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The contents of these Proceedings are primarily the viewgraphs shown at The
Second Symposium on GPS Applications in Space, held at the Geophysics
Laboratory (Air Force Systems Command), Hanscom Air Force Base,
Massachusetts, on 10-11 October, 1989, In order to enhance the
informational content of these volumes, each set of viewgraphs is preceded
by a synopsis that was extracted from a recording of the audible portion of
the author's presentation. In some cases, the author provided his/her own
abstract or a complete paper and, naturally, these were used instead. Also
included are the post-presentation discussions between author and audience.
However, the transcriptions of these are unfortunately not always complete
as some questions from the audience were not recorded clearly. Each author
was given the opportunity to review the synopsis, albeit with short response
time; therefore, responsibility for any misrepresentations or errors in the
synopses rests with the editor. Following the formal presentations, Thomas
Yunck (Jet Propulsion Laboratory) 1led an open discussion on Selective
Availability and Anti-Spoofing and how these affect a variety of GPS
applications in space. There is no synopsis of this discussion (it was not
recorded), but a set of viewgraphs is included.

I wish to extend my sincerest thanks and appreciation to all participants of
the symposium and especially to the speakers for making this a successful
and productive symposium. In particular, 1 thank the co-convenors, Dr.
Triveni N. Upadhyay (Mayflower Communications Company, Inc.) and Thomas
Yunck (Jet Propulsion Laboratory) who were the driving forces behind the
agenda of the symposium and ensured that all relevant private industries and
government agencies were well represented.

Christopher Jekeli

Accession For

RTIS GRAXI §

DTIC TAB (]
Unannounced (]
Justification . ]

By
Distribution/

Avallability Codes

Avail and/or
Dist Special

M| e




TABLE OF CONTENTS - VOLUME I

Foreword . . . ¢ ¢« 4+ 4 4 4t 4 e e e e e e e e e
Conference Agenda . . . . + « ¢ « « « + « o o o

Geoscience From GPS Tracking By Earth Satellites,
William G. Melbourne . . . . . . . .

The GPS Precise Orbit Demonstration (POD) Experiment,
E.S. (Ab) Davis . . .+ .« v« ¢ e e e e e e e e

NRL Activities On Spaceborne GPS Receivers,
Ronald L, Beard , . . . e e e e

GL's Proposed Satellite-to-Satellite Tracking Mission Using GPS:
STAGE (STS-GPS Tracking for Anomalous Gravitation Estimation),
Christopher Jekeli . . . . . . . . . . . . . .

GPS Attitude Determination Activities At The Naval Surface
Warefare Center,
A]an G. Evans L] . L2 L] . L] L] L] L L] . L] L] .

GPS Application To NASA Upper Stages,
A. Wayne Deaton . . . . .+ + ¢ ¢ ¢ ¢ e e e e e .

Space Station Freedom GPS Implementation Plans - An Overview,
Penny E. Saunders . . . . . . .+« ¢« « o+ e

Recent Results In High-Precision GPS Orbit Determination,
Stephen Lichten, Susan Kornreich Wolf, Willy I. Bertiger,
ulf J. Lindqwister, and Geoff Blewitt . . . . .

Closed Loop Orbit Trim Using GPS,
Penina Axelrad and Bradford W. Parkinson . . . . .

Global Gravity Field Mapping With GPS Tracking Of The Space
Shuttle,

George J. Priovolos, Triveni N. Upadhyay, and Christopher Jekeli

Techniques Of GPS-Based Precision Orbit Determination For Low
Earth Satellites,
S1en c. wu L] L] L] . * . . . - L] . . . L[] L] L] .

Ambiguity Bootstrapping To Determine GPS Orbits And Baselines,
Charles C. Counselman . . . e e e e e e e e e

Status Of DARPA Guidance And Control Program,

Larry Stotts and Joseph M, Aein . . . . . . . . . .
"The Multipath Simulator", A Tool Toward Contro]]ing Multipath
George A. Hajd . . .+« « « « « « « + . . e e
v

iii

vi

25

43

57

65

79

95

107

135

161

179

193

205

229




TABLE OF CONTENTS - VOLUME II

Autonomous Integrated GPS/INS Navigation Filter For Advanced
Spacecraft Applications,
Triveni N. Upadhyay, George J. Priovolos, Harley Rhodehamel

An Experiment In Attitude, Position And Velocity Determination
With Rogue GPS Rece1vers,
Tom K. Meehan

Preliminary GPS Po1nt1ng Data Results,
Phil Ward . . .

Algorithms For Spacecraft Attitude Determination With GPS,
Duncan B. Cox, Haywood S. Satz, Ronald L. Beard, and
G. Paul Landis e e e e e e e e e e

Preliminary Experimental Performance Of The TOPEX Global
Positioning System Demonstration Receiver (GPSDR),
Lance Carson . . . . . . . . .

Design and Performance For The GPS Receiver Unit (GPSRU) For The
NASA Orbital Maneuvering Vehicle,
Roger M. Weninger and Richard Sfeir

Applications Of GPS To Space-Based Tethered Array Radar,
Horst Salzwedel, Ken Kessler, and Fred Karkalik .

Special Purpose Inexpensive Satellite (SPINSAT) GPS Receiver,
Roger M. Weninger, Richard Sfeir, and Ronald L. Beard

The Defense Mapping Agency's Operational GPS Orbit Processing
System,
James A. Slater .

A Shuttle Experiment To Demonstrate 6-Degree-0f-Freedom
Navigation With GPS,

Duncan B. Cox, Steven Gardner, and Neal Carison .
Large Space Structure Displacement Sensing Using Advanced GPS
Technology,

Gaylord K. Huth .

Alternatives to Becoming an "Authorized User",
Thomas Yunck « . . . .+ . o+ o o 0 .0 e e e e e e

List of Attendees and Addresses

vi

245

271

281

303

323

333

343

363

371

415

437

445
453




SECOND SYMPOSIUM
ON
GPS APPLICATIONS IN SPACE

Agenda
10 October 1989

9:00 Registration

9:45 Welcome Air Force

10:00 - 12:00 Session I: SPACE MISSIONS WITH GPS

Chairman: Dr. Christopher Jekeli
Geophysics Laboratory (AFSC)

1. W.G. Melbourne (Jet Propulsion Laboratory): "The GPS Geoscience
Instrument on EOS and Space Station"

2. Ab Davis (Jet Propulsion Laboratory): "The GPS Precise Orbit
Demonstration on TOPEX/POSEIDON"

3. Ron Beard (Naval Research Laboratory): “NRL Activities on Spaceborne GPS
Receivers"

4. Chris Jekeli (Geophysics Laboratory, AFSC): "GL's Proposed Satellite-to-
Satellite Tracking Mission Using GPS"

5. Alan G. Evans (Naval Surface Warfare Center): "GPS Attitude
Determination Activities at the Naval Surface Warfare Center"

6. A. Wayne Deaton (NASA Marshall Space Flight Center): "GPS Application to
NASA Upperstages”

7. Penny Saunders (NASA Johnson Space Center): "Space Station GPS
Implementation Plans and Overview"

12:00 - 13:30 LUNCH NCO Club

vii




13:30 - 17:00 Session II: ORBIT DETERMINATION WITH GPS
Chairman: Dr. Thomas Yunck
Jet Propulsion Laboratory

1. S.M. Lichten, Susan Kornreich Wolf, Willy I. Bertiger, UIf J.
Lindgwister, and Geoff Blewitt (Jet Propulsion Laboratory): "Recent
Results in High Precision GPS Orbit Determination"

2. Penina Axelrad and B.W. Parkinson (Stanford University): "Closed-Loop
Orbit Trim Using GPS"

3. George J. Priovolos*, Triveni Upadhyay*, and Christopher Jekeli**
(*Mayflower Communications, **Geophysics Laboratory (AFSC)): "Global
Gravity Field Mapping with GPS Tracking of the Space Shuttle”

4. S.C. Wu (Jet Propulsion Laboratory): "Techniques of GPS-Based Precision
Orbit Determination for Low Earth Satellites"

BREAK

5. C.C Counselman (MIT): "Ambiguity Bootstrapping to Determine GPS Orbits

and Baselines"

6. Larry Stotts* and Joe Aein** (*DARPA, **Rand Corporation): "Status of
DARPA GPS Guidance and Control Program"

7. George Hajj (Jet Propulsion Laboratory): "The Multipath Simulator, A
Tool Toward Controlling Multipath"
11 October 1989

9:00 - 12:00 Session III: ATTITUDE DETERMINATION WITH GPS
Chairman: Dr. Triveni Upadhyay
Mayflower Communications Company, Inc.

1. Triveni Upadhyay*, George Priovolos*, Harley Rhodehamel*, A. Wayne
Deaton** (*Mayflower Communications, **NASA Marshall SFC): "Autonomous
Integrated GPS/INS Navigation Filter for Advanced Spacecraft
Application"

2. Tom Meehan (Jet Propulsion Laboratory): "An Experiment in Attitude,
Position, and Velocity Determination with Rogue GPS Receivers"

3. Phil Ward (Texas Instruments): "Preliminary GPS Pointing Data Results"
4. Duncan Cox, Jr.*, Haywood W. Satz*, G. Paul Landis**, and Ronald Beard**

(*Mayflower Communications, **Naval Research Laboratory): "Algorithms
for Spacecraft Attitude Determination with GPS"

BREAK

viii




Lance Carson (Motorola Government Electronics Group): "Preliminary
Performance of the TOPEX Global Positioning System Demonstration
Receiver (GPSDR)"

Roger M. Weninger and Richard Sfeir (Rockwell): "Design and Performance
of the GPS Receiver for NASA Orbital Maneuvering Vehicle"

Horst Salzwedel, Ken Kessler and Fred Karkalik (System Control
Technology): "Application of GPS to Space-based Tethered Array Radar"

12:00 - 14:00 LUNCH

14:00 - 16:00 Session IV: OTHER APPLICATIONS AND TOPICS

Chairman: Dr. Christopher Jekeli
Geophysics Laboratory (AFSC)

1. Roger Weninger*, Richard Sfeir*, and Ronald Beard** (*Rockwell
International, **Naval Research Laboratory): "SPINSAT GPS Receivers"

2. James Slater (Defense Mapping Agency): "The Defense Mapping Agency's
Operational GPS Orbit Processing System"

3. Duncan Cox, Jr.*, Steven Gardner*, and Neal Carlson** (*Mayflower
Communications, **Integrity Systems): "A Shuttle Experiment to
Demonstrate Six-Degree-of-Freedom Navigation with GPS"

4. Gaylord K. Huth (Axiomatix): "Large Space Structure Displacement Sensing
Using Advanced GPS Technology"

BREAK

5. PANEL DISCUSSION (Triveni Upadhyay and Thomas Yunck)

6. CLOSING REMARKS (Christopher Jekeli)

ix




GEOSCIENCE FROM GPS TRACKING BY EARTH SATELLITES

William G, Melbourne
JET PROPULSION LABORATORY

This paper reviews some of the potential geoscience applications available to
NASA satellite missions of the 1990's whose manifests include a GPS flight
receiver. The applications exploit the greater GPS viewing angle given to an
observing platform at altitude as well as its unique atmospheric environment.
They include improvements in Earth-surface baseline determinations, satellite
ephemeris prediction, satellite attitude determination, and gravity modeling,
temperature profiling of the atmosphere, and ionospheric tomography. Some of
the missions that offer opportunities for these types of GPS geoscience appli-
cations include TOPEX/POSEIDON (primarily a satellite altimetry mission for
oceanography), ARISTOTELES (a mission to map the Earth's gravity field using a
gravity gradiometer), GRAVITY PROBE-B (general relativity experiment), EOS-A
and EOS-B (NASA's Earth Observing ptatforms), EPOP (European version of EOS),
and SPACE STATION. The geoscience to be derived from GPS-based platforms in
space relies on all the major system elements, including the full constella-
tion of GPS satellites, a global standardized ground tracking network, the
type of flight receiver, and the computing abilities. Much of these are al-
ready being honed for the upcoming TOPEX/POSEIDON mission where orbital posi-
tion (radial) in the decimeter range is desired to complement the altimeter
precision of a few cm.

The TOPEX/POSEIDON satellite, whose mission is to provide accurate sea surface
heights for the study of ocean currents and tides, will, during its projected
life, provide hundreds of repeat orbits at ten-day intervals and ground separ-
ation of about 300 km (at the equator). Precise orbit determination at the
estimated 13 cm level or better using the GPS will begin to penetrate the
barrier to mapping the larger-scale boundary currents (several thousands to
ten thousand km).

