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ABSTRACT

The general planar translation of two bodies of revolution through an inviscid and

incompressible fluid is considered. The moving trajectories and the hydrodynamic interactions are

computed based on the generalized Lagrange's equations of motion, including the effects of solid

constraints, external forces in the plane of motion, and a uniform stream in any direction parallel to the

plane of motion. In a relative coordinate system moving with the stream, the kinetic energy of the fluid

is expressed as a function of six added masses due to motions parallel and perpendicular to the line

joining the centers of the solid pair. The exact solution of added masses in closed forms are obtained

for the motion of two spheres. A new iterative formula based on the analysis of velocity potentials

around each body is developed for added masses and their derivatives with respect to the separation

distance due to the transversal motion. The method of successive images and the Taylor's added-mass

formula are applied to determine the added masses and their derivatives due to the centroidal motion.

These results are compared with the numerical solution of added masses computed by the boundary-

integral method and the generalized Taylor's added-mass formula. The integral equations, in terms of

surface source distributions on both surfaces, are carefully modified for obtaining accurate numerical

solutions. Numerical results are given for several practical engineering problems. J:.. ,.-,.',

,, I . - :

ACKNOWLEDGEMENTS

The authors wish to express their thanks to Professor K. E. Atkinson and Professor L.

Landweber for their helpful suggestions. This work was sponsored by the Ocean Engineering

Division, the Office of Naval Research, under Grant N00014-89-J-1581.

• ... .

ii



I. INTRODUCTION

The hydrodynamic interactions among solids affect the motion of each and every solid

significantly in the near field. If the Reynolds number based on the size and velocity of a typical solid

is sufficiently large, the inviscid irrotational-flow theory, or the potential-flow theory, can predict the

real flow with sufficient accuracy and the effects due to flow separation, boundary-layer and wake

generation, and vortex formation may be neglected. The validity of this assumption has been shown

by Wu and Landweber [1 ] by comparing the prediction with the measured results on added masses.

The potential-flow theory has applications in a variety of engineering situations such as the impact of

floating bodies, the motion of a blunt solid around other fixed or moving boundaries, the

hydrodynamic interactions on bodies due to the oncoming flow, and so on.

Hicks [21 and Herman [31 first analyzed the kinetic energy of the fluid due to the motion of two

spheres along the line joining their centers, and obtained analytic solutions of added masses in terms of

doublets interior to each body. Their expressions about the strengths and positions of the doublets

were alternatively reduced to a set of recurrence formulas, which were suitable for computation, as

shown by Landweber in the book edited by Rouse [4 1. The evaluation of added masses due to the

transverse motion is more complicated. Hicks [21 used the method of successive images again and

represented the added masses in terms of distributed and isolated dipoles; however, he was able to

calculate only a few images owing to the complexity of the calculation. Mitra [51 and Shail [61 applied

the method of successive images to the calculation of potential field surrounding both spheres, and

obtained an analytic solution for the Dirichlet problem in electrostatics. They took two sets of

spherical polar coordinates at the centers of each sphere and obtained a set of unknown coefficients

involved in the series expansion of velocity potential by applying the Neumann-Liouville iteration

process. By changing the images of point sources to dipoles, we can extend their analysis to

determine the hydrodynamic interactions between two spheres moving along their centerline. The

numerical solutions of the potential field due to either a moving spherical body in the inviscid flow

(Neumann boundary-value problem) or a charged spherical body (Dirichlet boundary-value problem)

were reported in detail by Atkinson [71' [81' [9 1, who also discussed the boundary-integral approach and



evaluated various solution techniques for solving the integral equations. A more general numerical

model, also based on the boundary-integral method, for interaction problems of two bodies has been

developed by Landweber and Chwang [1 0 ]. However, their results indicate that the numerical error

becomes large when two bodies are close to each other. The motion of a solid, influenced by

hydrodynamic interactions, was solved by Lamb [ 1], who applied the Lagrange's equations of motion

in the generalized coordinates and related the fluid inertia to the equations of motion by means of the

kinetic energy of the fluid. Recently, Guo and Chwang [12 1 applied Lamb's result to the oblique

motion of two circular cylinders. They also modified the integral equations for the surface source

distributions so that, when two circles were close to each other, the steep peak-values in the integrands

were eliminated. In their example, very good agreement of the numerical result with the exact solution

was obtained with the Gaussian quadrature formula.

In previous studies of three-dimensional solids through a fluid, much attention has been

focused on the centroidal motion of two symmetric bodies, very little on the oblique motion. This is

mainly due to difficulties associated with the added-mass evaluation, especially when two bodies are

very close to each other. Thus, development and modifications on numerical techniques are highly

desirable for accurate solutions.

The first objective of the present work is to consider the general planar translations of two

bodies of revolution which are symmetric with respect to, and have their axes of rotation perpendicular

to, the plane of motion. The Lagrange's equations of motion will be generalized for the trajectories of

moving bodies, including the effects of solid constraints, external forces in the plane of motion, and an

unbounded uniform stream in any direction parallel to the plane of motion. The second objective is to

obtain the exact solution of added masses due to the transverse motion of two spheres. This solution,

together with that for the centroidal motion of two spheres, will be used to examine the reliability of

numerical results. The third objective is to modify the integral equations which govern the source

distributions on each solid surface, and to improve the accuracy of numerical results. We shall

consider the case of two spheres as an example and compare the numerical result with the exact

solution.
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The generalization of equations of motion for two bodies in translation is presented in Section

2. The transformation of coordinates, in which the evaluation of added masses for two bodies of

revolution may become simple, is also given in this section. In Section 3, we are concerned with

analytical solutions of added masses due to the centroidal and transversal motions of two spheres. We

shall develop an iterative formula to calculate the unknown coefficients involved in the series

expansion of velocity potentials and to determine the related added masses. The numerical solution of

added masses for the two-sphere problem is given in Section 4. The set of integral equations

governing the source distributions on the surfaces is modified in order to improve the ill-behaved

integration when two bodies are close to each other. The reliability of numerical solutions of the

integral equations obtained by the Gauss-Seidel iterative method and the Gaussian quadrature formula

is examined by comparing them with the analytic solutions. Several examples are given and discussed

in Section 5. Finally, conclusions are presented in Section 6.

I1. EQUATIONS OF MOTION

Consider two solids translating in an unbounded, inviscid, and incompressible fluid which

moves with a uniform velocity U0 at infinity. Let xa and Ua denote the instantaneous position and

velocity vectors of body a (a = 1,2) in a relative coordinate system moving with the uniform flow;

that is,

Ua = u-Uo, (1)

where ua is the absolute velocity of body ot.

