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1. INTRODUCTION.

Suppose that two (possibly dependent) point processes are observed

simultaneously over a period of time, yielding observations at t

< B

Al < A2 < ses < ANA for the first process, and at times Bl

for the second. Such data arises in many contexts, and it is of

interest to discover and quantify the association between the two processes.

Two fields in which this situation occurs are neurophysiology and reli-

ability theory, from which the following four examples are drawn

In neurophysiology, point processes arise as the impulse times of

neurons.

to determine whether or not the impulse times of two neurons, say A

are associated. Of course, if an association is discovered, it
interest to identify the nature of the relationship between the
e.g. is A driving (inhibiting) B? If so, by how much? This is
harder problem.

A second example, one in which estimation is necessary, is
following situation. An animal is to be taught (or trained) to
certain task. Now consider two connected neurons which are esse

performance of this task, and simultaneously record their firing

An example of a hypothesis testing problem arises when one wants

L)
imes
< +ses < B
2 NB
ten of
and B,

is usually of
two neurons;

typically a

given by the
perform a
ntial in the

patterns.

Before the learning has taken place, the neurons will in general affect each

other.

altered after the learning has taken place.

The problem is to determine the way in which this dependence is




The next two examples are taken from reliability theory. Consider a
system which contains two components, A and B, and for which A is
replaced according to an age replacement policy: the unit is replaced at
failure or at time T, whichever comes first. Let A1 < A2 < ... be‘the
successive times at which the component is replaced without having failed,
and let Bl < B2 < ++. be the times of failure of component B. It may be
of interest to determine if the point processes {Ai} and {Bj} are depen-
dent, and in particular to determine if the age replacement policy is bene-
ficial (or harmful) to component B.

As a second example, consider a series svstem of two subsystems A
and B, where A and B are parallel structures of kA and kB components,
respectively (kA > 2, kB > 2). Assume that any failed component is repaired,
and that repair time is negligible, Thus, if any component fails the system
continues to operate. Let A1 < A2 < «»+ and Bl < B2 < +++ denote the
times at which failures occur in subsystems A and B, respectively.

Then, these form a bivariate point process, and it may be of interest to
determine if the failure times of subsystems A and B are dependent.

In this article, we describe and discuss certain graphs, plots, as
well as more formal methods that can assess the dependence between point
processes. Specifically, these methods indicate whether or not the likeli-
hood of an A-point is increased (decreased) after the occurrence of a
B-point. The techniques are illustrated on simulated data. Although
bivariate point processes arise in many fields, we emphasize the applica-
tions in neurophysiology.

We hope to illustrate the techniques described here on data drawn from

real neurons later.




2. THE FUNCTION kA,B(') AND THE CROSS~CORRELATION HISTOGRAM.

We proceed at a heuristic level. A rigorous approach and formal
definitions of the terms used below may be found in Daley and Vere-Jomnes
(1972). The book by Cox and Isham (1980) is a good guide to the litera-
ture and contains all the necessary information to formalize what we do
here.

We assume that the points {Ai} and {Bj} form a bivariate point
process that is stationary and orderly. Intuitively, the stationarity
assumption is that the process has been going on for a long time and is
in steady state. The orderliness condition is that each univariate process
has no multiple occurrences. For a Borel subset of the real line S, let
NA(S) and NB(S) denote the number of points Ai and Bj’ respectively,
that lie in S. We will use Ni(s,t) to denote Ni((s,t]), for
i = A,B. We may view NA(~) and NB(n) as random Borel measures.

We define the rates X and AB as follows:

A
(1) A, = lim = P{N,(t,t+h) > 0} ,
A h A
h~0

with a similar definiton for XB. By the stationarity assumption, XA
and XB are independent of t. The existence of the limit in (1) was
first proved by Khintchine (1960). Korolyuk's Theorem (see Leadbetter,

1968) states that if g < ty, then

2) E NA(tl,tz) = AA(tz-tl) .