The EOS platform will have three GPS antennas (fore, aft, and center) to en-
able maximum viewing of satellites including those that rise and set on the
horizon, to allow attitude determination of the platform, and to perform the
standard navigation function. The full system of EOS platforms and data re-
duction centers will provide more rapidly (improved resolution in time) pre-
cise geodetic quantities and geophysical signatures, such as precise baselines
and Earth rate and orientation. Other applications enabled by monitoring
radio occultations of the GPS satellites (by the Earth) include atmospheric
temperature profiling, three-dimensional ionospheric tomography, and acoustic
gravity wave detection. A major challenge presented here is the enormous data
processing required to acquire, sense, and decipher the signals of thousands
of rising and setting GPS satellites each day.

The occultation observation lasts only about one minute during which time the
GPS phase residual due to the presence of an atmosphere increases by up to 104
cycles, a fairly large signal. This 1is related by Snell's law to the atmos-
pheric index of refraction as a function of radial distance. The mass density
of the atmosphere is proportional to the molecular number density which in
turn is proportional to the refractivity. Integrating the hydrostatic equa-
tion yields the pressure which then by thermodynamic principles leads to the
vertical temperature profile. The predicted accuracy of this technique is on
the order of a few tenths of Kelvin degrees for altitudes between 10 and 30
km. These will be valuable data for comparison with other techniques and for
calibration purposes.

TGN
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THE GPS PRECISE ORBIT DEMONSTRATION (POD) EXPERIMENT

E.S. (Ab) Davis
JET PROPULSION LABORATORY

An experiment will be conducted by JPL to evaluate the performance and opera-
tional potential of using GPS to determine very precise orbits of Earth-orbit-
ing satellites. The satellite mission TOPEX/POSEIDON will serve as catalyst -
its primary operational orbit determination will be accomplished by a laser
tracking system. The goal is to demonstrate sub-decimeter accuracy with GPS.

TOPEX/POSEIDON is to be launched aboard an ARIANE rocket some time in 1992 and
achieve a circular orbit at 1334 km altitude and 63° inclination. The experi-
ment requires observation of L1 and L2 pseudorange and carrier phase using a
180° field-~of-view antenna tracking up to six satellites from rise to set with
an accuracy of better than 1 cm in the phase and 10 cm in the range. The data
will be processed in the double-difference mode from three to six ground sta-
tions of the DSN network (whose positions must be known to better than 5 cm;
this is achievable using VLBI).

The data set will consist of 90 days' worth of GPS tracking data which will be
used to simultaneously solve for the orbits of the 21 GPS satellites and
TOPEX/POSEIDON, as well as the ground stations. All software modeling will be
done at the subcentimeter level. It is estimated that with 3 ground stations,
the orbital uncertainty is comparable to the accuracy obtainable with the
laser tracking system (15 to 25 cm), but will improve to 5 to 10 cm using all
six ground stations.

The important data collected for post processing are the L1 and L2 phase and
pseudorange time-tagged to within a microsecond. The estimated performance of
the flight receiver with respect to random and uncalibrated systematic errors
is expected to exceed all requirements for Doppler and pseudorange, as well as
TOPEX clock calibration, by a wide margin, except in the case of the systema-
tic error for Doppler which is just outside the margin of our requirement.
This will require corrective measures during post processing but we do not
foresee any problem in doing this.

The GPS antenna design on the TOPEX satellite is driven by the field-of-view
requirements, Originally, directly on top of the satellite, where it was
subjected to severe multipath signals from the TDRSS antenna and solar panel,
the GPS antenna now is located on a boom to suppress the muitipath 20 db below
the direct signal.

The strategies for processing the data to produce the POD results include the
dynamic solution, the kinematic solution (geometric), and a combination of
these. Using two-hour and six-hour arcs and considering the sensitivity (of
the dynamic solution methods) to uncertainty in the gravity model, all methods
will achieve subdecimeter accuracy. The longer arcs will yield better accura-

cy.

The POD experiment relies on the efforts of many groups including DOD (respon-
sible for deploying GPS) and the international organizations responsible for
filling out the six-station DSN network. The flight receiver is currently in
the hardware integration phase and at JPL the POD software is in the coding
phase.




Discussion:

Question: On the multipath viewgraph, where is the direct signal and where is
the multipath signal?

Answer: The dots correspond to the direct signal. For a particular zenith
angle, if there is a direct signal from a satellite then the multipath associ-
ated with that signal is plotted directly below the dot even though the zenith
angle of the multipath is different.

Question: Can you predict the multipath reasonably well knowing the geometry
of the satellite and make corrections?

Answer: We're not sure of the accuracy of this multipath model. We first need

real data to calibrate the model geometrically; then we could do what you
suggest.
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NRL ACTIVITIES ON SPACEBORNE GPS RECEIVERS

Ronald L., Beard
NAVAL RESEARCH LABORATORY

For the last couple of years, under an Air Force project, we have been looking
at the development of a generic GPS receiver for military space applications
capable of very precise attitude determination. The original accuracy re-
quirement was at the microradian level wusing GPS alone without inertial
aiding.

One of the major challenges was to use the Virginia Slims concept which calls
for a very small, unobtrusive receiver which would be easily integrated into a
generic system. One of the problems with this 1is the broad range of user
satellite configurations. Other problems include the stringent requirements
for radiation hardening. A significant aspect was our desire to integrate
this with a rubidium standard in order to get a very low noise coherent signal
source.

The current status of the development 1is in the first out of three phases
concerning definition and design. In this phase we plan to do a ground demon-
stration to determine experimentally what sort of attitude accuracy we can get
from this receiver. The results of these tests will go toward developing a
flight model which will eventually be flown and tested.

The candidate, generic user that we have identified is a satellite in a 700 km
polar orbit with good antenna field of view assuming the full GPS constella-
tion is up. We assume that 3 to 6 antennas will be available with a maximum
baseline of 5 m. We have allowed for a variety of geometries for the antenna
lTocations but assume the satellite to be very rigid (one cannot tolerate bend-
ing of booms etc. for this type of accuracy).

The basic design is assumed to be a two frequency system with Tow multipath,
compietely digital (digitize as soon as possible to eliminate receiver bi-
ases). We assume a set of 15 - 20 continuous channels so that we would be
looking at every channel simultaneously. The antennas, we believe, will offer
the greatest technical problem, specifically with respect to eliminating the
multipath,

The design concept allows continuous attitude determination without inertial
aiding, however we are expanding our investigation to include inertial system
interfaces. We have also evaluated some of the different commercial and
spaceborne rubidium standards. We originally thought to use small militarized
units, but due to their instability, turned to EG&G to have them redo the
rubidium units they developed for GPS with some improvement to meet our speci-
fications.

We have done some experiments with our (NRL) receivers, as well as the
Motorola Golden Eagle receivers (on 1loan). Some of the results using the
Motorola receivers are shown in the figure, where with double differencing to
eliminate as many errors as possible, we got residuals in baseline determina-
tion of about 10 to 20 mm. In order to do attitude determination in the mi-
croradian regime, one would have to do at least an order of magnitude better.
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I want to mention some related efforts at NRL. NRL is also the Naval Center
for Space Technology (NCST). There is a project called Sea Launch and Recov-
erable Booster System where rockets are launched out of the water to put sat-
ellites in orbit and the stages are recovered. The concept is only in the
beginning phases and includes using GPS for inertial alignment before the
Taunch and for trajectory inertial guidance on the way up. We also provide
the Office of Naval Research with engineering and technical support on some of
their contracts, specifically one with Rockwell which is designing a receiver
using DARPA's Chipset for the ONR's SPINSAT.

Discussion:

Question: What was your motivation to use GPS alone rather than with an iner-
tial system?

Answer: The sponsor, the GPS Joint Program Office, wanted to see how much one
could get out of GPS.

Question: What is the requirement in terms of accuracy on carrier phase. How
does this translate into attitude accuracy? I think there are better results
on baseline accuracy than what you showed - are those 1 second samples?

Answer: The Motorola data were 6 second samples. If you work through the
calculations, you'll find that a 5 m baseline needs to be known to 6 microns
for microradian attitude accuracy. This is a rather difficult goal to meet.
These were just examples, there may be better results.

Question: Do you have each of the 3 - 6 antennas feeding to more than one
channel or each of the 15-20 channels receiving signals from more than one
antenna?

Answer: All antennas feed into one receiver, so you might have four different
channels for one antenna.
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GL'S PROPOSED SATELLITE-TO-SATELLITE TRACKING MISSION USING GPS:
STAGE (STS-GPS TRACKING FOR ANOMALOUS GRAVITATION ESTIMATION)

Christopher Jekeli
GEOPHYSICS LABORATORY (AFSC)

This paper builds on a similar presentation given at the first GPS symposium
on applications in space; it attempts to better define the mission concept and
some results of an error analysis based on a refined error budget are also
given,

In concept, the Shuttle is to be tracked by the constellation of GPS satel-
lites thus yielding the total acceleration vector of the Shuttle with respect
to the GPS satellites. An IMU on board the Shuttle will sense all non-gravi-
tational forces and these data are subtracted from the GPS-derived accelera-
tions to obtain the gravitational signal. The STAGE mission is primarily a
demonstration since the Shuttle presents the least desirable environment for
precise gravitation measurements. On the other hand, it offers a low-cost,
lTow-altitude, and hardware-retrievable opportunity to test the integration of
GPS and IMU for a variety of applications.

The essential hardware for the mission includes a GPS receiver, an IMU (two
TDF gyros and a three-axis accelerometer package), a microprocessor, and a
recorder. Although two antennas are available on the Shuttle, only one is
required for STAGE (two can be used for other applications). Two options for
data retrieval are built into the system to allow flexibility with Shuttle
integration (telemetry, probable not permitted on the Shuttle, and onboard
recording of data).

The error budget for a single line-of-sight acceleration component at altitude
has been refined from previous presentations. The erstwhile dominant error
due to satellite clock bias can be eliminated by performing single difference
observations; all error sources now contribute approximately equally (hence,
optimally) yielding a total error for single differences of about 0.3 micro-g.
It is noted that the IMU errors shown here represent performance levels for
the relatively noisy Shuttle. Much less IMU error is expected on a free-fly-
er. It is also noted that the differential tracking technique (either single
or double differences) does not require tracking the Shuttle from the ground
(see figure); therefore, only a few, say six, globally distributed tracking
stations are needed and are, in fact, already in existence for GPS.

A covariance analysis was performed to estimate the accuracy of calculating
gravity on the Earth's surface from gravitation data at altitude. Both STAGE
and a polar-orbiting, free-flyer at 160 km altitude (GEN-GPS) were considered.
Although STAGE would yield quite respectable accuracies and definite improve-
ment in gravity models where today few data exist (such as Asia, Africa, S.
America), the full benefit can be realized with a free-flyer at the lower
altitude. Further enhancement of the error budget could make this a very
attractive alterrnative to other currently envisaged gravity mapping missions.

Originally designed for gravity field measurement, our proposed IMU/GPS system
clearly has a synergism demonstrable for other applications. In particular,
its utilization for real-time navigation, tracking and attitude control would
benefit missions requiring rendezvous and docking maneuvers, as well as space-
based surveillance and radar.
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Discussion:

Question: Is the 1 m position accuracy of the Shuttle only for the case when
the shuttle is in the non-thrust mode? Can the orbits during which it is
quiet be disjoint?

Answer: When the shuttle is in the thrust mode, it will probably be too noisy
an environment to make precise gravitational measurements. Any data we can
get, even for a number of short disjoint periods of time, will be useful to
demonstrate the concept which is the minimum goal of using the shuttle.

Question: Are the quoted gravity anomaly error estimates for anomalies on the
earth's surface?

Answer: Yes.
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GPS ATTITUDE DETERMINATION ACTIVITIES AT THE NAVAL SURFACE WAREFARE CENTER

Alan G. Evans
NAVAL SURFACE WARFARE CENTER

This is a review of work done at NSWC with respect to attitude determination
using GPS. In one of the first tests an antenna was rotated in a plane and
the Doppler change of phase was measured on a very short baseline. One reason
for mentioning this technique is that it has possible application on satel-
lites where by rotating it one can obtain orientation information using just
one antenna. Another early experiment involved two TI4100 receivers connected
to the same clock with antennas separated by 25 m. This was a static test to
determine the attitude between the two antennas by interferometric means.

Earlier this year we performed a test jointly with the National Geodetic Sur-
vey and the Defense Mapping Agency to determine astronomic azimuth. This,
too, was a static test involving several days of data to get the best results.
To convert geodetic azimuth as determined from GPS to astronomic azimuth one
requires deflections of the vertical. We used two types of vertical deflec-
tions - those obtained by conventional (theodolite) astronomic measurements
and those obtained by GPS. The latter are obtained by comparing heights above
the reference ellipsoid as determined by GPS with heights above the geoid as
determined by first-order Tleveling. The GPS vertical deflections were
computed from four baselines (solid 1lines) from 1.2 to 4.8 km in length at
Dahlgren. Compared to the conventionally obtained values there is hardly any
difference. In fact, to better assess the GPS deflections, the U.S. Naval
Observatory is determining more accurate values using their Danjon astrolabe.
The azimuths were then determined for the baselines of length 1.2 km and 8.3
km (dashed lines) using either conventional or GPS deflections and compared to
the astronomically determined azimuth. 1In both cases, the longer baseline had
the higher accuracy in azimuth, Also, the GPS deflections yielded better
results for both baselines.

