 1)

/ J 5 (MASS 2)
pr— \ 6, J 4 (MASS 4)

J 5 (MASS 3)

F IS THE FORCE
TRANSFERRED BETWEEN
THE GEARS

The system is described by the following equations of motion:
J,31=k,(92-91)+c(62-é1) Equation 1a

J,02=K (8- 0,)+C(61-62)-Fr,  Equation2a

J353=k2(64- 93)+c(é4-63) -Fra Equation 3a

JPa=Kky03-04)+C(03-04) Equation 4a

where k is the shatft stiffness, ¢ is a generalized damping (not
considered directly in this analysis), and F is the transferred force

shown in Figure 7. However, for the real single-stage system, this

19
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transferred force is nothing more that the instantaneous tooth pair
stiffness tooth pair stiffness as a function of position in mesh

(KyooTH paIR: S€€ Chapter 3 ) muitiplied by the relative

displacements of the two gears (6, and 63). Substituting this for F

in Equations 1a through 4a, the equations of motion become:

JB1=ky(8,-81) +¢(02-64)  Equation1b
J202=Kx(81-0,) +€ (01-02) - Kroomnpam (62- 05)  Equation 2b
J303=KA04-03)+C (04 03) - Kroomupar (02-62)  Equation 3b

JBa=knB3-64)+C(03-64)  Equation 4b

Note that it is this set of equations that is actually solved by the
numerical integrator (see Chapter 4) to predict separation.
Equations 1b through 4b must be altered slightly to allow an
analytical solution benchmark. For the analytical solution, all
damping is assumed negligible (c = 0) and mass moments of inertia
are established in an arbitrary manner as described in Appendix D.
The solution is found for a set of arbitrary initial displacements of
the lumped mass system shown in Figure 7, where mass 1 and
mass 4 correspond to the motor and load masses, respectively.
Because mass 2 and mass 3 in Figure 7 are assumed to be

perfect in their transfer of rotary motion for the analytical
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system, the transferred force F is constant for the benchmark
solution. Through the algebraic elimination of F, Equations 1
through 4 may be combined to produce a reduced set of equations as

follows:

[ 1] r .
J81+Kq(0 -%ez) =0  Equation5

J3+() ] r3k191* )k1+k293 k284=0 Equation 6

Js04+kif04-03) =0 Equation 7

At first, Equation 6 appears to be fairly obscure in its origin.

However, its appearance simplifies by noting the placement of the
gears' radii ratio F3/y, when the four equations of motion reduce

to three: Equation 6 must describe a single fictitious rotational
body comprising the characteristics of the two original gears.
Thus, mass and stiffness terms in Equation 6 may be regarded as

effective quantities, numerically weighted by the radii ratio.
Having removed all reference to 6, from the equations of

motion, the mass numbering system will now be redefined as
shown in Figure 8. Notice that the positive direction of the load

mass has been reversed from that of Figure 7.
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J,(MASS 1) ( ) J3(<ASS 3)
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The two homogeneous solution components necessary for
obtaining the particular solution are the natural frequencies and
the mode shapes, both of which are obtained by solving the
eigenvalue problem with standard techniques as discussed in

Appendix C. The natural frequencies in quadratic form become:

m2= -b :t‘\/bz- 4ac

2a

Equation 8
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with:
2 .
a=Jys[a+JoR?)  Equation9
b= 'R2[J1J2k2+ k1J4(J1 +J2)] - k2J1(J3+ J4) - J3J4k1 Equation 10

c=kkp[R3J;+Jz)+J+ds]  Equation 11

The modal matrix lists the naturally occurring mode shapes by
column, and is normalized by defining the first row with unit
displacements. All other elements are functions of the system's

inertias, natural frequencies, shaft stiffnesses, and the gear radii
ratio F3/r, as contained in the set of variables A;;, where the

subscripts represent row and column positions. For an unrestrained
(free rolling) single-stage system, the modal matrix will take on

the following form:

1 1 1
[ ¢ ]5 1 Axp Az

Equation 12

where the entries of row 1 (what would more generically be A,,,
Aqo. and A,3) are unit displacements. Notice that the first column

(entries A4, Ay, and Az,) of Equation 12 indicates that the first




mode shape is made up of unit displacements of all of the
elements. This is indicative of an unrestrained, or semi-definite
system where the first displacement mode is a simple rigid body
rotation [17], and the first natural frequency is zero (see

Appendix C).
> 4. Particular Solut

Solving for the particular solution using generalized

coordinates, the modal equations of motion are obtained:
M, + M,oﬁq1 =0  Equation13
My, +M,w3q,=0  Equation 14
MaG,+ M3m§q3=0 Equation 15

where the generalized coordinate q is defined by:

{o(t)}=[o]iqlt)}  Equation16

The modal equations are then solved by assuming a solution of the

following form:

an(t) = En Sin{ont) + G, Cos(ant), n=123  Equation 17

e
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Finally, by assigning initial conditions and solving for the E's and
G's in Equation 17, and substituting the resulting gp(t)'s into

Equation 12, the analytical solution of the system is obtained in

the form (shown here for the displacement of the first mass only):

91(t)=A11q1(t)+A12qét)+A13q3(t)
= (A1n)GCOS®;t + (A2q JG2)COSW, t + (A3, )G3)coSw3t

n=123 Equation 18

6,(t) and 05(t) are solved for in a similar manner.

Notice that no E,'s from the assumed generalized solution
(Equation 17) appear in the final system solution: With initial
conditions taken at time t = 0, the E;'s can only survive if there is
a non-zero initial velocity. In foresight of the types of initial
conditions which will be chosen for the analytical benchmark (see

Chapter 5), the initial velocities for all masses are assumed to be

zero, thus simplifying the analysis.




Chapter 3

TOOTH COMPLIANCE MODEL

3.1, Chapter Overview

This chapter presents the model used for the compliance of a
pair of meshing gear teeth. Again, the principle source of gear
excitation is assumed to be the deflection of the teeth from their
unstressed positons, and that excitation is most naturally
described in terms of displacements [18]. In this light, the model
selected is that of Cornell [19], which predicts /inear tooth
deflection both at and in the direction of the tooth loading for any
given tooth load. The tooth pair compliance is calculated (rather
than the stiffness) in order to maintain continuity with Cornell and
the majority of works in this area, both past and present.
Furthermore, all work in this section, uniess otherwise specified,
is attributed to Cornell.

The total tooth pair deflection is calculated as a summation of
tooth and fillet area cantilever beam deflection (bending and
shear), foundation deformations, and Hertzian and localized tooth
body deformations. In the discussion to follow, variables directly
involved in the deformation equations are followed by qualitative

descriptions, with a comprehensive treatment of all variables,
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direct and indirect, available in reference [19].

It should be noted that the model chosen is not the most
sophisticated available. Modeling techniques which relied on
Fourier series or Legendre polynomial representations are avoided
in favor of confirmed and straightforward relations based on
strength of materials and common gear geometries. This is done to
produce an analysis technique that is aimed less at pure gear
dynamics research and more at an engineering application, with
mathematics that may be readily understood and, more

importantly, readily altered.

3.2. Beam Compliance

The tooth beam compliance Yg is comprised of both cantilever
and shear deflection, with all deflections defined at the load point
and in the loading direction. The deflection equation itself comes
from strength of materials, and is an integral over the length of
the tooth cantilever. In numerical terms, this translates to a
summation of a series of discrete elements. From Cornell [19]

(p. 449):

Equation 19

Lcos2(¢L)2 { -l 5"*16 (2 4(1+u)+tan2(¢L»

A;




where:

(1-u?):

the number of summation element increments
into which the tooth cantilever is divided.
the load on the tooth: This is taken to be unity.

a localized pressure angle at the loading point:

This results from using tooth centered

' coordinates where the tooth is horizontal to

the viewer, as opposed to gear centered
coordinates where the position of the tooth
depends on its location in mesh (compare
Figure 9 with Figure 3).

Young's modulus

the summation element increment: This is the

width of the interval of summation which

takes the place of a continuous integral.

the location of §; at each summation step

the material's Poisson's ratio

anticlastic term as applied to a "wide" tooth:
Cornell defines such a tooth as one whose
ratio of its width to it thickness (measured at

pitch) is greater than five [19]. Anticlastic




terms take into account the possibility of
anticlastic curvature in the teeth, where usual
lateral bending gives rise to a longitudinal
bending of opposite sign.

A: anticlastic tooth cross section area term at
each summation point

I: anticlastic section modulus term at each

summation point

Note that the "barred" quantities (K,—I: etc.) have a direct
geometric relation to the base of the tooth cantilever. The tooth
cantilever geometries are shown in Figure 9, with h defined as the

height or thickness of the base of the tooth cantilever:

LOAD
T ¢L/\ ~
|

=l

—| |— hptan o' /2

IVa
FL';
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As a side note, anticlastic curvature is easily demonstrated
with the aid of a "Pink Pearl” bar-type eraser. By holding the eraser
with fingers and slowly bending it in half, the normally flat sides
can be seen to curve in the opposite directing of, and at a right

angle to the principal curvature.

33 Fil | Eoundation Comoll

The total fillet and foundation deflection Y is divided into
fillet beam and shear bending Ygg, and foundation flexibility Ygr.
Fillet deflection is based on the assumption that the fillet region
may be considered to be a stout cantilever beam, thus allowing
Equation 19 to be reused. The equation for the foundation

deformation from Cornell [19] (p. 449) is:

tan? (¢L) :
+1 536( 5 4( Ton) Equation 20

Lcos2 (¢L) []j_jl( _,_)2 2(9‘

where: W : the tooth's facewidth and also the gear

thickness
Q,Q,: the terms carrying the anticlastic properties

of the tooth (see Appendix B, Section 11)

Ve
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I¢: the location of the inboard boundary of the
fillet region
h: thefillet thickness at |

All other variables are as described for Equation 19.

Foundation and fillet geometries are shown in Figure 10.