From Lamb t I1, the force acting on body a by the fluid, due to hydrodynamic interactions, is

governed by Lagrange's equations of motion in generalized coordinates,

Fia - dt U a x (2)

-tali x ia

where t is the time, Uia and xim denote the i-th (i = 1, 2, 3 in general) components of Ua and x,

respectively, and T is the kinetic energy of the fluid. If there is an external force Ei. acting on body cx
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of mass Ma in addition to the force due to the fluid pressure, the equations of motion become

dU.
Eja + F = Moet (no sum ona) (3)ict io"': a dt

The kinetic energy T in equation (2) is given by the integration over the solid surfaces,

2T=-p * -$ dS, (4)

where is the velocity potential, n is the unit outward normal of each surface and p is the fluid

density. In the relative coordinates moving with the uniform stream at infinity, the fluid is at rest at

infinity and disturbed only by motions of bodies, and the flow is therefore irrotational. The velocity

potential q satisfies the Laplace equation and may be expressed as

-O ia Uia, (5)

where Oiax is the velocity potential due to the unit velocity of body a in the i-th direction. Summation

on the repeated indices is implied unless indicated otherwise. From equations (4) and (5), the kinetic

energy can be expressed as (see Landweber and Chwang [1 °1)

2 T = Aiaj UiaUjo (i, j = 1,2,3 and a, j3 = 1,2), (6)

where

Aiaj- = Aj.ia = -P ia - dS (nosumon3) (7)

So

are added masses. Referring to the expression of hydrodynamic forces given by Landweber et al.1 131

we can describe the general translations of two bodies in the relative coordinates by

dU.dU: aAiaa8

M d =Eia-Aj !!-U_. i -(Uk-Uk2)UjO+ 2UdtUX i_3t.k (a1" 8 U2)a dt " dt " ask  k as o 2)

(no sum on a) , (8)

where sk (k=1,2,3 in general) is the k-th component of (xI - x2). There are six differential equations
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in (8) for two bodies translating in three dimensions. The initial conditions required for solutions of

(8) are given based on physical problems.

The first integration of equation (8) yields either the velocity components of each solid relative

to the uniform flow at any time instant, or the unknown forces acting on bodies due to solid

constraints; and the second integration gives the trajectories of each body. Since the rotational motion

is not considered in the present derivation, the equations of motion (8) is applicable to (i) the

translation of two spheres in three dimensions, (ii) the planar translation of two bodies of revolution

which are symmetric with respect to, and have their rotating axes perpendicular to, the plane of

motion, and (iii) the centroidal translation of two bodies which are symmetric with respect to the

centerline. In these three cases, the rotation of each body vanishes since the moments due to the

hydrodynamic interactions are zero. However, in the present study, we will focus our attention on the

first two cases.

For the planar translation of two bodies in the xy-plane (Fig. 1), we shall use the simpler

notation (i, j = 1,2)

Uil = Ui, Eil = Ei, Ui2 = Ui+ 2, Ei2 = Ei+2, (9a)

Auil = Ai, Aij 2 = Aia+2), Ai2j2 = A(i+2)(+ 2). (9b)

Thus, equation (8) reduces to

M~ ~ ~~~~~~0i +!- = Ei- dA- nosmo i, (0
i dt = dt " Uj(Uk-Uk+ 2) + - 'S (8ki -8(k+2)i) UJU M (no sum on i), (10)

where k = 1,2 and other subscripts have a range of 1 to 4, M, = M2 is the mass of body 1 and M3 -

M4 mass of body 2.

The added masses appearing in equation (10) are evaluated in the Cartesian coordinates shown

in Fig. 1. For two bodies of revolution which are symmetric with respect to, and have their rotating

axes perpendicular to, the xy-plane, the evaluation of added masses may be simplified significantly in

another Cartesian coordinates (x', y'), where the x' axis is parallel to the line joining the centroids

(Fig.2). In this new coordinate system, the translations of ol and 02 can be decomposed into
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components along the x' and y' axes and the new added masses A'ij (i, j = 1, 2, 3, 4), which are

related to the centroidal or transversal motion of bobies, become functions of the separation distance s

only. Since body 1 and body 2 are symmetric with respect to the centerline o102, a sign change in U' 2

should not change the fluid kinetic energy in terms of A' i. Therefore A' 12 = A'3 2 = 0. Similarly,

A' 14 = A' 34 = 0. Thus, the fluid kinetic energy T in this coordinate system is reduced to

2T=A 1U2 +2A' +A ' 2  A 2 2A U,2 U +A' U2 ( 1)

11 1313 33U33 22U22 24U24 44U44'

Let y be the angle between the x, axis and the x'1 axis (Fig.2). The transformation of velocities

is given by

U i = b ij Uj, (12)

where b i is the transformation tensor and its matrix representation is

cosy siny 0 0
B siny cosy 0 01

B 0 0 cosy siny (13)

0 -siny cosy

Zeros in B indicate that there is no constraint between body I and body 2. Based on the invariance of

the kinetic energy to the coordinate transformation, we have

2T = A'ijUU'i = At M UmUn,

where,

Amn = A'ij bim bi. (14a)

The added masses A'ij are functions of the separation distance s only, and bij are functions of the ,angle

y. Equation (14) can also be expressed in matrix form as

A- BT A' B, (14b)

where A = [Aij] and A' = [A'ijl are matrices of added masses. By (13) and (14), we can explicitly

write down the added masses Aij in terms of the added masses A'ij due to the centroidal and

transversal motions with respect to the centerline. Thus
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A11 = A',Icos 2y + A'22 sin2 Y, A 13 = A'13COS 2y + A' 24 sin2 y,

A1 2 = (A',1 - A' 22) sinY cosY, A1 4 = (A' 13 - A' 24)siny cosy,

A22 = A'lIsin2y + A'22 cos 2Y, A23 = (A' 13 - A'24)siny cosy,

A 34 = (A'3 3 - A' 44 ) siny cosy, A 33 = A'3 3 cos 2y + A' 44 sin2 y,

A24 = A' 13sin2y + A'24 cos 2Y, A" = A' 33sin2y + A'" cos2y, (15)

The derivatives of added masses with respect to the k-th component of the separation distance Sk (k= 1,

2) are
DAmn = bim bjn AA as + a Dbim bjn + bim _.n A'. _ (16a)

aSk as aSk 0-y a aSk

or

aA1 s aA I 11  cosA 1 1s y S a 1 A = sin, as , etc. (16b)as, a s a/S2  a s s ,

where s, and s2 are the components of (x1 - x2) in the x and y directions respectively.

Equations of motion (10) have to be decoupled before we can solve them numerically. Let

G(U) = (U1 - U3 ) ASI + (U 2 - U 4 ) A 2' (17)

where Ask = aA/aSk (k=1,2) are matrices formed by the derivatives of added masses (16), and M is a

4x4 diagonal matrix with elements M1, M2, M3, M4. Let q(U) be a column vector,

q(U) =IUTAs U,UTA s U,UTAs  U,UT 2 T .  (18)2 12U AS2U]

Then equation (10) may be written in vector form as

dUdt = (M + A) 1 [E - G(U)U + q(U)], (19)

where E = [E1, E2, E3, E4]T is a column vector representing external forces acting on bodies 1 and 2.

