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ABSTRACT

A new adaptive control law for mechanical manipulators that maintains uniformly good

performance over a wide range of motions and payloads is developed. This control strategy

combines properties from both the Model Reference Adaptive Control and the Self Tuning

Regulator Theory and serves to extend the Adaptive Model Following Control approach

into using a nonlinear reference model.

The design procedure is simple resulting in an overall system which is globally stable

arid offers itself to microcomputer implementation. The effectiveness of the approach is

demonstrated on several computer simulations which compares its performances against

some of the commonly known adaptive control techniques.

Also presented is a comparison of the computation complexity of different methods used

in deriving the dynamic equations of motion of a mechanical manipulator as well as a

survey of various robot control methodologies available in the literature today.
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I. ROBOTICS: AN OVERVIEW

A. INTRODUCTION

The 1980's may easily be characterized as the robotics era. The last five or six years

have experienced very strong social and economical demands for advanced automation in a

fast expanding domain of applications ranging from the-well established car-making

industry to unmanned underwater workstations [1]. Moreover, there is a widespread feeling

that it is likely that robots, in the years ahead, will become crucial agents of industrial

clila,, tranlsf(: fing production processes and affecting everyday lives [2]. Confronted with

thes( facts, we are led to wonder about the reasons behind experts attaching such heavy

weight to robotics and about tle characteristics that make the industrial robot such a

powerful tool.

An answer to these quescions may be found by tracing the origins that tie robotics to

automation. Roughly speaking, we can identify three types of automation [3].

1. ?ontinuous process controls

This type of automation is used in oil refineries. It employs mostly computers with

no, or little, human intervention. This type is highly automated.

2. Hard automation

Hard automation uses mainly transfer conveyor methods to handle the high volume

mass production. This type of automation is based on setting up specific assembly lines

with special tools and gadgets. This implies that hard automation relies on hardware which

cannot be easily changed, should a change in the design of a product be called for.

3. Flexible automation

Flexible automation handles low volume batch production. Because this type aims at

overcoming the limitations of hard automation, it is also referred to as programmable

• , . . , il I1



automation. This kind of "machine" is designed to be flexible and to be able to react to its

environment in an adaptive fashion. This is clearly different from the conventional machine

which can be used only for well-defined, specialized, and preappointed tasks. The

mechanical manipulators used in industrial applications fall into this category. However,

even though a considerable progress has been made in introducing robots into industrial

situations, there is still more to learn both in overall concepts and practicalities before a

robot having a performance comparable to humans can be built [4].

The next section will describe what is meant by a "mechanical manipulator", in

general, an(l will outline some of its characteristics.

B. A MECIINICAL MANIPULATOR: DEFINITION AND CHARACTERISTICS

A robot is a computer-controlled mechanical device that can be programmed to

automatically move objects through different configurations in space. Robots are normally

constructed as series of coupled rigid links, which together constitute what is called a

kinematic chain. There are two types of kinematic chains [5]:

1. The linkage or the closed chain, where every link is connected to at least two other
links in the chain.

2. The manipulator or the open chain, where some of the links are connected to only one
other link. The articulated portion of most industrial robots is an open kinematic chain
with some fofrn of end effector attached to the final link.

A typical industrial robot is shown in Figure 1.1. The coupling of two adjacent links is

referred to as a kinematic pair or joint. The most frequently encountered pairs in current

ind!.strial manipulators are the revolute or rotational joint and the prismatic or translation

joint. These pairs are shown in Figure 1.2. The revolute and prismatic joints are single

degree of freedom pairs. Any manipulator must have at least six degrees of freedom to

enable it to achieve arbitrary real-world configurations. Thus, most industrial robots are

constructed of exactly six links. The first three degrees of freedom are generally referred to
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Figure 1.1: Atypical industrial mechanical manipulator
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as an arm subassembly. They are used primarily to position the wrist unit at the

workpiece. The final three degrees of freedom are referred to as the wrist subassembly,

subsequently employed to orient the tool according to the configuration of the object [61.

This research is mainly concerned with the arm subassembly. The orientation of the tool

will not be considered.

C. ROBOTICS APPLICATIONS

Mechanical manipulators are widely used in manufacturing and assembly tasks such as

material handling. spot and arc welding, parts assembly, paint spraying, loading and

unloading nunerically controlled machines, and in handling hazardous materials [7].

Furthermore. it is now common belief that robot systems can be used in areas other than

assembly tasks. Perhaps the most unusual application, to date, can be found in Australia,

where a robot is used for sheep shearing [8]. Another application of robots is in space

technology. The installation in the Space Shuttle Columbia of a remote controlled

manipulator to place satellites into orbit and retrieve them when they fail is just one

example [9]. Mechanical manipulators have also been used extensively in undersea research,

probably even more frequently than in space; the latest example being the robotic unit

used in the discovery of the Titanic [10]. Robot systems could also be used in hospitals to

help paralytic people or those who must be in bed after surgery. The household robot is

another dream. Military applications are also appealing. However, until all the control

problems are overcome, the domain of applications of robot systems will remain limited.

This will be discussed later, but, for now, a typical structure of a robot system is presented.

D. STRUCTURE OF A TYPICAL ROBOT SYSTEM

As illustrated in Figure 1.3, a robot system is, functionally, made up of four interactive

parts [11]. These different parts are:
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1. The mechanical manipulator

The mechanical manipulator, itself, or the plant, is an open chain of rigid links of the

type pieviously shown in Figure 1.1. This is the part of the machine designed to perform a

specific task. Each link is powered by an actuator which physically moves the link in

accordance with some prescribed control law. The joints are usually equipped with sensors

to allow for the relative positions of the adjacent links to be measured.

2. The environment

The environment in which the robot operates is the physical universe surrounding the

,irhanical manipulator. It includes not only geometrical considerations, but also the

])hysical law governing this universe, the medium in which the robot is immersed and their

effects on the movements of the robot. Moreover, the robot payload changes constantly

either by handling parts of different masses or changing tools and configurations from one

task to the other. This modifies the mass and inertia of the robot, which in turn affects its

dynamic behavior. These changes must be taken into account in the formulation of the

dynamic model of the mechanical manipulator.

3. The task

The task to be carried by the manipulator, or the trajectory planner, may differ from

one application to another. In most cases, however, the ultimate task is driving the end

effector of the manipulator to a desired position in the workspace. Naturally, this position

is expressed in cartesian or world coordinates. Theoretically, the task might be

accomplished in any fashion, as along as the tool reaches the final desired position and

remains there. More realistically, the robot must meet certain requirements in performing

its task [12]:

1. The motion must be as fast as possible, otherwise, the use of robots would not have
been efficient.

2. No overshoot of the final position is allowed to prevent damages to the environment.
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3. The mechanical manipulator must be able to avoid obstacles that may be present in its
workspace.

4. The motion must be smooth, in order to avoid the increased wear on the mechanism
and the resonances caused by vibrations due to rough and jerky motions.

Therefore, stating the initial and final conditions alone is not a sufficient task

description. In most cases, it is necessary for each link to follow a prescribed trajectory in

terms of position, velocity, and acceleration at each instant of time. The desired trajectory

can be made by the combination of any smooth functions joining the initi and final

positions and satisfying all the constraints. Cubic functions are among the most commonly

used trajectories since they are easy to generate [13].

4. The con troller

The controller generates the control signals that excite the corresponding actuators to

produce the torques necessary to maintain a prescribed motion of the arm along the desired

trajectory. The control strategy is determined according to both the control task and the

mechanical manipulator equations of motion. It is, however, usually derived on the basis of

a trajectory expressed in joint coordinates. Therefore, a transformation from world

coordinates to link coordinates must be performed before the signals sent by the trajectory

planner can be used by the controller.

In practice, the four functions described above closely interact with each other. When

in operation, the computer receives, at each instant of time, information concerning the

robot and information concerning the environment. By using this information in

conjunction with the control law, it causes the manipulator to move toward the correct

execution of the task assigned to it.

This thesis addresses the design of control systems in order for the manipulator to

adapt to a changing environment, as described by functions 2 and 4 above. The next

section defines in more detail the mechanical manipulator control problem and addresses

some of the difficulties.

8



E. THE ROBOT CONTROL PROBLEM

Robotics, while bringing together many well established fields of engineering, is

relatively a new science in itself. It still suffers from many unsettled points. Controlling the

robot system to perform in certain way is one of its most challenging problems due to the

fact that these systems are highly nonlinear. A formal statement of this problem is not,

however, as difficult as trying to find a satisfying solution for it. In general terms, the robot

control problem can be formulated as follows:

Given a desired trajectory generated by the trajectory planner and a mathematical model
of the mechaniical manipulator and its interactions with the environment, find the control
algorithm which sends torque commands to the actuators in order to cause the desired
motion to be realized.

One may now recognize that the robot control problem as stated here is basically a

stability problem, along the given trajectory.

Mechanical manipulators may be modeled precisely enough. since their behavior is

described by the known laws of mechanics (14]. This knowledge should be used in the

control synthesis as extensively as possible. As stated earlier, this problem is extremely

difficult because the robot systems are inherently characterized by nonlinear dynamics that

include nonlinear couplings between the variables corresponding to different motions.