LOAD
7 R
44 20
o ———— e V/////
9
r
Ye
I ; il nti r i flection

Although the bulk of Equation 20 is based on simple gear tooth
and body geometry, there exists no expression for the actual size
of the fillet cantilever, which is described by the angle g in
Figure 10. Cornell contends that this should be the angle which
produces the maximum deflection at the load point and in the
direction of loading. it is therefore also the angle which causes Yg

to be a maximum in the following:
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YE =YrF + YEB Equation 21

where both Ygg and Ygg are dependent on Y.
Although Cornell presents a variety of computed ¥ values for

various gear forms that may be directly used in the analysis,
Gearsep will calculate the actual value of the angle, the details of

which are in Appendix A.

3.4 | ocalized and Hertzian Def ,

This final deformation type includes both the Hertzian surface
deformation and the tooth body compression between the point of
contact and the tooth centerline. Cornell offers three choices for
the expression of these localized deformations. After presenting a
comparsion of each choice with experimental results, a closed
form solution was suggested, in part because of its handling of
nonlinear effects. From Cornell [19] (p. 450):

[ _ 2hg ( ) }
o \qr- "J

2 —
1-p 2h 1 u
2L P P_ g
Yhertz; R—W( E, ){In b 2(1
Equation 22




In Equation 22:

p &g: subscripts indicating varibles for the pinion

and gear, respectively: By convention, the

"pinion” is the driving gear, while the "gear”

is the driven gear.

In:  the natural logarithm function

h: thickness at the base of the tooth cantilever
b: Hertzian half-contact width: This is defined

by Cornell as:

p [1-2
4L Hp

4 awW|| E,

E

2
1-p

g

1,1

L s I'g

1%

v

Equation 23

in Equation 23, r is the local radius of curvature of the involute

profile, and all other variables are as previously described.

Figure 11 shows the geometries for these local deformations.

3.5. Assembled Compliance Model

Because the described deflections are for unit loads, the total

compliance of a pair of meshing teeth may be obtained by simply

inverting the sum of all individual deflection types for that pair.
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This, however, provides a compliance value at only one point in
mesh. As the process of calculating the unit load deflection for
every iteration point would be too time consuming (Chapter 6 will
show that there may easily be thousands of points per tooth mesh)
the deflection will be calculated at five specific compliance points
along the line of action. A five-term power series will then be used
to represent the changing tooth pair compliance and will thus
supply an easily solvable analytic compliance expression. A
compliance function plot is shown in Figure 12; this particular plot

is associated with the sample analysis system of Chapter 6.
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Cornell provides an in-depth confirmation of the proposed
compliance model, in which calculated deflections are compared to
both finite element and experimental data. The conclusion drawn is
that the compliance model presented is "probably as accurate as
any available” [19].
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Chapter 4

NUMERICAL INTEGRATION
4.1, Chapter Overview

The following is a brief overview of the numerical integrator
chosen to soive the single-stage equations of motion (Equations 1
through 4), with details of the routine given in Appendix D. All
work in this section, unless otherwise noted, is attributed to
Katona [20].

For the actual prediction of separation, a numerical solution
was chosen over an analytical approximation to permit arbitrary
time varying loads and experimental tooth compliance data, along
with material or bearing damping functions to be incorporated if
desired. Optional inputs such as these would greatly complicate or
make impossible an analytical solution, as they may be nonlinear

expressions or simply be comprised of raw numerical data.
42 The Beta-m N ical | tion Scl

The numerical integrator used to solve the gear system'’s
equations of motion is the beta-m method. This is a generalized

form of the well recognized Newmark scheme [21], and solves
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equations of the form:

Mx+:Cx+Kx=f Equation 24

where M is the mass matrix, C is the matrix of damping
coefficients, K is the stiffness matrix, and f is a matrix of forcing
functions.

The beta-m method is developed by expanding Newmark's
integration expressions in a Taylor series, which is then
conveniently apportioned for use in an algorithm format. The Taylor

series takes on the form:

(k) (m) .
Xne1 =0, + by AX Equation 25

where, fork =0, 1,..., m (for an mt" order approximation with

Bm'1)

0O
q,= DX G- k) Equation 26
j=k

by=B "™ m-k)!  Equation27

and x,,, 4 is the displacement at the next timestep. The

over-scripts (k) and (j) on x take the place of the ususal "dot

over-script” notation for time derivative ii dices, and mis the




order of the approximation. In Equations 25 and 26, the q, term is
the Taylor series expansion of x,, 4 up to the term x, (and is thus

termed a "history vector”), and the last term in Equation 25 may be

interpreted as the error in the expansion's approximation of x,, 4.

The beta-m method is easily altered through the use of various B

values, a sampling of which are provided by Katona. The B's used in
Gearsep produce a solution of optimal accuracy with a truncation
error order of four. This choice is made in hindsight of the results

of the data analysis of Chapter 6. In that analysis, it shall be seen
that a beta-m method of increased stability would indeed expand
the range of operating conditions under which a stable numerical
response (and therefore usable data) resuits, but it would not
expand it into the area of the range where separation is mc -t likely

to occur.
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Chapter 5

CONFIRMATION OF THE NUMERICAL MODEL
AND SPECIALIZED PROGRAMMING PROCEDURES

2.1, Chapter Overview

This chapter confirms Gearsep's beta-m numerical integration
solution by comparing it with the analytical solution of the
reduced single-stage system presented in Figure 8. This is the
semi-definite (unrestrained) lumped three mass system reduced
from a four mass single-stage system as discussed in Chapter 2. It
should be noted that an actual Gearsep analysis solves the true
gear system of Figure 7 (as described by Equations 1 through 4),
not the reduced system (three equations of motion). It should also
be noted that the driving force for the system is the torque applied
to mass 1 (Figure 7): mass 1 represents the motor's internal shafts
and rotating armature.

Also discussed in this chapter is the use of a special case model
for systems with an extreme difference of mass moment of
inertia values between its elements (the J ‘s of Chapter 2). Ifina
particular system the difference between, say, the J value of the
motor and that of the driving gear is too large, round off errors

will occur in the numerical routine and its supporting algorithms.
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To characterize the range of relative J values under which this can
occur, the top system of Figure 13 will be solved for various
motor/load J values with a fixed J value for the gear pair, and the
results compared with the solution of the special case model with
the same gear pair J. The form of this model is shown at the
bottom of Figure 13, which represents a system whose the outer
masses are so large in comparison to the gears that they may be
assumed to not affect the response, and so, are replaced by fixed
supports.

J{(MASS D J5(MASS D

/ \=

\




5.2 1. Analytical Solut

The benchmark system used to confirm the numerical procedure
will be one with symmetric masses and shafts as shown at the top
of Figure 13. Note again that this corresponds to the reduced four
mass single-stage system of Chapter 2, where R is the radii ratio
of the gears at pitch. For the four mass system let the arbitrary

system parameters be given as follows:

J1=J4=10 J2=J3=5 k1=k4=200 R=1

(It Ib)/unit angular acceleration) ([ft Ib}/radian)

This would roughly correspond to a system with outer masses of
2.8 inch thick steel disks with 4 inch radii, inner masses of 4.4
inch thick steel disks with 3 inch radii, and 9 inch long steel
shafts with radii of 0.2 inches. For the reduced, three mass

system, with subscripts adjusted according to Figure 8:
J1=J2=J3=10 k1=k2=200

([ft Ib}/unit angular acceleration) ([ftib)/radian)

The relatively high shaft stiffness values are choosen to make the

form of the system response more congruous with that of the full

41




system analysis presented in Chapter 6.
Following the procedures of Chapter 2 as detailed in Appendix C,

this system has the foliowing natural frequencies:
0i=0 ©3=200 >=60.0

and an eigenvector matrix of the form

lo] =

1 1 1
1 0 -2 ] Equation 28
1 -1 1

with arbitrarily choosen initial displacements of:

{a 01} = (o] -1{9(0)] = [cp]'1 { é } Equation 29

Note that for a true system with the characteristics described
above, such large initial deflections would probably cause plastic
deformations: It should be realized that these numbers are not
representative of any existing system, but rather, were choosen (in
hindsight) because of the simple forms of their results. Equally
simple are the system's mode shapes, as depicted in Figure 14.
Using the natural frequencies and the initial displacements to
solve the derived displacement relation (Equation 18) is solved, the

response of the system's mass 2 is obtained as shown in Figure 15.

+

re
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As expected, the system's response is simply a repeating
sinusoidal wave, and were it not for the high shaft stiffnesses, the
plot would show a superimposed variation in amplitude from the
interactions of masses 1 and 3 with mass 2. The phase-plane plot
for mass 2 is shown in Figure 16, with a clockwise trace direction.
The two-dimensional phase-plane response is in the anticipated
form of an ellipse, and shows no signs of instability in either the
diaplacement or velocity. This, of course, is indicative of a closed

form solution.
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The beta-m method is now used to solve the three mass system

of Figure 8, using the same J's and stiffness values as in Sec. 5.2.1.

The numerical response is taken out to twenty cycles, which in
hindsight is approximately twice the number of cycles needed to
comfortably affirm or disaffirm separation in a true analysis (see
Sec. 6.2.3.). Figure 17 shows a series of numerical responses for
mass 2 plotted against a section of the analytical solution
(originally given in Figure 15) as they approach the end of their
twentieth cycle. Time increments for the numerical plots begin at

0.1 seconds and decrease by a factor of ten for each subsequent
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plot in Figure 17, thus increasing the accuracy of the
approximation and forcing the numerical solution to approach the
analytical solution. The timestep size was decreased in this
manner until the numerical response was within 0.01% of that of
the analyticau solution, which occurred at a timestep size of 0.001
seconds.

As will be shown later in this section, the largest timestep
used in Figure 17 becomes numerically unstable, but still provides
an accurate estimate of the response. A timestep size /arger than
this by a factor of ten was attempted, but the result became
immediately unstable. It should be noted that each factor of ten

stepsize reduction requires an increase in the number of
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computations by the same factor.