Replacing U by (u - Uo), where Uo = [Uol, Uo2, U0 1, Uo2IT, U01 and Uo2 are velocity components

of the uniform flow in the x and y directions respectively, we obtain from (19) the equations of motion

in the absolute coordinates,

7



du (M + A)-' [E - G(u)u + G(u)U o + q(u-Uo)I. (20)

There are various numerical techniques for solving the initial-value system presented by

equation (20). In the present study, the Runge-Kutta-Fehlberg method, which was discussed in detail

by Atkinson[14 , are used for the solution of velocity components. The size of the time step is adaptive

based on a pre-assigned error-control parameter in the calculation.

III. EVALUATION OF ADDED MASSES AND THEIR DERIVATIVES

If the velocity potential due to the motion of solids can be represented by a set of isolated or

distributed sigularities interior to solids, the well known Taylor's added-mass theorem and its

generalization were recommended by Landweber and Yih [151 to determine the added masses. For a

pair of three-dimensional solids moving in any manner in the xy-plane except pure rotations, the

Taylor's added-mass formula can be generalized to (see Guo and Chwangf l 21)

Aij + Sij M'j = 4itp I j -xj XidV + I (mi x0j + Iij) ] (no sum on j), (21)

where M is the mass of the fluid displaced by body 1 (for j = 1.2) or body 2 (for j = 3,4), Xi and mi

are the volume-distributed source density and the isolated source strength, respectively, inside body j

due to the i-th velocity component, gij is the strength of an isolated dipole in the j-th direction inside

body j associated with the i-th velocity component, xj and x0 are the j-th local coordinate of ki and mi

respectively with respect to body j, the integration is over the volume of body j, Vi, and the summation

is over all isolated singularities inside Vj.

In the case of centroidal motion of two spheres along their centerline, it is well known that the

velocity potential of the fluid due to the unit motion of each sphere can be simply represented by a set

of isolated doublets inside spheres. The location and strength of each doublet are determined by the

sphere theorem which states that an isolated doublet of strength gt at a point P outside a sphere of

radius a, pointing along the radial axis of the sphere, has its isolated-doublet image of strength i(a/AX) 3

at the inverse point inside the sphere with the direction opposite to the original one, where ?, (X>a) is

8



the distance between the point P and the center of the sphere. Guo & ChwangE12 1 have discussed the

strengths and locations of the image doublets for the motion of two cylinders and derived expressions

of added masses and their derivatives by using Taylor's added-mass formula. With slight

modification, their result can be extended to added masses and their derivatives due to centroidal

motion of two spheres. By applying the Taylor's added-mass formula and the sphere theorem to the

centroidal motion of two spheres, we have

00 3 C.
All = 47tp[ _2.""" A 13 

= 41p x 2n+i

n=O n=O
A33 =b4tp[ X* b3 A (22)

33=4c _g2n - 3- ]31 = A 13,

n=O

where .2n is the strength of the n-th image doublet inside sphere 1 of radius a due to the unit motion of

sphere 1 along the x' direction (U'1 = 1, U' 2 = U' 3 = U' 4 = 0), .2n+1 is the strength of the image

doublet of ;.12n inside sphere 2 of radius b, 9'*2n denotes the strength of the n-th image doublet inside

sphere 2 due to the unit motion of sphere 2 in the x' direction (U'3 = 1, U'1 = U'2 = U'4 = 0), and p

is the density of the fluid. Analogous to the analysis of Guo & Chwang [' 2 1, we can show that

sequences {p92n) and {p.2n+l} are uniformly convergent for s in the region [a+b,oo), while their

derivatives with respect to s are uniformly convergent in the region (a+b,oo) but divergent as s

approaches (a+b). When s > (a+b), the derivatives of added masses are given by

dA 11  
00 dp. 2  dA 13  4_ d _2n+_

ds I ds ' ds Z dsn=0 n=O

dA'33  = 41p 0 d g2n dA 31  dA 1 3  (23)
ds 7---'s' ds dsn=0

The general strengths and locations of image doublets and their derivatives with respect to s are

determined by the iterative formula,

gxo = a3/2, , = 0, ko s, ds_ ,

9



/&-3 N dj±2n+1  d92n ( b 3  3Ln( b 3 (d 2
92n+1 n 3J' ds dJ +Xn fl 4y

b2  dX2  1+ (b2 ".dX2 n
X2n+1s "' ds +=  T ,k ds

2n 2s--d n 3  + J 2 + __
( 3d2n+2i±n1~J d 2n+ 3 3 2n+1J"' dgnl( +  X2: 1 d

a2  dX2n+2- ( a2  {dX 2
n+l  (24)

ds - X2 n+

where X2n denotes the distance form 02 to the n-th inverse point in sphere 1 and X2n+lthat from 01 to

the (n+l)-th inverse point in sphere 2. All inverse points lie on the centerline 0102. The value of jI 2n

is obtained directly by interchanging a and b in equation (24). The limiting values of added masses,

as s approaches (a+b), are derived as

a3 b3 00  a31(2a
Urn A'11=4ip[ a 1 b (25a)

s-+(a+b) 2(a+b)3 n=0 (n + ¥j

rn A 1  -2pa 3 b3  a3 b3

(bi A'13 -2 7c p a 3  (3) =-2.10360 i p a3 (25b)
s-+(&+b) (a+b)3 (a+b)3

where (3) is the zeta function. As s tends to (a+b), however, the n-th terms of sequences {dp.2n/ds}

and {dg 2n+l/ds} do not approach zero as n goes to infinity, and the derivatives of added masses are

divergent. Thus, when two spheres are very close to each other, the kinetic energy of the fluid due to

the centroidal motion of these two spheres is finite but the hydrodynamic interaction forces approach

infinity.

When two spheres make transversal motion perpendicular to the centerline 010 2, the

determination of the strengths and locations of the hydrodynamic singularities become very difficult.

Consider the unit motion of sphere 1, U 2 = 1, U 1 = U 3 = U 4 = 0. If sphere 2 were absent, the

velocity potential due to this motion could be represented by an isolated doublet located at o Iin the

direction of U 2. However, the presence of sphere 2 violates the boundary condition on surface 2 and

it requires images of the isolated doublet to satisfy the boundary condition. Since this doublet is

10



perpendicular to the radial axis of sphere 2, its images include an isolated doublet at the inverse point

inside sphere 2 plus a line distribution of doublets from the inverse point to the center of sphere 2. The

isolated and the line-distributed doublets in sphere 2 have another set of images in sphere 1, which

include an isolated doublet at the inverse point and a more complicated line distribution of doublets

from the inverse point to o. Very rapidly, the expression of image doublets in each sphere becomes

extremely complicated. Hicks [21 stopped his calculation at the fourth image system because of the

exceedingly laborious work and presented an approximation of the velocity potential due to the

transversal motion when the separation distance s is considerably large.