Furthermore. the dynamic parameters of the manipulator vary with position of the joint

variables, which themselves vary in time and with respect to each other. These difficulties

make the implementation of real time dynamic control computationally impractical in

today's computers. Therefore, one of the intriguing questions arising in the solution of the

control task is to what extent one should take into account real robot dynamics in control

synthesis.

Current industrial practices, in order to take advantage of the well--established linear

systems and control theory, model the manipulator as a chain of constant-parameter,
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uncoupled linear subsystems. These design procedures, which may be referred to as the

servomechanism control methodologies, while yielding satisfactory performances at low

speeds, have proven to be inefficient for faster and more accurate robotics applications [15].

Recently, more researchers have turned to adaptive control in an attempt to be able to

take advantage of the full robot dynamics and to overcome the limitations of the actually

available practices [16,17]. These new approaches may be referred to as adaptive control

strategies for mechanical manipulators. However, no completely acceptable answer has

been given to the question of how to use the knowledge of the robot dynamics to synthesize

such control that would be simple enough to implement in practice and to guarantee

satisfactory system behavior. Several other problems remain [18], such as:

1. The lack of adequate sensors for the acquisition and pre-processing of information
received from the environment, particularly visual information.

2. The state of development of overall theory is not yet fully developed; and,

3. The slowness of the computations involved.

The first problem is more of a technological problem than theoretical one and will not be

dealt with in this context. The last two problems are inherently related to the robot control

problem and will constitute an important part of this research.

F. LITERATURE REVIEW

This section presents some of the most representative solutions to the mechanical

manipulator control problem as of today. The main difficulty, however, in trying to review

the literature, is that different approaches have been developed for different classes, types,

configurations, and purposes. We will primarily consider the approaches to the control

synthesis for industrial manipulators. We will also restrict ourselves to dynamic control

which takes into account dynamic effects of the robotics system. Control strategies both in

terms of open loop and closed loop control have been examined [19].
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1. Open loop control systems

In this case, the trajectory is preplanned or prerecorded and the input torques do not

depend on link position and/or velocity measurements. The performances are defined in

terms of desired cost minimization criteria.

Along these lines, Kahn [20] has considered the time optimal control problem,

Whitney [21] has studied the minimum energy trajectories, and Young [22] has been

interested in minimizing a quadratic function in acceleration.

Due to the highly nonlinear model of the manipulator, numerical solutions only can

be obtained and stored in memory. In general, this yields a control which is optimal

provided the system is not affected by unexpected disturbances. Also the open loop

approach leads to schemes which are very sensitive to parameter variations. Disturbance

rejection and position tracking can only be achieved through accurate mechanical design.

The performances of the systems are limited by the capabilities of the actuators and by the

vibrations induced in the mechanism by the excitation of high frequency structural modes.

The on-line implementation of such control laws is very involved and might demand a

rather complex multiprocessor.

2. Closed loop control systems

These feedback control strategies are derived either through well known classical

servomechanism procedures, or through more recent adaptive control techniques for their

ability to account for parameter uncertainties.

a. The servomechanism approaches

hahn and Roth [23] have proposed an approximated optimal law which, for a

particular robot, has resulted in response times and trajectories reasonably close to the

optimal solutions. For more complex manipulators, however, this solution might be

unacceptable. Furthermore. the controller proposed in [23] is based on a bang bang

approach, often unacceptable due to continuous chattering of the joint actuator's signals.

I1



Vukobratovic and Stokic [241 addressed the more general problem of designing a

controller which yields desired tracking while, at the same time, minimizes an appropriate

cost criterion.

Because of analytical and computational complexity, approaches by optimal

synthesis have been developed for positional control problems only. To solve the problem of

tracking a prescribed trajectory, Popov and co-authors [25] introduced an alternative

approach which consists of calculating, off line, the nominal trajectory by some optimal or

suboptimal procedures and then following the obtained path.

The design of control systems based on the exact nonlinear model of the

nianipulator. in general. yields algorithms not suitable to real time implementations. For

this reason. controllers based on linearized models in the neighborhood of operating

conditions have been introduced. This, however, guarantees the stability of the linearized

model only. Instabilities might occur in the actual system due to nonlinearities in the

mechanism, coupling between different joints, or parameter variations. In order to

overcome this major difficulty. several additional compensation schemes have been

proposed [26,27] at the expenses of added complexity.

In a different context, Paul [28] has investigated the so called inverse problem

technique (also named the computed torque by Bejczy [29]). This approach uses the desired

position, the desired velocity, and the desired acceleration to compute the driving torques.

The main drawback of this scheme is that the computation of the complete nonlinear

dynamic model is required. Simplifications have been obtained by Paul [30], Bejczy [31],

Raibert and Horn[32] by omitting some of the terms in the model. These simplifications,

while reducing the computational complexity, are still not enough for real time

implementation of any control strategy based on this technique.

Vukobratovic and Stokic [33] have recognized that the forces (moments) acting on

the robot joints can be directly measured and used to synthesize a feedback law that

12



compensates for the coupling in the robotics manipulator and relieves the controller from

on line computation of these complex terms. Other attempts to include force feedback

control account, for the work of Hewit and Burdess [34] who introduced force transducers in

the joints of the manipulator. Although the computation time is shorter, their scheme is

still too complex for real time implementation. Wu and Paul [35] implemented an analog

force feedback loop on a single joint manipulator which avoided the computational

difficulty. Luh, Fisher, and Paul [36] have analyzed the effects of linear independent joint

torques control. The stability of the overall system, however, has not been discussed in any

of these papers. There were other attempts to use force feedback, not only at the executive

co1trol hCV(l but to include assembling tasks, such as in the resolved motion control

introduced by Whitney [37]; the resolved acceleration control by Luh, Walker, and Paul

[3S]: and the resolved force control by Wu and Paul [39].

The simplest and most widely used control method today is based on decoupling

and joint control. Yuan [40] tried to dynamically decouple a manipulator by linear control.

An effective analysis of a constrained linear control may be found in Golla, Garg, and

Hughes [41]. Freund [42] attempted the decoupling by nonlinear control involving full state

feedback which guarantees stability in the absence of external disturbances. Young [43]

developed a variable structure controller for manipulators.

b. Adaptive techniques

In addition to the computational complexity, the servomechanism approaches

cannot always satisfy the stability conditions even if designed to be robust with respect to

parametric and state disturbances. Adaptive control methodologies aim at overcoming

these difficulties.

Within the adaptive control theory, two fundamental approaches exist in the

literature [44]. The first is the Learning Model Adaptive Control (LMAC), in which an

improved model of the plant is obtained by on line parameter estimation techniques, and is

13



then used in the feedback control. A general structure of this approach is shown in Figure

1.4. The estimated model and the controller may be either linear or nonlinear depending on

the estimation technique used. The well known Self Tuning Regulator method belongs to

this class. The second approach in adaptive control theory is the Model Reference Adaptive

Control (MRAC). The controller is adjusted so that the dynamics of the closed loop system

matches that of a preselected model. A general structure of this methodology is given in

Figure 1.5. In general, the reference model is chosen to be a stable, linear, time-invariant,

decoupled system. The controller may be either linear or nonlinear. It is also possible to

design adaptive schemes which combine both techniques.

Many different structures of self tuning regulators are available in the literatule,

and they differ in parameter estimation technique and control algorithms (45]. Koivo and

Guo [46] examined the feasibility of least squares techniques to robotics applications. Their

approach is configuration dependent and does not account for nonlinearities in the system.

It is based on estimation of the linearized dynamics and does not take advantage of any a

priori knowledge of the system that might be available to the designer. Elliot, Depkovich,

and Drapper [47] gave an extension of this method to the nonlinear case taking advantage

of the fact that, in spite of their nonlinear nature, the parameters in the dynamic equations

of a robot system appear linearly. This method showed better tracking ability, but did not

solve the computation complexity. Cristi, Das, and Loh [48] exploited this idea of linear

parameterization of the dynamic equations to give one of the first attempts to formulate an

adaptive version of the computed torque technique. Their scheme consisted of an on line

loop to estimate the payload and an off line loop to estimate the other parameters of the

manipulator. The good feature of this approach is that it guarantees global stability of the

system. In similar fashion, Craig, Hsu and Sastry [49] proposed another adaptive computed

torque controller version, based on linear parameterization of the dynamic equations, and

have established global convergence for their scheme. This method assumes no a priori

14
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knowledge about the system and requires acceleration measurements, which makes it

numerically complex. Middeleton and Goodwin [50] gave an extension of this method based

on position and velocity measurements only. This method is still complex for real-time

implementation. Lee and Chung [51] exploited the self-tuning regulator structure by

introducing the adaptation at the level of linearized perturbation equations in the vicinity

of a nominal joint trajectory. Their approach uses the recursive Newton-Euler equations

for feedforward computation of nominal control and a recursive least squares, one step

ahead control for feedback corrections about the nominal trajectory. The number of

computations involved is reduced. However, this method can only compensate for small

deviations. An attelnpt to speed up this method by avoiding the use of the Newton-Euler

recursion was performed by Vukobratovic and Kircanski (52]. Their scheme is based on

local adjustable controllers at each joint. The controller consists of a nominally tuned

feedforward PID structure, and a feedback corrective portion to account for parameter

variations. This method relaxes the computational burden by introducing a computer for

each link, instead of one main computer for the whole robot system.