The nature of beta-m's instabilities can be seen by again
examining Figure 17. The peak amplitudes of all responses within
the circled area have the same value to within the resolution of the
plot, indicating that even for the unstable case, amplitude
approximations are qualitatively accurate. The boxed area,
however, indicates that a phase shift exists. This is more clearly
depicted in Figure 18, which is simply an enlargement of the area
in question of Figure 17 (the aspect ratio of the indicated area is
altered for clarity). The marked deflections should occur at the
same time, but instead, they are increasingly delayed as the

timestep size increases, indicating a phase shift.
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Figures 19 through 21 show the phase responses for each of the
three numerical approximations in Figures 17 and 18. Note again
that the numerical routine becomes unstable (visible only in
Figure 19). However, as the ultimate goal of Gearsep is to predict
relative displacements, a phase shift resulting from velocity

instabilities is not expected to have a sigruficant effect on the

accuracy of the analysis.
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53 Special Case Modeling Proced

As discussed in Sec. 5.1., when the moments of inertia of the
motor and load masses become very large in comparison with those
of the gears, extreme round off errors can'occur, destroying the
accuracy of the solution. It then becomes necessary for Gearsep to
switch from a four mass model to a two fixed-support system.
However, it will be seen that as the ratio of the J's increases, the
four mass system solution converges toward that of the fixed-
support system with considerable accuracy well before significant
round off error occurs. The one mass solution can therefore be used
not only for the extremely high J ratios described, but also down
through some range of intermediate values of this ratio. The
advantage to using the fixed-support system whenever possible is
that Gearsep need only solve two equations, as opposed to solving
four equations for the entire system.

Because the chosen numerical routine has been shown to
accurately represent the analytical response, a tedious analytical
solution for the mass moment ratio analysis is avoided by
numerically solving the fixed-support system as a benchmark. A
step size of 0.001 sec will be used in accordance with the results
of Sec. 5.2.2., providing a benchmark accurate to within 0.01% of
what the analytical solution wouid be after twenty cycles.

The analysis is similar to that of Sec. 5.2.2., which produced
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Figures 17 and 18, except for the use of the numerical routine
benchmark. J values of the gears are the same as those used in the
analysis of Sec. 5.2.1., resulting in a combined mass 2 with J = 10
(see Figure 13). A single fixed-support benchmark solution is
plotted in Figure 22 as it approaches its twentieth cycle, along
with a series of three mass solutions for motor/load J values of
10,000, 100,000, and 1,000,000. For the plot representing a
maximum difference in J values of five orders of magnitude, as
shown in Figure 23, the error is 0.000626 radians, which is within
0.032% of the system's full oscillation range shown in Figure 21.
For mass moment of inertia ratios at or above five orders of

magnitude, then, the fixed-support solution is considered

sufficiently accurate.
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Chapter 6
SAMPLE GEARSEP APPLICATION AND DATA INTERPRETATION
6.1, _Program Overview

As discussed earlier, the Gearsep program is apportioned into
two components: Gearsep1 and Gearsep2. The first calculates the
total compliance of a tooth pair at five selected points along the
line of action, and creates as its output an input file for Gearsep2,
which in turn contains the beta-m numerical integrator and all of
its supporting algorithms. After reading both the input file
produced by Gearsep1 and a third input file containing program
control data, Gearsep2 produces for each iteration of the numerical
integrator an output consisting of the present iteration number,
the corresponding time and tooth pair stiffness, and the relative
displacements, or the separation (see Chapter 1, Sec. 1.3.1.), of the
two gears. Details of Gearsep as a whole are given in Appendix B.

The following presents an analysis of a sample gear system
using the Gearsep procedure. Programming features of Gearsep will

also be discussed, along with comments on the program'’s usage.




5.2 AS Analysis Based on a Four Square Gear Testi
Device

The sample gear system is a single-stage component of the four
square system proposed in reference [7]. This device, shown in
simplified form in Figure 24. allows the testing of individual gear
pairs at high shaft loads without expensive high torque motors or
elaborate loading devices. This is accomplished through the use of
a torque flange which 6ounter twists the shafts to produce the
desired load within the four square circuit, as marked in Figure 24.
This system, as presented in reference [7], is designed to test spur
gears described in Appendix E. Note, however, that shaft
stiffnesses and motor/load mass moments of inertia are not taken
directly from reference [7]. Rather, these values were choosen
arbitrarily and were then adjusted so as to produce a spectrum of
responses (to be presented shortly) that spans from simple gear
motion to the transition to separation as system speed rises. It
should be noted, however, that while shaft stiffnesses and
motor/load mass moments of inertia are arbitrary, actual gear
data (various radii and other dimensions, along with material
properties, etc.) are based directly upon reference [7].

The first step in the Gearsep analysis of this or any system is
to collect all necessary gear and system specifications. For the

case of this particular four square tester, these are, again, listed
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GEAR FOUR SQUARE
CIRCUIT

TORQUE

“ FLANGE

SYSTEM TO BE
ANALYZED

Figure 24: Four Square Gear Tester Lavout

in Appendix E. In order to simplify and generalize the analysis,
effective inertias (see reference [15]) will notbe used. Rather, the
system will be taken to be that indicated in Figure 24, where the
one "leg” of the four square circuit is made symmetric by attaching
at the location shown a fictitious load mass equal to that of the

motor.

6.21._ Critical P .| oad and Speed

Many common gear systems are designed to operate over a wide
range of loads and speeds. Therefore, before an actual analysis

takes place, some qualitative ideas should be established as to
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where in the ranges of these two parameters the threat of
separation is greatest so that it does not become necessary to
sample the entire span of loads and speeds in search of separation.
To this end, a qualitative investigation is performed based on the
linear model first introduced in Figures 1 and 2, and repeated here
in Figure 22 with the addition of a time varying load attached to

the massless plates.

When the linear model oscillates about its equilibrium position,
it is kept within the confines of its datums solely by the action of
the applied forces F (see Chapter 1). As F is made smaller, the
oscillations of the masses take them closer to their datums, and
the system approaches separation: For a rotational system, the
applied force F corresponds to the system's torque. From Figure 25,
then, as the force F or system torque is made smaller, the block
masses or gears are able to rebound closer to their unstressed
positions, and thus toward separation. This implies that the lowest
operating torque should be chosen to give the greatest possibility
for separation.

Returning again to the linear model, if a time varying force of
very low frequency is applied to one of the plates (Figure 25) and
causes the system to oscillate very slowly, it can be imagined that
the system's dynamics would not be greatly disturbed, and that the
motion would approximate that of a rigid body: Depending on the

spring stiffnesses and the mésses involved, the inertias of the




blocks will not come into play if the entire system is displaced

slowly enough. If, however, the frequency of the time varying force

is increased to a great enough extent, the reactions of the masses
will begin to lag behind the motion of the plates. This will in turn
cause greater compression or elongation in each spring, producing a
growing reaction force against the applied force F. If the time

varying forces from the combination of the varying tooth pair
compliance and the alternating single and dual tooth pair contact

are rapid enough, then, again depending on the system's parameters,
the proper conditions may be created for separation. As such, the
system's highest operating speed produces a worst possible case,

and should thus be chosen as a test parameter.
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6.2.2.1. Characterization of B

As a preliminary to the analysis of the sample system, the
system's reaction to specific events within mesh is discussed. (A
related discussion may be found in Appendix A, Sec. 3.1., where
particular points in mesh are matched to the procedure for
calculating tooth pair stiffness.) Figures 26 and 27 show a
representation of the system's response and its cofresponding
stiffness profile: Note that these two plots share the same
abscissa, and as such, events that take place in the response plot
may be directly traced to their cause in the stiffness profile.

When Gearsep?2 first invokes the numerical integration routine,
it is at a point in mesh where there is only one tooth pair in
contact: This will always be the case, and occurs by design as
discussed in Appendix B, Section 15. With just this one tooth pair
in contact, the total tooth mesh stiffness is in its weakest range,
and as such, the contacting teeth are deformed by the greatest
amount. In Figure 26, this translates to a series of peak relative
gear displacements, each of which is labeled as point 1, and where
each of the high frequency displacements (circled and labeled) is a
single tooth pair oscillation. Note that these single contact

deflection peaks take the system away from the point of zero
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relative deflection, or, separation.

As the single tooth pair continues through mesh, the pair behind
it moves toward its initial contact position at point 2. When both
tooth pairs are in full contact, the tooth stiffness is near its
maximum value, and as such, the relative gear motion is subdued,
as seen at point 3. The original tooth pair then leaves mesh (with
the help of another tip relief) at point 4, and the pattern repeats by
returning the relative gear motion to its locally highest point.
Figure 27 shows this péttern of a series of relatively sedate
responses, dipping down and rising back up as the compliance of
the tooth pair changes, and regularly interrupted by the spike of
single tooth contact. Such a response pattern may be termed the

"classic” gear response.

6202 G lized B Analysi

Gearsep output was collected using the sample system's
maximum torque (which is a departure from a proper analysis as
discussed in the previous section) over a wide range of operating
speeds and timestep sizes. The actual value of the step size is
determined within Gearsep2, and is based on the number of
iterations, or "points” into which each mesh is divided. This
parameter is defined by the user, and is termed the number of

points per mesh, or PPM.




Figures 28 through 39 present a sampling of the total data
collected in the effort to characterize the full range of Gearsep
responses. Note that the quantity separation (described in
Chapter 1, Section 1.3.1. as the relative angular displacement of
the gear bodies) is now plotted against the number of iterations
performed by the numerical routine, as well as against time. This
underscores the fact that when particular events occur in mesh is
not as important as the magnitude of those events. In addition,
plots containing this iteration information can be used to estimate
necessary computation for the specific computer in use (the data
to follow was generated on a Standard 286 (IBM AT compatable)
personal computer located in Penn State's Applied Research
Laboratory. Furthermore, in reviewing the definition of separation
as it was given in Chapter 1, it may be noted that a separation
value of zero corresponds to a zero relative displacement of the
gear bodies: This is the "impending separation” discussed in
Chapter 1, Section 1.3.1.. As a final note, it should be remembered
that the separation represented in the following figures is
measured in inches along the line of action, just as were the
deflections calculated from the strength of materials equations

presented in Chapter 3.
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6.2.3. Data Analysis

The data set from which the preceding responses were taken
began at 5000 RPM and 100 PPM, but this and other cases using
small parameters produced immediately unstable responses due to
the numerical instabilities discussed in Sec. 5.2.2.. Specifically,
attempted runs at 5000 RPM failed at 100, 500, and 1000 PPM, and
runs at 10,000 and 15,000 both failed at 100 PPM.