In a dynamic test to determine attitude, a specially designed and built
Trimble receiver (developed under an SBIR contract) with three antennas was
put on the Yorktown. Our choice of locating the antennas was vary restricted
- the setup was adequate but not ideal. The antennas formed baselines 60 cm
and 40 cm long and we obtained azimuth accuracy of about 1.5°; the other
angles (pitch and roll) were worse mainly due to poor geometry. Although not
very accurate, I am satisfied with this first result given the constraints of
the experiment. The error sources consisted mainly of multipath. Also, there
was some antenna crosstalk; they should have been further apart. Front-end
noise remained a problem with the receivers which also had a significant dwell
time causing an error due to ship motion.

Finally, we have embarked on integrating GPS with an inertial navigation sys-
tem. Our approach is first to perform a covariance analysis for one to three
antennas (incidentally, one can get orientation information from one antenna
if the vehicle is moving and the geometry is known). We are now doing a test
vehicle validation using a dead reckoning system (not an inertial system, yet)
comprising an odometer and an azimuth gyro.

In summary, not much has changed in dynamic GPS attitude determination over

the years in terms of goals and instruments; progress is being made but we
still have far to go.
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Discussion:

Questions: What is antenna crosstalk? Are both antennas connected to the same
amplifier?

Answer: If antennas are to close they radiate from one to the other; they
should be 4 to 6 wavelengths apart. The antennas are connected to one receiv-
er but different channels; the satellites are tracked continuously, there is
no sequencing.

Question: What is the L-band noise from the ship?

Answer: The ship was pretty quiet.

Question: What kind of multipath did you see?

Answer: We did not compute it. The maximum you would see is 2 to 4 cm; it was
noticeable in the residuals.
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GPS APPLICATION TO NASA UPPER STAGES

A. Wayne Deaton
MARSHALL SPACE FLIGHT CENTER

This is a review of baseline concepts and applications of a GPS/INS integrated
navigation system for the Orbital Maneuvering Vehicle (OMV) and other NASA
upper stages.

The OMV is to be used in low earth orbit to retrieve and boost satellites for
servicing and mission launches. It will have two GPS systems with two anten-
nas. The receivers are Rockwell/Collins two-channel receivers (current base-
line). The depicted missions are compatible with the design of the OVM (pro-
pulsion and power system), but may not be the actual missions flown. An exam-
ple of an OMV mission is the servicing of a large observatory such as the
Hubble telescope. Starting at 250 nm altitude, the OMV would go to 380 nm to
retrieve the telescope, bring it down to 250 nm where it is serviced, then
boost it back up to 380 nm, and return to 250 nm. The retrieve and boost
phases must be done at very low thrust (0.002 g) and this implies long burn
arcs which can lead to large errors building up in the inertial navigation
system.

The current baseline GPS/INS system comprises an IMU (gyros and accelerome-
ters), attitude sensors (sun and horizon sensors), dynamic models accounting
for gravity and atmosphere, and a GPS receiver and navigation processor. The
accelerometer-derived inertial velocities will be supplied to the processor
which together with pseudoranges and pseudo delta ranges from GPS will derive
position/velocity updates and time and which are then used to reset the iner-
tial navigation system. During the coast phase updates are purely derived
from GPS. Updates are given once per second during the power phase, less
often during the coast phase.

Some research questions related to GPS/INS technology applications on NASA
upper stages include: Can GPS be wused to calibrate the gyros and accelerome-
ters of the IMU in the OMV (low) acceleration environment? Can GPS be used
during the coast phases for attitude updates to eliminate attitude sensors?
(We are not yet ready to make this big jump, but with some experience, perhaps
this can be implemented.) Can the integrated GPS/INS system be designed? (We
have a contract with Mayflower Communications who have more to say about this
in another presentation.)

To answer some of these questions, we plan to do an experiment to prove the
concept of GPS/INS integration. On the OMV flight, inertial navigation data
will be collected and down-linked along with the GPS data. Using post-proces-
sing an integrated GPS/INS error filter will be built. Software can then be
up-linked on board for implementation.

Other NASA upper stages where the integrated GPS/INS has application include
the lunar and mars initiatives. The 1lunar mission scenario begins with a
shuttle launch of the cargo to low earth orbit where the OMV would take it to
Space Station Freedom (SSF) for hardware integration. OMV would then deploy
the Tunar transfer vehicle which would execute its mission and return to SSF.
Within the GPS operational sphere precise GPS/INS navigation can be used to
reduce to number of course corrections and the mission time required to

l"(
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perform the aerobraking on retrun to earth orbit. Navigation at the moon will
use similar technology as used for Apollo mission. Later we may place naviga-
tion beacons on the moon to aid in navigation - these would be operationally
similar to GPS (this is all in the concept phase).

In sumary, the integrated GPS/inertial technology will augment current naviga-
tion and attitude update capability of NASA Upper Stage missions. Specifical-
ly, low earth orbit users, such as OMV, Space Station, and the Shuttle will
receive maximum benefit; but also high altitude users, such as geosynchronous
orbit platforms and lunar- and mars-return missions could use this technology
to obtain critical navigation data to complete their missions. Application of
GPS/inertial system technology provides flexibility in contingency planning by
providing more precise knowledge of the state vector which in turn offers
potentially more maneuver options. We hope eventually to eliminate the atti-
tude update sensors. Finally, the design of an onboard GPS/inertial system
will not seriously constrain the existing computing capabilities.
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SPACE STATION FREEDOM GPS IMPLEMENTATION PLANS - AN OVERVIEW

Penny E. Saunders
JOHNSON SPACE CENTER

This talk concerns the Space Station application of GPS. The Station is now
in the phase of building prototype hardware - within a few years we should be
building flight hardware. This overview will assume the baseline configura-
tion of the Station and not consider the "scrub activity" which phases down
the Station program.

Application of GPS on the Space Station include orbit determination, time
determination, and relative tracking. The organizational structure comprises
four different work packages - WP2 and WP3 are involved in this particular
development. WP3 is the responsibility of the Goddard Space Flight Center and
concerns the polar orbiting platform; WP2 is managed by Johnson Space Center
(JSC) which includes responsibility for communications, tracking, guidance,
navigation, and control system as far as GPS is concerned.

Accuracy requirements (1 sigma) for the GPS functions are: 10 m in position,
0.01 m/s in velocity, 0.013 sec for orbital period (for payload pointing), 1
psec in time. Tracking accuracy is a function of range from the Station - the
requirement is to track any GPS equipped vehicle within a range of about 37
km. The Station will do relative processing of data transmitted by vehicle.

The system architecture includes a tracking subsystem with a GPS receiver/pro-
cessor that interfaces with the GN&C, time generation system (two frequency
standards referenced to GPS), and communications & tracking systems. (There
is an interface (not shown) from the time generation sytem to the data manage-
ment system core network providing time to users throughout the Station.) The
guidance and navigatoin system provides position to all the users. GPS will
provide the primary navigation system for the Station - there are no inertial
navigation systems on the Station (there are some gyros and star trackers for
attitude determination). There are three GPS antennas, two on the starboard
boom and one on the port boom and three receiver/processors.

The mission life of the Station is about 30 years and the key updates for GPS
are scheduled at once per year so we need to devise a secure technique to
rekey the receivers using TDRSS up-links without interference to the users of
the Station which include international partners.

The schedule for engineering and integration of the tracking subsystem
includes various developments, procurements, providing specifications, doing
design aralyses and trade-off studies. Some of these are on hold due to the
scrub; one recommendation is to put all GPS activities on hold for four years.
Although a final decision has not been made, alternatives to the GPS system is
TDRSS for ground based position and velocity determination and time transfer,
Since there will be no co-orbiters under the phased down version, there are no
relative tracking requirements (the shuttle has 1its own navigation system),.
JSC is, however, lobbying hard to keep GPS a part of the Station because it
offers such versatility for mission objectives and operational requirements.
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Discussion:
Question: Instead of keyed receivers, why not just use codeless receivers?

Answer: We have looked into the issue of codeless receivers, but opted not to
utilize this technique. The reason for this decision was based on the re-
quirement for ephemeris updates from the ground. If NASA decides to utilize
an unkeyed receiver, it will be a C/A-code receiver with state estimation of
the ionospheric delay.
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RECENT RESULTS IN HIGH-PRECISION GPS ORBIT DETERMINATION

Stephen Lichten, Susan Kornreich Wolf, Willy I. Bertiger,
Ulf J. Lindgwister, and Geoff Blewitt
JET PROPULSION LABORATORY

The motivations for high-precision GPS orbit determination include high preci-
sion requirements for low orbiters tracked by GPS and high-precision geodetic
. and geophysical ground applications (e.g. baselines for seismic monitoring).
We did an experiment to demonstrate sub-meter precision in GPS orbit determi-
nation. The results of this experiment, the salient reasons for the high
precision, and the means to confirm this precision are reviewed here.

The primary data type was the carrier phase which gives the geometric
strength; we also used pseudorange (which was quite noisy due to multipath) to
constrain clock bias parameters. We wused data from a global tracking network
and three ground sites whose coordinates were held fixed as determined by
VLBI. We used a Kalman filter to estimate various parameters for multi-day
arcs and we used special dynamic modeling techniques to be discussed below.

As a result, 4 out of 7 satellites had better than 1 m repeatability (i.e.,
precision) (about 50 cm in each component). Also, 2 out of 7 showed agreement
at the sub-meter level with predicted orbits. Repeatability is derived from a
comparison of two orbit determination solutions that overlap by a few hours.
Prediction agreement means that there is no overlap (more stringent test of
the orbits). The repeatability was consistent with the formal errors obtained
by our estimation procedure.

Aside from repeatability and prediction agreements, we looked for ground mea-
surements to further confirm the precision of the orbits. Using VLBI-deter-
mined baselines as an independent source for comparison, we computed the
length, horizontal, and verical components of these baselines from the observ-
ed orbits. On a 2000 km baseline the GPS determined components scatter around
2 cm (repeatability) while agreement with VLBI is 2 cm, or better, with espec-
ially good agreement in baseline length. We did this comparison for a number
of different lengths up to about 3000 km and find agreement on the order of 1
part in 108 of the baseline length. For shorter baselines (a few hundred km)
we get a few mm of repeatability from day to day (1 - 2 cm in the vertical).
For longer baselires (up to 6000 km) all comparisons were well below the 1
part in 108 level for baseline length.

The reasons for improvement since the Tlast experiment in 1985 are several in
number., For this experiment we used a global tracking network covering four
continents rather than just one (there were additional sites in Europe, in the
South Pacific, and in South America). Also, software improvements were imple-
mented (better carrier phase ambiguity resolution; uniformity in antennas and
receivers; better estimation strategy). Using the global tracking network had
- the effect of reducing the scatter in baseline solutions dramatically (see
figure). Also, instead of solving for three constant parameters per satellite
per arc for the solar radiation pressure model, we implemented a process noise
force model in which these parameters were allowed to vary within prescribed
limits., This adds extra degrees of freedom to the model and made the orbit
prediction more difficult because of the stochastic behavior of solar pressure
coefficients. However, the RMS scatter of baseline determinations using pro-
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cess noise force models was considerably less (dropping from several cm to
only a few mm, except in the vertical which had just over 1 cm scatter) than
using conventional dynamic modeling. This was particularly important since
some of the satellites were in the eclipse season where the earth blocked out
the sun for some time in each revolution and the radiation pressure model
required special attention. With further global densification of the tracking
network and the full GPS constellation, and, in addition, use of an advanced
receiver with better pseudorange, we expect 20 cm orbits for GPS.

Summarizing, we believe we have achieved 50 -~ 60 cm GPS orbital precision
using a worldwide tracking network and careful dynamical modeling. Using
repeatability, prediction, and comparison with independently determined ground
baselines, this precision is confirmed. User positioning (static) is avail-
able to the cm level over 1000's of km and few mm (horizontal only) over hun-
dreds of km.

Discussion:

Question: On the second to last viewgraph, why are the orbit prediction com-
parisons sinusoidal?

Answer: The period of the sinusoids is about once per rev of the GPS satel-
Tite; any small difference in the orbital elements (such as inclination -
making the arcs cross each other twice per rev) will cause this type of
effect.

Question: How does your conclusion regarding sub-meter accuracy translate to
real-time users of GPS.

Answer: I project precision of about a meter in real time provided differen-
tial observations are made to cancel errors associated with selective availa-
bility.

