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1. Introduction

The high-frequency modulation of diode lasers has been a subject of active
research for signal transmission in digital and analog fiberoptic communica-
tions, fiberoptic links, delay lines, and phased array beam steering. Recently
high-frequency intensity modulation of InGaAsP has achieved bandwidths of
23 GHz [ 1-21. The widespread use of semiconductor lasers for microwave
fiberoptic links has stimulated interest in the investigation of spectral charac-
teristics of these devices under high-frequency modulation.

Spectrum broadening with increased lasing modes and definite enhancement
under high-speed modulation conditions were first pointed out for GaAs
lasers 131. This broadening can drastically reduce the transmission band-
widths of optical communication systems because of material dispersion in
the fiber. It has been observed that the wavelength of a single longitudinal
mode shifts and broadens with changes in modulation current for the same
frequency of modulation [4-5]. This behavior is referred to as dynamic
wavelength or frequency shift and is a major obstacle preventing the realiza-
tion of an ultra-high-quality communication system [6]. The dynamic line
broadening with current modulation is due to the variations in carrier density,
resulting in refractive index changes which cause oscillation frequency shifts
[7]. The dynamic line broadening from frequency chirping is intrinsic to any
laser diode, and it may be possible to use controlled chirping to achieve pulse
compression and dispersionless transmission in optical fibers to overcome
this problem.

This report gives an account of spectral modulation characteristics of a GTE
1.3-iim InGaAsP vapor-phase-regrown buried-heterostructure (VPR-BH)
laser under modulation in the 2- to 18-GHz range. The modulation depth and
signal outputs were monitored with fast photodiodes and a fast oscilloscope.

2. Experimental Setup
Figure 1 shows the setup used to study the spectral modulation characteris-
tics. The setup consists of the following: GTE InGaAsP laser diode, current
supply, temperature controller, bias tee, rf power supply, tuner, beam splitters
(BS), Spex 1701 grating spectrometer, Burleigh RC-60 scanning Fabry-Perot
(FP) interferometer, ultra-high-speed InGaAs/InP photodetector (PD) made
by GTE, digital voltmeter, amplifier, other types of PIN diodes, X-Y plotter,
oscilloscope, and spectrum analyzer. The laser generally gives a multimode
spectrum for a given current above the threshold and the--fore it is important
to use a grating spectrometer to select a single lasermod., with high resolution.
The FP interferometer measures fine frequency shifts and displays the details
of the optical spectra with a free spectral range of 15 GHz. The sweep mode
of the FP has the advantage of showing the dynamic spectral changes on the
oscilloscope. One of the beams split by the second beamsplitter is made to fall
on the extremely fast photodetector and t. detected frequency is measured
with the spectrum analyzer. The other beam is detected by a PIN detector and
the output is plotted.
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3. Theory

Rate equations are used to describe the carrier and photon density of semicon-
ductor lasers. The generalized multimode rate equations which can be applied
to a single mode case 18-91 are given by

dN = - RqN) - vgr gi Si (1)

dt eV

and

dSi vs(T.j-aT)Sj , (2)
dt

where N is the carrier density, ! is the injection current, e is the electron charge,
V is the active layer volume, R(N) is the total recombination rate, v9 is the
photon group velocity, t is the confinement factor, S. is the photon density in
the longitudinal mode i, g. is the net gain of mode i, and aTis the optical loss.
Spontaneous emission haG negligible contribution into the lasing mode and is
therefore omitted for analysis above the lasing threshold. The net gain, g,
which is the sum of a linear term, G(N), including the parabolicity factor, Ad,
and a generalized nonlinear term, LIISI, with parameter c Y is given by

gi = G(N) - AG2 - e.i j Sj . (3)

From frequency modulation index measurements it can be directly verified
that the gain saturation term ,c S is present and makes the dominant
contribution to the intensity modufafion factor.

The total photon density modulation response (AS)2 with a frequency .0 is
given by

_(A_/2SF (4)

VgT [(w ,2 )2F+ y2w2J
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where the resonant frequency, wo, is described by

i =v2ray dGS (5),dNs ()

where dG/dN is the differential gain and S = ES. The damping factor, Y, is
given by

y= (6)

and

AV + CLJ&'S, (7)
i j

where t = [I/(aR/aN)] is the differential carrier lifetime at the lasing
threshold, 0. = S/S is the normalized photon density in mode i, and S is the
total photon! density.

The resonance frequency and damping factor play an important role in
determining the dynamic response of the diode lasers. However, it is widely
known that the dynamic response of InGaAsP diode lasers cannot be pre-
dicted [ 10-12] by use of the laser rate equation with only the linear gain term.
The relaxation oscillation damping due to the linear term alone is much
weaker. Therefore, to account for the strong damping, other nonlinear effects
must be taken into consideration.

Assuming that the device is under sinusoidal small signal modulation, AS =
(AS) 0 el"at a total bias photon density S. Performing small signal analysis on
equations (1) and (2) with the assumption that dAG/dN is negligible, we get
the following:

+I={gxdG Y I ..,.,+(8

'dN S

where &V is described by the total photon density modulation. Here the gain
change dG/dN is numerically larger than the wavelength dependent gain
change from the longitudinal modes.