Remnants of the extreme instabilities initially encountered are
apparent in responses run at the lower end of the PPM and RPM
scales, where the timestep calculated in Gearsep2 is small enough
to give a response that is initially stable, but that becomes
unstable before a number of meshes takes place that is sufficient
to affirm or disaffirm separation. Those responses that did become
unstable are plotted up to the point where the instability is
apparent but the data are still useful, insofar as the basic trend of
the response is still apparent.

In Figure 28, the response at 5000 RPM becomes unstable before
a single mesh can be completed, as seen in comparison with
Figure 29, whose response survived approximately half way
through the second mesh. As timestep size decreases, the true
response begins to assemble itself, with each step adding more
detail. This process continues through Figure 31, where the limit

set on PPM is reached. Although this final plot shows three stable
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and very similar meshes that are well away from the zero relative
displacement value that indicates separation, it will cannot be
concluded that this particular set of parameters (RPM and torque)
is a proper one for separation-free system operation. The actual
number of stable meshes of the pattern séen in Figure 31 that is
necessary to predict the character of the system is at the
discretion of the individual investigator, but for this analysis, it is
arbitrarily set to a value of ten.

Increasing the operating speed to 20,000 RPM decreases the
timestep size by a significant amount, but instabilities still occur,
as seen in Figure 32. This response was the first obtainable at the
lowest attempted PPM value of 100, and is indicative of a response
that is all but immediately unstable. At 500 PPM (Figure 33),
however, the classic response pattern emerges, but becomes
unstable after six meshes. Increasing PPM to 1500 gives the plot in
Figure 34, which survives the entire ten meshes stipulated as
necessary to confirm that no separation will take place: Note,
however, that unlike the system operating at 5000 RPM, the
relative gear displacement for this system drops below 2 x 10 -5
inches, and as such is closer to separation at this higher spe=sd.
Figure 35 was generated with a PPM of 2000, and although it
survived well past the required ten meshes, only the first ten are
shown. In comparison with Figure 34, it is obvious that Figure 35

also predicts a separation-free case, but it also shows that for a
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given RPM, as the step size decreases and numerical accuracy of
the solution increases, the response moves farther away from
separation. Thus if a response at, say, 2000 PPM shows that
separation will not occur, the investigator may be confident that a
more accurate (and lengthy) analysis will not reveal the opposite.

Upon reexamining Figures 28 through 31, it is seen that the
system speed (5000 RPM) is such that approximately four tooth
pair oscillations can oc.'r during the space of time that a single
tooth pair is in contact, as indicated by the sets of four tall peaks.
For an RPM of 20,000, as shown in Figures 29 through 32, meshing
has sped up to the point that only one tooth pair oscillation can
occur during single contact. It may then be theorized that another
large increase in system speed will place the period of single
contact below that of tooth pair oscillation. This indeed is the
case, as shown in Figures 36 through 39 which show a complete
departure frum the classic response pattern. Note also the
oscillatory variation in the height of the response peaks from
interaction with the shaft natural frequency (see Figure 34).

In addition to disrupting the classic response pattern, the
aforementioned increase in system speed has also produced signs
of tooth separation, as seen in Figures 37 through 39 where the
plot becomes negative. This particular case is in what may be
termed separation transition, characterized by intermittent

negative response va'ues that do not grow ueyond a small
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percentage of the full response range. It should be noted, however,
that no matter how sma!! ths tooth separation, it still represents a
nonlinearity in the response of the real system that is not
accounted for in the equations of motion (Equations 1 through 4):
The ensuing impact is not modeled, and nor are the anomalous
dynamics that would occur as the system's damping returns it to
the original response pattern.

In summary, an increase in PPM and/or RPM decreases the size
of the calculated timestep, thus improving beta-m's accuracy. In
moving toward the higher numbers of PPM's for a constant RPM, the
classic pattern of meshing gear teeth begins to emerge, with its
rising and falling from single and dual tooth pair contact. At some
point, the increase in RPM pushes the gear pair into a condition of

tooth separation.

504 G . | Outout Condition

Unconditioned Gearsep output consists of an increment number,

a time in seconds, a torsional gear pair stiffness, and a separation
value in inches for every iteration performed. As the number of
iterations may easily reach into the tens of thousands, it is
advantageous to have Gearsep return only maximum and minimum
response values. Because an evaluation of Gearsep data focuses on

the magnitude of the response, rather than the details of its twists
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and turns, such truncated output provides the same separation
information as does the full range of data, but without wasting
time and storage space on useless data.

In reconsidering Figure 30, numerical instabilities are seen to
be manifested on the response curve as numerous superimposed
oscillations. The fact that these instability peaks appear on the
plots indicates that Gearsep2 mistakes them for true system
oscillation peaks. This discrepancy, however, is used to the
program's advantage, and lets it monitor the numerical routine's
instabilities by simply counting the number of extremum
("extremum?” referring to both maximum and minimum values).
Because the majority of the useful/stable response information is
described by a relatively small number of data points in the stable
area of each plot, an upper limit may be set on the number of
extremum allowed, beyond which Gearsep returns an appropriate
error message and stops computation. Because this upper limit will
change from plot to plot, and would require a trial run to be set
properly, it might seem that it would be more straightforward to
simply reset the PPM so as to produce a smaller timestep size, and
thus a more accurate result. This, of course, is possible at any
point in the analysis, but because it is the nature of Gearsep to
require a series of "dry runs" simply to determine where the
program is stable .or any particular system, a great deal of

computation effort has probably already been expended by the time
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the response in question is examined. For the data in Figures 24
through 36, the upper output limit number was set to a value of
500 as determined emperically. This, again, allows each response
to develop to the point where it contains all information necessary
to evaluate the case in question without unnecessary and useless
data.

Finally, it should be noted that aside from the limitations of the
machine on which it is used, there seems to be no limitation to the
range of applicability of this model: If numerical instabilities
occur because of low system RPM, they can be "adjusted out” with
an increase in the numerical "resolution” of the model,
accomplished by raising the number of points per mesh (PPM). This
is demonstrated in the sequence of plots from Figure 28 to
Figure 31 (all at 5000 RPM), from Figure 32 to Figure 35 (all at
20,000 RPM), and from Figure 36 to Figure 39 (all at 45,000 RPM).




CONCLUSIONS

The Gearsep gear tooth separation program has been designed
to provide the information necessary to predict separation in a
single-stage segment of a spur gear system. Analysis of an
arbitrary sample system has produced response curves which have
been shown to contain all of the correct signatures of gear mesh
for contact ratios between one and two. The response has also been
shown to follow the expected trends as system speed is varied.

The program's output may be directly used in the search for
system natural frequencies and, with slight alterations to the
program's peripheral mathematics, for determining tooth loads
from the calculated deflections of individual teeth. Gearsep may
also be altered to analyze gears with different material properties
in the tooth, fillet, and gear body areas (such as nylon gears with
metallic hubs), and gears with a machined narrowing of the tooth
cantilever near the tip (crowning). Modeling of gears with contact
ratios of two or more is possible, but would require somewhat
in-depth alterations of the way Gearsep handles mesh geometry.

There seems to be no limitation to the range of applicability
of this model aside from the limitations of the machine on which it
is used: If numerical instabilities occur because of low system
RPM, they can be "adjusted out" with an increase in the numerical

"resolution” of the model|, which is accomplished by raising the
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number of points per mesh (PPM) as demonstrated in the collection
of response plots.
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Appendix A

GEARSEP PROGRAM FLOW CHARTS

Al._Generalized Gearsep Program

The figures that follow represent the entire Gearsep algorithm
in flow chart form. Figure 40 is a generalization of Gearsep, with
lettered sections corresponding to the flow charts and descriptive

text given in subsequent sections.

\2._terating to Find v

As discussed in Sec. 3.3., there is no obvious tooth geometry in
Cornell's compliance model to characterize the size of the fillet
cantilever (see Figure 10). As such, Cornell has conservatively
defined the proper value ot ¥ to be that which causes the maximum
foundation and fillet deflection (see Equation 19 through 21).

Figure 41 shows the variation of foundation and fillet deflection
over a range of ¥¢'s for all five of the sampled compliance points
along the line of action as calculated with Equations 19 and 20 for
the sample gear of Appendix E. Note that the plot for each of the

contact positions peaks at a different location, ccrresponding to
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different optimum values of yg. To account for this range of

possible values, Gearsep1 will generate each of these curves and

locate the optimum points using the algorithm shown in Figure 42.
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As stated in Chapter 3, the summation term in the equation for
cantilever bending and shear deflection represents an integral over
the length of the cantilever. There is no contingency, however, for
the number of increments into which this summation should be
divided. Figures 43 and 44 show the trends of tooth and fillet

cantilever deflection (respectively) for a range of numbers of
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summation increments as calculated by Equation 18. These
deflections are calculated at the first compliance point (see
Appendix B, Sec. B.1.), where, because of the length of the moment
arm through which the tooth load acts, gear tooth and fillet
deflections are at a maximum, and those of the pinion are at a
minimum. If the two meshing gears are the same (as they are for
the test case), this same analysis applied to compliance point 5
would produce the exact results as presented in the following
figures, except that the'roles of the two teeth would be reversed.

The analysis that produced Figure 44 was actually taken out to
fifty summation increments, where it was assumed to have
"sufficiently” converged so as to establish "real" values for the
deflections. As based on this value, Figure 44 represents values of
the separation increment up to the point which produced an error
less than a 2%. These values (the last point of each plot) are those
used in Gearsep.