Question: What is the repeatability of the 2000 km baseline for shorter than
two-week arcs?

Answer: For one-week arcs (we did not use process noise force models and did
not have giobal network) repeatability was about 3 c¢m and also 50% worse
agreement with VLBI baselines. Shorter arcs (1-day) results are three to four
times worse.
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Fig. 2. Millimeter-level precision in horizontal baseline
components with GPS for the Mojave-Hatcreek (729 km) and
the Owens Valley-Mojave (245 km) baselines. Results based on
single-day constrained and bias fixed filter solutions.
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Closed Loop Orbit Trim Using GPS

Penina Axelrad and Bradford W. Parkinson
Stanford University

The paper presented describes an onboard closed-loop navigation and control system
capable of executing extremely precise orbit maneuvers. It uses information from the
Global Positioning System (GPS) and an onboard controller to perform orbit
adjustments. As a result, the system circumvents the need for extensive ground
support. The particular application considered is an orbit injection system for NASA's
Gravity Probe B (GP-B) spacecraft. Eccentricity adjustments of 0.0004 to 0.005, and
inclination and node changes of 0.001 to 0.01 deg. are demonstrated. The same
technique can be adapted to other satellite missions.

GP-B is a NASA project primarily designed to test two aspects of Einstein's theory of
General Relativity. Based on General Relativity, L.I. Schiff predicted that a gyroscope
in orbit around the Earth will undergo two motions not predicted by Newtonian
analysis. These are known as the geodetic and frame dragging precessions. In a
precisely polar orbit at an altitude of approximately 650 km, the two effects would be
orthogonal, with magnitudes of 6.6 arcsec/yr and 42 milliarcsec/yr respectively. The
objective of the GP-B mission is to place a gyroscope in such an orbit and measure its
relativistic drift to an accuracy of three tenths of a milliarcsecond.

The orbit of the GP-B satellite is critical to minimize the disturbances on the gyro.
Ideally the spacecraft must follow a purely gravitational path (geodesic) through
space. It should also be in a precisely polar orbit aligned with the guide star, Rigel. (A
telescope pointed at the guide star serves as a directional reference for the gyro.)
Such an orbit causes the geodetic and frame dragging effects to be orthogonal. In
addition a circular orbit is desired to simplify the data reduction and to improve the
geodetic information which can be derived from the GP-B orbit data.

There are two unusual aspects of the GP-B orbit injection system. First is that the
orbit control system will only be used at the start of the mission to guide the satellite
to its target orbit after separation from the launch vehicle upper stage. After this final
orbit trim, the spacecraft will follow a "drag-free" orbit, and no additional translational
control may be applied. On a more conventional mission, the closed-loop system
would be employed continuously or perhaps periodically. The second feature is the
extremely low level of thrust available. Thrust is provided by directing the flow of
helium as it is vented from the experimental dewar through the appropriate set of
thrusters. The maximum acceleration provided to the spacecraft is approximately

0.5 ug.

The role of the navigation system is to provide orbit information to the control system.
A GPS receiver onboard the spacecraft furnishes both range and range rate
measurements to the navigation processor. Using state of the art components, GPS
range accuracy is expected to be approximately S m (1- ¢) and range rate accuracy
about 0.01 m/s (1- 6). The navigation processor determines the orbit by propagating a
target orbit plus the current deviation from the target orbit. The target orbit is modeled
accounting for the effects of the Earth oblateness, whereas the deviations are small
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enough to warrant the use of a linearized dynamic model. A Kalman filter propagates
the estimated deviations using this linearized model and GPS information. The
navigation system does not provide the ultimate in accuracy, but rather is adequate to
meet the needs of the onboard controller.

The objective of the GP-B orbit trim system is to achieve the target orbit in minimum
time. The optimal control in this case calls for full thrust capability at all times or
"bang-bang" control. In the linearized dynamic model the out of plane and in plane
deviations are decoupled, thus simplifying the control algorithm. Two levels of thrust
were considered - the nominal 0.5 pug helium thrusters and a higher powered 10 pug
alternative.

The results of this design and simulation study demonstrated that both the high and
low power thrusters can effectively execute small orbit rim maneuvers for GP-B and
other similar missions. For the low power helium thrusters it is crucial to account for
the dynamics caused by the Earth's nonspherical mass distribution, because the thrust
level is the same order of magnitude, and in some cases significantly smaller than the
disturbing forces.

GPS provides a whole new basis for satellite orbit maneuvering. By providing accurate
position and velocity information directly to the spacecraft, it permits the design of an
effective onboard closed-loop orbit correction system. This holds great promise not
only for the spacecraft orbit trim system described here, but also for a host of other
missions such as automatic missile trajectory control, orbital transfer vehicle
guidance, and launch vehicle control. We have demonstrated the feasibility of such as
system and outlined the general design approach.
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Discussion:
Question: How well do you have to know the spacecraft center of mass?

Answer: An onboard mass trim system 1is used to balance the spacecraft after
Taunch.

Question: What is the altitude?
Answer: 650 km.
Question: What is length of mission for meaningful results?

Answer: Data will be collected for 18 months starting in 1995.
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GLOBAL GRAVITY FIELD MAPPING WITH GPS TRACKING OF THE SPACE SHUTTLE

George J. Priovolos, Triveni N. Upadhyay
MAYFLOWER COMMUNICATIONS COMPANY, INC.

and

Christopher Jekeli
GEOPHYSICS LABORATORY (AFSC)

This paper concerns the concept of tracking the Shuttle using GPS for gravity
field mapping, an error analysis and processing techniques to mitigate some of
the errors, and some simulation results .on estimating the gravity field.

The tracking experiment is one of high-low mode where the GPS space vehicles
are the high satellites. This provides very good visibility - other high-low
configurations (only one high satellite) generally give only 20% of the data
volume of a low-low configuration for an equal period of time. Another advan-
tage is the ability using the entire constellation of the GPS to estimate the
entire gravity vector rather than just one line-of-sight component. The mea-
surement concept is as follows: the GPS receiver tracks three or more satel-
lites giving the total acceleration of the Shuttle; an IMU on board the Shut-
tle provides the non-gravitational components; and the difference between
these two yields the gravitational effect.

A major error source in the error budget for this experiment is the GPS satel-
lTite clock error and the second most important error is the misalignment of
the accelerometer axis from inertial space. The GPS clock error estimate is
based on a 100-fold reduction in the Allan variance of the clocks assumed
achievable by modeling the short term behavior of the clocks at ground sta-
tions. Using double differencing of the data this error can almost entirely
be eliminated. The alignment of the experiment IMU must be known to better
than 1 mrad. It can be aligned to the IMU of the Shuttle, which is updated by
a star tracker, using a recursive Kalman filter to estimate the misalignment
from attitude data gathered by both IMU's during Shuttle rotations. Simula-
tions indicate that this misalignment can be estimated to 0.4 mrad. The cali-
bration of accelerometer bias and scale factor to an accuracy of 0.1 mgal has
already been demonstrated by an Air Force experiment using a controlled motor
table system. We are investigating an alternative technique to calibrate the
bias using a fixed mount system whereby the shuttle is rotated.

The gravity parameter esitmation is based on a one-week mission set of line-
of-sight acceleration data (sampling interval = 30 sec.). Simulated 2°-mean
gravity anomalies were estimated in the southern U.S. using the least-squares
coliocation technique. The true field was taken to be the 180-degree harmonic
expansion (OSU86F) which gives, e.g., LOS accelerations at altitude in this
case of about plus or minus 9 mgal. This is reassuring in that the noise of
our system is about an order of magnitude lower. The GPS satellites selected
for observation were the ones with minimum PDOP. Also, all data and estimates
were referenced to the GEM-T1 gravity model which contains harmonics to degree
36. The residual LOS accelerations are attenuated to only a few mgal and we
should not expect a dramatic improvement with the experiment to what the GEM-
T1 model has already provided.
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The covariance function used in the estimation of the surface gravity anoma-
lies was the Tscherning/Rapp model with harmonics up to degree 36 deleted.
Covariances of mean anomalies were obtained by numerically integrating the
covariances of point anomalies over the 2° squares.

The plots of the differences between control and predicted 2° mean anomalies
show that going from a data cap of 2° radius to 3° radius improved the stabil-
ity of the solution as a function of data accuracy. That is, with the larger
data sets, there was a wider range of data accuracies for which the signal to
prediction accuracy ratio was greater than one.

In summary, we have identified techniques to mitigate the effects of the main
errors associated with the Shuttle tracking experiment and they are being
evaiuated and developed. A shuttle mission would benefit primarily the long
wavelength gravity models and models in areas where gravity data coverage is
currently poor. The best predictions from our simulations were obtained for a
data noise of 0.3 - 1 mgal. Some questions to be answered include what is the
optimal integration time - data noise combination, and how is the optimal
regularization factor determined for the estimation of gravity on the ground.
It should be noted that the Shuttle experiment is just a demonstration of the
concept. A more desirable mission would put the hardware into a lower alti-
tude and polar orbit.

Discussion:

Question: To what level does the drag compensation mechanism affect the accur-
acy of gravity estimation on the Earth's surface?

Answer: We did not break the prediction errors down into contributing compo-
nents, so we have no specific numbers for that.

Question: Did you use Tline-of-sight accelerations directly as input to the
estimation or did you first convert them to vertical components of gravity at
altitude?

Answer: We used LOS acceierations directly.
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TECHNIQUES OF GPS-BASED PRECISION ORBIT DETERMINATION
FOR LOW EARTH SATELLITES

Sien C., Wu
JET PROPULSION LABORATORY

This paper describes some technical detail regarding precise orbit determina-
tion of low Earth orbiters using GPS. . It 1is well known that the effects of
GPS and user clock errors can be eliminated and those of the GPS ephemeris
errors can be reduced by using doubly differenced data from two or more GPS
satellites and one or more ground stations. The accuracy is then limited by
measurement noise and geometrical weakness which can be improved by global
smoothing, that is, by solving for the user state parameters at only one epoch
but using data over a period of time. The three methods of smoothing discus-
sed here are the dynamic, non-dynamic (or kinematic), and reduced-dynamic
techniques.

In dynamic smoothing we use a dynamic model to perform the state transition,
and therefore, the solution is sensitive to dynamic mismodeling but relatively
insensitive to geometrical weakness (i.e., the PDOP). In general, this is
applicable to altitudes higher than 2000 km where gravity and atmospheric drag
errors are small, With non-dynamic (kinematic) smoothing the position solu-
tions inferred from pseudorange measurements are smoothed by the positional
change inferred from GPS carrier phase measurements. Since no dynamic model
is used, this technique is insensitive the dynamic mismodeling but highly
sensitive to geometrical weakness. The non-dynamic smoothing technique is
applicable to altitudes less than 400 km where gravity and drag effects are
quite large. The third tech~ique, reduced-dynamic smoothing, is a hybrid of
the other two and is moderately sensitive to dynamic mismodeling and geometri-
cal weakness. It applies to orbits with altitudes between 400 to 2000 km.

In reduced-dynamic smoothing, the estimated position at time j+1 is related to
the position at time j through the dynamic state-transition matrix and to an
introduced 3-D fictitious force, treated as a process-noise parameter. The
process-noise parameter at time j+1 is, in turn, related to its predecessor at
time j by the "batch-to-batch correlation" and a white noise component which
is characterized by. a "batch-to-batch sigma." A larger process-noise sigma is
equivalent to having lower weight on the dynamic model. A zero sigma yields
the dynamic smoothing while an infinite sigma yields the non-dynamic smooth-
ing; any non-zero finite sigma will result in reduced-dynamic smoothing.

Two applications of these smoothing techniques have been investigated. These
are the TOPEX/POSEIDON and the EOS/SPACE STATION missions; the former at 1334
km altitude is amenable to the reduced-cynamic smoothing, while ron-dynamic
smoothing will be considered for the 1latter (300 - 700 km). An analysis of
the TOPEX application shows that the 10-cm altitude accuracy goal can be
achieved if the proposed 6-station ground tracking network is utilized which
performs a factor of two better than the minimum 3-station network. For EOS,
which is scheduled for launch in the late 1990's, a number of favorable fac-
tors (full 24-GPS constellation, more tracking sites with better known posi-
tions, more channels on GPS receiver, etc.) contribute to an improved perform-
ance in orbital position accuracy. The expected accuracy is about 3 cm with a
2-hour tracking and monotonically improves to 1.5 cm with an 8-hour tracking.
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In summary, even with a suboptimal tracking system, such as for TOPEX, orbital
uncertainty can be less than 10 cm; and with an optimal tracking system, such
as for EQS, the uncertainty is on the order of 1 to 3 cm.

Discussion:

Question: Is the 18-channel receiver for EQS in existence or in development?
Answer: It's concept has been developed, but it is not being built yet.
Question: What was the assumed data rate?