There are four basic approaches to the design of Model Reference Adaptive

Control Systems [53]:

1. Local parametric optimization theory

2. Lyapunov functions

3. Variable structure systems

4. Hyperstability and positivity concepts

Within the local parametric optimization techniques, Dubowsky and DesForges

[54] used the steepest descent method to develop one of the first contributions in adaptive

control for robot manipulators. This method is computationally less burdensome and has

good noise rejection properties. However, the steepest descent algorithm, while it can yield

better adaptation speed, calls for many simplifications and may negatively influence the

17



overall stability of the manipulator. The input signal may also become excessively large

due to the fact that only the output error is minimized. The discrete time version of this

method [551, as well as the multivariable case (56], have also been developed by Dubowsky.

The later approach was tested on an industrial robot and showed the significance of

adaptive control in high speed tracking operations.

Takegaki and Arimoto [57] have considered the applicability of model reference

adaptive control theory in robotics, using the Lyapunov function approach. Their scheme

included a nonadaptive gravity compensation loop. This resulted in simple adaptation and

control laws, thus making it suitable for real time implementation. However, how the

gravity compensation loop affected the tracking quality could not be shown.

Young [58] combined the variable structure theory with the model-following

approach and investigated their use in robot positioning problems. This approach also uses

less computation. It, however, uses the hierarchical control methodology of Utkin [59],

which may not be valid if only asymptotic convergence can be reached. In addition, the

control signals are discontinuous and the high frequency components may become

unacceptable. This method suffers also from the fact that there are no design procedures for

tuning the controller parameters. Slotine and Sastry tried [60] to remove some of these

difficulties by using the concept of time varying sliding surfaces in the state space. They,

however, trade off accuracy against chattering by approximating the obtained

discontinuous control law by a continuous one.

Horowitz and Tomizuka [61] presented one of the first attempts to apply

hyperstability theory to robotics. Their algorithm has been later implemented on a three

degree of freedom manipulator by Anex and Hubbard [62] after been slightly modified to

compensate for gravity. The advantage of this method is that the adaptation mechanism is

derived from the condition of overall system stability. Its main problem is the fact that the

dynamical effects are estimated without using any a priori knowledge about the system
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dynamics. In practice, many of the robot parameters are known and it would be convenient

to estimate only the unknown ones. The application of hyperstability theory to robotics

models has been fully developed by Balestrino, De Maria, and Sciavicco [63]. Their strategy

offers better transient behavior compared to that with self-tuning regulators and it

guarantees stability of the entire system. The main drawback of this method is the

possibility of excessive control signals and its high numerical complexity.

As a conclusion, let us note that adaptive methods for manipulation robot are still

in their early stages of development. It is, therefore, very difficult to produce an exhaustive

survey of these methods as new design ideas continue to appear in the literature. So far we

have summarized some of the approaches available, far from a complete treatment of the

problem.

G. THESIS OUTLINE

The remaining of this research will be centered around the development of adaptive

control strategies applied to robotics systems. Fundamental to the problem of dynamic

control, the derivation of the dynamic equations of motion will be addressed in Chapter

Two. Different approaches to obtaining these equations, as well as their computational

complexity will be discussed.

In Chapter Three, a new adaptive control law which will combine properties from both

the STR technique in [51] and the hyperstability principal in [63] will be presented. This

methodology has the advantage of assuring global stability and aims at overcoming many

of the limitations of the previously studied schemes. It makes use of a nominal dynamics

feedforward compensation loop, but, unlike Ref.[51], the stabilizing feedback loop does not

call for any simplifying assumptions. A rapprochement between this method and the

AMFC will be established, but, unlike Ref.[63], it does not require excessive actuation.

Most of all. our approach yields better performance and is numerically very efficient.
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II. MECHANICAL MANIPULATOR DYNAMICS

A. INTRODUCTION

In order to design a controller of an articulated mechanical system, it is necessary to

have a mathematical model the system. This model expresses the relationships among

different components of the robotics system and the interactions between the mechanical

manipulator as a whole and the physical universe surrounding it. It is described in terms of

characteristic variables which are specific to the system, such as degrees of freedom,

lengths, masses, inertias, positions, forces, and torques.

The number and nature of the parameters used in each model depend on the application

and the accuracy required. The designer is constantly faced with the challenge of

developing models that adequately represent the dynamics of the system, and that are

computationally convenient for computer implementations.

Because of the high speeds required in any future robotics application, dynamic

phenomena, such as frictional, inertial, centrifugal, and coupling forces should be taken into

consideration for the chosen model to be representative of the actual mechanical

manipulator behavior.

An efficient mathematical model of a robot is essential for both design and control

purposes. In the design phase, a complete dynamic model is useful for determining loads,

dimensions. tolerances and actuation. In control applications, the dynamic model is used to

generate the nominal joint torques as well as to simulate and test control strategies without

the need of building a prototype (at least in the early stages of the design).

There are two problems related to the dynamics of a manipulator. In the inverse

dynamics problem, we are given a trajectory in terms of joint coordinates q(t) and their

derivatives. q(t) and i(t). and we wish to find the corresponding sets of vector torques r.
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This formulation is at the basis of the control problem. The second formulation is the

direct dynamics problem. In this formulation, we wish to calculate the resulting motion of

the manipulator q(t), 4(t) and 4(t) for every given set of vector torques r. This is at the

basis of the simulation of the robotics system.

There are several possible approaches one can take to derive the dynamics equations of

an articulated mechanical system. Newton-Euler's equations, Gibbs' functions,

d'Alembert's formalism, Bond graphs and Lagrange equations are only few of these

methods.

Lagrange and Newton-Euler equations are, however, the most frequently used in the

literarture. In thi- chapter, we will present several alternative formulations of these two

methods, address their computational performances, and show that one can easily be

derived from the other.

B. CLOSED-FORM LAGRANGIAN MANIPULATOR DYNAMICS

This formulation was first applied to open loop kinematic chains by Kahn [64] from the

more general linkage problem of Uicker [651, and has served as the standard manipulator

dynamics for over a decade. We begin this derivation by presenting the notation used

throughout the development.

The links of a manipulator are numbered consecutively from 1 to n starting from the

base to the tip. By convention, the reference frame is numbered as link 0. The joints are

numbered so that the joint i connects link i-I to link i. An orthogonal coordinate system is

fixed in each link as follows:

z is directed along the axis of joint i+1,

xi lies along the common normal from z to z, and

yi completes the right handed coordinate.
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The relative position of two adjacent links is completely described by:

ai, the distance between the origins of coordinate systems i-1 and i measured along Xi,

si the distance between x,._ and z i measured along zi_l,

Oi the angle between the zi_1 and zi axes measured in a righthand sense about zi, and

9i the angle between the x,__ and x, axes measured in the righthand sense about zij 1 .

This notation is summarized in Figure 2.1. If the joint is rotational, the joint variable will

be 9i; if translational, the joint variable will be s i. The symbol qi will designate the

q2

variable for joint i whether it is si or 0i. The vector q = represents the generalized

coordinates of the manipulator and completely specifies its position. In the subsequent

development, lower case and uppercase regular letters will be used indifferently to

designate scalar quantities, lower case bold letters to designate vectors, and capital bold

letters to designate matrices. Subscripts refer to the physical location of the variable.

superscripts to the coordinates frame the variable is expressed in. Either of these is omitted

when referring to the base coordinates frame.

The Lagrange equations for a nonconservative system are:

d OL OL r, i= ,2,...,n (2.1)Ut -O-t-i Oq i

where.

L = K - P is the Lagrangian function,

K is the total kinetic energy of the manipulator,

P is the total potential energy of the manipulator,

qi is the generalized coordinate of the manipulator,

i is the first time derivative of the generalized coordinate, and,

7 i is the torque applied to the system at joint i.
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Figure 2. 1: The standard axes definitions for connected links
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To find the kinetic energy of the physical system, we need to know the velocity of each[ 1
joint. Let [z! J denote the coordinates of link i in the reference frame of the it 4 link;

1i1 ' A1]
Pithe same point pi with respect to the base coordinates frame; T = 0 0 0 1]

the homogeneous coordinate transformation which relates the displacement of the ith link

coordinate frame to the (i-I)th link coordinate frame; and T i the coordinate

transformation which relates the it h coordinate frame to the base coordinate frame. The

rotational transformation R and the translational transformation A are given by:

i-1 coso i -sin. i cosa i  sinOi sin a. 1
Ri = sin0i  Cos0 i co s a i -cosQ i sin a i  (2.2)

0 sina i  coso i

and,
i-1 Pai cos9 i  1 for a revo lute joint
Ai = pa i sin9.,= 23

si1 .~for aprismatic joint(23

The variables pi and pi are related by:i

i Tpi (2.4)

where

T T-T'el T/i (2.5)

Assuming rigid body motion, all the points p? will have zero velocity with respect to the

coordinate frame. The velocity of p2 expressed in the base coordinate frame is:

Z.oriaefam.Tevlct 2fP

v= = -(pi) = T td TiPi)i (26)