It is seen in Figure 43 that tooth deflection does not vary nearly
as radically as the range of fillet deflections: Three summation
increments yield a deflection value within 1% of the converged
"real” value. This is rounded up for use in Gearsep to a value of 10,
providing a more conservative and convenient value.

Figure 45 represents the section of Gearsep1 that applies the
"strength of materials” equations (Equations 18, 19, and 21) taken

from Cornell to either the tooth or fillet cantilever. As stated in
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Chapter 3, this is actually an integration over the length of the

cantilever, and is approximated by a summation.
A4St Val Mesh lteration Poi
A41,_ Key Mesh Points

As succeeding pairs of teeth roll into and out of contact, a
pattern of single and dual tooth pair contact develops. Figures 46a
through 46e follow a pair of meshing teeth (tooth pair (1,2)) as
they move along their entire range of contact, which defines the
full length of the line of action. Within this range of motion lie
several points of transition between single and dual contact, where
the mesh behavior takes on different characteristics. These will be
referred to as key points, and may be used as landmarks within the
meshing process because they occur at the same location for every
tooth pair.

In Figure 46a, tooth pair (1,2) has just entered contact, while
the previous tooth pair (3,4) is at some intermediate mesh position
just past pitch (the center point of mesh): Note the direction of
pinion and gear rotation. Figure 46b shows the transition from the
dual contact of Figure 46a to the single contact shown in

Figure 46c¢. As tooth pair (1 ,23 moves through and away from pitch,
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tooth pair (5,6) comes into contact at the bottom of the line of
action, again creating a dual contact condition (see Figure 46d).
Finally, Figure 46e shows the second transition from dual to single

contact, and also the final contact position of tooth pair (1,2).

A42_ Definition of a Mesh Cyal

The repetition of single and dual tooth contacts along with the
continuously changing tooth pair compliance, creates the unsteady
relative gear motion that drives separation. Figure 47 is a
representation of the tooth stiffness profile through the range of
motions represented in Figures 46a through 46e, and is labeled in

accordance with these figure numbers. A real stiffness profile
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consists of a succession of approximated stiffness values taken at
each of the hundreds of discrete iteration points into which each
mesh is divided, or, mesh iteration points. Notice that the actual
pattern of repetition does not span the entire length of the line of
action. Rather, it begins where one tooth pair enters mesh, and it
ends where the subsequent pair enters. This range of motion, from
the bottom of the line of action (tooth pair (1, 2) in Figure 46a) to
the point of initial contact of the next tooth pair (Figure 46c¢) is
defined as one mesh cycle. This definition satisfies the obvious
requirement that the number of mesh cycles in every rotation of a

gear equal the number of teeth on that gear.
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It is common in the manufacture of gears to machine away some
of the tooth material at the very tip of the involute profile in order
to ease initial tooth pair contact (as will be shown in Figure 53).
Because this tip relief will vary according to gear design and
application, its effect on kinematics will not be dealit with
directly, but, if desired, it may be easily accounted for in Gearsep1
calculations. Its effect on the tooth pair stiffness would be to
remove the sharp corners from the stiffness profile (see circled
region of Figure 47), thus producing a gradual transition from no

contact to full tooth contact.

A4.3. Alqorithm for Caloulating Stiffness Val Mes!
lteration Point

Figure 48 describes the procedure for using the five term power
series created in Gearsep1 in combination with an analytical
description of single and dual tooth contact to create and store a

complete tooth pair stiffness profile.

A5. Contact Rati Weighting Term: Application of the Beta-
Boutine

Ideally, initial values for the Gearsep dynamic analysis should

be determined so as to place the system's reponse directly into
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quasi-equilibrium, obviating all transient responses. There are two
possible choices for the initial displacements: those corresponding
to the stiffness of a single tooth pair in contact, and those
corresponding to the stiffness of dual pair contact (see Figure 47).
However, using the smalier, single pair stiffness will yield the
precise quasi-equilibrium condition for a gear pair that has only
single pair contact. Again, this can only happen for a gear pair with
a contact ratio of exactly one, stipulating that exactly one tooth
pair is in contact at any given point in mesh. The converse is true
for dual pair contact, which is indicative of a gear pair with a
contact ratio of exactly two. Continuing this argument, it may be
theorized that when analyzing a gear pair with a contact ratio

lying between one and two, the correct initial conditions are those
which occur for a stiffness which lies somewhere between that of
single tooth contact and dual tooth contact. It would seem then
that the weighting term itself would also lie between one and two:
A logical candidate is the contact ratio itself.

Following the assumptions stated above, primary estimates of
initial conditions are obtained by multiplying the stiffness of a
single contacting tooth pair by the gear pair's contact ratio, and
applying the beta-m numerical integrator through a single mesh
cycle. If these primary estimates are correct, they will be matched
by the response calculated for the end of this cycle. In the test

cases examined, these outputs and inputs were close enough to
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tentatively confirm the use of contact ratio as a weighting term,
and this technique was subsequently confirmed through
reference [22).

As a step towards increasing the accuracy of the initial
condition estimates as based on the contact ratio, it is assumed
that if these are indeed good estimates, but not exact estimates,
then the true initial conditions should lie between the input and
the newly calculated output values. If this output is then averaged
with the input in a bisection scheme and reinserted (for
convergence , the result may be assumed to be a better estimate of
the true initial values. This averaging and reinserting process is
repeated until either the difference between input and output
displacements is within some tolerance or an instability occurs in
the numerical procedure. it should be noted that the tolerance tests
are applied only to the gear disp/lacements, while the averaging and
reinserting encompass the entire range of derivatives handled by
beta-m: displacements and first through third time derivatives.

Figure 49 depicts the procedure described above for finding an
accurate estimate for the quasi-equilibrium initial conditions
using the contact ratio as a weighting term.

Finally, the beta-m routine is iterated to find the system's
response, as depicted in Figure 50. Also included are the various

stopping and error check procedures.

4

e
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Appendix B

PROGRAM ALGORITHM

B.1._Sectional Ovenyi

The following is a comprehensive, step by step algorithm
designed to supplement the program flow charts of Appendix A.
This appendix is divided into a series of numbered sections, each of
which contains a series of individual analysis steps, which are
numbered consecutively throughout the chapter. After appropriate
sections, one or more graphical representations of appropriate
variables, expressions, or concepts are presented. Some sections
refer directly to Appendix A, where they are described in detail as
algorithm flow charts. Note that parenthetical variable names are
fortran equivalents of the true variable names, and that they have
been kept to six characters or less, due to the reluctance of
personal computer fortran compilers to recognize the usual eight
character names.

Within the description of each variable, boldfacing will indicate
(if appropriate) lettering in common with the variable name. Note
also that when it is necessary to distinguish between individual
gears within a particular pair, the driving gear will be referred to

as the pinion, and the driven gear simply as the gear. If, however,




general properties of both are to be discussed, the
all-encompassing term gear will be used: This convention has
already been used throughout Appendix A. It is also helpful to note
that the pinion (driving) isusually depicted to the left of the gear
(driven), and that variables related to the pinion have a subscript

of 1 or p, while those related to the gear have a subscript 2 or g.

B.2. Gearsepi

B21. Data input

1) Input the geometries of the pinion and the gear (see
Appendix E).
R, : outer radius
pitch radius
Ry : base radius
R,: rootradius
Ry: fillet radius
circular pitch tooth thickness: If this exact

value is not available, standard tooth
thickness at pitch may be substituted.

N, & N, : tip relief factors; the percentage for one

mesh of involute tooth profile before tip
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relief comes into contact. See Appendix A,
Section A.3.2..

Wp Wg : tooth facewidths; also thicknesses of gear.
% (phip) :  pressure angle
Ry : centerline distance (the constant distance

between the two gear centers)

2) Input the material properties of the two gears, and

the iteration parameters for the deflection calculations.

pu(uu) :  Poisson's ratio
E: Young's modulus

nstep: number of increments into which the tooth
cantilever will be divided: Again, the
cantilever deflection equation must be
integrated along the length of the tooth,
which, in numerical term, translates into a
summation of discrete increments.

nstepf: number of increments into which the fillet

area will be divided for its evaluation as a

cantilever
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3) Calculate the varibles related to the base of the

tooth cantilever (BOTC) for both the pinion and the gear.
This is defined as that point where the fillst circle blends with the

involute tooth profile (see Figure 51).
L8
(1): EXTENSION OF

INVOLUTE
PROFILE

B TOOTH
CANTILEVER

7 H
BASE OF THE
TOOTH phi T

CANTILEVER

PERPENDICULAR
TO CENTER LINE
OF GEARS

CENTER OF
FAILLET CIRCLE

=1

R;(Rbar(i)) : the radial location defining the BOTC

¢; (phibar(i)) :  contact pressure angle at the BOTC: This is
the system's pressure angle fp at the

contact point in question: In this case, the
BOTC.




Ei= (Cos)™ (Rt’/ﬁi) Equation 30

o (alfbar(i)) : included tooth angle of the BOTC: This is

the angle between the tooth centerline to

the radius of the base of the cantilever.

— t - - '
o= 9/2Rpi+ Tandp,- ¢p,-Tandp;+ ¢p;  Equation 31

}_i (xbar(i)) : the distance along the tooth centerline

from gear center (for both pinion and gear)
to the BOTC.

%;= RiCos(a;) Equation 32

¥ (gambar(i)) :  the angle defining the BOTC with respect to

the fillet center

Y= ;i -a; Equation 33

h; (hbar(i)) : tooth thickness at the BOTC

hi= 2R;sin(a;) Equation 34
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Ti(lbar(i)) : distance from the BOTC to the load line

4) Caiculate the angles describing the point of initial
tooth pair contact and of tooth pair disengagement. These
are measured relative to pitch for both gears: approach implies

pre-pitch (negative values) and recess implies post-pitch (positive
values).