Answer: The data rate for these results was assumed to be once per 5 minutes.

Question: Was this analysis done assuming encrypted GPS signals?

Answer: The results are not affected by selective availability. It is just
assumed that some kind of pseudorange is available.
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Second Symposium on GPS Applications in Space, Air Force Geophysics Laboratory, October 10, 1989.

Ambiguity Bootstrapping to Determine
GPS Orbits and Baselines

CHARLES C. COUNSELMAN III

Department of Earth, Atmospheric, and Planetary Sciences
and Center for Space Research
Massachusetts Institute of Technology, Cambridge

Abstract:  For GPS satellite-orbit and interstation-baseline determination, the most accurate
observable available is carrier phase, differenced between observing stations and between
satellites to cancel both transmitter- and receiver-related errors. For maximum accuracy,
the integer cycle ambiguities of the doubly differenced observations must be resolved. To
perform this ambiguity resolution, Counselman (Eos, 68, 1238, 1987) proposed a
bootstrapping strategy. This strategy requires the tracking stations to have a wide ranging
progression of spacings. By conventional “integrated Doppler” processing of the
observations from the most widely spaced stations, the orbits are determined well enough
to permit resolution of the ambiguities for the most closely spaced stations. The resolution
of these ambiguities reduces the uncertainty of the orbit determination enough to enable
ambiguity resolution for more widely spaced stations, which further reduces the orbital
uncertainty.

Abbot and Counselman (ibid., 1987) and Counselman and Abbot (JGR, 94,
7058-7064, 1989) applied this strategy to a network of six tracking stations spaced by 71
km, 245 km, ..., up to 4000 km. Resolving ambiguities for the shortest, 71-km baseline
made it possible to resolve them for the next-longer, 245-km baseline, and reduced both the
formal and the true errors of determining the GPS satellite orbits by a factor of 2. The
precision of baseline determination was also significantly improved.

Ionospheric refraction interferes with ambiguity resolution, by systematically
biasing the doubly-differenced phase observations. However, the signature of ionospheric
refraction resembles that of orbital position error; either effect, although time-variable, is
spatially coherent, characterized by a nearly uniform gradient across a few-hundred-
kilometer-size tracking network. Thus, the same bootstrapping principle which facilitates
ambiguity resolution in the presence of orbital uncertainty, can be effective in the presence
of significant ionospheric refraction.

To test this prediction, Abbot, Counselman, and Gourevitch (Eos, in press, Fall
1989) analyzed GPS observations from a recent period of high solar activity, with daily
observation periods spanning the morning hours during which the ionosphere varies most
rapidly. The ionospheric refraction effects in these observations (5 am - noon, November
1988, in Texas) were some 20 times stronger than in the night-time, April 1985,
observations originally studied by Abbot and Counselman.

Using a very simple, five-parameter, ionospheric model, Abbot et al. processed
observations from 12 dual-band receivers which were arranged in a logarithmic “Nautilus”
spiral with spacings from 10 to 320 km. The use of this model increased the interstation
baseline length for which ambiguities could be resolved by a factor of two (to the maximum
length available). Observations on successive days were processed independently; i.e., the
ionospheric parameters, the position coordinates of nine receiving stations (three stations
served as “fiducials™), and all the orbital elements of each satellite were determined from
“single-day” arcs. The standard deviations of the horizontal station-position coordinate
estimates were 2.5-4 mm, or 2-3 parts in 108 of the distance to the nearest fiducial.

R




Discussion:

Question: How were the stations of the Nautilus network selected and is there
a latitude dependence?

Answer: The stations were selected on the basis of wanting round number (10,
20, 40, 80, km, etc.) baseline lengths with the baselines at right angles to
each other. Latitude dependence has not been investigated.
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(from / Geopltiys Res, 94 7058-7064, June 10, 1989)

Four widely spaced tracking stations:

OV, FtD, Rich, Hays

’

Two additional stations, very close to OV:
ML, Moj

)

-0V distance < 2% of OV-Hays distance.
OV-Moj distance = 6% "

197




(from J. Geophys. Res., 94, 7058-7064, June 10, 1989)

Formal Standard Errors of Orbit Determination
With and Without Ambiguity Resolution
for ONLY THE CLOSEST (<6%) Station-Pairs
(all stations’ phase obs’'ns equally precise)

NAVSTAR Sat. Number

Without B With Ambiguity
Resolution
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(from J. Geophys. Res., 94, 7058-7064, June 10, 1989)

ACTUAL Peak Errors of Orbit Determination
With and Without Ambiguity Resolution
for ONLY THE CLOSEST (<6%) Station-Pairs
(all stations used in either case)

NAVSTAR Sat. Number

1 Without B With Ambiguity
Resolution
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Counselman, Second Symposium on GPS Applications in Space, 10/10/89

GRADlENT OF IONOSPHERIC PHASE-SHIFT
Along E-W Axis of “Nautilus” Network
[L2- (60/77 L1 _¥cles Per Unit Station-Spacing;

NAVS AR 8 - 10 Difference]
’
I‘O
0.5 1 . —‘7 D gzg"r/"
as§ nqggszg;A.agﬁaxggagﬂygans-_.\- d 4 -~.~._ 22
o—0
830 AM 9:30 AM 10:30 AM 11:30 AM

Central Std. Time, 4 Nov. 1988 —>
Legend: (Station Nos.) / Spacing

- (3-1)/1  ©o- (1-5)/1 = (7-3)/2 o- (5-9)/4
+ (11-7)/8 & (11-9)/16
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Counselman, Second Symposium on GPS Applications in Space, 10/10/89

10

L2-(60/77)L1
Cycles

IONOSPHERIC PHASE SHIFT

Along E-W Axis of “Nautilus” Network

X

é/

AKX »
(X HIIX

2

- 10:43
-+ 11:11

Legend: Local Time on 4 Nov. 1988
0~ 10:50 - 10:57 ‘0- 11:04
-~ 11:18 *- 11:25

H

6 8 10 12 14 16
Interstation Spacing —>
(Unit = 3-1 spacing = 17 km)
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C.Counselman, Second Symposium on GPS Applications in Space 10/10/89

Formal Standard Errors of Orbit Determination
With the 240 x 320 km 'Nautilus' Network
(Single-Day Arc, 8 Nov. 1988)

3 4 6 8 9 10

NAVSTAR Sat. Number
Before B After Resolving
Ambiguities
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SUMMARY

The technical goals, issues, and status of the GPS-based Guidance Package or
GGP effort within the Aerospace and Strategic Technolagy Office of DARPA are
presented. The GGP exploits the synergisms achieved by combining inertially sensed
(IMU) movement with externally sensed GPS reference signals. The goal is to produce
a combined GPS/IMU navigation grade system which will be miniaturized for easy
insertion to any host vehicle and inexpensive for use by expendable vehicles
(weapons and platforms). Efforts already under way within the DoD community based
on integrating conventional navigation technologies result in systems on the order
of 65 ibs, 160 watts, 1800 cu.in., and $65 K per unit. The GGP effort aims to match
the navigation performance of the conventional technologies but fit within an
envelope of 10 lbs, 20 watts, 120 cu.in., and 315 K per unit. The GGP builds upon
the integrated circuit technology from the preexisting DARPA mini GPS receiver (MGR)
program combined with the following: (a) solid state linear accelerometers and
fiber optic rotation rate sensors (gyros) for three axes inertial sensing, and (b) a
data processor and associated software to implement a Kalman filter to integrate the
sensor outputs and provide the navigation solution as well a3 any filtered velocity,
acceleration, and orientation data needed by the host vehicle. Major cost reduction
breakthroughs are offered by FOG sensors which employ integrated optic chipa for
light wave processing along wicth the polarization preserving fiber optic rotation
sensing coil and laser diode optical source. GGP host vehicle insertion is also
facilitated by its packing/customizing achieved through modularity of MGR, IMU, and
navigation microprocessor subsystems. Modularity is achieved with standardization
of (1) the Kalman filter architecture in the navigation processor and (2) data
transfer points (ports) interfacing the MGR and IMU sensors to the navigation
processor. Technical detail {s provided on the following topics: functional
architecture, technology, and status of the MGR chip set; desired performance,
approach, status, and technology issues for a FOG sensor, and system level
integration and performance issues.

INTRODUCTION

This paper reviews the technical goals, issues, and status of the navigation
rtechnology efforts within the Aerospace and Strategic Technology Office of DARPA.
The primacry objective of tha DARPA/ASTO navigation effort, known as the GPS Guidance
Package, or GGP, i3 to exploit the synergismsl achieved by combining inertially
sensed (IMU) body movement with externally sensed radio reference signals from
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he IMU drift coefficients can be calibrated through an extended
"initialization" provided by GPS sensing while GPS receiver tracking during high 205
dynamic maneuvers can be aided by the IMU. Additionally, the IMU provides
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multiple satellites comprising the Global Positioning System (GPS). The DARPA goal
is to produce a combined GPS/IMU system, the GGP, which will be miniaturized for
easy (if not trivial) insertion to almost any host vehicle and inexpensive for use
even by expendable vehicles (weapons and platforms).

Several efforts are already under way within the DoD community based on
integrating conventional navigation technologies employing tuned rotor gyros and
analog GPS receivers. To date, these configurations result in somewhat bulky
systems on the order of 65 lbs, 160 watts, 1800 cu.in., and 565 K per unit. These
require sizable host vehicles and at best are only infrequently expendable.

The DARPA GGP effort aims to match the navigation performance of the
conventional technologies but fit within an envelope of 10 lbs, 20 watts, 120
cu.in., and $1% K per unit. To succeed, the GGP must maximally utilize solid state
(like) devices, fabrication, and assembly methods, {i.e., minimize labor input.
Consequently, the GGP builds upon the integrated circuit technology base developed
from the preexisting DARPA mini GPS receiver (MGR) program sometimes referred to as
"virginia Slims™ for its packaging resemblance to a product of the same name [(1].

To an MGR-type GPS sensor (hereinafter referred to as an MGR) must be added the
following: (a) solid state linear accelerrometers and rotation rate sensors (gyros)
for three axes to provide inertial sensing, and (b) a data processor and associated
software to implement a Kalman filter to integrate the sensor outputs and provide
the navigation solution as vell as any filtered velocity, acceleration, and
orientation data needed by the host vehicle. The MGR and "solid state" IMU may each
have its own embedded processor chip dedicated to running the necessary real time,
lower level, sensor signal processing. The subsystem structure is shown in Fig. 1.
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Fig 1~ Low-Cost GPS Guidance Package

As there are several silicon accelerometer (SiAccel) efforts already under way
upon which the GGP can draw, the primary GGP teachnology push is on developing a
solid state like rotation sansor (gyro) for the IMU., A review of the gyro
technology base indicates u.e selections of a rotation sensor based on the Sagnac
effect; either the Ring Laser Gyro (RLG) or the Fiber Optic Gyro (FOG). Of the two
technologies, the RLG is by far the more mature, e.9., RLGs which have very high
performance are now going into production., However, the prospects for meating the
low cost goals for the GGP using high performance RLGs do not look promising.

navigation during periods of GPS signal loss; remember four separate satellite
signals acre required to navigate with GPS alone. Moreover, mutually combining GPS
with lnertial sensing sllows slower GPS receiver sequencing amongst the satellites
even in high dynamics. This then provides fault tolerance amongst receiver
channels.




There are major cost reduction breakthroughs offered by FOG sensors which
employ integrated optic chips for light wave processing along with the fiber optic
rotation sensing coil and laser dicde source. The objective is to provide FOG
peformance levels comparable to RLGs. Consistent with DARPA’s acceptance of
technology risk in order to induce jump advances in technology, the FOG rotation
sensor was selected for GGP development. The integration of a GPS receiver with an
RLG-based IMU is a lower risk approach which is likely to be pursued elsewhere in
the DoD community.

Insertion of the GGP to host vehicles is facilitated through its very small
size (to minimize host burden) and flexible packaging/customizing achieved through
modularity of MGR, IMU, and navigation microprocessor subsystems. The modularicy
with interface control between the data processor and sensor subsystems will allow
swapouts of either MGR or IMU sensors without redesigning the whole system. The
modularity is facilitated through standardization of (1)} the Kalman filter
architecture in the navigation processor and (2) data transfer points (ports)
interfacing the MGR and IMU sensors to the navigation processor. This will allow
flexible choices in the selected number of MGR processing channels (e.g., two-
channel sequencing MGR for low dynamics vice six-channel parallel MGR for high
dynamica) and easy IMU upgrades with improving FOG sensors.

This paper is organized as follows: Section II ocutlines functional
architecture, technology, and status of the MGR chip set:; Section III discusses the
desired performance, approach, status, and technology issues for a FOG sensor, and
Section IV discusses system level integration and performance issues.