0~
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Sn= [e i (2.7)

where

ITi-1
I - i - 1  

(2.8)aqi

and ^T 0T 1 ... T -2 "- 1. f rj_

T0T1  ~ T T Q.h.T' forj~= 1 2 j-1 j j T. l' i (2.9)
aqj 0 for j> i

i=1,2,..:

The matrix Qi being:

-V 0 0 [v--1 and p=O for

-0,0 0 wiha revolute jointa' ' ,with ad fr(2.10)q= 0 0 0#P
0 0 0 0 v-0 and u=1 for

a prismatic joint
0 T i

In order to simplify notations, let us define U.. -- , then equation (2.9) can be
Oqj

written as follows:

T J 1 Qj T , for j i
U j , l2,..., n (2.11)

0 for j> i

Using this not. ion, v i can be expressed as:

v i = Uij 4j pi (2.12)
i

The matrix U.. is the rate of change of the point pi on link i relative to the base coordinate

frame as qi changes. It represents both the linear and angular velocities of the link.
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The kinetic energy of an infinitesimal mass dm on link i is found as:

2 2 .2dk i + yi + )dm

dki= Tr(vi vl)dm (2.13)

where a trace of an nxn matrix A is defined as:
n

Tr(A) = aii
i=1

Substituting equation (2.12) for vi, the kinetic energy of the infinitesimal mass becomes:
i i

dki= 1 Tr [ IUiA( Idmpi)Ui qAk (2.14)

For the whole link,

Ki= fdki

Ki- Tr Uid fpi dm)UikqAtkJ (2.15)
A 1k=1

The integral term inside the bracket is known as the pseudo inertia matrix Ji of all the

points on link i with respect to the proximate joint of link i expressed in the ith link

coordinates system.

J'i=f pipidm

Jxzdm zyiYidm fxiz i dm Jxidm

Jx AYdm fy~dm yiz idm Jy idm

i fxiz idm fyi z i dm fzzdm fZ idm

f xdrr Jy dm fzidm fdm
t,~

The inertia tensor I - of link i about its center of mass in the ith coordinate frame isuv

defined as:
I v.., f [6uv 2 z -uzv]d m

k

where the indices u,v,k indicate principal axes of the ith coordinate frame and 6 is the
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2-D Kronecker delta. The pseudo inertia matrix J1 can then be expressed in terms of the

inertia tensor Ii as:uv

t +It +12
XX yy zz ii n

2 XY zz

it xX yy zz I t
2 :yz mniY (2.17)

Ii ? i i  I 'I/y zz r.
zz yz 2 ,ci

miXc i iYc mizC m?

C.

where c1 
- C i6 the( center of mass vector of link i fromn the ihlink coordinate frame

1 2

and expressed in the it h link coordinates system.

The total kinetic energy K of the manipulator arm can be expressed as:
n

K=, Ki
i=l

n ii
S1 y [Tr(UiA Ji UJ)qAqk (2.18)

21lA=l1k=1

Note that the terms J are dependent on the mass distribution of link i and not on their

position or rate of motion. Hence, the Ji need to be computed only once for evaluating the

kinetic energy of the manipulator.

The potential energy P of the link i is:

P - migp =- mjg[T2P] (2.19)

where g = [g g gz 0] is the gravity row vector expressed in the base coordinate system.

The total potential energy of the manipulator then becomes:
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n n

P Pi=- mjg[rip,] (2.20)
i=1 i=1

and the Lagrangian function L then becomes:
n ini n

S[Tr(UA JiUik Ak] +
=1=k=1 i=

Performing the differentiation in the Lagrange equations and rearranging, we obtain the

necessary generalized torque ri for joint i actuator to drive the ith link of the manipulator.
d OL OLri = F -Ot Oq

Ti a4 aq.i

it A i A A n
V Tr A JA T)+ ~'N ~T( A U Y~ A

T" L L AkAUAk L L L Aki A AdA AgUAL
A= ik=- 1 A=ik- 1 =z1 A=i

i = 1,2,...n

(2.22)

The above equation can be expressed in a matrix notation as:
n n n7 a ikk + v ik kq gi ,i' 2,., (2.23)

k=l k=1=1

or in more compact form as:

T-(t) = A Iq(t)] 4(t) + V lq(t),(t)]I + G Iq(t)] (2.24)

where

r(t) = is an nxl generalized torque vector applied at joints i=1,2,...,n,
7

.q

q(t) is an nxl vector of the joint variables of the manipulator,

q
-n.
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4l(t) = :2 is an nxl vector of the joint velocity of the manipulator,

n,

i(t) = :2 is an nxl vector of the acceleration of the joint variables, and
n°

A[q(t)] is an nxn inertial acceleration related symmetric matrix whose elements are:n

aik= Tr(UAJAU), U i, k-1,2,...,n (2.24)

A=max(i,k)

When i=k, a is related to the acceleration of joint i where i acts and is known as

effective inertia. When i~k, aik is related to the reaction torque induced by the acceleration

of joint k and acting at joint i (known as coupling inertia), and

.v

Vfq(t)&(t)] 2 is an nxl velccity re lated vector composed of Coriolis and

centrifugal forces, where

nf

v = y y vi0tA I i= 1,2,..., ,n (2.25)
k=1l=1

and

n

v T A A i), i,k,l=1,2,...,n (2.26)

A=max(i,k)

When k--l the velocity torques are known as centripetal torques, and when 41 as Coriolis

torques. Friction torques are also velocity related and can be added to this term as:

fr =Csgn(4t) + VIi

where

C is a coulomb friction constant,
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V is a viscous friction constant and,

sgn is the sign function, and

G q(t)] = 2 is an nxl gravity loading force vector, where,

gSn'

n
gi -  A (2.27)

A=i

The dynamic equations of motion as given by equation (2.24) are coupled, nonlinear,

second order, ordinary differential equations. Notice also that equation (2.24) yields the

solution of the inverse dynamics problem. For every point (q(t),q(t),4j(t)) of a given

trajectory, it yields the required joint torques vector r. This form allows design of a control

law that easily compensates for the nonlinear effects. Computationally, however, these

equations are extremely inefficient as they require:

128 4 512 31+814n 2+ 761. (-T )n4 + (-T-)n (-T )n ( -)n multiplications, and,
298 4~ 781 3 637 2 107
2(- ) n +(-T.) n + (-T )n + (- -)n additions.

for every set point in the trajectory. That is, they are of O(n 4) order of complexity, where

n is the number of links.

There are two categories of approaches in trying to implement the closed-form Lagrange

equations in real time control applications:

1. Simplifying the dynamics by ignoring the least significant terms and correcting errors
with some feedback compensation. The simplifying assumptions, however, may not hold
for all speeds and all ranges of applications.

2. Precomputing terms in the equations and using a gain scheduling approach.

C. RECURSIVE LAGRANGIAN MANIPULATOR DYNAMICS

The main reason for the inefficiency of the Uicker/Khan formulation is due to the fact

that these equations are closed-form expressions and most of the terms are reevaluated
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many times. To reduce the complexity of these equations, we need to reexamine the above

derivation and recast it into a recursive form which is computationally more efficient [66].

The generalized driving torques given in equation (2.22) can be expressed as:

7 = [Tr AIi) -m UA] , i=1,2,.... n (2.28)
A=i

where TA is defined as:

A A A
T A= UAkk+ U A (2.29)

kl k--l!=1

The advantage of the above substitution is that equation (2.29) is never used in the

comp~utation. More efficient recurrence relations for the velocity TA and acceleration TA

are easily derived by straightforward differentiation:

S= T TA-I (2.30)'A "A-I AA- ,A-1

TA TAITA + -1 TA
TrA = "TA-IT -A + TA-1_ UAAQA  (2.31)

T, -ITA-I- " A -1AT +T,_IUA +TA_ IA0 +TA_I AA,

TA = A--TA + 2TA-1UAA4A + T A-IUAAAqA + TA-1UAAAq (2.32)

Computing the driving torques as given by equation (2.28), and using the recursive

relations, in (2.30), (2.31). and (2.32), results in an 0(n 2) order of complexity, requiring:
1 2 1

1. 106 7n + 620 ln - 512 multiplications, and,

2. 8212 + .514n - 384 additions.

The reduction in complexity comes from the fact that to calculate coriolis and

centrifugal forces, we only need to calculate UAAA instead of all the matrices UAkI

Further computations can be saved by noting that:

U 'i i (2.33)UAi- J i A

Therefore.the generalized torques equation (2.28) can be written:
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n

A=i
n n

rt=Tr(Uii y TikJT ) -U.. A (2.34)TAJATA)-gii I mATAp A  (.4

A=i A=i

or

T i = Tr(U.iDi) - gU..C. (2.35)

where

n
D= )j TY T T

A=i
71

D.TJT T ± + T i,+lAT T= i+1 A A A

A=i+I
D ..=J T±TZ D. (2.36)

I TJ i  i + zli+l

and
n

Ci 7nAi pA
= A

A=i

Ci mp + Ti C (2.37)Ci ii+ i+ 1i+1

These recursive relations can be computed as follows:

For i = 1,2,...n
1. compute T i by equation (2.30)

2. compute Ti by equation (2.31)

3. compute ', by equation (2.32)
4. if i = n, continue. Otherwise, set i=i+1 and return to 1.