In the present study, however, we shall consider directly the velocity potential of the fluid

instead of the hydrodynamic singularities. Let us consider two sets of spherical coordinate systems

(r,,0 1,),1) and (r2,02,%2) with origins located at o and 02 respectively, the common polar axis being

0102 (see Fig. 3). Let () be the velocity potential due to the unit motion of sphere I in the direction of

U'2 and expressed in terms of the i-th (i = 1,2) set of the spherical coordinate system. In the absence
of sphere 2, 00(1) , the velocity potential due to the motion of sphere 1, would be the solution of the

Laplace equation satisfying the boundary condition on surface 1. If sphere 2 is inserted into the field at
02, we should add an extra term 0j 2) to the velocity potential 02), which is 00 expressed in the

(r2,02,X2) coordinate system, in order to satisfy the boundary condition on surface 2. Thus, the new

expression for the velocity potential around these two spheres becomes

0(2)= 0(2) +0 (2)
0 1*1

However, the added term O 2) violates the boundary condition on the surface I again and requires an

additional term (1) to satisfy the boundary condition on surface 1. Thus

00= +01 +2

Continuing this process, we can determine the velocity potential due to the transversal motion of

sphere I in the y' direction (U' 2 =1, U'1 = U'3= U'4= 0) as
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00

1 0) (26a)

or

((2) (2) (26b)

In the spherical coordinates (r l , 01, x1), 0(1) satisfies the Laplace equation and the boundary

condition on sphere 1,

(V( 1))2o(I)= 0, a0(1)(a,0 Ix) = sin 01 cos X, (27)ai~r

where X = X= X2 and

_ 1 I -(sin0. + 1 (i = 1,2)
(v~i))2 a . i(~) (i0i)+ a 2

r r. sin0 i  Oi i r2 sin2i1 1 1

are the Laplacian operator in (ri, 0i, X). In the coordinates (r2 , 02, X), 0(2) satisfies

(V(2)) 2 0(2) = 0, ar(2)(b'02,X) = 0. (28)ar2

Around sphere 1, the general solution of equation (27) is given by

-[ fl~~n n A=~1 a 2ar(1) 2 + X An(s) Rn (rn+ nl r n+ I) Cos (2a
rI n=l I

and in the neighborhood of sphere 2, the solution of equation (28) is

( 3 C a3  0 n
0(2)  cos . Bn(s)Sn (r 2 + n (29b)

n=l

where Rn = PI(cos 01) is the associated Legendre function of degree n and of order 1, S_ = P1 (cos
nn

02), An and Bn are arbitary coefficients which depend on the separation distance s and should be

determined by the boundary conditions on both surfaces.
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The transformation of Rn and Sn in these two sets of spherical coordinate systems (r1, 0l , 1)

and (r2 , 02, %) will be used frequently in the following analysis. For the associated Legendre function

of degree n and of order m, the general transformation was first given by Basset [161,
Pm

(cos) (-I) r2 n _ (n+m+k)!r2.k. (s (30a).n+ 1  - (n-m)! sn+m+ l Ik=0 (2m+k)! %k s m+k(C°S02)'

Pn (cOs0 2 ) r, (l)k(n+m+k)! -csk m

r2
n+1 (n-m)! sn+m+l 

Y  (2+k)! s m+k

For m = 1, the transformation is simplified to

Rn (- ) 0 (n+k)! ( r2)k (31 a)

r n+l (n-l)! Sn+ l I (k+1)! S• k=1

Sn 1 00 (41)k'(n+k)! r i k
n+1 n+1 (k+l1)! k

r2 n+l (n-I)! sn. k=1 Rk. (31b)

By the ratio test, we obtain that for any fixed n, the radius of convergence of the summation in (31 a) is

r2 < s and that of the summation in (31 b) is r1 < s.

If sphere 2 were absent, from (30a), the velocity potential would be

(1)=- R a3
2 oI T cos; ).

From the transformation (31a), () can be expressed in the second coordinate system as

(2) a3  [

2  cosX) Y An r2 S.
n=l

where A H = - _s
"-(n+2) . By comparing the velocity potential (2) with the general solution (29b), we

should add the term

13



() 3 Go[I,0- ~~
(2) aok jI l___

2 n=1 n nlr +

to 00 in order to satisfy the boundary condition on surface 2. Thus

() (2) =rn coX 0nA
1 1

-

n=1 n~ (r2  n+

which is convergent as r2 < s. The term ()which can be expressed in the first coordinate system as

*(l) 3c cos [2

n=1

where

A[2]= 1 )l 00 k2 b2k+l (n+k)! AI1
An .=I (n+1)! (k+1)! n+k+T Ak

makes an extra contribution to the velocity potential and in turn violates the boundary condition on
(1) (1)surface 1. This contribution should be corrected by adding 44)to the velocity potential 01

((1) 3 cc [2] n n a2 n+I
+ =(LcosX) Y_ Rn(r 11 0' 2 n=1 (n+1) r n

which satisfies the boundary condition on sphere I but not on sphere 2. The summation is convergent

as r, < s. Repeating the same process indefinitely, we obtain the velocity potential 0(') and 0(2), given

by (29a) and (29b) respectively, with the coefficients

c* 
00

An(s) A [2m]j Bes A [2Am+ 11 (32)
m__O m=-O

where
A101 - 0, A111 - 5 (n+2),

A [2 m] = (1 )l-1 00 k2 b2 k+l (n+k) ! -A[ 2 m-11

k=l (n+1)! (k+l)! sn+k+l k
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_O (-k 2 a2k+1 (n+k)! [2m]A2+1 jk- (n+1)! (k+1)! sn+k+l "k(33)

It can be shown that both An(s) and Bn(s) are less than Cs-n, where C is a positive constant.

Therefore, (1) and (2) are convergent uniformly in the neighborhood of sphere 1 and sphere 2

respectively.

By equations (7), (9), (27), and (29), and the relation ()- ()we have

A'2 = E f coS2XdX rsi 2 ([- RI + Y( _A2ml 2n+i1 a~~O

2 0 0 a2 n=1~~ -j- n -aRnd

-- X~ma'). (34a)

In the integration, all terms containing R,,, nA, vanish because of the orthogonality relation.

Similarly, A 2, and A 4 are given by

-3pa
3b3 2dX xsn6io2 00 (O [2m+l I) S~d 1  0- 3 3M 2  2 m+ll, 3b

0 0 n=l m=O =

0.