MINI GPS RECEIVER MGR

The following section reviews the specific Rockwell Collins MGR technology of
reference 1 as an example only of the MGR needs, capabilities, and issues for a GGP.
A DARPA GGP will employ a similar MGR technology but need not be identical with that
described heres.

The physical MGR chip partitioning developed in reference 1 is shown in Fig. 2.
A summacry of the technical parameters for each chip with their respective power
consumption is shown in Table 1. The performance requirements for the MGR are
exactly the same for conventional GPS receivers as specified in $S-US-200 (2].
(Summary shown in Table 2] Referring to Fig. 2, the three key new chips developed
(out of five) in order of their technical difficulty are as follows:

o GaAs RF/IF/AD Receiver Front End
o CMOS Hi-Speed Digital Signal Processor (VHISC Technology)

o Silicon Bipolar Synthesizer
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Fig. 2—Cenenic MGR Architecture
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Table 1
CHIP SET SUMMARY

Device Dimensions imptementation  Power
Chip Type Count {Inches) Technology (mw)
RF/IF iransiator  300-400 0200 x 0.240 GaAs 1700
Signal processor  20.000  0.185x 0.220 125 meronbuk 90
cOoMS
Muitfunction 29.000 0370 x 0370 1.8 micron buk 20
Interface CMOS
| Micro processor  60.000 0.214 x 0261 2 mcron bulk 80
} CMOS
! Frequency 800-700 0.250 x 0250  biploar sdicon 500
[ synthesizer
Tabie 2
USER EQUIPMENT AEAC ANO TTEE TIME REQUIREMENTS
UNCERTAINTY
REAC 1 (MINY TTFF 1 (MIN)
POSITION | VELOCITY | TIME | MAX ACCEL | MAX JERK
REAC 2(MINY | TTFE 2 (MIN) (KM) (M/SEC) | (SEC) | (MiSECH) (M/SECYH
LOW 108 $s
OYNAMIC 100 (3e¢) 25 (3¢} 20 (1¢} [ ] 20
SET NOT REQUIRED | NOT REQUIRED
MEDIUM 90 40
OYNAMIC 100 (3¢} 7% (3a0) 20(te) 10 20
SET NOT REQUIRED | NOT REQUIRED
HIGH ro 20 100 (3¢) 150 (3¢} | 201} 10 100
OYNAMIC
SET 68 ts 10(Je) | NEGUGIBLE | 10(1# | NEGUGIBLE | NEGLIGIBLE
{» SEC)

NOTE  ~» OroBadly of SUCCesS n achsving e stated REAC and TTEF trmee shall excaed 0 9. Thess REAC and TTFF regare-
ants re .. CEON Over the -40°C 10 +55°C temperatre range.
*TTFF 2 can 08 reduced 1o 0 § murntes i POLNON and NS UNCINEBNYSS &0 IS0 NEgRGLIN.

The advanced data processor, control chip--AAMP--was developed by Rockwell Collins
to reduce power consumption in the conventional technology manpack GPS receiver
while the multifunction interface or glue chip was produced with a straightforward
(silicon) foundry. The AAMP is an embedded MGR data processor and will not be used
for MGR/IMU sensor integration and control. A summary description of these chips is
given in tables 3 and 4.

Modularity needs for multiple GPS signal tracking (2 to 6 channels) are
determined by the host vehicle dynamics and fault tolerance requirements. Multiple
channel modularity is obtained through the MGR chip partitioning chosen with a
matching software structure provided. Each GaAs MMIC chip processes either one of
the two possible L-band frequencies (L1/L2) identically radiated by all GPS
satellites. Each digital signal processing chip fully processes one C/A and P-coded
transmission. Using mix and match the minimal configuration for low dynamics uses a
one MMIC two-signal processor confiquration with L1 and L2 and 4 P-codes
sequentially processed. The maximal configuration for a high dynamics set, which
simultaneously processes two frequencies and six channels, will use two GaAs MMIC
and six signal processor chips. The rest of the high dynamics set remains the same
as the two-channel set (synthesizer, MFI, AAMP) although the data processing
throughput requirements on the AAMP increase to where two AMMP chips may be
required.

The most unique chip technology challenge for the MGR has been the GaAs MMIC
chip whose layout is shown in Figs. 3 and 4. On this common die two unique suites
of circuits must be processed in the GaAs foundry. Specifically, a low noise (J db
NF) high quality analog RF amplifier path with over 90 db of gain must be
accomplished along with gigabit digital FET gates to implement the necessary on-chip
frequency dividers and the analog-to-digital converter. Moreover, the digital FETs
employ balanced enhancement and depletion modes for ultra low power drain.

The GaAs foundry must find a compromise process to fabricate in common both the
analog and digital devices with adequate yield. An optimized "conventional” GaAs
foundry process for exclusively digital or analog transistors cannot be employed,
Moreover, more than 90 db of gain must be accomplished across only 0.2 in. without
any parasitic oscillations.

The GaAs MMIC RF chip outputs fully digitized (2 bits/sample) both in-phase and
quadcature samples of the full 10 MHz IF bandwidth to the digital signal processor
CMOS chip shown in Fig. 5. On this custom CMOS chip, carrier frequency and PN-code

trackinag alonag with C/A and P-coda corralation ie s=hiayad ina hyrduape ThA aimaad




processor chip outputs every | m-sec boen in-phase and quadrature code cross-

correlates

(received signal with receiver stored reference)

for the prompt, early,

and late correlation channels used by the AAMP for data symbol detection and code

tracking.

Tabile 3

MGR SUMMARY MMIC AND SIGNAL PROCESSOR CHIPS

CHIP

¢ A GaAs MMIC that contains ail RF. IF,
mixing and  signal  quanuzer functions
aiong with some high speed digital divid-
ers tor the syntnesizer. This chip pro-
vides nearly 100gB of gan and has a
naise figure under 3 dB.

* A single digital signal processor chip that
demodulates the GPS signal and provides
1 ms signal integrations to the data pro-
cessor. The chip contains all code VCO
andg code generation functions.

FUNCTION

Analog

Antenna/filter input

QOn-chip RF overtoad limiter

Low noise amplitier

SPOT switch to off-chip image-rejection
fifter

SPOT switch from olf-chip image-rejection
filter

15t downconversion Mixer (duai-gate FET)
1st IF stage and lowpass filter

18t IF amphlier

In-phase and quadrature 2nd downconver-
SION Mixers

2nd IF stage with active band limiting filter
2nd IF amplfier and AGC

Signal digitizer

Buffers to anve off-chip signal processor.

Oigital

L-band voitage-controlied oscillator
Butter ampifiers— 1st muxer
On-chip aigital dividers 10 synthesze
second IF | and Q injections
On-chip SPDT switeh logic.

Camer phase rotation
Camer VCO

Code generation

Code removal

Code VCO

Signal integration

Budt+n test

Timung and bus interface.

Table 4
MGR SUMMARY: SYNTHESIZER, MICROPROCESSOR, AND BLUE CHIPS

CHiP

¢ A frequency synthesizer chip that includes
the Mermeuiste speed dividers and locks
the VCO to s frequency standard. An on.
v dual-mode oscillator Or an extemal
oscllator can be used as the frequency
standard

e A snglechip advanced erchitecture my-
croprocessor (AAMP) that contans on-
chip fioating pont operatons and has suf-
ficient throughput to handie all the pro-
¢ = g tor & twochannel GPS set

* A single muitifunction nterface chip that
ncorporates all the functions required for
controing one- two- ana five-channel
GPS sets. it also contans the inemory
and nterrupt controlers. as well as low
frequency set tming functions.

*® & & & & &6 2 & ¢ o o

FUNCTION

Frequency standard
Phase detector
Loop (iter

Real time executive

Application software wutakization
Control/dispiay dnvers
Navigation

Receiver manager

Recetver processing

Signal preprocessing

Sateiite database manager
Sateihte position/velocity processing
Buit-n test

Utihties.

memory control

Interrupt control
Frequency/time generation
Senal intertace

Built-n test.
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The signal processor output data are supplied every millisecond to the AAMP
microprocessor where real time signal processing sofcware further processes this 1
KHz data down to 50 Hz bandwidth (20 msec correlates) or less for GPS system data
detection as well as signal carrier and code tracking. The error null steering
commands determined by AAMP tracking loop software modules are returned by the
carrier and code VCO steering control lines on the signal processor chip.

Examples of all the Rockwell Collins 2-channel MGR chips set are now
functioning in a navigating breadboard, including the GaAs MMIC chip. The challenge
of realizing low noise high RF gain (without oscillation) concurrent with gigabit
digital logic gate speed on a common MMIC has now been successfully demonstrared.

FIBER QPTIC GYRO

Two sets of performance goals for the IMU components of the GGP are shown in
Table 5. These values are based on improving the current generation of Fiber Optic
Gyros (FOG) and the availabilicy of Silicon Accelerometers. The early time frame
performance in FOG is almost achievable now but with discrete fiber parts instead of
the desired integrated optics. The early DARPA goal is to incorporate integrated
optics and a modest improvement in current performance. The later goal is to match
navigation grade Ring Laser Gyro (RLG) performance.

Table §
IMU PERFORMANCE GOALS

EARLY MIDTERM
DEMONSTRATION DEMONSTRATION

GYRO DRIFT BIAS 0.01 DEG/HR 0.003 DEG/HR
GYRO SCALE FACTOR 50 PPM 10 PPM
GYRO RW COEFFICIENT 0.005 DEG/vHR  0.0015 DEG/\vHR
ACCELEROMETER SCALE 50 uG* 10 4G*
ACCELEROMETER SCALE

FACTOR 100 PPM 50 PPM
ACCELEROMETER RW i

COEFFICIENT 0.03 (M/S)/ VRR®  0.03 (M/SV/ VHR"

Svucro Q's of gravity.

eters per second per raot hour.

Sagnac effect (3,4,5) based rotation rate sensory establish a pair of contra-
propagating beams of light in a planar light guide circuit having exquisite optical
symmetry (reciprocity) between the clockwise and counterclockwise propagation paths
around the light circuit, Mechanical rotation rate measurably upsets this symmetry
which can be photoelectronically detected and processed to provide a rotation rate
output. A broad characterization of Sagnac effect rotation rate sensors (RLG, IFOG,
RFOG) is shown in Fig. 6. The ring laser gyro (RLG) i3 now becoming commercially
available with a very: high grade of inertiasl measursment quality. Although a major
improvement over mechanical gyro technology, it was judged to suffer the following
drawbacks with reapect to the DARPA GGP goals:

(a) Not amenable to employing integrated optics

(b) Requires complex glass machining with very high quality corner mirrors

(c) High voltage discharge needed to excite laser

(d) Mechanical motion dither needed to break up measurement deadband caused by
common mode locking between contrapropagating beams

Of these drawbacks, the second item, (D), may through extensive development and
production experience reduce present costs by creating a large industrial robotic
glass machining base. Mechanical path dither, currently used, may be replaced by an
electro-optic dither technique. However, these evolutionary RLG tech base
improvements are desmed not commensurate with an early time frame, nor are they
expected to reduce the rotation sensor costs to the level expected of a successful
(albeit risky) fiber optic gyro, FOG, effort,
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Optcally Reciorocal Contra-propagating Light Waves with
Rotaton-Induceg Nonreciprocity

FIBER OPTIC GYRO (FOG)

RING LASER GYRO (RLG) RESONATOR (RFOG) INTEFERQMETER (IFOG)
o Active 1asing media within * Active source outside e Long, nonresonant multitum
resonant opucal creunt (path). tesonant optical crrcuit. short optical loop with "open ends’
hght tubes with corner mirrors ioop of ciosed fiber coupied t0 symmetncaly excited by
source Source
* Antsymmetnc dopler-shitted o Antisymmetnc doppler-shifted o Antisyrmynetnc phase-stufted
resSONance hnes in beams resONance ines in beams besms
* Low-rate mode locking from * Backscatter nornveciprocity * Backscatter nonreciprocity
muror backscatter necessitates EO modulaton necessitates EO moaulation
o Fabncation cost foor, high vol- s Low{est?) potential cost. dbut o Fiber cost kmited, iesser risk
tage weignt greater nsk
Narrow band source
Low 1033 couplers

Fig. 6—SAGNAC effect

From these considerations DARPA selected the FOG sensor approach to be
assembled with an integrated optics chip, using crystalline lithium niobate and
conceptually shown in Fig. 7 Initially, each rotation sensing axis will be composed
of its own sensing coil, 10 chip, diode light source, and photodetector. WwWith 10
chip fabrication improvements, one chip can be shared by all axes. With increased

optical source intensity, one source (with one IO chip) can be power-divided amongst
all axes.