5. compute Di by equation (2.36)
6. compute C, by equation (2.37)

7. compute ri by equation (2.35)
8. if i = 1, stop. Otherwise, set i=i-1, and return to 5.
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The advantage of this formulation is that its complexity is now O(n). It requires:

1. 830n - 592 multiplications, and,

2. 675n - 464 additions.

Any other reduction in computational complexity can only be obtained by reducing the

size of the coefficients irr the above complexity polynomials [67]. This can be achieved

through reformulating the Lagrangian dynamics in terms of 3x3 rotational matrices rather

than 4x4 rotation-translation matrices. Because 3x3 matrix multiplications require 27

multiplications while 4x4 matrix multiplications require 64, we get a greater than 50%

reduction in the coefficients of the computational cost terms.

The iiatrix T relating the orientation of the coordinate system i-1 and i is now

reduced to a 3x3 rotation matrix R 1. A point on link i, expressed in homogeneous

coordinates with respect to the ith coordinates frame, is now represented as pi z

with pi the same point with respect to the base coordinate frame. The following sets of

vectors are also needed throughout this derivation

@the joint i coordinate origin expressed in the coordinates frame. and,

the link i center of mass expressed in the t/ coordinates frame.

The quantities, pi, °i and p are related by:
i i

= ° + T ip (2.38)

The velocity of p is then given by:

Pi = vi = 6i + ipi (2.39)

and the kinetic energy for a particle on link i is as given earlier:

dk. Tr(vv)dm (2.40)

dk Tr(6o$ + 2Ti'i,6T'i'ip T"i*T)dm (2.41)
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Integrating over all particles in link i, the total kinetic energy K3 of link i is given by:

K- Tr(m6,6 + 2T n,'pI + T:J T1() (2.42)

where

i fp;dm (2.43)

Therefore, the total kinetic energy for all the links is given by:
n

K - Tr(mAA 6 16 + 2TAn 6 + TAJ T) (2.44)
A=1

and the potential energy becomes:
n

P = mgTAp A  (2.45)

A=1

Proceeding as in the homogeneous coordinate formulation, we can write the Lagrange

equations for each link as:
d OK K + O__P (2.46)t- a- O4ti Oq i  Oqi

which take into account the fact that the potential energy depends on position only.

Performing the differentiation and rearranging terms yields:
0 +A OA A T A U AT-AgTApA] (2.47)

7 [Tr(mA-26J +- A AiAd AAIAPAJ
A=i o~ "q '

Recall that

0 + Tzo (2.48)

!°A - UfloA' (2.49)

i (2.50)

Substituting the above relations into equation (2.47), we obtain:
n n

7i=Tr(U.. y (moi5+o inATTT+TinA66+TiJA TT))_gU.. T ATpA (2.51)
ii (AA A A AAA A AA mATAPA (.1

A=i A=i
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or

ri = Tr(UiiDi) - gUiiC i  (2.52)

where

n

C mT i A= my + T i C i+(2.53)

A=i
has the same structure as equation (2.37), except for the difference in dimensionality. For

the term Di, we can write the recurrence:
n

A=i

71

Dj= (Ti i1 +0 i . A +i Ti+1 A A±JfJ))nb J1-T
i+1A  i+l)('Aob+nA TI)+Ti+ITA (,+b I I +

A=i+I

D -T I D - +0o1 e.D T+JT (2.54)
D i+1 i+1+i+1 i+1 z

where
n

e i (mA61 + nA TTJ)

A=i
ej= e + M,, + niT, (2.55)

The TA term also has the same recursive expression as defined earlier in equation (2.32),

though presently referring to a 3xA rotation matrix. The 6A term is given by:

j~A-1A = 6A-1- A A (2.56)

This formulation decreases the complexity polynomial of the recursive Lagrangian

formulation with 4x4 matrices by more than 50%. It requires:

1. 412n- 277 multiplications, and

2. 320n - 201 additions.

This translates into 2.195 multiplications and 1,719 additions, for a six degrees of freedom

manipulator, which is well within the capacity of today's microprocessors.
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D. RECURSIVE NEWTON-EULER'S MANIPULATOR DYNAMICS

Another possible formulation of the equations of motion is based on the Newton-Euler

approach. While the Lagrangian dynamics were reworked with some effort into an efficient

recursive form, this method, naturally, yields a set of recursive equations which can be

applied to the links sequentially reducing the computational burden to its minimum

possible.

In this derivation, each link is considered as a free body accelerating in space and

obeying Newton's second law of dynamics for linear movement and Euler's equation for

angular rotation.

Using the same notation as previously defined, the vectors oi (joint's i coordinate origin

expressed in the base coordinate frame), oi (joint's i coordinate origin expressed in the

(i-l)1h coordinate frame), and oi1 (joint's (i-1) coordinate origin expressed in the base

coordinate frame) are related by:

i =0 1 +0 (2.57)

If vi_ 1 and wij 1 are, respectively, the linear and angular velocity of the coordinate

system (z I_1,yilZi_1) with reference to the base coordinates, then the velocity of

coordinate system (zi.yi,zi) with reference to the base coordinates is:

do. 1 = + xo l +v (2.58)

v =w i  i

Thus the acceleration is given by:

d2o 1-  doi--
Vdt W x +2w 1 xo )+ 'i_ (2.59)

do,-1

in which 2wilX t- is the Coriolis acceleration, w_.l(Wi.xo~l) is the centrifugal

acceleration and x denotes external product of vectors.

The angular velocity of the system (zi,yi,zi) with reference to the base wi and its angular

velocity with reference to the (j-1)th coordinate frame w 1 are related by:
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w + w 1  (2.60)

and
*i %i + , (2.61)

But,

di-i
, = at + wi-1XW 1 (2.62)

Hence (2.61) becomes:

*i=*/-I +  + w xi--iw (2.63)

Since an angular motion of link i is about the zi_ axis, then,

-1 Zi-l . if link i is rotational
wi =1(2.64)

0 if link i is translational

Thus,

dw- z. if link i is rotational

at 0 if link i is translational (2.65)

Combine (2.60), (2.63), (2.64), and (2.65) to yield:

w wi-i + Zi-lqi if link i is rotational (2.66)

w i_1 if link i is translational

and

iw 1 +zi_1 "Oi+wi_1x(zi_ 1 i) if link i is rotatationali= (2.67)
*Z-I if link i is translatinal

Returning to equations (2.58) and (2.59), we note that if link i is translational in

coordinates (xi_ 1,yi_l,zi_l), it travels in the direction zi_ 1, with joint velocity 4,,

relative to link i-1. If it is rotational in coordinates (zi 1,yi_1,zi1), it has an angular

velocity w. Thus,

do 0wo- if link i is rotational
at " i (2.68)

Zi-if link s translational
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S [dwi-I
d2°71 ] i i- i- i i-I i-i

St ---- xo +W i x(wi xo ) if link i is rotationalY---=1(2.69)

zi - if link i is translational

Combine equations (2.60), (2.63), and (2.68) to yield:

W { i - 1 + if link i is rotational

zvi= i-l+V if link i is translat ionalZi-1qi +  wixoi -

X0 i-1 + j( oi-I)
i+ w ix(wix i + vi-1 if link i is

rotat i onal
f + io-I + (2.71)

z d +q? 2w x( if link i is
+ w x(wxo i)i + translational

Equations (2.66), (2.67), (2.70), and (2.71) describe the recursive relations of velocities

and accelerations between link i-I and i. To derive the dynamic motion of the mechanical

manipulator from the above kinematics information, each link is considered as a free body

accelerating in space and obeying Newton's second law of dynamics:

d(mivci)

- = ma for linear movement, (2.72)

and Euler's equation:

Ni = " dt I Ii* + wix(Iiwi) , for angular rotation (2.73)

where,
Fi is the total external vector force exerted on link i at the center of mass ci,

dc.

v = d is the linear velocity of the center of mass c of link i,

dv c
a =t- is the linear acceleration of the center of mass c of link i.

Ni is the total external vector moment exerted on link i at the center of mass ci, and

I i is the inertia matrix of link i about its center of mass ci with reference to the base

coordinates system.

The other variables are as defined earlier.
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The quantities wi and *i can be computed from (2.66) and (2.67), whilevci and a.i can

be derived from (2.58) and (2.59) as follows:

Replace o by ci , o by ci, and note that since both (xi,yi,zi) and c2 are fixed on link i,d- oi-1
d-i = d -- = 0 .

Consequently, the equations describing v and ac are:

vc = w.xo 1 + V (2.74)

ac. /--1 +-wx(w .1  ) .+ (2.75)ac = W lX i  + i-lX( i-lX i ) + v_.