A'44 = - f dX Jsin2Ocs[ - + * XA[ 2"'1 2n+1 n~ 10
0 0 b2  n=1 m=O n ~

1 3b3 00 (2mJ)l3c.M 2 ( I--f- IA 3c
-2 ~ M=OI

where A*[ 2m] are calculated by interchanging a and b in the iterative formula (33).
n

The derivatives of added masses with respect to the separation distance s are simply given by

dA22 3M 101 dA*2 3M 2J - I

ds~ 4 ds 'ds 4 1 dsm=rO m=-O
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I .dA*[2ml
dA44 3M 2b3  1

ds 4 ds (35)
rn=I

From formula (33), the derivatives ofA 7ml and [2m+1 1 with respect to s are

dA °  dA1

ds - 0, ds = (n+2) s-(n+3)

dA2ml ,] '  k2b2k+1(n+k)! 1 dA[2mll- (n+k+l)A 2mll

ds - Y) l (n-+l)!(k+1)! [sn+k+t ds sn+k+ 2

[2m+1 ]  d[2m] [2m]
(-1)k'lk2a2k+l(n+k)! 1 k k

ds - (n+l)!(k+l)! " sn+k+I ds sn+k+2 I. (36)
k=l

We shall define the added-mass coefficients by

kij = A ij / M2 . (37)

For the centroidal and transversal motions of two equal spheres, a/b = 1, the values of kij are given in

Table 1 with the separation distance s varying form 2.01 to 10.

IV. NUMERICAL SOLUTION OF ADDED MASSES

In order to extend the above-mentioned analysis for a pair of spheres to the general case of two

bodies of revolution, we may have recourse to the numerical computation of added masses, since the

exact formulas such as equation (34) do not exist in general. In a given geometric and kinematic state,

the Neumann boundary-value problem of two bodies needs to be solved numerically for either the

velocity potential or the strengths of the surface distribution of sources on each body. We shall

formulate the problem by the well-known boundary-integral method, which leads to a pair of

Fredholm integral equations of the second kind, and consider the reliability of numerical solutions

obtained from different procedures.
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IV.1 Formulation of integral equations

The boundary-integral method, derived from the generalized Taylor's formula and the

fundamental relations between normal velocities and velocity potentials on solid surfaces, has been

studied intensively by Landweber and Chwang [10 ]. Guo and Chwang [121 applied their treatment to a

pair of two-dimensional cylinders and modified the integral equations for accurate solutions. For a

pair of three-dimensional bodies translating in an unbounded fluid, the surface source distributions

E(P') at point ' on surface 1 and F(Q') at point Q' on surface 2 are governed by the integral equations

fF )SN1  x ay

27E(P)- 'E(P') _  1 dS - fF(Q' 1 dS = UNI a+U 1 , (38a)
_)N1 Rii_ R21 aN j 

Sl S2

)J )N2 R12  -N 2 R22 d = aN 2 '

S S2

where RNi is the distance between the source point on body i and the field point on the surface of body

j (ij =1,2), Ni denotes distance in the outward normal direction at the field point on the surface of

body i. The terms 2nE(P) in (38a) and 2ntF(Q) in (38b) appear after differentiating the singular

integrals. As long as two bodies are separated, equations (38ab) are well-defined at all points P and

Q. However, there are two types of difficulties need to be considered in the numerical integrations:

1. There are apparent singularities involved in the kernels of the first integral in (38a) and of the

second integral in (38b) when the point of integration coincides with the field point on the same

surface. As discussed by Landweber and Chwangi l l , the effect of apparent singularities can be

reduced significantly by noting that the flux through a closed surface due to a unit source on the same

surface is 2n. For example, if there is a unit source at P on surface 1, then

W, 1 dS =2n . (39)
sl

Thus, the first integral in (38a) can be modified as
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- E(P') a 1dS = 21cE(P) - I[E(P'~ a - - E (P) WidS, (40)
SJ Sl

where the singularity at P = P is eliminated.

2. There exist steep peak values in the kernels of the second integral in (38a) and of the first

integral in (38b) when one body is in the proximity of the other and the point of integration is not on

the same surface as that of the field point. Let S be the gap distance between two surfaces, the

maximum peak value of a typical kernel in the integral equations is of the order of (1/82) for three-

dimensional bodies. In order to remove the peaks, we may use a similar treatment to subtract a term

from the integrand and then to add its accurate integration back to the equation. For example, the

second integral in (38a) may be written as

fF(Q N- -121dS = f[F(Q')-F(Qo)] -L R121S +F(Qo); R =ldS (41)F(C N a1 (41
F(Q' R2 - N1  21 + DJ NI 21

S 2 S2 S2

in which Q0 is the point where the maximum peak value occurs. The result of the integration on the

left-hand side will be improved if the second integration on the right-hand side can be obtained exactly

or computed more accurately without too much trouble. However, this modification has only

weakened, rather than removed, the ill-behaved kernel since another peak value, whose magnitude is

smaller than the original one, is still present in the first derivative of the kernel on the left-hand side.

Depending on the smoothness of solid surfaces, this modification may be used successively [171.

The accuracy of the numerical solution for planar motion of two spheres will be examined by

comparing it with the analytic solution. Let's define two spherical polar coordinate systems (r,, az, 13)

and (r2, 0, 8) by (see Fig. 4)

x' = r, sina cos3 + s = r2sin0 cosS,

y = r1 sina sinl3 = r2sin0 sinS,

z! = r1 cosa = r2 cosO. (42)

From equations (38), (40) and (41), the surface-source distribution on each spherical surface satisfies
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the pair of integral equations

4irE(czj3)-a 2 JdJ3' J[E(&4VP)-E(ax,1)]Kli(a43,a',dV)da'
o 0

o o

=b F(O,j-) Jd8' JK21 (a4,O,',8')dO' + U 1cos~sinoc+U'2sin ~sinc, (43a)
o o

27c ic

0 o

=a2E(7ri)7 fdP~' fK l2(0,8,a',P')da'+U' 3Cos~sinO+U'4Sin~sinO. (43b)
0 o

Define

R(,j~;x,y,z) = -X)
2 + (r1 - y)2 + -Z)2]1/2,

then the distance R ii between the source point on body i and the field point on body j is (Fig.4)

RI,= (s+a sina'cos3', a sina'sino3' ,a cosa'; s+a sincxcosIp, a sinasin3, a cosa),

R21= (b sinO'cosS', b sinO'sinS',b cosO'; s+a sinczcosp, a sinctsinj3, a coscz),

R,2= (s+a sina'cosP', a sinczsinP', a cosa'; b sin~cosS, b sin~sin5, b cosO),

R22= (b sinO'cosS', b sin8'sinS', b cosO'; b sin~cosS, b sin~sinS, b cosO), (44)

where s is the separation distance between two spheres, s = 0 102. The kernel functions in the integral

equations (43ab) are given explicitly by

K I (a4,&43,') 31 2-ia 1
22 a2 (1-sinasinz'cos(13-p') - cosctcosa') 1
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K 21(a,3,0',8') = - -- sinO'[a-b sin0'sinacos(8'-13)-b cosO'cosa +s sinacosl3]
3R1

K 12(0,8,o',P3') = - sina'[b-a sina'sin0cos(p'-8)-a cosa'cosO-s sin0cosS;],
R, 2

sinO'K22(0),8,'o,8) 31 2-iO (45)23/2 b2 (1-sin0sinO'cos(8-4') - cosOcosO') 1 2  ()