SENSING
cons
LASER
DIODE
t LASER | __ _ _ 1 LTHIUMNIOBATE
{ DIODE | ™TeGRaTED OPTICS
———— r- e —
re==a |
) LASER | __ L I
| DICDE ;] PHOTO DETECTORS AND
== FEEDBACK ELECTRONICS

o SAGNAC NULLING FEEDBACK ARCHITECTURE — LARGE MEASUREMENT RANGE

o POLARIZATION PRESERVING FIBER (PPF) — INCREASED OPTICAL RECIPROCITY

¢ LONGER WAVELENGTH — ELIMINATE PHOTODARKENING 8 REDUCE BACKSCATTER
¢ INTEGRATED OPTICS — LOW COST

Fig. 7=Three-Axis Fiber Optic Rotativn Sensor

There are two fundamentally different implementations of a FOG sensor: a
resonant structure or RFOG, and an interferrometric structure or IFOG. An

oversimplified comparison of the properties of the RFOG and IFOG are summarized in
Fig. 8,

The RFOG (6) utilizes a short loop of fiber as an extremely high Q resonant
light circuit. Ideally, when there is no rotation input, each of the two contra-
propagating light beams remain trapped in the fiber sensing coil at the resonant
light frequency and no light cscapcsz the coil coupler structure. Mechanical
rotation doppler offsets the beams from the coil resonance frequency and light
begins to escape from the coil. The special optical coupler (Fig. 8, “dashed box"),
together with the lithium niobate IO chip, route the escaping coil output light

_—
Ideally, the optical source power is fully absorbed with carefully matched




{under mechanical rotation) for each circulating beam to photodetectors:; one for
each beam direction. Since the beams are doppler shifted off resonance in opposite
{light) frequency directions, the corresponding photodetectors provide skew
symmetric outputs.

O[5 Ok

L0 ULTRA
OR NARROW BAND
SLD <10 m PPF LASER ~10 m PPF
PO PO
» NON-RESONANT STRUCTURE e OPTICALLY RESONANT STRUCTURE
o COUNTER PROPAGATING BEAMS * COUNTER PROPAGATING BEAMS PROCESSED
MIXED ON COMMON PHOTO DETECTOR ON SEPARATE PHOTO DETECTOR S
* OPTICAL RECIPROCITY REQUIRED ¢ ELECTRICAL SYMMETRY REQUIRED
RISK/COST UNCERTAINTIES
+ PERFORMANCE o PERFORMANCE
* SLD ¢ COIL COUPLER
« 10° m FIBER * NARROW BAND LASER

Fig. 8—IFOG or RFOG

Inasmuch as the short fiber loop is a delay line, the input-output optical
system transfer function, H(jw), of the resonant optical structure has a periodic
null pattern in frequency spaced about 40 MHz apart. Referring to Fig., 9, a single,
laser diode optical source is physically divided in two to launch each of the
contrapropagating beams. Each beam is then individually heterodyned by optical
frequency modulators in order to place beams in separate (usually adjacent) resonant
nulls of the sensing coil. In this manner, the RFOG effectively operates as two
separate gyros multiplex sharing, in optical frequency and propagation direction, a
common coupler fiber coil sensing structure. The two balanced and symmetric gyros
operates in a push-pull mode 830 that even order channel impairments cancel.
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Fig- 9~Resonant Ring Gyro Control snd Measurement Approach
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In contrast to the RFOG, the IFOG structure (5,%] is a single gyro with one
photodetector to which both contrapropagating beams additively ocutput. The long
(many turns) fiber coil is a nonresonant, very broadband structure. Consequently, a
broadband diode light source can be used, which the present IFOG technology
requires, as will be explained below.

The IFOG photodetector physically performs a mathematical crosscorrelation
between the two contrapropdgating output beams which ware launched from a common
light source. 1Ideally, with no path imperfections or asymmetries (optical
reciprocity), the photodetector then produces the autocorrelation function of the
light source after passage through the fiber coil. With no rotation, this outputs
the peak of the diode source autocorrelation function. With mechanical rotation the
path propagation times change producing an optical phase shift (as opposed to
doppler frequency shift) between the two beams and an off-peak value of the
autocorrelation function is read at the photodetector.

This simple, interferrometric, configuration produces electronic difficulties
with the output signal, First, since the autocorrelation functions are even,
rotation direction cannot be directly read. Second, the ocutput measurement {s
centered around d.c., requiring more complex d.c. electronic amplification
circuits. This situation can be corrected by introducing a subcarrier frequency
modulation (7} at a multi-kilohertz frequency (100 KHz) on each propagating beam
prior to photodetection as shown in Fig. 10. This is accomplished with an optical
phase modulator on one arm of the coil. The phase modulator device periodically (at
the FM subcarrier frequency) changes the optical path delay3 through itself. Note
that one beam is frequency modulated prior to entering the fiber sensing coil while
the other beam is modulated after exiting the coill. This produces optical fregquency
modulations time shifted with respect to each other by the beam propagation time
through the coil.

FEEDBACK
VOLTAGE
CONTROLLED
D-SHFTER

PUASE N
MOOULATOR ™ _
FOR-ACBUAS D%

Fig. 10—~Interferometer FOG with Feedback

The photodetector correlation output can be narrowband processed around the
first harmonic of the FM modulation frequency and then synchronously detected by
multiplying and smooothing the product of the first harmonic output signal with the
same periodic signal driving the cptical phase modulator. The consequences of this
modulation/signal processing arrangement are to allow use of inexpensive a.c.
photodetector output amplifiers while producing s skew symmetric detector output
signal which is zero for zero rotation input rate. Rotation direction is then
immediately given by the sign of this output.

JTime base variation is mathematically equivalent to imposing a frequency
modulation,
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A brief discussion on optical sources i3 now in order. Recall that for the
RFOG, employing the very high Q light circuit sensing coil, an extremely narrow
laser diode optical source bandwidth is required to fit within the resonance
linewidth of the resonant optical structure. Now, in general, the autocorrelation
function of any narrowband waveform i3 an attenuated cosine function with a period
equal to that of source (optical) wavelength and a rate of envelope decay equal to
the reciprocal of the source bandwidth (i.e., “spectral linewidth"). The effective
time duration of this correlation envelope time decay when multiplied by the speed
of light produces a "length” referred to as the coherence length of the source. The
coherence length of an RFOG source must be in excess of a mile!

Next consider the long optical path length (on the order of 1 km) used by a
hign sensitivity IFOG. Discrete imperfections in the optical path (for example, due
to splices or connectors, nicks in the fiber cladding, impurities in the fiber core,
etc.) will cause small-scale (1) optical reflections (backscatter), and (2)
crosspolarization mode coupling (forward scatter). These unwanted optical
interference signals are analogous to the multipath interference in a radio link.

In direct analogy with radio multipach, spread sectrum sources (8] can be used to
combat the multipach. :

All such "optical multipath®™ interference sources separated from the desired
optical signal or from each other by less than the coherence length of the Source
(i.e., autocorrelation envelope decay time) will upset the measurement accuracy.
This results from the photodetector crosscorrelating the exiting light beams
(desired plus interfering) of the fiber coil. This crosscorrelation produces not
only the desired autocorrelation function of the optical source but is also
corrupted by crosscorrelations between the "multipath®™ generated beams and the
desired beams. However, those crosscorrelations separated by more than a source
coherence length are zero. Consequently, short coherence length sources (large
instantaneous bandwidths) considerably reduce the number of small inteference
signals corrupting the measurement accuracy.

The IFOG detector processing depends on the wavelength periodicity of the
optical source autocorrelation function and not its envelope. Consequently, an
optical diode source having large symmetrical instantaneous spectral bandwidth
(e.g., Super Luminescent Diode, SLD) with a very stable center frequency produces an
autocorrelation function still useful for IFOG operation but having a fast decay
time (submillimeter coherence longth).‘ Now only multipath source pairs within a
coherence length (submillimeter) of each other can beat together to produce a
degraded output and most of the multipath is rejected. Consequently, current IFOG
technology is facilitated by use of broadband diode sources while the RFOG must use
extreamely narrowband laser sources to excite their resonant structures.

In contrast to the IFOG, recall that the RFOG operates with a much shorter
fiber and off-resonance frequency detection for each separately propsgating beam and
does not crosscorrelate the beams. Consequently, the RFOG is affected by optical
multipath sources in a very different way than the IFOG. Here the resonance optical
bandpass shape becomes distorted by multipath. The RFOG system phase transfer
function must be kept skew symmetric about a small frequency region centered on the
resonance point of the fiber coil.

Since the IFOG sensor has been in active development in industry for & longer
time, it is much closer to being implementable in a nearer term, flight-testable GGP
prototype. For example, the broadband optical sources, although expensive,
currently exist while available narrowband solid state sources are still too wide
(~1 MHz vice the 100 KHz or less needed). Consequently, the IFOG rotation sensor is
the initial choice for the GGP based on oa:lg availability, but interest cremains
high at DARPA in the RFOG sensor technology.

So far in the discussion, both FOG architectures suffer from a very limited
‘easurement dynamic cange. That is to say, the ratio of the maximum rotation rate
isefully measurable to the random noise output is not as large as desired. The RFOG
resonant structure is so narrowband that the higher rotation rate doppler shifts cthe

TIn theory the source also could be broadbanded by electronically induced
modulation. Alternatively, other signal processing techniques for multipath
rejection might be employed.

5The reader is put on notice that DARPA views the RFOG and IFOG, although
both rotation sensors, as distinctly different transducers with unique and different
advantages, uses, risks, and coat. Thay are not viewed as a priori competitive
technologies for the same universal application.
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source out of the resonance while the IFOG cciine autocorrelation function®
becomes ambiguous for large Sagnac phase shifts resulting from higher rotation
rates. These effects produce measurement (not device) failure.

Actual measurement dynamic range is set by even lower maximum permissible
rotation rates. Namely, as the rotation rates increase the measured output becomes
nonlinear with input mechanical rate; i.e., nonlinear scale factor. Consequently,
for increasing overall measurement precision, there is a further decrease in useful
dynamic range.

The means to increase the dynamic range is to empl measurement feedback
(Figs. 9 and 10) creating a closed loop FOG sensor. AS the Sagnac effect develops
and is sensed at the photodetector(s), feedback electronics filter the signal and
then input to a voltage-controlled optical phase or frequency shifter(s) on the
integrated optics chip. In this way the Sagnac coptical signal can be nulled out.
The rotation rate measurement is taken from the drive voltage to the voltage-
controlled optical shifter. The Sagnac optical signal is processed as the error
signal input to a tracking feedback loop. This technique is the optical analogue to
the Phase Lock Loop (PLL) for the IFOG, and Automatic Frequency Control (AFC) for
the RFOG.

To date, laboratory IFOGs have been assembled using discrete fiber optical
parts (e.g., couplers, polarizers, splitters, modulators) operating with light
sources at 0.83 u wavelength. The net drifr rate bias has been at the 0.1%°hr or
less regime. Some efforts have already installed the feedback architecture and
employ polarization preserving fiber (PPF) in the sensing coil. The PPF coil
considerably imroves optical reciprocity of the light path by drastically reducing
the level of unwanted crosspolarized (nonreciprocal path) light being
crosscorrelated on the photodetector. All DARPA efforts for future high performance
IFOGs will incorporate these features.

Further efforts (8] at implementing individual or a few optical parts
(y-splitter, coupler, polarizer, phase modulator) on lithium niobate chips have
succeeded. The DARPA effort will emphasize accomplishing a high level of optical
integration on one Integrated Optic (10) chip. The long-term goal is to place all
optical parts on the I0 chip excepting the light source.

The IO fabrication method deposits etched strip lines of titanium on a lithium
niobate crystal substrate. These titanium lines are then heat diffused into the
crystal forming light guides whose intergquide propagation coupling properties are
carefully controlled. These optical couplers and splitters are passive linear
"circuits.” Optical modulators and switches are obtained by using the electro-
optic effect in lithium niobate where the light propagation velocity (refractive
index) is a function of the strength of an imposed external E field. Capacitive
“plates” are deposited over desired portions of the chip with electric control lines
to which off-chip drive electronics attach. The process is quite similar to that
used by solid state integrated circuit foundries (except fewer foundry steps are
needed). It should be noted that lithium niobate chips produce intrinsically
polarization preserving light guides, which enhances the use of PPF sensing coils.

It has been well known that lithium niobate crystals are susceptible to optical
damage., It {s believed that this damage is caused by energetic photon collisions
with atomic iron impurities embedded in the lithium niobate lattice structure. At
appropriate photon energies (i.e., optical wavelength) the outer electron shells of
the iron becoma excited with very long relaxation time. Unfortunately, the present
0.83 u wavelength is such an appropriate photon energy level.