The total external force F. and moment Ni are those exerted on link i by gravity and

neighboring links, that is,

F i = i - fi+l (2.76)

N i = ni -ni+ 1 + (oi - c)xf i - (oi+1 - ci)xfi+1

N = ni -n+ 1 + (o - ci)xF 0- oI xfi (2.77)

where
fi is the force exerted on link i by link i - 1, and

ni is the moment exerted on link i by link i - 1.
i-1

Since ci - oi_ 1 = oi  + ci , equations (2.76) and (2.77) can be expressed in recursive

relations as

fi = fi+l + Fi (2.78)
- + i)x + Ni (2.79)

According to the convention for establishing link coordinate systems for a mechanical

manipulator, the motion of link i may only be either a rotation in the coordinate system

(i. lzl 9 about zi_ I axis, or a translation relative to the coordinate system

(Xilryi_ 1.Zil) along zi_1 . Therefore, if the joint i is rotational, the input torque r i at

that joint is the sum of the projection of ni onto the zi-i axis and the viscous damping
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moment in that coordinate system. If, however, the joint i is translational, the input force

ri at that joint is the sum of the projection of f. onto the zi_ I axis and the viscous

damping force in that coordinate system. That is,

n~zi_ 1 + bii if link i is rotational
f zi_ 1 + bf i  if linki is translational

where bi is the viscous damping coefficient for joint i.

In summary, the complete set of equations of motion for the mechanical manipulator

with n joints and n+1 links consists of equations (2.66), (2.67), (2.70) through (2.75) and

(2.78) through (2.80) for i=l,2,...,n. Unfortunately, because these equations are referenced

to the base coordinate systems, the inertia matrix Ii is dependent on the changing

orientation of link i, which complicates the computation. A more efficient technique for

computing the joint input forces and torques is to have each link's dynamics referenced to

its own link coordinates [68]. This may easily be achieved using the rotation matrix R!- 1
i

defined earlier and noting that since each coordinate system is orthogonal, then:

i-i -1 i-1 T~ _(R - -1 (Ril _i (2.81)(Ri )i = /--

Instead of computing wi, *., i, icil Fi, Ni, fi' ni, and 7i, compute Rwi, RZ* i, RZi i Racia

RiFi. RINi. R1fi, R ? n and Rri. Hence the complete set of equations of motion becomes:

Ri_(R w_ I + zOqi) if link i is
R rotationalRwi= (2.82)

Ri[ ,,-.i-1 if link i is
i1 translational

Ri_itt Wi_l+zOi+(R wi_i)XZoqi ] if link i is
R•+( wrq rotational

Rzi =(2.83)

if link i is
RiI (R wi) translational

40



(R* x(R i i R Ri-I2 ( )+Ri-1 - ) if link i is

* (Rwi)x [ (Riwi)x(Ri o ) rotational

R' i -. ( (2.84)R* i (Z +R i 1  ) +( ix(R ol - '

* _1(RZ' i x #_l4)+(R'wi )
i i-i

+2(R~w)x(RiIz0 ~j)+(Rw 3 ) if link i is

x[(Riwi)x(Rioi )] translational

Riaci = (R'*i)x(Ric) + (R'wi)x[(R'wi)x(RYcl)] + Ri- i (2.85)

RiFi = miRia c  (2.86)
2 2

R'Nji = (R' .ili)(Rii) + (Riwi)x[(RiiRi)(Riw i) (2.87)

Rfi= Ri +(Ri+lf + (2.88)i+ +1+ Ri i

Rn. = R'+1[R i+1 n +(Ri+ o i )x(R lfi+ )] (2.89)i o i1 i i )

+(RoVi1 +Rici)x(RiFi)+(RN i)

R' (Rni)'(R'_lzO) + biqi if link i is rotational (2.90)

(Rf)T(Rzi_IzO) + bi i if link i is translational

This formulation gives a 60% reduction in computation over the recursive Lagrangian

formulation. It requires:

1. 150n - 48 multiplications, and

2. 131 n - 48 additions.

E. CONCLUSIONS

In this chapter alternative formulations for deriving the equations of motion of serial

link manipulators have been described. The emphasis has been put on real time

computational complexity in terms of required mathematical operations per trajectory set

point. One should not, however, be misled by the fact that in the above development, the

recursive Newton-Euler equations are almost three times more efficient than the recursive
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Lagrangian equations. The discrepancy between the two formulations is due to the

difference in the angular velocity vector representation used by each method. In the

Newton-Euler formulation, the angular velocity is adequately represented with a 3x1

vector wi, whereas in the Lagrangian formulation, it is redundantly represented with a 3x3

matrix U A factor of three in the relative efficiency of the two formulations is therefore

to be expected. The redundancy in the angular velocity representation is manifested in the

rotational kinetic energy expression. For the 3x3 representation, the rotational kinetic

energy is as derived in equation (2.15):

Ki = -- Tr ( UiA)i( Uik-qk )

A =1 k=1

wheiea for the 3xl representation, the rotational kinetic energy is:

K. 1 (2.91)Ki= wiIj.wi

Using this new representation of the rotational kinetic energy, the complete generalized

force expression Ti in the Lagrangian equation (2.22) changes to:

& Ow

M= [mA(g+±A).-- + [IA*A + wAx(IAwA)]. A] (2.92)
__ q

or

Ti [f A Aj (2.93)

where fA represents the net force in Newton's equation, and nA represents the net torque in

Euler's equation.

Therefore, contrary to what might have appeared earlier, there is no difference in the

computational complexity of dynamics formulations derived from the Newton-Euler

equations or the Lagrange equations. The recursive Newton-Euler equations are no more

efficient than the recursive Lagrangian equations as long as the same representation of

angular velocity is used. Moreover, the Newton-Euler equations would become as
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inefficient as the original Uicker/Kahn equations if they were expressed in closed form.

Consequently, the emphasis on computational complexity or on advanced control

strategies synthesis should rest on the structure of the computation rather than on the

derivation from Lagrange versus Newton-Euler equations.

In addition, the designer will probably need both structures of the dynamic equations

and more than one method of obtaining these equations throughout the different phases of

the design process. He will need:

1. A closed form expression of the manipulator dynamics in the early stages of the design
process in order to be able to synthesize adequate control laws,

2. .More than one method of deriving the system dynamics equations in the computer
simulation phase in order to be able to compare the solution obtained by different
methods and place greater confidence on the simulation program, and

3. A recursive form expression of the manipulator dynamics when implementing the
chosen control law in real time.
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III. ADAPTIVE CONTROL FOR MECHANICAL MANIPULATORS

A. INTRODUCTION

The problem of controlling articulated mechanical systems such as manipulators using

conventional control methods is very difficult when high speed and high accuracy

operations aie desired. The difficulty arises from the fact that such linkages are

characterized by highly nonlinear and coupled ordinary differential equations. Closed form

analytical solutions to these differential equations are not available. Instead, they must be

solved by numerical integration on a digital computer, which, on the other hand, imposes a

serious limitation on the number of calculations that can be performed in real time.

The problem becomes even more difficult when the plant parameters are not precisely

known and vary in time, as in most robotics applications. Furthermore, a joint angles to

end point coordinates matrix transformation are usually required in such systems, which

increases the burden on the computing machine.

To maintain good performance over a wide range of motions and payloads, researchers

have turned to adaptive control methods for their ability to adjust to parameters

uncertainties and load disturbances. Unfortunately, most of these methodologies are not

computationally efficient. As we have indicated in Chapter 1, two approaches to adaptive

control theory can be found in the literature.

In the Model Reference Adaptive Control scheme, the manipulator dynamic model is

not directly used in the design so that the on line solution of differential equations is not

required in the implementation. The manipulator is controlled by adjusting position and

velocity feedback gains to follow a prescribed reference model.

In the Learning Model Adaptive Control method, a model of the plant is obtained by on

line parameter estimation techniques. This estimated model is then used in the feedback
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control. For reasons of computation efficiency, most of the techniques in this category are

based on linearized models of the manipulator which constrain the range of validity and of

acceptable performances. Our main focus in this chapter will be to develop an algorithm for

the Model Reference Adaptive Control of mechanical manipulators.

In the next section,* we will formulate the dynamic equations for mechanical

manipulators in state space. This representation is more suitable for analyzing the

performances of such methodologies. We will also give a detailed derivation of the state

space equations of a two link arm model for illustration.

Section three will review some leading adaptive control methods. These techniques will

be simulated on the two link model using IBM/DSL [69]. We will compare their

perforinances and point out some of their advantages as well as some of their limitations.

The aim is to show where the need for better adaptive control strategies is felt.

In section four, a novel adaptive control law which guarantees global stability and yields

better performances is synthesized. A rapprochement between this method and the Model

Reference Adaptive Control methodologies is also established.

Section five summarizes the main results obtained in this study and outlines some areas

for future research.

B. MECHANICAL MANIPULATOR DYNAMICS IN TERMS OF STATE VARIABLES

The standard inverse dynamics equations describing a mechanical manipulator are given

in equation (2.24) of Chapter 2 and are reproduced here for convenience.

T-(t) = A lq(t)] Q(t) + V lq(t),4(t)]I + G 1q(t)]1 (3.1)

These equations can be rewritten as:

4(t) = A-'[q(t)] I T(t) - V lq(t),(t)] - G [q(t)]j1 (3.2)

In order to be able to gain better analytical insight to the control system design, it is

convenient to rewrite equation (3.2) in terms of state variables.
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Naturally, if one has no particular reason for other choices, the state variables and the

input control vectors are, respectively, defined as:

Xp(t) = (t).3)

U P(t) = r(t) (3.4)

where,q(t), 4(t) and r(t) are as defined earlier in Chapter 2.