Bap (BETAap) : the angle of approach for the pinion
Bag (BETAag) : the angle of approach for the gear
B,p (BETArp) :  the angle of recess for the pinion

B,g (BETArg) :  the angle of recess for the gear

The equations for these angles are based on the geometry of
mesh as depicted in Figure 52, which shows initial and final

contact for the same tooth pair.
Defining S ppr0ach @s the engagement point's linear distance

along the line of action, applying the Law of Sines and the Law of
Cosines:

Sinle) _ Sin{90-¢)

Law of Sines S, R Equation 35
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PINION ss‘!m
DIRECTION
oF
MOTION

Law of Cosines  R®= sz+ s?. 2R S Cos(90-d)) Equation 36

where:
6: the angular displacement from pitch of an
arbitrary point of tooth contact: For

example, the 6 of the initial point of contact
on the pinion is defined as Bap.

¢ : system pressure angle

p: Ppitch radius

R: radius of mutual contact point
S: distance along line of contact from pitch of
the mutual contact point
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Solving the Law of Sines for S, gives

g _RSine

a= with Sin(90-¢)=Cos(¢)  Equation 37
Coso

Substituting into the Law of Cosines gives:

r2_ g2, Bisin’(e) _ 2R, R Sinle) Sinlo)
P Cos?(o) Cos(¢)

Equation 38

where Sin (90 - ¢) = Cos (¢)

After solving this quadratic for R, solve the Law of Cosines for S:

s%+S(2R,Sin(g) + R3-R®=0  Equation 39

Finally, Bap, is found from one last substitution into the Law of

Sines:

= Sin™’ (_S_C_:‘s_@) Equation 40

Bap
5) Generate the angular and radial locations of the
five compliance points: These are analogous in form to the
angles and radii depicted in Figure 52. As shown in Figure 53, these

angles carry the same pre/post-pitch sign convention as do the
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angles of recess and approach (see Section 4). Figure 53 also
shows that the first and fifth compliance points are not located at
the extremes of the line of contact. This is done to account for the
aforementioned tip relief (see Appendix A, Section A.3.2.) used to
produce a smooth transition into full tooth contact (see expanded
portion of Figure 53.) Because in a real gear pair, this tip relief
would alter not only the location of full tooth contact, but also the
tooth pair stiffness at engagement and disengagement, the first
and fifth compliance points are moved "in" by a factor which is
input as a percentage of the angles of approach and recess (see
Figure 52). For the results given in Chapter 6, a factor of 90% was
used.
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The angular compliance point locations with respect to pitch

are:
8P4 thry 5 (thetap(1 thru 5)) : angular location of compliance
points as measured on the pinion.
091 hry 5 (thetag(1 thru 5)) : angular location of compliance

points as measured on the gear

ep's and eg's are found as were the angles of approach and recess

in Section 4, except compliance point 3 is now defined to lie at

pitch. Therefore:
Op3=06g3=0 Equation 41

chp (Rep1) . radial positions of a compliance point as

measured on the pinion

Recpg (Rep2) . radial positions of a compliance point as

measured on the gear

Calculation of the radial positions of the compliance points
relative to the pinion utilizes Equation 38. For corresponding radial

values on the gear, advantage is taken of the symmetry of mesh. As
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shown in Figure 52, the two angles Bap and ﬁag describe two
triangles that share a common side. Thus, for any compliance point
cp;, there exists a common distance from pitch, S; that relates the
geometries of the pinion and the gear. From this relation, the

equation for compliance point radii as referenced to the gear is

obtained:

(Repy(Sin(ey)
(Sin(eg)

chg( i)= Equation 42

Note that these and all other points on the line of action are
described only with respect to the pinion.

6) Cailculate the variables related to the compliance
points using the same equations as those given in
Section 3. All variables are analogous to those related to the
BOTC as shown in Figure 51.

®p (PHlip) :  contact pressure angle for compliance point

i as measured on the pinion; This is the
system's pressure angle at the point in

question
big (PHIlig) :  contact pressure angle for compliance point

i as measured on the gear: As applied to the
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pinion:

0= Cos™ (R'/chp’ Equation 43

%ip (ALFAip) : included tooth angle of the compliance point

i as measured on the pinion; This is the

angle from pitch to the radius of point i.
Qg (ALFAig) : . included tooth angle of the compliance point

i as measured on the gear: Again, with

respect to the pinion:

A= t%Rpi"' Tandp - Op -Tan¢ip+ q>ip Equation 44
The previous values are calculated locally in order to find:

®'pi (PHlpmp(i)) :  the compliance point load angularity for the
pinion; This is the system's pressure angle

p in localized tooth coordinates.

¢'gi (PHIpmg(i)) . the compliance point load angularity for the

gear
where:
¢p= ¢p- ap Equation 45




heppi (Hep1(i)) compliance point thickness for pinion

hepgi (Hop2(i)) :  compliance point thickness for gear

The same thickness equation used in Section 3 is now employed
to find the tooth thicknesses at each of the compliance point for

both pinion and gear.

hepip = 2Repjp Sinjap) Equation 46

I. should be noted that while both the load angularity ¢'p org and
the local pressure angle change continuously along the profile, the

system pressure angle ¢;, o jy does not. The changes in ¢, o g and

local pressure angle occur because these quantities are the

projections of the line of action (fixed in global coordinates) onto
a rotating and translating frame (the tooth) as shown in Figure 54,
which may be compared to both Figures 51 and 5§3.

7) lterate to find yg as described in Appendix A, Section A.1.

This process follows the same steps as those that would be
necessary to produce Figure 41: Beginning with an initial guess of
0.45 radians (approximately 26°) and adding to this increments of
0.0175 radians (approximately 1°), calculate fillet and foundation
deflection at each point. The process continues up to a value of

Yr = 1.4 radians (just over 80°). The initial guess is chosen to be
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15% below the lowest value reported by reference [19], while the
upper iteration boundary is 15% higher than the angle
corresponding to peak deflection at compliance point 3. If these
15% buffers are not sufficient, Gearsep is able to determine

whether the correct ¥ value occurs above or below the indicated

range, and prompt the user for an appropriate adjustment.
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8) Calculate the distance from the BOTC to the point
of intersection of the tooth center line and the line of

action. This point prescribes the load line, which is perpendicular

to the tooth centerline and marks the outermost boundary of what

is to be considered the tooth E:antilever (see Figure 55).




LOAD
(LNE OF
ACTION)
R_ /
6 = /,
1
BASE OF THE %
TOOTH /
CANTILEVER LOAD LINE
TOOTH
CANTILEVER
Ei 55 Definiti f Load Li
Lip (Lbarp(i)) : load line distance for pinion
Lig (Lbarg(i)) : load line distance for gear
formati } i

9) Calculate the deflection of the tooth cantilever at

each compliance point due to bending and shear.

Ypi (YP(1) :

point i for the pinion

Ygi (Ya(i)) :

cantilever tooth deflection at compliance

cantilever tooth deflection at compliance
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point i for the gear
As given in Chapter 3, Cornell's deflection equation is
LCosztcb'L) C
L oY
-1

2 142 ( 2[.’
[i-1;0;+5 6 2.4(1+p)+ Tan" ¢ )
3, | ,_ ( L) Equation 47

I Ai

Descriptions of the variables in this equation are available in
Section 3.2..

10) Using the same cantilever deflection scheme,
calculate the bending and shear deformation of the fillet
cantilever. This follows the same development as the previous
step.

11) Calculate the deflection at each compliance point

due to foundation fiexibility in the direction of loading.

Ytioi (YHp(i)) : foundation flexibility deflection of
compliance point i for the pinion
Yfigi (Yftg(i)) : foundation flexibility deflection of

compliance point i for the gear
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‘e Lcﬁjﬁ)

2 2( '
16.67[ 4 I Tan (%) .
—1t_(h_f) + 2(92)(ﬁ_f) + 1.534(1 + m Equation 48

Q

Descriptions of the variables in this equation are available in
Section 3.3.

The variables Q4 and Qp carry the anticlastic properties of the

tooth. If the tooth is determined to be wide enough to require

anticlastic analysis from Cornell [9]):

1-u-2u2

Q1=(1 ",12,, Qz= 2
1-p

Equations 49

Cornell defines a "wide" tooth as having a ratio of its width to its
thickness at pitch greater than five [19]. Anticlastic terms take
into account the possibility of lateral bending producing a
longitudinal bending of opposite sign. If the tooth is sufficiently

narrow, non-anticlastic constants may be used:

Q=1, Q,=2(1 -4 Equations 50
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12) Calculate the localized and Hertzian surface
deflections. This requires the local radius of curvature of the
involute tooth profile, and a theoretical estimate of the width of

the deformed Hertzian contacting surfaces (see Figure 11).

Mocp (Rlocp) : local involute radius of curvature for the
pinion

Mocg (Rlocg) : _ local involute radius of curvature for the
gear

The involute radius of curvature is, conveniently, an intrinsic
part of the development of the involute curve. From its geometry,

the equation for the involute radius of curvature is obtained:

Moc; = RbTan(q)p) Equation 51

where o is the system pressure angle.

b; (b(i)) : Hertzian half-contact width for compliance

point i
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4 9 1/2

[ 1-p3 [1-42
aL|| T Hp) |17 Hg

4 nWi[ Ep Eg }

b= 3 3 Equation 52
[/Rlocp‘“ /Rlocg]
§ )
Yhertz; (Yhertz(i)) : Hertzian surface deformation of

compliance point i at the load point and in

the direction of loading

1-0d! o A -
E: p) {'n2:p ) (2(1"-;,%) ] +(1 E:Q)llnzgg - ( 2 :L?u J)] Equation 53

13) Sum all of the calculated deflections for each

Yhenzi = :—b
|

compliance point. Because this analysis is performed for a unit
load, each of these total deflections is in fact the tooth pair

compliance for the corresponding point.

Ytoy; (Ytot(i)) : total deflection at the load point and in the

direction of loading for a unit load at
compliance point i

C;: total tooth pair compliance at point .

Ci=Ytotj= Yby + Ybg + Yo + Y1+ Yo+ Yifg + Yhenz Equation 54
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Note again that instantaneous total tooth pair compliace is the
sum of all deflections of the point of instantaneous mutual contact

and is defined to be in the direction of loading (see Figure 54.)