In the derivation of equations (43ab), we have used the identity (39) and the relation for the i-th

sphere

(46)0 N i  ii..i

Based on surface-source distributions obtained from integral equations (43a,b), we can

compute the added-mass coefficients due to the motion of each sphere by means of equation (37) and

the generalized Taylor's formula (21). For U'1 = 1, U'2=U'3=U' 4=0,

a 3  27 7
k L- (3 Jd3 f E(a,J3) sin2 a cos3 d(x - 1), (47a)

b O

k= 3 JdS I F(0,8) sin 20 cos5 dO. (47b)

O 0

For U'2 = 1, U'I=U'3=U'4 =0,

27t
3 2n 7

k22 = -(3 Jd P f E(c,p)sin2 a sinp da - 1), (47c)
b 00

k24 =3 JdS f F(0,8)sin2O sin8 dO. (47d)
0 0

Similarly, for U' 3 =1, U'I=U' 2 =U' 4 =O,

k33 
= 3 JdS f F(0,8) sin2 O cosS dO -1. (47e)

0 0
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Finally, for U'4 =1, U'I=U'2 =U' 3 =0,

2nt 7C

k44 =3 Jd8 f F(0,8) sin2o sinS dO - 1. (47f)

0 0

As explained in deriving equation (11), we have

k12 = k23 = 0, k 14 = k34 =0. (47g)

IV.2 Numerical solutions of integral equations

The unknown source distributions E(a,3) and F(0,8) for two spheres are governed by a set of

two integral equations (43ab). These equations will be transformed into two sets of linear equations

by introducing appropriate quadrature formulas for the integrals, and solved by the Gauss-Seidel

iterative method. Thus, for the (n+l)-th iteration, we have

41rI- 2 NV 2 <IW2',[E, - En] KI .I ijij .- b IkO2m[Fkm -F] K2ijkm ,

ij j' I k' m2

= b2 1o' 11 alk."2m. K21ijk'm , + U'I cosp3 sina + U'2sinp3 sinct, (48a)
k' m'

W7 WF rWn+l n+1 2 --.- F
km j, It i 2jtij' 

"Eo I K12kmi'j' b  ,5. _ i,.'2 k -k 22kmk m ,

= a2 Eo l E X WiW 2j' K12kmij' + U'3 cos6 sin0 + U'4 sin6 sin0, (48b)
i' j'

where W, Q are weighting factors corresponding to different qradrature formulas, subscripts i, j, k, m

refer to the location of a field point along a, 13, 0, 8 directions respectively, i', j', k', m' refer to that

of a source point, and the superscript n stands for the n-th iteration. To start the numerical iteration

process, we assume that the first approximation is

1EI = (U'1 cosp3 sinax + U' 2sinP sina)/47t (49a)

and

F = (U'3 cosS sinG + U'4sin8 sin0)/4nr. (49b)

In fact, based on the numerical results, equations (48a) and (48b) always converge to the correct

solution regardless of the initial approximation (49).
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When two spheres are close to each other, it is evident that the source distribution on each

surface changes rapidly around the gap between two surfaces. A typical distribution of E(a,13) for the

case where U' 1 = 1, U' 2 = U'3 = U' 4 = 0, and a/b = 1.0, s/b = 2.03 is shown in Figure 5. To obtain

an accurate numerical integration over the spherical surface, we shall put more node points near the gap

by subdividing the region of integration into few partitions and apply the Gaussian quadrature formula

in each subregion. The sizes of partitions measured by coa, (op, etc. (Fig.6) are dependent on the

separation distance s of two spheres. It is well known that most quadrature formulas, including the

Gaussian quadrature formula, performs the best when the ill-behaved point is at the boundary of the

integration region. In solving the integral equations (48ab), however, we need to fix the field points

as well as the point of integration on each surface in order to iterate the unknown source distributions.

Thus, to compute the integrations on the right-hand sides of (43a,b) accurately, we shall rotate the

coordinates in such a way that for each fixed field point on one surface, the maximum peak value on

the other is always at the boundary of the integration region. Suppose that the peak of K, 1,

corresponding to a field point P(a, ao, 3o) on sphere 1, occurs at q(b, 0*, 5*) on sphere 2 (Fig. 7),

then the integration of K2 1 over surface 2 should be performed in the (X', Y', Z') coordinate system

which is obtained by first rotating the (x', y', z') coordinate system about the z' axis with an angle *,

7C
then rotating about the new y' axis with an angle 0 Therefore,

x'= T X', (50a)

where

[cosS*sin0* -sinS* -cos8*cos0 *
T = sinS*sina* cosS* -sinS*cos* (50b)

L cosO* o sinO*

With this coordinate transformation, the first and the last abscissas for the Gaussian quadrature

formulas in both 0 and 8 directions are in the nearest neighbourhood of q.

However, the explicit expression for point q hi terms of ao and Po is complicated so that we

may have recourse to an approximation. It is noted that the peak affects the numerical integration

significantly only in a region when the gap between two spheres are very small and the field point is
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around the centerline (Fig. 7). In this region, the location of qo, which is on the line of Po 2 (Fig. 7),

should be very close to q, where the peak value of K21 takes place. Thus
sin0' (1 - W2/2) sinO'

K2 1= -(--)cos(c-,#) 2 1).

We may examine the above-mentioned improvement by considering the following integral over sphere

2:

=dS, f ine' 2n d-b

o od R 2 dO' =-d In(-) (51)

where d = IPo 2 (Fig.7). In this integration, the position of the source point q is exactly on the line Po 2.

The analytical and numerical results of the integration I are plotted in Fig. 8, where we note that the

deviation of the modified numerical result from the exact one is much smaller than that corresponding

to the unmodified numerical result. Applying the modification (50) to equation (48a,b) and by means

of (47), we can compute the added-mass coefficients. When a/b = 1.0 and s varies from 2.02 to 10,

the numerical results of added-mass coefficients are listed in Table 2.

V. DISCUSSION OF NUMERICAL RESULTS

The Lagrange's equations of motion, associated with the expression of kinetic energy of the

fluid due to the planar translation of two bodies of revolution, can be applied to determine the

hydrodynamic interaction between two bodies, as long as the flow is a potential flow. To solve

equations (10) explicitly, we shall start the computation at the initial position xio (i=1, 2, 3, 4) with the

initial absolute velocity components uio and the external forces E. At the beginning of the j-th time

interval 8t1 (j = 1, 2, ...), the absolute velocities Uij are obtained by the fifth-order Runge-Kutta

integration in terms of velocities in the previous time interval, uij., and the added masses and their

derivatives evaluated at xij. At the end of the j-th time interval, the new position of each body is

simply calculated by Xij = Xij-1 + uij8tj . The size of Stj is adaptive according to the value of a pre-

assigned error-control parameter (1.0* 10-5) and the difference between the fifth- and the sixth-order
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Runge-Kutta integration of uij. This process is repeated until either two bodies are in contact or one

body passes over the other.