In addition, the vectors V[q(t),4(t)] and G[q(t)] can be expressed as:

V[q(t),4l(t)] = Vl [q(t),4(t)] 4(t) (3.5)

Go[q(t)] = G1 [q(t)] q(t) (3.6)

"iiheicore, equation (3.2) can be rewritten as:

X p(t) = A p(X p(t),t)X p(t) + B p(X p(t),t)U p(t) (3.7)

where

dX (t) (X = I (3.8)P t) = P ( O ) = 4 (t)J

0 InA p(X p(t),t) = ....-.. . ... ... . . . . . .. . . . ... (3.9)A-I(q(t) ) G(q(t)):-A'1 (q(t))V 1 (q(t),4(t))j

Bp(Xp(t),t) = (3.10)

Here In is the identity matrix of order n.

The matrices V, [q(t),4(t)] and G, [q(t)] are found as follows:

Notice that the expression of V[q(t),4(t)] given in equation (2.22) of Chapter 2 can be

rewritten as:

V [q(t),4(t)] = V2 [q(t)] V3[4(t)] (3.11)

where V3 14(t)] is given by:
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(t)A (t)
4 1(t)A 2(t)

4 (04 1 (t)

4 (t)4 (t)

4n(t)4l (t)

and V2q(t)] is a matrix containing all the remaining terms of V[,qt,4(t)

3 can be expressed as:

4 (t)4 (t)

with

1 (t) 0

4] (t) .(t)t

S (t) 0 ...0~). 0

V4 (3.12)

o 0 ... 4(t)
n

Therefore,

VI [q(t),4(t)] =V2 [q(t)] V4 [4(t)] (3.13)
To obtain 01 [q<t)] ,let

G [q(t)] II G q(t)II q(t) 
(3.14)

11 q(t) j
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2 rit) Gfq(t)J - GI[q(t)]

JIG[q(t)] - G6[q(t)]JJ

Hence,

1 11 q(t) 11

where 11.11 is the Euclidean norm of a vector and H1.] is the Householder transformation

[70] defined as:

H[u] = I - 2.u.uT (3.17)

C. SIMULATION STUDY OF SOME ADAPTIVE CONTROL METHODS

In the remainder of this chapter, a two revolute joints arm model is considered. This

model is shown in Figure 3.1. The equations of motions of this mechanical system are

derived in detailed in the Appendix. Based on this model, a new adaptive algorithm, as

well as some of the strategies presented in Chapter 1, are studied here in more detail.

Considered are the inverse dynamics control technique, the variable structure control

approach, the model following strategy and the perturbation control theory. The basic idea

behind all these methodologies is to synthesize a control input r which will force the robot

to follow the output of a reference model. The behavior we are concerned with here is the

tracking in real time of desired trajectories. The reference model can be either a stable

linear time invariant decoupled system as in the Adaptive Linear Model Following Control,

or a combination of models such as in the Variable Structure Control, or a nonlinear

nominal model of the plant as in the inverse dynamics control and the perturbation theory.

1. Inverse Dynamics Technique

In this technique, the control input U p(t) is chosen as:

Up(t)=A [q(t)] {d(t)+KvL(t)+K pe(t)I +V [q(t),(t)] +( d[q(t)] (3.18)
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y2

Figure 3.1: A two link Mechanical Manipulator
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where A lq(t)], '([q(t),&lt)] and G[q(t)] are some estimates of A lq(t)], V[q(t)&it)]

and GI[q(t)] respectively.

This control law consist of two basic loops:

1. A feedforward component:

Upf(t) = A[q(t)] d(t) + VF[q(t),l(t)] + ([q(t)].

This component is based on a dynamic model of the manipulator. It compensates for
the interaction forces among various joints.

2. A feedback component:

Upb(t) = ;k q(t)]{I K v6(t) + K Pe(t)}

This component is based on position and derivative feedback. It computes the necessary
correction torques to compensate for any deviations from the desired trajectory.

Among the attractive features of this method is the fact that, in principle, it turns a

nonlinear, coupled mechanical system into a linear, decoupled, and stable system. This can

be seen by substituting the above torques expression of equation (3.18) into equation (3.1)

to obtain:

A + V + G &d + KV +K peI+ + d(3.19)

where the arguments have been omitted for convenience.

If A = A. V = V and G = 0, equation (3.19) reduces to:

A[q(t)] {(t) + K,6(t) + Kpe(t)} = 0 (3.20)

Since Afq(t)] is always nonsingular, K and K can be appropriately chosen so that the

position error vector e(t) approaches zero asymptotically. This control strategy is

simulated on the two arm model presented earlier. The desired trajectories are chosen as:

qd(t) = 270t 2 - 180t 3  (3.21)

qd(t) = 45 + 270t 2 - 180t 3  (3.22)
2
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These trajectories are shown in Figures 3.2 and 3.3. The gain matrices K and Kv are

chosen as:

100 0

'0 1 001
[20 01

Kv  0 (3.23)

In this case, where we assume complete and exact knowledge of the manipulator dynamics,

we obtain perfect tracking of the desired trajectories. This can be seen in Figures 3.4 and

3.5, where the actual trajectories (ql and q2 ) and the desired trajectories (qd and qd) are

virtuallv indistinguishable with the tracking errors (eI and e2 ) shown in Figure 3.6. Also

the magnitudes of the torques applied at the joint actuators are bounded with reasonable

values as shown in Figure 3.7.

The main drawback of this method is inherent in its assumption that one can

accurately compute the counterparts of A[q(t)], V[q(t),q(t)] and G[q(t)]. Unfortunately,

this is not always the case in robotics applications. When A q(t)], V [q(t),4(t)] and

d[q(t)] are not equal to A[q(t)], V[q(t),(t)] and G[q(t)], the quality of the tracking

degrades and the system may even become unstable. Simulation results with 10% error in

the load are reported in Figr-es 3.8 through 3.11. In Figures 3.8 and 3.9, we can see that

the actual trajectories (ql and q2 ) diverge from the desired trajectories (qd and qd). The

position error is in the order of 60 in the first link and of 130 in the second link (Figure

3.10). The applied torques (Figure 3.11) are of reasonable values.

One may try to overcome this limitation by combining the above scheme with an on

line identification algorithm to compute &[q(t)], V[q(t),(t)], and 0[q(t)] [71]. This,

however, is computationally demanding since the computed torque, in itself, requires a

number 0(n4 ) of calculations, n being the number of links in the manipulator.
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Figure 3.2: The first link test trajectory
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Figure 3.3: The second link test trajectory
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trajectories under the Inverse Dynamics Controller
(Perfect Modeling)
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trajectories under the Inverse Dynamics Controller
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Controller (Perfect Modeling)
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(Approximate Modeling)

59



L-0.5

0 .0

0 .0

0.

-0.25 -

0.2-

-0.3~
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sec.)
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tracking errors under the Inverse Dynamics

Controller (Approximate Modeling)
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2. Variable Structure System

A different approach which yields a simple and robust control can be obtained by

using a variable structure strategy. The theory of variable structure control has mostly

been developed in the Soviet Union over the last 25 years and has found applications in

many industrial processes [72]. The fundamental idea behind the theory of variable

structure is to allow the controller to switch between different strategies, according to

appropriate functions of the trajectory error.

A variable structure control is of the form:

r u+.(X(t),t), Si(ei) > 0u (X(4) "(3.2_4)
Upi(Xp(t),t) = p i(Xp(t),t), Si(ei) < 0

for i =1, 2,..., n, where upi is the i th  component of the input vector Up and,

S i(ei) = ce i + eI" ci > 0, is the it h component of the switching hypersurfaces. The design

problem consists of choosing the functions u p i up p and the switching hyperplane matrix

C = diag(ci) such that the sliding mode occurs on the switching hyperplanes, the tracking

error has an acceptable transient response and it goes to zero asymptotically as t - o. This

methodology is simulated on the two link arm model. The desired trajectories are the same

as before. The switching planes are chosen as:

SI = 0.5eI + 1

$2= 0"4e 2 + e2

In addition, to ensure the existence of the sliding modes, the control law is chosen as:

upi(Xp(t),t) [atle 1 +01 11 +al e

In the absence of a procedural method to selecting the parameters ai , a possible choice

which will facilitate the calculations is:

1 = 0, a2 = 0, 3 = 0, 4 = 0, 5 = 0 and o = 10
1 I I I I I

a1 = 0 . a2 = 0 a3 = 0 , 4 = 0 , 05 = 0 and a = 20
2 2 2 2 2 2



The results of this computer simulation are reported in Figures 3.12 through 3.15. In

dFigure 3.12, the first link actual trajectory (ql) tracks the desired trajectory (q,) with

approximately 70 error because of poor choice of the parameters ai. The actual trajectory of

the second link, however, shows better tracking as seen in Figure 3.13. Figure 3.14 shows

the time evolution of the-errors e1 and e2 in both joints. As expected, Figure 3.15 shows

considerable chattering in the input signals. These simulation results highlight the fact that

chattering in the input signals, absence of a procedural method to choosing the control

parameters ai, and the difficulty of guaranteeing the existence of the sliding modes are the

main reasons that limit the applicability of this scheme to multivariable control systems.