14) Fit a five term power series to the five compliance
values. This is the technique used by Cornell [9] (and as such, it
was choosen somewhat out of convenience) and its result is a
simple analytical expression for tooth pair compliance at any point
in mesh. The alternative to this is to repeat the lengthy compliance
calculation procedure for each of the hundreds and sometimes
thousands of increments into which each mesh will be divided.

The five term (fourth order) power series as given by Cornell

takes the form

1+A

ep%J + B("p%ﬂ)ﬂ c(ep%;q)saf D Op%q)‘] Equation 55

CyC°=

In Equation 55:

C;: the compliance at compliance point i

e




Opo :
AB,C,andD:
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the angular position of compliance point i
a reference compliance value: compliance
at pitch

a reference angle: from pitch to point to
fifth compliance point (see Figure 53)

an angular reference value

constant coefficients of the fourth order
equation which will determine the

function's shape

Notice that the variables from Equation 55 need only be determined

with respect to the pinion.

Values for the constants A,B,C and D are determined by applying

a standard Gaussian elimination algorithm to the following system

of equations:
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r \ . . |
! %,,J (@'/@. (m/@, Wm ()
1 ¢p2/ pJ (@z/% | @z/m‘ | ¢%Pd | %,

A &

! o 7 | )
L 1 ¢p/p ¢p/¢b, ¢p/®, ¢%PPJ (C%J 4
Equation 56
B3. Cearsep2
B.3.1. Data lnput

15) Input the system's specifications.
Jithrue: the mass moments of inertia of:

. motor

:  pinion

W N -

. gear
4 : load mass

Kior2: shaft stiffnesses

1: shaft between motor and pinion




PPM :

RPM :
Torque :
num :
DR:
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2: shaft between gear and load
a generalized damping (may include bearing
and/or shaft and gear material's damping
properties)
the number of iteration points into which
each mesh is divided
system speed in revolutions per minute
applied system torque in foot-pounds
total number of iterations
ratio of the pinion base diameter to the
gear base diameter
profile errors in angular coordinates

(optional) [Kumar]

This final variable, e, gives the Gearsep user the ability to

analyze the effect on system performance if there exists a

machining errors in the tooth or if a particle of some sort

becomes attached to the tooth surface. it should be noted,

however, that in its present form, Gearsep contains only the

necessary framework for such an analysis, and does not deal

with it directly.
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B3 S ing Calculati

16) Calculate the locations of the mesh transition
points: from one pair of teeth in contact to two, and

similarly, from two teeth to one.

Dulpti :  the post-pitch initiation of dual tooth pair
contact
Dulpt2 :  the pre-pitch initiation of single tooth pair

contact

The two dual points are listed in this order (post before

pre)because the initial mesh iteration position is set at PPMy,,

which is very close to pitch (compliance point 3) in Figure 53. As
such, meshing begins with one tooth pair in contact, and the first
transition encountered is that at which mesh switches from one
pair of teeth in contact to two, namely, Dualpt1 (see Figure 46d).

17) Calculate and store stiffness values for all mesh
iteration points. This is performed before any application of the
numerical integration is made, and the stiffness values retrieved
according to the position of the teeth in mesh.

Note that when the "gear tooth deflection” is calculated using
Equation 54, that deflection is /inear: It is the linear defiection of

the point of mutual tooth contact in the direction of the applied
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force. Because of this, any spring constant calculated directly from
these deflections will also be linear. However, the system's
equations of motion (Equations 1b - 4b) require torsional spring
constants, and so, the linear constants must be converted using

Equation 57:

Kiinear (llg-) R2( in? )= Kiorsional (in 1b) Equation 57
In Equation 57:

Kinear - linear stiffness (spring constant)
Kiorsionai ©  torsional stiffness

R: Dbase radius of pinion

This is based on the gear geometry in Figure 56, where the line
of action is shown extending in both directions, and, at the points
indicated, becomes tangent to the base circle of each gear. Because
the deflections from Equation 54 are defined along the direction of
this line, the calculated linear spring stiffnesses will act along
the same line. As such, the base radius is the moment arm of the

spring force in Equation 57, and K;yrsional iS KT0OTH PAIR @S used in

Chapter 2 to derive the reduced equations of motion. (The variable

KrooTH pAIR @S used in the program GEARSEP and in the remaining of




this appendix will be known simply as K5, implying the total

stiffness of two meshing teeth.)

BASE RADIUS
Of GEAR

PINION

DIRECTION
OF
MOTION

1)= POINTS OF
TANGENCY

BASE RADIUS
OF PINION

18) Determine the primary guess for the initial
conditions of the dynamic analysis using the contact ratio
as a weighting term, as discussed in Appendix A, Section A.4.

These initial displacements are given as follows:

~4i
| '/2)(-1-'(2 + (—J—CRXK:om) +_LK1) Equation 58
= .J_ . __]—- i
03 ('/2)(K2 + CRIK) K1) Equation 59
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(T (11 _1 i
63 (/2)(K2 (CRXKtotal) K1) Equaﬂon o0

04=-0, Equation 61

This primary guess of initial conditions is run through a single
mesh cycle, after which gear displacement output (8,) is compared

with the input (Equation 59). if the relative error between input
and output is within a given tolerance, the primary estimates are
taken as the true initial conditions: The tolerance used by Gearsep
in the sample analysis (Chapter 6) is a relative error of 1 x 10° 5,
which is a full three orders of accuracy above the computer's
approximate order of accuracy of 1 x 10~ 8 , and a full order of
accuracy above the number of significant digits of the gear input
data from reference [7] as listed in Appendix E. If, however, the
error is not within tolerance, the estimates and output are
repeatedly adjusted and reinserted into the numerical integrator
until tolerance is met or until the integrator becomes unstable

(see Appendix A, Section A.2.).

B.3.3. Numerical Inteqrati

19) Perform the dynamic analysis on the single-stage

system using the numerical integrator: This begins with the
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initial conditions just calculated. Iteration variables are

controlled by incrementing a tooth counter, which keeps a running
track of the positions of the meshing gear teeth. As this counter
advances through the various key points shown in Figures 46a
through 46e, corresponding stiffness values (see Figure 47) are fed
to the beta-m integration routine, which generates separation data
by solving the following equations of motion, given in Chapter 2

(see Appendix D for numerical solution details):
(1] r
JB1+Ky(04- éea =0 Equation 62

[ a2 " rg
tJ3+(?—2) J2 63‘6k1e1 +

2

(:—2) Ky+ko|03-k,8,=0  Equation 63
J404+ky0,4-63=0 Equation 64

The output from the numerical integrator is as described in

Chapter 6, Section 6.1., and may be plotted directly from the output

file to yield the system's response.
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Appendix C

ANALYTICAL MODELING PROCEDURE

The modeling procedure used to solve the single-stage system in
Chapter 3 is now reviewed in detail, and all figure and equation
references herein are made directly to that chapter. Furthermore,
all of the following work., unless otherwise noted, is attributed to

Neubert [19].

C.1. System Elements and Homogeneous Solution

For the analytical solution, the gears are assumed to be perfect
rotational elements. In addition, damping is assumed to be
negligible, masses are arbitrary, and shaft inertias are ignored.

The solution will be found for a set of arbitrary initial
displacements of the lumped three-mass system shown in Figure 8.

The equations of motion are:

[ 1] r
J01+Kq(0:- 7392) =0  Equation65
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J3+( 2) Jz] "'"'k191+ 2) Ki+Kkol03-ko8,4=0 Equation 66
Js04+Ky(04-69) =0 Equation 67

These may be written in matrix form as:

p 9 . ;
" r
R om0 e ]
0 .;3+( )Jz 0 6 (+ -:—:«, ;:')k1+kg -k 8, ={8]
6
| o 0 W o 1 o ko k78
Equation 68

Assuming a solution of the form:

{80} = (AISIN(@t-y)  Equation 69

and substituting into Equation 68 results in the following system
of equations:
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I 1, ]
- ), 0 0 W0 |
(12 2 Al [0
0 : "’st“"z[%) Ja 0 + :':“’ (:%) kit ke -k {:2} = {8
3
2 0
0 0 . +* ko
h L wJ4 l b Jl
Equation 70
Because the solution A; = A, = A = 0 produces the trivial case, the
determinant of the coefficient matrix must equal zero:
-0 J| + k1 - :: 1 0
2 2
-%k, -0)2[.)34»(:-3- J2+(;§) ki +lo ke =0
0 -Ko - (02J4 +K2
Equation 71

The result is the following quadratic relation:

wa__ -b :t‘\/bz-4ac

2a

Equation 72

with:

a=Jyella+JoR?]  Equation73
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b =-R?[J1okao+ knda(ds+Jp)] - Kad{Jg+ Js) - Jadsky  Equation 74

c=kkp[R2(J;+dz)+dg+ds|  Equation7s

It should be noted that given the form of the determinant in
Equation 71, the resulting equation is cubic in @ 2. However, in the
subsequent algebra, a root is lost, showing that the system is
indeed semi-definite: The lost root corresponds to the trivial mode
of rigid body motion of the system as a whole (simple rolling with
no shaft deflections).

Returning to the matrix equations of motion:

| -0+ - R 0 A, 5
- Ry '“)1J3+ (Rl2J9J+ Bﬁ(, +k -k, A = { 0}
2 A 0

L 0 + - 0y +k; ‘ 3

Equation 76

The following equations give the system's amplitude ratios, which
are the relative displacements of the masses during natural
motion:

_ k- w35

Aon= -R—k1—- Equation 77




129

A3n= -R

Kk
k_;) + {-mﬁ (J3+ RZJZ) + R2k1 + kZ} %’-‘— Equation 78

n=1,2,3

These values make up the eigenvector or modal matrix, which is
normalized with respect to the displacement of the first mass, as
seen by the unit entries populating row one. All other elements are

functions of the system's inertias, natural frequencies, shaft
stiffnesses, and the gear radii ratio r3/r2, as contained in the set

of variables A;;, where the subscripts are row and column

positions. For the system under consideration:

1 1 1
[ ¢ ]E[ 1 Ayp An
1 Az Ag

Equation 79

Notice that the first column also shows unit displacements as a
complete mode shape. This is indicative of a semi-definite system,
where the first displacement mode is a simple rigid body rotation

[17], and the first natural frequency is zero.