The incremental optical frequency change Ay is related to the carrier density
change [131 by

4__- =._.dn'8V, (9)
V ng dNV

where n is the real part of the refractive index and n is the group index. The
mode dependence of Av is given predominantly by the wavelength-depend-
ence of dn'/dN. If the instantaneous frequency of the electric field, E(t), of
each longitudinal mode is v + Av, then the electric field can be written as
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Et) -- Edt) eiv W, (10)

where the rate of change of phase is given by

V = 2n(v + Av) . (11)

The electric field under small signal sinusoidal modulation at frequency 0) is
given by

Et) = Eoei(2Xvt +P 0,),) (12)

where P3 is the FM index and is given by

P = 2 r A vtd (13)

Using equations (8), (9), and (13) we can obtain

=(k +g ,, (14)

where m is the AM index given by m = IAS/SI and a is defined as (4rX).(dn'/
dN)(dG/dW). The total photon density modulation, AS, is involved in the
amplitude modulation index because the carrier density modulation, &V, is
described by AS as in equation (8). The quantities ac and P3 can be wavelength
dependent (mode dependent) through the wavelength dependence of dn 7dV.

4. Results and Discussion

The frequency-modulated optical wave is represented by

E = E0 e Vf 2 o I + Psin (xfQ t) ,

where

=AF
f.n

f0 is the center frequency, AF is the maximum frequency deviation, , is the
modulation frequency, and P3 is the frequency modulation index. The laser
diode has a particular threshold current (I ) of about 40 mA maximum, with
the single longitudinal mode wavelength at 1.35 pm and a typical lasing
wavelength of 1.30 gm, which was found to be the case in our spectral
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analysis. The lasing spectra under various dc current values are given in figure
2.

The multimode spectrum due to spontaneous emission shows maximum peak
intensity for a dc current of 115 mA. The semiconductor laser behaves as a
regenerative noise amplifier [ 14] and all modes for which the round-trip gain
is positive are amplified. Once the threshold is reached, the gain is approxi-
mately clamped, and power in the side mode saturates. In this model [ 151 the
mode suppression ratio (ratio of main mode power to power of most intense
side mode) increases continuously with an increase in the laser power.
However, with an increase in the laser power, not only does the longitudinal
mode move across the gain curve, but also several other phenomena, such as
spatial and spectral hole burning, can start to influence the longitudinal mode
behavior.

According to equation (12) the amplitude and phase of the optical field
undergo sinusoidal modulation when an rf current is applied to the laser. This
simultaneous change in phase or frequency modulation is governed by the
linewidth enhancement factor and its origin in the index change that invari-
ably occurs when the optical gain changes in response to variations in the
carrier population. In the experiment the free spectral range (FSR) of the FP
was 15 GHz with a finesse greater than 60. In the seven pictures in figure 3,
observations can be made about the changes in the spectrum as the modulation
depth is increased in steps.

Figure 3(a) shows the laser spectra with no modulation input to the driver. The
three peaks are successive longitudinal modes of the FP as one end plate is
mechanically vibrated. We obtain the high resolution spectrum by selectively
choosing it at a longitudinal mode and then scanning through the FP and
optically detecting and analyzing with a fast oscilloscope. For the rest of the
pictures, sinusoidal modulation at a frequency of 8 GHz has been applied at
various power levels as indicated. Figure 3(g) demonstrates clearly frequency
modulation of the laser since the carrier gets completely suppressed. This is
frequency modulation with an index of 2.3, corresponding to the first zero-
order Bessel function.

The intensity of the zero-order sideband under modulation is given by

I Jo(P) I + I,(R2)Ji(P)f
where J0and J, are Bessel functions and M- is the amplitude modulation in-
dex of that particular mode. For the small signal modulation the intensity of
the zero-order sideband is well approximated by Io(3)12. If the modulation is
absent, the intensity is given by LJ0(0)12. Thus the measurement of the zero-
order sideband intensity ratio with and without modulation allows index 03
calculation if m is small. If so, then absence of amplitude modulation can be
seen on the detector without a spectrum analyzer. This experimental result
shows that the effect of current modulation of the laser results at first in
frequency modulation of the output, and only with further increase in
modulation drive level and/or readjustment of the laser bias current does

9
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Figure 2. Observed spectra of lnGaA:: lasr for various dc currents.
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Figure 3. Spectra of frequency modulated InGaAsP laser: I = 135 mA, X0= 1.30 gm, FSR = 15 GHz.
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modulation drive level and/or readjustment of the laser bias current does
amplitude modulation occur.

In another experiment modulation frequencies were varied after the rf power
being applied was kept constant for a frequency modulation index of 0.50.
The results are shown in figure 4.

It can be seen clearly that frequency modulation increases up to 10 GHz, then
decreases for higher frequency of modulation. These changes, which can be
clearly seen, may be due to the nonlinear gain term in equation (3) so there
might be changes occurring in the carrier density and refractive index.
Although the present frequency modulation measurement does not identify
the physical mechanism for the nonlinear gain, it does provide some accurate
ways to analyze the modulation indexes.

5. Conclusions

We have demonstrated a high-resolution spectral measurement setup which
has allowed us to successfully observe frequency modulation properties of a
buried heterostructure 1.3-.m InGaAsP injection laser. Frequency modula-
tion up to 8 GHz with a modulation index of 2.4 has been demonstrated. The
number of lasing modes increased with increasing modulation depth, espe-
cially beyond 100-% modulation depth. Also, direct modulation of the same
laser was performed up to 18 GHz with an rf power of 5 mW, and it was
observed that the frequency modulation index went from 0.7 to nearly 0 as the
modulation frequency was increased. These measurements indicate that the
nonlinear gain effects mainly influence the modulation characteristics of this
semiconductor laser. The smaller damping factorof a multi-longitudinal laser
compared to that of a single longitudinal mode laser suggests that wider
maximum bandwidths and modulation indexes can be achieved in multimode
devices. Also for this laser, for higher drive currents the spectrum remains
multimode with strong sidebands. However, sidemode suppression may not
be an important criterion for high-frequency modulation. Currently this laser
is the fastest (= 23 GHz) on the market.
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