There are a number of real geometrical situations in which one can apply the afore-mentioned

mathematical model to predict the motion of solids. In the present study, both bodies are assumed to

be spheres with radii a and b (a~b) for bodies 1 and 2 respectively. In addition, we shall normalize all

lengths by b, a/b < 1.0 and s/b > (1.0+a/b).

We first consider the motion of a spherical particle of radius a, conveyed by a uniform flow,

around a large spherical body fixed in space. This problem has applications in the ice-coating process.

With a/b=0.1, x1o/b = -20, X20/b = 0.1, 0.3, etc., and u1o/Uo = 1.0, U20/Uo = 0.0, where Uo is the

uniform flow in the x direction, the trajectories of the particle are plotted in Fig. 9a to 9e for different

density ratios of the body to the fluid medium. Fig. 9a corresponds to the case of an ice particle

moving in fresh water and Fig. 9e shows the same ice particle in an air flow. The ratios 2.0, 5.0, and

10.0 correspond to various fluid media and illustrate the change of trajectories with respect to the

density ratio. From these figures, we observe that the motion of the particle is affected by its inertia,

which prevents the particle from moving out of its straight path, and by the interaction with the second

sphere, which bends the particle trajectory to a curved streamline. In the case of an ice particle carried

by an air flow (Fig. 9e), the inertia effect is so predominant that the trajectories are almost straight

lines, whereas for the same particle moving in water (Fig. 9a), the curvature of the trajectories

becomes very large when two bodies are close to each other. This conclusion can also be drawn from

the equations of motion (20), which indicate that the accelerations of the particle in both xi and x,

directions are proportional to (pa+P) "'. In some physical problems, it is important to determine

whether or not a drifting body, conveyed by a current, can impact with a fixed body. This physical

property can be expressed by a "collection coefficient" E which is defined as the ratio of the critical

initial position x 20, below which the drifting body will impact with the fixed body, to the radius of the

fixed body. Fig. 10 shows the result of the collection coefficient for a pair of spheres, 0.01 < a/b < 1,

in fluids of different densities. Moving bodies of very small size are not considered since the

Reynolds number becomes quite small such that the inviscid-fluid theory is not applicable.
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Regarding a floating body in sea water, on the other hand, we should consider the change of

hydrodynamic interaction between an ice floe, idealized as a sphere, and a fixed spherical offshore-

structure versus the size of the floating body. For pa/p = 0.89, the trajectories of a floating sphere of

radius a (a/b=0.5, 1.0) around a fixed sphere are shown in Fig. 11. Initially, the floating sphere

moves with the uniform flow, Uo/Uo = 1.0 and u20UOo = 0.0. These trajectories are quite flat in

comparison with the ones of a small body since the inertia effect of a large body predominates over the

hydrodynamic interaction force due to the presence of a second body.

To illustrate the dependence of trajectories of a moving sphere on its size, we plot the velocity

components u1/Uo and u2/Uo in Fig. 12, and the trajectories in Fig. 13, respectively, for a sphere of

various radius ratios a/b from 0.1 to 1.0 around a fixed sphere of radius b. The initial conditions used

in these two figures are x1o/b = -20, X2 /b = 0.5, uIo/Uo=l.0, U2o/Uo= 0.0, and a fixed density ratio

pa/p--0.89. When two bodies are close to each other, Fig. 12 shows slight differences on the velocity

components due to the size variation, while Fig. 13 shows that for the same initial position, the

trajectories of sphere I is almost independent of its size. In Fig. 13, only the trajectory for the sphere

a/b--0.1 (dotted line) can reach the position x, = 0, which indicates that the small sphere passes over
f

the fixed one. All other trajectories terminate at certain position o1 at which the two spheres are in

contact. This phenomenon can be understood by considering the added masses. The first terms of

added masses in (22) and (34) and their derivatives in (23) and (35) are proportional to a3. These

terms are predominant when s is sufficiently large, while the rest becomes significant only when s is

very close to (a+b). Consequently, the predominant parts of the solution of equation (10) are almost

independent of the radius a, since a3 appears on both sides of (10). Based on this observation, we can

surely use the trajectories for a small particle around a fixed blunt body as a good first approximation

for the trajectories of a large body, or in some cases, we can even neglect the effect due to the size

variation.

In the case of a small body pursuing a large target which moves in a fluid, we shall consider

the influence of the motion of the target on the trajectories of the small body. Suppose that a large

spherical target of radius b with pa/p = 0.89 is initially located at (10,0) and moves in a stationary fluid
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with u3o =1.0, u4o=0.0. A small particle of radius a (a/b--0.1) and density pa/p--0.8 9 is released at (0,

x2o) with initial velocities ulo = 2.0 and u2o = (x2o-1.1)/10. We can determine its trajectories based on

the solution of (20). Without interaction, we would expect that these two bodies come in contact at

x=20. However, from Fig. 14, we note that the trajectories of the small particle are bent significantly

in a region close to the large target due to the hydrodynamic interaction. This plot is consistent with

the physical interpretation.

The magnitude and the direction of the hydrodynamic interaction force between two bodies

depend on the relative motion between them and the direction of the oncoming flow. Fig. 15 shows

the variation of the magnitude of the interaction force versus the flow direction and the separation

distance. We note from Fig.15 that if the angle between the centerline and the flow direction is less

than a certain value depending on the separation distance, the interaction force is repulsive, which

prevents the collision of two bodies, whereas if the angle is larger than this value, the interaction force

becomes attractive. Thus, when a particle moves towards the target sidewise from behind (see Fig.

14) and the angle between the centerline and the oncoming current is small, the interaction force repels

the particle from the target and reduces its velocity component u2. On the other hand, when the particle

moves alongside of the target, the relative oncoming flow becomes almost perpendicular to the

centerline, and the interaction force pushes the particle toward the target. This conclusion also

indicates that if the angle between the centerline and the relative flow is large, the motion of the target

generates an attractive force and the trajectory of the particle points toward the target without much

bending (Fig. 14, x2o/b = 4.0).

Another practical problem we shall consider in the present study is the hydrodynamic

interaction between two bodies, idealized as spheres, when they move arbitrarily in a stationary fluid.

Fig. 16 shows trajectories of two equal spheres (a/b = 1) with pa/p = 0.89, which corresponds to ice

floes in sea water. Initially, both sphere move in a stationary fluid with velocities uI = u3 = 1, u2 = U4

= 0, and the initial separation distance so/b varies from 2.2 to 3.0. As we have discussed previously,

the interaction force due to this type of motion attracts both bodies and drives them toward each other.

The strength of the force, shown in Fig. 17 with a/b = 1 and u, = u3 = 1, surely depend on the
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separation distance s/b. The time required for two equal spheres to come into contact is shown in Fig.