G2 Particular Solution:

The equations of motion are solved using generalized




coordinates so as to produce uncoupled equations of motion. Let
{ 6(t))=[ola(t)} Equation 80

{otv)) =[oligity  Equation 81

Substituting these expressions into the equations of motion and

premultiplying by [ ¢ ] T gives an elementary form of the modal

equations of motion:

[¢]Tlm1 [o)igt)} + [¢]le1 [0)iq(1)} =10 Equation 82

defining the modal mass matrix as

M,] = [¢]Tlm1 [¢)  Equation83

with
Jq 0 0
Imj= 0 Jj +R2J2 0 Equation 84
0 0 Ja

Also define the modal stiffness matrix as:

K.=lo/Tkll]  Equation8s

130




131

However, because of orthogonality between modes:
T 2 .
Knl= [6] Tk [6] = [M, &3] Equation 86

This gives the modal equation of motion:

M, lid(t} + [M, 02]{att)} =10} Equation 87

Assume a solution of the form

{aft)} = {Epsinm,t+ Gpcoswyt) Equation 88

and the modal equatons become:

M, +M,05q =0  Equation 89
n=1, 2, 3

Choosing a set of arbitrary initial conditions:

i 411
displacements: let  {q,(0)} =[] 'l0(0)} =[] 1{3} Equation 90
8

A 1]9
velocities: let {a,40)]=[¢]1{9(0)}=[¢]'[o} Equation 91
0




where the displacements are in radians and the velocities are in
radians/seconds.
Evaluating the assumed solution at time t = 0, and then

differentiating to evaluate initial velocities:
{gnl0)) = {Gp) Equation 92a

{3n(0)} = {En) Equation 92b

This yields:
G1 = 4.0 E1 = O
G,=-35 E,=0

G3=05 Ez=0

(radians)

Substituting back into the assumed solution and definition of

generalized coordinates (Equation 81) results in the solution of the

single-stage system. The displacement equations are:

04t)=A1q,t)+ A0 Jt) + Agqft)
= (1x4)coswt + (1%-3.5)cosw + (1X0.5coswat

Equation 93

132




133

In a similar fashion to that of Equation 93:

04 t) =(1Xdlcosw,t + (0)-3.5)coswt + (-2X0.5)coswat
Equation 94

04 t) =(1Xdlcosw;t + (-1X-3.5)coswat + (1X0.5)coswat
Equation 95




Appendix D

THE BETA-m NUMERICAL INTEGRATION SCHEME

The numerical integration routine useé to solve the gear
system's equations of motion is the beta-m method, a generalized
form of the well recognized Newmark scheme. Beta-m is proposed
by Katona [20], the source of all work to follow unless otherwise

noted.

D.1. Background

The beta-m method solves equations of the form:

Mx+Cx+Kx=f Equation 96

where M, C and K are the system's masses, damping coefficients,
and stiffnesses, respectively.
The true Newmark method relates displacement and velocity at

time t,,, 4 to known values at time t,, with the following

expressions:
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(1) @ @
Xne1=Xp+hxn+h?((1-2BN)%n+2BNx)/2  Equation 97

Mm m @ @ ]
Xne1 = Xn+hXa+h2((1-2BN )Xn+2BN Xne1)/2  Equation 98

where the timestep h = t,,4- t,, and v, and B,, are Newmark's

integration parameters.
Method Derivation

Katona develops the beta-m method by writing the Newmark

expressions in a Taylor series expansion:

(k) 20 . @
Xne1 = 2 %ah ~K/(j-K) +Br(h? ~¥/(2-k)1Ax Equation 99
j=k
where Equations 97 and 98 are writtenwithk =0 andk =1,

respectively, and A is the forward difference operator:

kK & &
AX = X1 Xp Equation 100

It can be seen that Equation 99 has the standard form of a
Taylor series expansion. By definition, then, it is exact to the term

X with a term approximating x,,. The approximating term may be

placed in its usual Taylor expansion form by letting By=1/3 and




By=1/2. However, as Katona points out, "there is nothing sacred

about [the choices made for] B and B because xy, is not exact but,
rather, approximated by a forward difference.” This implies that
the method itself is adjustable through various B values.

Noting that the method order m also gives the highest order of
the time derivative utilized in the method (m = 2 is Newmark;
Gearsep2 uses m = 4), Katona defines the beta-m method in the

following compact form:

(k) (m) .
Xn+1 = Qk + DrAX Equation 101

with

Qk = ZQ’nhi “Kig-k)! Equation 102

j=K
and

by = Bkh" 'k/(m -K)! Equation 103

where the over-script (k) is the time derivative index.

In Equations 101 through 103, the q, term is the Taylor series
expansicn of x,,, 1 up to the term x,,, and is thus known as a "history

vector”, and the last term in Equation 101 may be interpreted as an
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approximation to the next Taylor series term, and contains an
"unknown increment" Ax for which we will solve. By comparing
Equations 101 through 103 with Equation 99, it is seer that Katona
has simply given a convenient name to each of the various parts of
Newmark's Taylor series expansion, and called them the "beta-m
family of methods."

Implementation of the beta-m method requires that the

unknowns x4, X1, and xp,, 4 be approximated in terms of the

increment Ax. Doing so, the original equation of motion (written at

time t,,¢):

MXni1 + Cxnst + KXnst = fras Equation 104

can be written as

(m)
[b2 M + byC + boK)Ax = .1 - {MQ2 + Cq1 + Kqo} Equation 105

where the b's and q's come from Equations 102 and 103. Solving
Equation 105 for Ax, the remaining unknowns are updated from
Equation 101.

The following algorithm is adapted from Katona:

1. Given x, x,,..., X, at time t,, we seek a solution att,,4.

2. Form the right-hand-side vector of Equation 105:
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R=f,,1-Mq,-Cq,-Kq,
3. Solve for the primary unknown, Ax

(m)
[sz + b1C + boK]Ax =R

4. Update the solution vectors (i.e. Equation 101)

k) (m)
X net1 =0k + b yAX

5. Advance timestep, and return to Step 2.
Katona performs stability anu accuracy analyses on the beta-m

method in general, and similar quantitative analyses are performed

on actual separation predictions in Chapter 6.




E.1. Required Data

The following data is taken from reference [7] except where

noted.

W:

7

Appendix E

GEAR DATA

gear facewidth
W =1.333in

standard distance between gear

centers
C1 = 3.6471 in

outer radius
R, = 1.9415

pitch circle radius
Rp = 1.8235 in

base circle radius
R, =1.69075in

Young's Modulus of steel
E =30 x 10 6 psi

number of testh
N = 31

gear speed
n = 9000 RPM (max)
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Tp: circular pitch tooth thickness (at

pitch)
Tp =(0.1831

o: pressure angle
¢ = 22 degrees

. fillet radius
F = 0.0570

Not given in reference [7]:

TIK Poisson's ratio for steel
u = 0.3 (from retference [23))

E.2. Calculated Data

As noted in Chapter 6, Sec. 6.6., the values of mass moment of
inertia and shaft stiffness used in the sample analysis a.e not
representative of those in reference [7], but rather, it is the
detailed gear geometry that is extracted from this source. To
facilitate the presentation of the analysis results, the true system
dimensions and masses were replaced by a set of qualitatively
chosen values: It was decided to increase the moments of inertia of
the motor and load mass and decrease that of the gears so as to
obtain a system response that focuses mainly on the response of
the gear pair itself, and that is not visually clouded by the coupling
between the masses. By simply editing the Gearsep data input
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files, however, any or all of these quantities may be altered to
exactly describe any single-stage system, including the four
square system in question. However, it is not the object of this
report to affirm or disaffirm any particular gear system, but
rather, to confirm a generalized procedure.

With this approach in mind, the system is described beginning
with the equation for mass (in slugs) of any of its elements (gears

or shafts):

Equation 106

where:

p: density of steel
r=0.286 Ibm/in? (reference [23))
r: radius of system element
I: length of system element
g: gravitational acceleration
g = 32.2 ft/sec?

and:
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mass moment of inertia J = -;-mr2 Equation 107

([ft IbYunit angular acceleration)

1) Model the electric motor as a solid steel cylinder,
representing windings and armature. Agai'n, the dimensions chosen
for this model are not those of reference [7]. With the
aforementioned goal of a visually clear response, focusing on the
gear pair rather that the system as a whele, both the motor and
load mass moments of inertia were arbitrarily set to 250
ft Ib/(unit angular acceleration): This arbitrary value indeed proved
to provide a response of the desired form. To give a measure of
physical reality to this moment of inertia value, consider that it
may be represented by a solid steel disk of the following

dimensions:
Tmotorfioad = 6.5 In

'motor/load =10in

The gear moment of inertia is chosen based on that calculated

above:

J‘Jear = 0.002 ft Ib/(unit angular acceleration)

This places just over five orders of magnitude between Jgq, and




Jmotorioag- The "half” order of magnitude is based on an assumption

made very early in the investigation that exactly incremental J's
would perhaps create system resonances which would interfere
with the attempt to characterize the model's common behavior.

A gear with the J value given above might have the dimensions:

Fgear =0.751in

lgaar = 0.45 in

gear

Although these dimensions are impossible given outer gear radii,
etc. as given in Section E.1., they provide a sufficient difference
in J values to provide the aforementioned uncoupled response.

2) The shatft stiffnesses were chosen in a similar arbitrary
manner as the J's: K values are artificially high so as to appear
clearly in the analysis of Chapter 6, yet not interfere with the gear
response (see Chapter 6, Sec. 6.2.3.).

Kshaft = 2000.0 ft Ib/radian

A shaft with this spring constant might have the following

dimensions:

rshaﬂ =0.2in

Ishaft =18in
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