When the incident rate of the energetic photons (i.e., light intensity) reaches
a threshold value, enough excited iron nuclei impurities are produced to distort the
lichium niobate lattice structure and produce visible photo-darkening effects.
Above onset threshold, the photo-darkening is proportional to time accumulated light
energy usually taking tens of minutes. When the light is removed, the crystal

structure can relax back to i{ts normal condition, but may take a week or more to do
s0.

There appears to be no toason;blc prospect to significantly reduce iron
216mpuz£tus in today’s lithium niobate foundry processes. Current telecommunications

—_—
It is made into a sine rotation detector characteristic bv the phase




experience at the 0.83 u wavelength has detected photo-darkening onset at milliwact
light intensity levels, a light intensity level which most IFOGS would be well
under. Unfortunately, this measurement for darkening onset was made based on
intensity loss from input to output of the chip with primarily unidirectional
propagation through the chip (in comparison with bidirectional for the IFOG). Wicth
the IFOG’s critical dependence on optical reciprocity, the light intensity onset
threshold could be considerably reduced, especially for high levels of functional
chip integration (i.e., optical devices on the chip).

For the GGP, this risk to successful 10 chip employment has been judged too
high! Fortunately, longer wavelength fiber technology (1.3 to 1.55 W) does not
suffer from the effect as the individual photon energy is too low to excite the iron
impurities. Even more fortuitously, there is considerably greater optical quality
in the fiber parts at the longer wavelength (e.g., lower loss 1/2 db/km vice 3
db/km, reduced scatter, increased polarization extinction in PPF, etc.) while the
lichium niobate chip fabrication is more tolerant in its critical dimension
requirements, It is to these longer wavelengths that the telecommunications
industry migrated successfully several years ago.

The 0.8) u wavelength was originally employed in IFOG research because of the
availability of quality diode optical sources with adequate power level and
photodetectors. Currently, quiet photodetectors are readily available at the longer
wavelengths while broadband superluminescent diodes, SLD (remember a quality spread
spectrum source is needed for multipath scatter reduction) are just now becoming
available at these wavelengths. It is on this longer wavelength optical technology
that the GGP will evolve for lower cost (using nonphoto-damaging IO chip) and obtain
bettar performance {(higher quality fiber).

Listed below are current research areas to the longer wavelength closed loop
IFOG effort by DARPA for its GGP.

-} Component Level

Light source~-SLD, LD, LED

10 chip & optronic devices--voltage controlled optical
phase modulator, high-level integration

Physical characterization--reciprocity, scattering
mechanisms, optical loss, ¢ load & thermal
gradient effects

Connectors/splicers--alignment, reflections

o System Level
Closed loop signal processing and sensor modeling
Error analysis and performance prediction
Parameter optimization

The current GGP IMU effort is completing several preliminary designs of a
closed loop IFOG along with selection and integration of miniature accelerometers
with performance at the 0.01°/hr level given in Table 3. In the next phase of the
GGP program, two designs will be selected and parallel efforts to build IMU
brassboards of the selected designs will be pursued. These brassboards are to
commence flying-laboratory tests within three years of contract award. For this GGP
flight testing, an MGR will also have been integrated, as discussesd in the
following section.

GGP_SYSTEM INTEGRATION

~ System integration effort for the GGP is being conducted at the functional
levels, listed below:

o Mechanical Packaging
Form/Fit, Temperature, Shock

o System Data Processor/Bus Hardware
Thruput, Memory, Sensor Interface Control

o System Software Modules
Filter Design, Resoutce Manager

) System Simulation/Trade-off Optimization
Covariance and Monte Carlo Simulation

26-13
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o User Mission Anilysis
Trajectories/Profiles, Performance Measures

With the exception of the mechanical integration, there is strong interaction
amongst the other system integration functions, listed above.

Since the modular GGP is planned for a wide variety of host/mission
applications on the one hand, and the system scope is both broad and interconnected
cn the other hand, the system’s effort must be partitioned by an appropriate
development philosophy in order to avoid needlessly locking out useful GGP
applications while » nortioning the system’s effort into manageable assignments.

The key requirements -~ DARPA to achieve this goal is (1) to host
guidance/navigation s .ictions as well as top-level resource control with
all attendant software e ~rictly in the Navigation Systems Microprocessor(s)
(Fig. 1), and (2) to mai. . ‘¢t control over electrical/data exchange
interfaces/standards betw -. 3 : 10 GGP sensor suites (MGR and IMU) and the system
microprocessor.

A consequence of this approac may produce a fairly significant throughput,
memory space, and coding burden .r he system’s microprocessor. This will be
strongly driven by the size ‘i.e., number of states modeled) of the Kalman Filter
employed [10]. However, the ‘'ate t high-speed commercial microprocessors (possibly
RISC machines) should be able s accommodate the expected thruput of several MIPS.
The standard, multimegabit high~speed backbone data bus will be used with either 16
or 32 bit width.

Software development will initially focus on the following: (1) implementing
the Kalman Filter, (2) separating out of the existing software modules in the MGR
and IMU sensors their low-level real-time signal procesing modules from their
resource management modules, (3) determining software data access and command
methods from top-level resource management in the system’s microprocessor to the low-
level real-time software in the sensor microprocessor, and (4) reconcile data
formats and timing actions. Resource management decision tree/execution action
tables will be developed for various host applications. Finally, the software will
be thoroughly tested and validated.

System simulations will be performed at two distinctly different, but highly
interactive, levels. At the aggregate system modeling level, mathematical
input/output models for the MGR, IMU, and physical environment (e.g., gravity
anamoly) are combined together with a Kalman Filter in "Covariance” simulations for
specified mission dynamic profiles. Selective "Monte Carlo” simulations will then
be run. Such analysis relates instrument performance requirements, generates
expected system behavior, and predicts mission pegformance. It provides a
“specification dialogue™ between the user application and the GGP modular design as
well as eliciting what are critical system drivers and the measures of
merit/performance appropriate to each class of application. An example of this will
be provided in what follows.

The aggregate system modeling simulations will not test the adequacy of the
tesal-time operational system-level software nor the specific behavior of the MGR and
IMU components and their dedicated low-level real-time software. Moreover, the
dynamical detailed interactions between the three subsyitems needs to be verified.
To do this a sequence of hybrid-brassboard simulations will be used wherein a
mixture of real-time computer simulation with hardware simulation will be set up for
a selected class of mission. As GGP sensor instruments become available they will
be inserted in the brassboard. The end state of the sequence will be an all-GGP
brassboard customized for the selected mission class.

Returning to the aggregate system-level modeling, a series of preliminary
results were obtained for two classes of mission: (a) an Unmanned Vehicle or UMV
and (b) a long~range strike weapon. Representative mission trajectories wers,
“flown" postulating a high quality IMU in the 0.003°/hr gyro drift rate and SO g
accelerometear bias category.

GPS received signal was then denied (e.g. jammer) at selected parts of the
mission and IMU only guidance error buildup was calculated. In addition to the IMU
error sources, earth gravity anomalies and vertical deflection were modeled as a
first order Markov process.

The modeled MGR, IMU, vehicle motion, and gravity inputs were optimally
combined in a 48-state system Kalman filter. Additionally, a 78-state ~-del is
executed a3 the "truth" model. The covariance simulation then flies th. mission




trajectory (in non-real-time) accumulating as a function of time the 1 O state
errors for both the truth model {78-state) and the system filter (48-state). The
48-state system filter is deliberately overstated in order to identify the most
significant 17 to 23] states to retain in an operational filter formulation that can
execute in real time.

Finally, a perfect IMU was postulated in order to benchmark the ecrror floor
introduced by the (unmapped) gravity anomalies and vertical deflections. The
primary intent of this exercise was to build the capability to make these
calculations and develop preliminary insight to relate IMU quality to mission needs.
The mission trajectories are purely hypothetical and were used only to develop this
system level skill. They have no validity as to any specific real missions.

Shown in Figs. 11, 12, and 13 are three sample mission trajectories used with
GPS signal loss introduced. Figs. 1l and 12 are two unmanned vehicle trajectories
in which the first passes by a single jammer and the second passes by a series of
jammers. Fig. 13 shows in plan view a long-range strike weapon-type trajectory with
a jammer in the immediate neighborhood of the target.

The model results plotting one sigma horizontal displacement errors versus time
are shown in Figs. 14, 15, and 16. The 30lid lines are the modeled "true" 1 @
errors and the dotted lines are what the modeled system Kalman filter "says" are the
1 g errors. The corresponding results for the gravity errors only case with zero
insctrument error showed only a few meter increase in dy. This establishes that
additional improvements in IMU performance beyond the .003°/hr level (Table 5) will
require maps of gravity anomaly and vertical deflection, thus increasing somewhat
system memory and requiring increased microcomputer capacity. In all probabilicy
these considerations will be less demanding than the added mission planning burden,
i.e., obtaining gravity surveys.

CONCLUSIONS

The DARPA GGP program objective to exploit GPS/IMU synergisms in an extremely
small package with litct.: burden to an extremely wide variety of host vehicles and
ipplications is being actively pursued. The goal to achieve current navigation
grade of performance (-~ 1 am/hr.) but with major per unit cost reductions in lacge~
scale production should be achievable. Except for the IMU, solid state technology
is now either off the shelf (system integration microprocessor) or becoming
available (mini-GPS receivers). The silicon accelerometers are currently under
active development by DoD. Consequently, the Fiber Optic Gyro (FOG) is the primary
technology needed to produce a successful GGP.
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In this paper the principal technical approaches being pursued in the DARPA GGP
program have been revieved along with discussion of the issues associated with these
approaches. The performance and size goals of the GGP (i.e., FOG) can be met with
low to moderate risk. The higher risk resides in making the cost reduction
breakthroughs for the FOG instruments. This risk principally falls on the following
FOG components: (1) integrating high-level optical signal processing parts on the
integrated optics chip, (2) producing higher power, long wavelength optical sources,
and (J) automated parts assembly machinery and infrastructure, ¢.9., sensing coil
winders and automa-ed polarization aligning connections/splices between the optical
subassemblies of source, chip, and coil. These challenges are commensurate with the
broad DARPA charter to significantly advance the DoD technology base.
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“THE MULTIPATH SIMULATOR", A TOOL TOWARD CONTROLLING MULTIPATH

George A. Hajj
JET PROPULSION LABORATORY

One of the major error contributors to GPS orbit determination and baseline
measurements is multipath. Its source can be the GPS satellite itself, the
ground antenna environment, and the user spacecraft body. Multipath error is
scaled according to wavelength and is therefore larger for P-code than carrier
phase. Averaging over time does reduce the error.

The multipath simulator basically uses a ray-tracing technique to determine
the different paths that a GPS-transmitted signal can take. Its capabilities
include modeling a multitude of differing geometric environments for the
transmitter and receiver antenna, simulating both L1 and L2 frequencies and
the polarization of the direct and reflected signals, and performing sensitiv-
ity studies related to antenna gain and receiver tracking strategy.

Using TOPEX as an example, multipath effects were analyzed with respect to
antenna position, antenna gain, and data analysis technique. The model in-
cluded signals from up to 6 GPS satellites reflecting off of a variety of
surfaces descriptive of the TOPEX satellite; its attitude and the orientation
of the solar panel and TDRSS antenna were also modeled. As a function of boom
height of the antenna above the satellite, it is shown that at a height of 4.3
m the multipath effect is about 20 db lower than the direct signal; whereas at
zero height, there is considerable interference. The instantaneous multipath
error in P-code is approximately 100 times greater than in the carrier phase,
and each of these can be reduced by an order of magnitude by time averaging; 5
minute averages are shown here. Analyzing real data at the Ovro site, we see
an error on the order of 10 cm for 2-min. averages of the P-code using L1 (P1)
showing that our simulations are reasonable. A simulation of a precise orbit
determination for TOPEX shows that proper weighting of the data (i.e., 100 to
1 ratio for the carrier phase versus the P-code measurements) effects reduced
orbit altitude residuals due to multipath.

In conclusion, the multipath simulator can be used in the design phase of
an experiment to determine antenna location and gain, to quantify multipath
for precise orbit determination, and, ultimately, to calibrate multipath er-
rors. It is shown that multipath can be reduced also by properly weighting
the carrier phase and P-code data.

Discussion:

Question: How can one analyze the multipath for another satellite, such as
Lightsat, instead of TOPEX?

Answer: Simply define the configuration and geometry of the main objects that
are expected to cause multipath.

Question: Are the multipath effects due to irregularities in the ionosphere
and troposphere negligible compared to the reflection effects.

Answer: These are higher-order ionospheric effects which require different
analysis altogether.
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Question: How are the range errors due to multipath obtained for a given re-
flection of the signal?

Answer: We Tooked at the correlation function of the direct signal and the
correlation function of the reflected signal and determined how far the corre-
Jation peak shifted to obtain the range error.

Question: How much multipath is due to the GPS satellites?

Answer: This has not yet been analyzed; it is expected to be much less than
for the TOPEX satellite.
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