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I. INTRODUCTION

A variety of plasma wave emissions is routinely detected by the VLF receiver
aboard the SCATHA (P78-2) satellite. In the course of a year, this satellite provides
complete coverage of the radial range from 5 to 8 RE at low inclination. This is an
important region because it covers a significant portion of the outer radiation belt and
because the geomagnetic field lines passing through this region connect with the auroral
zone. Chorus emissions are generated here when newly injected substorm electrons drift
around the dawn side of the earth. Electron cyclotron harmonic (ECH) emissions are
observed in the outer portion of the range, and strong hiss emissions are detected when
the spacecraft enters the plasmasphere on the dusk side of the earth. In this report we
discuss the results of a survey of wave activity based on 1 year of data from the
broadband VLF receiver.
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II. BROADBAND VLF WAVE DATA

The SCATHA (P78-2) satellite was launched on January 30, 1979. into an

equatorial orbit with a 23 h, 35 m period, a 7.9 deg inclination, a 7.78 RE apogee, and a

5.32 RE perigee. The VLF receiver on board has both narrow band and broadband

channels. The receiver uses two antennas: an air-core loop detects the magnetic

component of waves, and a 100-m tip-to-tip dipole, provided by the Goddard Space

Flight Center for their DC Electric Field Experiment, detects the electric component.

The sensitivity of the electric field receiver is 5 x 10-7 V/m-Hz 1/2 at 1.3 kHz and
10-7 V/m-Hz"2 at 10.5 kHz. The air-core loop is electrostatically shielded and has an

effective area of 575 m2 at 1.3 kHz. The sensitivity of the magnetic field receiver is 3 x

10-6 Y/Hzl'f at 1.3 kHz. The receiver has eight narrow band channels between 400 Hz

and 300 kHz. There are also two broadband modes, 100 Hz to 3 kHz and 100 Hz to 5

kHz. An automatic gain control (AGC) circuit for the broadband channel provides a

dynamic range of approximately 60 dB. The receiver processes signals from only one of

the antennas at a time. Its input is normally switched between the electric and the

magnetic antennas every 16 s.

Only the broadband data were used for this survey. The broadband data can only

be collected in real time by a telemetry ground station. One to 2 h of broadband data

were collected each day during 1979 and 1980. An atlas of VLF spectrograms from each

broadband data acquisition during 1979 has been compiled by Koons et al. [1981]. This

collection contains samples of each type of signal detected during a given data

acquisition, which generally lasted from 10 min to 1 h. For example, if hiss was detected

at the beginning of an acquisition, and electron cyclotron harmonic emissions at the end

of the acquisition, there would be two photographs in the album. The spectrograms were

categorized by the type of wave activity present. Typical examples of the categories are

shown in Fig. 1. The categories are hiss (Fig. la), discrete whistler-mode emissions such

as chorus (Fig. Ib), lightning generated whistlers (Fig. Ic), and electron cyclotron

harmonic emissions (Fig. ld). A database was compiled with a unique record for each

acquisition. A total of 813 acquisitions are contained in the database. Each record

9
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Fig. 1. Spectrograms from the SCATHA VLF Receiver. (a) Hiss emissions
detected from 1614 to 1658 UT on May 14, 1979. The satellite was at a
radial distance of 5.3 RE near 1400 local time. (b) Chorus emissions
detected from 1653 to 1740 UT on September 21, 1979. The satellite was
at a radial distance of 6.3 RE near 1230 local time. (c) Whistlers detected
from 0200 to 0228 UT on June 16, 1980. The satellite was at a radial
distance of 5.3 RE near 1400 local time. (d) Electron cyclotron harmonic
emissions detected from 1554 to 1611 UT on April 16, 1979. The satellite
was at a radial distance of 5.3 RE near 1400 local time.
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contains logical fields that indicate the presence or absence of each type of wave for each
acquisition. The assessment of the occurrence was made visually from the spectrograms.
The sensitivity of the spectrograms is a few decibels above the noise level of the

instrument.
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III. SPATIAL DISTRIBUTION MAPS

Figure 2 shows the local time coverage of the broadband VLF data. The range of

radii from 5 to 8 RE is divided into six equal bins of 0.5 RE each, and the local time is

divided into eight bins of 3 h each. The coverage is greater than 15 h per bin in most of

the bins. The dusk side from noon to midnight is covered somewhat better than the dawn

side.

The significance of the occurrences plotted in the later figures, of course, depends

on the amount of data collected in each bin. Bins with less than 10 h of coverage, such as

those at the lower altitudes around midnight and at the higher altitudes before noon, have

the least significance. We have chosen to retain those bins in the occurrence maps to

avoid visual holes in the plots. However, these regions should not be emphasized when

interpreting the data.