18 versus the initial separation distance so/b. For pa/p = 0.89 and a/b = 0.3, 0.5, 0.7, 1.0, Fig. 19

shows the trajectories of two spheres when they are initially released at xIo = X3o = 0 and x2o = -x40 =

1.25b with velocities Ulo = U3o = 1 and u2o = u4o = 0 in a stationary fluid. From this figure, we note

that if sphere 1 is much smaller than sphere 2, its motion cannot affect the motion of sphere 2

significantly, since the inertia of sphere 2 is much larger than that of sphere 1. We also note that the

variation of trajectories of sphere 1 due to the variation of the radius ratio a/b is much smaller than that

for sphere 2, since the added masses associated with sphere 2 are more sensitive to the change of a/b.

VI. CONCLUSIONS

A potential-flow prediction for the motion of a pair of bodies, and the hydrodynamic interaction

force acting upon them in an inviscid fluid, have been presented. The Lagrange's equations of motion

are generalized for planar translational motions of bodies, including the effects of solid constraints,

external forces in the plane of motion, and a uniform stream in any direction parallel to the plane of

motion. This generalization is applicable to bodies of revolution which are symmetric with respect to,

and have their axes of rotation perpendicular to, the plane of motion. The velocity components and the

moving trajectories of each body are obtained by integrating the equations of motion in terms of the

kinetic energy of the fluid which is a function of added masses.

In order to determine the reliability of numerical solutions of interactions between a pair of

three-dimensional solids, the exact solution of added masses and their derivatives in closed forms is

first considered for the centroidal and transversal motions of two spheres. A new iterative formula has

been developed to evaluate the added masses due to the transversal motion of two spheres based on the

analysis of the velocity potential in the near field around the bodies. The added masses due to the

centroidal motion are obtained by means of the Taylor's added-mass formula and an iterative scheme

for the strengths and positions of interior doublets.

The boundary-integral method and the generalized Taylor's added-mass formula are used for

numerical solutions of added masses. However, when two bodies are very close to each other, it is
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difficult to obtain an accurate result because of the ill-behaved integral equations. These integral

equations are modified by first subtracting out the steep peak value from the integration so that the

resultant kernel is bounded, and then adding an accurate integration of the kernel back to the equation.

As an example, the added masses of two equal spheres are computed numerically and the results are

compared with exact solutions. A very good agreement has been obtained.

Due to the limitation of the potential-flow analysis, the afore-mentioned results are only

applicable to cases where the effects of fluid inertia and the nonuniformity of the flow due to the

presence of a second body are dominant.
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Table 1. Exact Values of Added-Mass Coefficients
for Two Equal Spheres (a/b = 1.0)

k k, k3 k k2 k d24
s I ds -k 13  ds 22 ds k24 ds
2.01 0.5702 0.5708 0.2163 0.7257 0.5191 0.1149 0.0984 0.2078
2.02 0.5651 0.4486 0.2097 0.6020 0.5180 0.1005 0.0964 0.1923
2.03 0.5610 0.3796 0.2041 0.5315 0.5171 0.0901 0.0945 0.1808
2.04 0.5575 0.3321 0.1990 0.4825 0.5162 0.0819 0.0927 0.1716
2.05 0.5543 0.2963 0.1944 0.4453 0.5154 0.0752 0.0911 0.1638
2.06 0.5515 0.2679 0.1901 0.4154 0.5147 0.0695 0.0895 0.1571
2.07 0.5490 0.2445 0.1861 0.3906 0.5140 0.0646 0.0879 0.1511
2.08 0.5466 0.2248 0.1823 0.3695 0.5134 0.0603 0.0864 0.1458
2.10 0.5425 0.1930 0.1752 0.3349 0.5123 0.0530 0.0836 0.1365
10.0 0.5000 0.0000 0.0015 0.0005 0.5000 0.0000 0.0008 0.0002

Table 2. Numerical Results of Added-Mass Coefficients
for Two Equal Spheres (a/b = 1.0)

s kl 1 - k13 k22 k24

2.02 0.5614 0.2063 0.5182 0.0967 26 15
2.03 0.5591 0.2025 0.5171 0.0947 20 15
2.04 0.5562 0.1981 0.5162 0.0929 20 15
2.05 0.5540 0.1943 0.5154 0.0910 25 20
2.06 0.5512 0.1900 0.5147 0.0895 25 20
2.07 0.5486 0.1860 0.5140 0.0879 30 25
2.08 0.5464 0.1823 0.1534 0.0864 30 25
2.10 0.5421 0.1752 0.5123 0.0836 30 35
10.0 0.5000 0.0015 0.5000 0.0008 60 45
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Figure Captions

Figure 1. Relative rectangular coordinate system (x, y, z) and velocity components.

Figure 2. Relative rectangular coordinate system (x', y', z') and velocity components.

Figure 3. Spherical polar coordinate systems (r1, 0,, X 1) and (r2, 02, X2).

Figure 4. Surface integration of source distributions on spheres 1 and 2.

Figure 5. Three-dimensional plotting of surface source distribution on sphere 1 with a/b = 1, s/b =
2.03, U 1=1, and U 2= U 3= U'4= 0.

Figure 6. Definition of regions containing peaks.

Figure 7. Rotation of the coordinate system (x', y', z') and definition sketch for d, ao , and P3o.

Figure 8. Comparison of numerical result of integral 1 (51) obtained with and without rotating
coordinates.

Figure 9. Trajectories of a moving sphere in different fluids with a/b=0. 1, u(/Uo=1, U20/Uo= 0,
and x1o/b = -20.

Figure 10. Dependence of the collection coefficient E of an ice particle on the size for various density
ratios.

Figure 11. Trajectories of ., ,oving sphere with xlob = -20, u1o/Uo=l, u2 JUo= 0, and pa/p =

0.89.

Figure 12. Velocity components u, and u2 of a moving sphere with various radius ratios.

Figure 13. Trajectories of a moving sphere with various radius ratios.

Figure 14. Trajectories of a moving sphere with radius a affected by another sphere with radius b,
a/b=O.1, pa/p = 0.89.

Figure 15. Dependence of interaction forces on the direction of a uniform flow.

Figure 16. Trajectories of two equal spheres (a/b=l) moving initially perpendicular to their centerline
in a stationary fluid with Pa/P = 0.89, a/b=l, X1o/b = X3o/b = 0, Ulo =U3o = 1, and U2o
=U4o = 0.

Figure 17. Interaction force between two equal spheres (a/b=l) versus the separation distance s/b.

Figure 18. Time required for two equal spheres (a/b=l) to come into contact versus the separation
distance sob with pa / p = 0.89, xlob = X3o/b = 0, Ul o=u3o= 1, and u2o=U4o= 0.

Figure 19. Trajectories of two spheres moving initially parallel to each other with pa/p = 0.89, x o/b
= X30/b = 0, X2 /b =- x4o/b = 1.25, ulo=u3o= 1, and u2o=ulo= 0.
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Figure 1. Relatve rectangular coordinate system (x y', z') and velocity components.
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Figure 3. Spherical polar coordinate systems (rj., 1  and (r2, 0,, X).
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Figure 13. Trajectories of a moving sphere with various radius ratios.
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