Similarly for the B process. A simple consequence of the ergodic theorem

is that with probability one,

Ni(O,T)

(3) ——T—-*)\i as T » o |

for i = A,B. This gives a third way of thinking about the rates AA

The discussion so far relates only to the processes Nyj(+) and NB('),
taken one at a time. To see how the processes affect each other, we define

the following quantities:

1

- P{NA(t+u,t+u+h)lNB({t})=1} for -x < u < ® ,

4) O, yp) = Lin
AiB h0

Thus, roughly speaking, (u) gives the infinitesimal probability of an

XAIB

A-point u units after a B-point. The stationarity assumption implies that

XA!B(u) is independent of t. We may also define the function XBIA(.)’

but it is simple to see that

(u) = A (~u) for -= < u < o

‘B AAIB A AB|A

so that it suffices to consider (u), as long as we consider both

AAIB

positive and negative values of u.
The function XAlB(') has been considered in different forms and

contexts by Cox (1965), Cox and Lewis (1972), Brillinger (1976) and

Griffith and Horn (1963), among others. 1If the processes NA(°) and




NB(°) are independent, we clearly have

XAIB(u) = lA for all u ,

so that AA}B(-) can indicate deviations from independence. The following
two examples of very simple neuronal networks serve to illustrate this

point.

Example 1: Two independent neurons.

NA(') and NB(°) are independent. Then, as was just mentioned,
(5) lAlB(u) =X, forall n,
so that in particular, A,,(-) is constant.

AB

Example 2: A network of three neurons.

The spontaneous firings of neurons A and B form independent processes
Nl(-) and N2(-). A stimulus neuron (neuron S) has spikes which form the
process N3(-). Let Ki equal the rate of Ni(-), for i=1,2,3. Suppose
that every spike from S deterministically gives rise to a spike from A
and a spike from B QA and QB units of time later, where iA and RB
are fixed constants. Figure 1 gives a diagram depicting this situation.
The overall spike trains of neurons A 1is therefore the superposition of

N1(~) and N3(') delayed by ZA, and similarly for neuron B. We there-

fore have




A= xl+x3

(6)

If in addition N3(-) is a Poisson process, a simple calculation gives

A if u # QA—QB

(7) )\AlB(u) =

Lo 1f u=g2,-2

©

Figure 1: Neuron S excites A and B with latencies

24 and 2go respectively.

When AAIB(-) is not constant, the processes N,(+) and NB(-) are
dependent. It should be stressed that if this is the case, we cannot infer
causality: neither A nor B need be affecting the other directly. Instead

they may both be affected by a third source, as Example 2 illustrates.




Since (+) can indicate deviations from independence, it is

“AlB

important to be able toestimate it from the data. Cox (1965), Cox and

Lewis (1972) and Brillinger (1976) have proposed estimates of the function

AA[B('), or what is essentially equivalent, rp* XA]B(')' Their estimate
is formed as follows: From the processes Al < A2 < eee < AN s

A
By < By < -e < BNB, compute all the differences Ai—Bj, for 1 <1 < N,,

i<j=< NB. Then form a histogram (or more generally any density estimate)

of these NA -NB points. This histogram is called a cross-correlation

histogram (CCH).
Brillinger (1976) showed that if the processes {Ai} and {Bj} are
observed over a period of length T, then as T -+ « very roughly, the

suitably normalized CCH resembles the function In a little

DNLRE

more detail, suppose that the bin width used to form the CCH is b. His
result is that under some regularity conditions, if T -« and b =+ 0
in such a way that bT remains constant, then the height of the normalized

CCH at a fixed point u has mean (u) and variance that is of the

bt
AlB
order of ﬁ%-. His result applies to individual points wu, and does not

imply that the normalized CCH as a whole resembles Furthermore,

}A[B(.)'
the variance of the height of the normalized CCH is of a larger order of
magnitude than %. Nevertheless, his result aids greatly in understanding
the way in which the normalized CCH estimates XA|B(-).

We now illustrate the use of the CCH's in the situations given by the

two examples above.

Example A: Two independent neurons.

This is the situation described in Example 1. The parameters are




and

(recall that T is the length of the period of observation). Two features
of the CCH are apparent. First, as expected, the CCH is generally flat, or
at least there are no apparent peaks or valleys. Second, although the
heights of the different bins in the CCH all have the same distribution,
they clearly display a lot of fluctuation, in accordance with the remark

made concerning the variance.

Example B: Two neurons simultaneously excited by a third source.

This is the situation described in Example 2. The parameters are

T=1
QA = .04
QB = .03

In this situation we have (see equation (7))

XA if u # .01

8) @) =
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Figure 3 gives the CCH for this setup. The location of the spike is at

u = .01, in accordance with (8).

Example C: Two neurons simultaneously excited by a third source.

This is the same as Example B, except that T = 10. The function
AAIB(-) is still given by (8). Figure 4 gives the CCH for this situation.
The spike is much sharper than in Figure 3, due to the fact that T is

much larger.