A. NO WAVE ACTIVITY

During 33% of the data acquisitions, no wave activity whatsoever was visible on

the spectrograms. Although this is due, in part, to the limited frequency range of the

survey, the consequences of a lack of activity in the hiss, chorus, and ECH modes are

sufficiently important that we have made a map (Fig. 3) of the occurrence of no wave

activity at all. The lack of activity is especially noticeable from 1800 to 2100 LT over

the entire radial range covered by SCATHA. Over 50% of the acquisitions in this region

showed no wave activity, with some bins showing no activity over 70% of the time.

B. WHISTLER-MODE EMISSIONS

We have divided whistler-mode emissions into three categories. Band-limited

incoherent emissions are classified as hiss. Lightning-generated whistler-mode waves

are simply called whistlers, and other whistler-mode emissions showing complex

structure on the spectrograms a-e classified as discrete emissions or chorus. There is no

evidence in the SCATHA data [Koons, 19851 for power line harmonic radiation or

emissions that have been attributed to interactions with power line radiation [Helliwell et

al., 1975].

13
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Fig. 2. Temporal Coverage by the Broadband VLF Receiver on the SCATHA
Satellite as a Function of L and Magnetic Local Time. The radial range
from 5 to 8 RE is divided into six equal bins, and the local time is divided
into eight equal bins.
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Fig. 3. Frequency of Occurrence of No Wave Activity Above the Threshold of
the SCATHA Broadband VLF Rectiver as a Function of Radius and Local
Time
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1. HISS

Figure 4 shows the distribution of hiss in the region covered by this survey. Hiss

primarily occurs in the sector from noon to dusk. It is most prominent in the 400 Hz

channel of the narrow band analyzer. This spatial distribution is determined by the
relationship of the satellite orbit to the plasmasphere. The spacecraft orbit is within the

plasmasphere only during the afternoon. The spacecraft was within the plasmasphere for

man-, of the data acquisitions in this region. Hiss within the plasmasphere in this

frequency range is commonly referred to as plasmaspheric hiss [Echeto et al., 19731.

Hiss is detected at moderately low occurrence levels at all local times at t&-. lower

range of altitudes sampled by SCATHA. The distribution of hiss may be severely

distorted by the automatic gain control of the receiver. Hiss is normally much weaker

than the discrete whistler-mode emissions such as chorus. When essentially continuous
chorus emissions are present, such as the example in Fig. lb, hiss is suppressed by the

AGC. Comilleau-Wehrlin et al. [1978] and Koons [1981] have shown that hiss and

chorus are frequently present simultaneously, and both argue that hiss plays an important
role in the generation of chorus. If that is the case, then the distribution of hiss shown in

Fig. 4 is actually the distribution of hiss in the absence of chorus. Hiss may also be

present over much of the region where chorus is observed (Fig. 5).
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Fig. 4. Frequency of Occurrence of Hiss Emissions as a Function of Radius and
Local Time
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Fig. 5. Frequency of Occurrence of Chorus Emissions as a Function of Radius
and Local Time
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2. CHORUS

Chorus emissions are whistler-mode emissions that are commonly observed

outside of the plasmasphere [Burtis and Helliwell, 1976; Tsurutani and Smith, 1974,

1977]. They are characterized as discrete emissions usually rising in frequency with
time, at least at the beginning of the emission. Tsurutani and Smith [1977] have mapped

the spatial distribution of chorus from L = 4 to L = 15. They note a sharp onset of chorus

just postmidnight from L = 5 to L = 8, with a maximum occurrence of 54%. They

detected no equatorial chorus from 1600 to 2400 LT. The occurrence map for the

distribution of chorus observed by SCATHA is shown in Fig. 5. SCATHA detected

chorus at all local times within the altitude range of this survey. The frequency of

occurrence from dawn to noon was greater than 70%, significantly higher than that
reported by Tsurutani and Smith. The spatial maps of chorus from the SCATHA

satellite and the OGO satellites are similar, with SCATHA data generally showing a

higher percent occurrence at all local times than the OGO data. This may be attributed to

the sensitivity of the receivers. The SCATHA receiver has a peak sensitivity of 3 x 10-6

Y/Hzl2 at 3 kHz, while the OGO receivers have a peak sensitivity of 5 x 10-. y/Hz't 2

[Tsurutani and Smith, 1977].