10
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3. ESTIMATES AND CONFIDENCE INTERVALS FOR THE NORMALIZED RENEWAL FUNCTION.

In Example 2, the lags QA and QB were taken to be fixed constants,
and this led to the highly discontinuous form of XAIB(-) given by (8).
We saw that the CCH was particularly suited for revealing the dependence
structure in this situation. In practice however, the lags will never be
fixed constants; this will result in AAIB(.) being a smooth function.
The normalized CCH will then not be well suited for estimating it: it is

(+).

more suitable as a pointwise rather than as a global estimate of

‘A|B
Example 3: A two-neuron network.
Consider the network described in Example 2, except that £, = O

“A

and < is random. More specifically, if & denotes the lag between

(1)
*B B

impulse 1 of the stimulus neuron and the induced impulse from neuron B,

assume that the Lél) are 1iid with a density f. Then it is simple to
see that

A3
(9) XAIB(U) = (}\l+>\3) +U2—+>\3—) f(w)

In this example, suppose for simplicity that f was the standard
uniform distribution on [0,1]. Then, if a CCH was formed it would be
likely to have a peak between 0O and 1. If we knew the distribution
of the area under the histogram, we would be able to determine whether the
peak was significant or rather was due to random fluctuation.

Let AR(tl,tz) denote the area under the histogram between the
points ty and t,. Here ty and t, are arbitrary points satisfying

k) < tz. We may then write

13




NVB N
(10) AR(t),t)) =b ] -2 I{Aj-Bie (tg,t)}
i=l j=1
where b 1is the bin width.
Let us now define for t1 < t2
_ There is a B point
(1) Ualp{trotp) = BN, ()5t | 2 J

UA[B("') is called the conditional renewal function or renewal function,
for short. Note that if NA(~) and NB(-) are independent processes,

T = - 1] ) .
then LAlB(tl,tz) )\A(t2 tl) by Korolyuk's theorem. Defining the

normalized renewal function W(e,+) by

1
(12) wit,,t,) = 7; UA|B(t1,t2) ,

we then have

)=ty (independence)

(13) W(tl,tz) = 9>ty ty (excitation)

Z-tl (inhibition)

with the words "excitation" and "inhibition" suitably referring to the

l<t2}

is useful in describing the dependence structure between NA(-) and

interval (tl,tz). Thus, the family of parameters {W(tl,tz); t

NB(') .

14




An appropriate way to search for an excitatory or an inhibitory
effect is to proceed as follows. Fix some constant A > 0, and consider
w(t - %, t + %) as a function of t. Here, A 1is determined by the
experimenter as the likely duration of an interaction, and is determined
by physiological considerations. Under independence this function is
constantly equal to A, so that deviations from A indicate a dependence
structure. It is therefore necessary to estimate W(t - %3 t + %).

In Doss (1983) it is shown that under some regularity conditions,
AR(t - %3 t +'%), suitably normalized, is asymptotically normal, with mean

A

E,

result is that for large NB’

More specifically, the

w(t - t + %0, and variance of the order of -%.

2
, A A T . A A o (t)
(1) AR(t - L t +'§)(Bﬁgﬁz) is approximately N(W(T - oL t + EJ, ——%i;ﬂ.

Furthermore,

(ii) cz(t) can be estimated consistently from the data.

The main feature of the result is (ii), which allows confidence intervals to

be formed. This makes possible a formal analysis. The entire function

AR(t - %3 t + %9 can be plotted, and a confidence band can be put

T
bNANB
around it. Under the hypothesis of independence, the function is essentially
flat, at height A. Upwards or downwards deviations from A (dependence)

can therefore be discerned at a glance from the plot.

15




Example D: Two neurons simultaneously excited by a third source.

This is the situation described in Example 2. The parameters are:

A\, =X, =x, =100, t=3

2y = .1, &, = .05, (thus QA-EB is negative)

Figure 5 shows the estimate of the normalized renewal function
A A =
w(t - ke t +5) for -.5 <t=< .5 .

The peak in the diagram clearly shows the dependence structure.

In Figure 5, the estimate of the normalized renewal function appears
without the confidence band. Also, the diagram was constructed from data
where the lags were fixed and not random. In a later paper we hope to carry
out the analysis further by
(i) constructing the confidence bands
(ii) using data generated as in Example 3, i.e., with random lags, and

(iii) illustrate all the procedures discussed here on real data as well.
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