3. CHORUS GAP

Chorus emissions generally start in frequency between 0.1 and 0.3 on, where Cob

is the electron gyrofrequency, and rise to 0.7 or 0.8 w%. If chorus extends above 0.5 COb, a

gap is generally observed around 0.5 (ob. The width of the gap is highly variable,
sometimes reaching 0.2 oh, and sometimes, but rarely, vanishing entirely. Figure 6 shows

several examples of chorus displaying the full range of gap variability from slight to
pronounced. Several theories have been proposed to account for the gap. The proposed

mechanisms fall into two categories: (1) propagation effects [Tsurutani and Smith, 1974;
Burtis and Helliwell, 1976] and (2) emission effects [Maeda, 1976; Curtis, 1978; Kaiser,

1979]. Figure 7 shows the spatial distribution of chorus containing a gap at 0.5 co,. It

generally follows the same spatial distribution as all chorus (Fig. 5), with a reduced
frequency of occurrence. In the context of this survey, chorus without a gap consists of

discrete whistler mode emissions below 0.5 o that are not associated with any whistler-

mode emissions above 0.5 o,.

19
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Fig. 6. Spectrograms from the SCATHA VLF Receiver of Chorus Emissions
Displaying a Frequency Gap at One-half the Local Electron
Gyrofrequency. (a) Emissions detected from 1531 to 1613 UT on
September 29, 1979. The satellite was at a radial distance of 6.9 RE near
1400 local time. (b) Emissions detected from 2342 on April 14, to 0010
UT on April 15, 1979. The satellite was at a radial distance of 6.5 RE
near 1015 local time. (c) Emissions detected from 0603 to 0641 UT on
August 4, 1979. The satellite was at a radial distance of 5.5 RE near 0700
local time. (d) Emissions detected from 101 to 1145 UT on December
30, 1979. The satellite was at a radial distance of 7.5 RE near 1430 local
time. The arrow on each frequency scale points to one-half the local
electron gyrofrequency.
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4. LIGHTNING GENERATED WHISTLERS

Lightning generated whistlers are rarely present in the broadband data from the

SCATHA satellite. Only 5 broadband data acquisitions in 1979 and 17 in 1980 showed

examples of lightning generated whistlers [Koons, 19851. The whistlers that were

detected occurred during local afternoon and evening at the lower range of radii covered

by the satellite orbit. They were also predominantly detected during the Northern

Hemisphere summer season. The satellite was most likely within the plasmasphere each

time the whistlers were detected. The SCATHA data have convincingly shown that

lightning generated whistlers are rarely detected near the equatorial plane in the outer

magnetosphere.

C. ELECTRON CYCLOTRON HARMONIC WAVES

Roeder and Koons [1989) reported a survey of the spatial distribution of ECH

waves observed by the AMPTE-IRM and SCATHA satellites. For completeness, Fig. 12

from that paper, showing the spatial distribution of ECH waves as observed by the

SCATHA satellite, is included here as Fig. 8. It shows that ECH waves occurred

relatively infrequently and only above a radius of 6 RE from 2100 to 0900 LT.

Strong ECH waves are closely confined to the magnetic equator [Christiansen et

al., 1978; Gough et al., 1979]. Although the data in Fig. 8 are not sorted by magnetic

latitude, they were predominantly taken at low magnetic latitudes. The survey contains

813 samples (data acquisitions). Thirty-nine percent are below 5 deg magnetic latitude,

and 67% are below 10 deg magnetic latitude.

ECH emissions in the outer magnetosphere are often cited as the pitch angle

scattering mechanism responsible for the diffuse auroral precipitation [Kennel and

Ashour-Abdalla, 1982]. The generally low frequency of occurrence for ECH waves

shown in Fig. 8 may have important implications for the theory of the diffuse aurora.

22



NOON

0.7

0.5

DUSK k,,DAWN 04' ILl0.5 c:1

00.4

23.

:............

...:..:.:::.:.::,::.:..:.: ?...:.::.::..::.:...........
. .. *.° . ... . 0

MIDNIGHT

Fig. 8. Frequency of Occurrence of Electron Cyclotron Harmonic Emissions as a
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D. UPPER HYBRID WAVES

The upper cutoff frequency, 5 kHz, for this survey is too low to observe the

electrostatic waves that have been reported at the upper hybrid frequency. Kurth et al.
[1979] report intense waves at the upper hybrid resonance frequency occurring just

outside the plasmapause about 10% of the time. Mosier et al. [1973] report similar

observations inside of the plasmasphere.
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IV. CONCLUSIONS

We have presented spatial distribution maps showing the occurrence of a variety

of ELF/VLF waves from 100 Hz to 5 kHz near the equatorial plane between 5 and 8 RE.

We find a higher frequency of occurrence of chorus emissions than found in earlier

surveys. We attribute this to the higher sensitivity of the SCATHA VLF receiver.

The most surprising feature of these maps is a general lack of wave activity in the
18-21 h local time sector. The diffuse aurora is a persistent feature of the aurora at the

base of the field lines that thread this region. If we assume that the pitch-angle scattering
mechanism responsible for the diffuse aurora is the same at all local times, we conclude

that the electrons responsible for the diffuse aurora are not pitch-angle scattered by any

type of plasma waves in the frequency range from 100 Hz to 5 kHz near the magnetic

equator.
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