3. Adamtive Linear Model Following Control

This scheme is depicted in Figure 3.16. The reference model is chosen to be a stable,

linear, time invariant and decoupled system as:

X(t= AmXm(t) + BmU m(t) (3.25)

where the torques Um(t) are selected so that the output Xm(t) of the model follows

precisely the desired trajectories, described by the user. Am and Bm are of the form:

0 In

Bm  = ..... (3.27)

with

amoi > 0, amli > 0

For the purposo of simulation, anO z = 1.5 and aml i = 2.5, i = 1., 2. The manipulator

input U is chosen as:P
U p(V.Xp*t) = .X p*t)X p- KpXp + i(VXPt)U m + KuU m  (12S)
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where Kp and K u are feedback constant gain matrices designed for specific nominal values

of the plant to satisfy the perfect model following conditions given by:

Kp = - A (q(t)) (Am- AP) (3.29)

KU= A+(q(t)) Bm (3.30)

with A*(q(t)) being the pseudoinverse of A(q(t)).

The quantities 4t and * are generated by the adaptation mechanism to guarantee the

stability of the overall system. Possible choices are:

4)= v (sgn(X p))T (3.31)

fvH
= V (sgn(Um))T (3.32)

Iv In

vith

[Ama x (Rlt)] (-3" >__(3.3:3)

Ami n (A - (q(t)))

I Ama x (3.34)

Ami n (A-I (q(t)))

where

R = AVq(t))A+(q(t))(A m - A p) + AI(q(t))K (3.35)

S = A-(q(t))A*(q(t))B m - Al(q(t))K u  (3.36)

Simulation res, Its of this technique with Kp and Ku obtained from equations (3.29) and

(3.30) at t = 0 As:

Kp =Kp(0)=[-354 30.4 6.77 1.721

30.4 4.91 1.72 .833
KZ 2 .7 1 .6 8 7 1

.687.333

are reported in Figures 3.17 through 3.20. Since the matching matrices K and Ku are not

adjusted in time. we can see that the actual trajectories (q, and q2 ) follow the desired
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id d 

trajectories (q2 and qd) with an error of 40 in the first link (Figure 3.17) and of 70 in the

second link (Figure 3.18). The joints errors (e1 and e2) are shown in Figure 3.19. The

control signals (Figure 3.20) are chattering due to the high frequency component.

Using this type of adaptation, on line numerical integration of the dynamics

equations of motion is avoided. However, the signals that the actuators are required to

generate (Figure 3.20) are about 10 times larger than in the computed torque (Figure 3.11).

This is a serious threat to the plant hardware since the forcing signals are discontinuous.

To be able to reduce the parameters ( and , and hence, the actuation signals, one

should calculate K and K that will satisfy the perfect model following conditions ofp u

equations (3.29) and (3.30) at each instant of time. Simulation results obtained using this

fact are given in Figures 3.21 through 3.24. In this case, the trajectory of the first link

(Figure 3.21) as well as the trajectory of the second link (Figure 3.22) show very close

tracking. the position errors in both the first and the second links are reduced to zero

(Figure 3.23). The actuation signals (Figure 3.24) are still large. The main disadvantage of

this choice is, however, the added computational complexity.

4. Adaptive Perturbation Control

A block diagram of this scheme is shown in Figure 3.25. This methodology uses an

available nominal model of the system and the recursive Newton-Euler equations of

motion to compute nominal control inputs for a given trajectory. These nominal torques

compensate for all the interaction forces among various joints along the nominal trajectory.

To compensate for small deviations from the nominal trajectory, a feedback adaptive

component is introduced. This adaptive control is based on linearizing the manipulator

dynamics equations in the vicinity of known nominal trajectory set points to obtain the

associated perturbed state equation:

= Ae + BdT (3.37)
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where e and 6 are as defined carlier and dr = U - Un, Un being the nominal torque inputs

as obtained from certain available nominal model of the manipulator. The system

parameters A and B depend on the instantaneous manipulator position and velocity along

the nominal trajectory. A recursive least squares parameters identification technique is

used to estimate the unknown elements in A and B. The obtained parameters are then used

to formulate a one step optimal controller that will generate the torques dr to compensate

for the perturbations. When only the feedforward torques are implemented, simulation

results zhow that 10% error in the load produces tracking errors in both the first (Figure

3.26) and the second (Figure 3.27) links. As seen in Figure 3.28, these tracking errors are in

the order of 6' and of 90, respectively. The input torques (Figure 3.29) stay within

reasonable limits. Figures 3.30 thro,,gh 3.33 give the results of the same simulations as

above when both the feedforward and the correcting torques are used. While an improved

tracking is experienced in both the first (Figure 3.30) and the second (Figure 3.31) links,

the joint errors (Figure 3.32) are still of the order of 50 and 30, respectively. The input

control signals ( shown in Figure 3.33) stay within the same range of values as before.

These results are, however, expected since this strategy assumes slow variations and small

deviations about the desired trajectory.

It is evident from the above discussion that in order to extend the capabilities of

manipulators and improve their overall dynamic performances, there is a need to

investigate and develop better adaptive control solutions to current control problems.

The aim of the next section is to present a novel adaptive control law for mechanical

manipulators that enjoys global stability and overcomes some of the limitations of the

previously studied methodologies. This strategy combines properties from both the the Self
Tuning Regulator in [51] and the Model Reference Adaptive Control in [63] and offers itself

to microcomputer implementation. This technique serves also to extend the Model

Reference Adaptive Control method into using a nonlinear reference model.
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D. ADAPTIVE NONLINEAR MODEL FOLLOWING CONTROL

Figure 3.34 illustrates the structure of the proposed adaptive control system. The task of

the controller is to generate the control signals in order to follow a desired trajectory

despite the changes in the manipulator's parameters and the errors in the dynamic model.

The desired trajectory is specified in terms of joint angles qd(t) and their derivatives 4d(t)

and 4d(t). The total torques T are obtained through a nominal and a correction loops.

The nominal loop is justified by the fact that, in practice, a nominal model of the

manipulator is always available to the designer. The nominal parameters are used to

constrIct a recursive inverse dynamics that generates nominal torques 7-. The inputs qI1

allnd to the recursioin are obtained by adding filtered error signals z(t). (t), and .(t)

tC) the d,.red signals qd. td, and jd. The signals z(t) are chosen such that:

Z(s) =/Js)Es) (3.3S)

where J~s) is the transfer function of a linear filter to be determined and Z(s) and E~s) are

Laplace transform of z(t) and e(t) respectively. The recursive form is chosen to ease the

computation. The inverse dynamics form is motivated by the fact that, in the case where

the mechanical manipulator model is known precisely, an exact trajectory following is

obtained. The adjusting signals z(t) are selected to reach the ideal closed loop dynamics

given by the error equation:

(t) + Kv,(t) + K pe(t) = 0 (3.39)

Since sone manipulator parameters such as load and inertia vary in time and some

others such as friction in the gears and motors backlash are very difficult to determine.

additional correction feedback torques dr are necessary to account for any deviations from

the desired trajectory due to these effects. These correcting torques are generated to

guarantee global stability:

lim e(t) = 0 (3.40)
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In total, the input torques r are the sum of rn and dr.

T = Tn + dr (3.41)

where 7r, are the outputs of the recursive algorithm given by:

r n(t) = A[qn(t)] qn(t) + V[qn(t), 4n(t)] + G[qn(t)] (3.42)

and dr are to be determined. From the equations of motion of the manipulator, the total

torques r can also be expressed in terms of the joint angles q(t) as:

r(t) = A[q(t)]Q(t) + V[q(t),4(t)] + G[q(t)] (3.43)

Subtracting equations (3.43) from (3.42) and substituting dr by its expression in equation

(3.41) yields:

Afjq(t)] [n(t) - Q(.l = W[q(0)qn(t)i(t),n(t)] + dT (3.44)

or, since A q(t)] is nonsingular.

4n -4 A -'[W +d T] (3.45)

where the arguments have been omitted for convenience and where,

W=-AV [q(t),qn(t),.(t),ii(t)] +AG [q(t),qn(t) +AA [q(t),qn(t)]l 1

(3.46)

with

AV = V[qn(t),%~(t)] - V[q(t)&~t)] (3.47)

AG = G [q(t.)] - G[q(t)] (3.48)

AA = A[q(t)] - A[q(t)] (3.49)

lim W[q(t),qn(t),l(t),'4(t)] = 0 (3.50)

as q(t) - qn (t) and ii(t) - itn(t ).

On the other hand,

- = Qd + L-1(s 2,fs)E s)) - (3.51)
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That is,

4n- l = b + L"(s2 1s)E(s)) (3.52)

where L-'(.) is the inverse Laplace transform of the given function. Substituting the

expression of (4, - 4) from equation (3.52) into equation (3.45) we obtain:

e + L-(s 2 fs)E(s)) = - A-'[W + dT] (3.53)

Equation (3.53) shows that the adjusting forward signals are crucial to the stability of the

system. When these signals are not used, such as in [51], the error equation is unstable.

Any stable filter F~s) of the form:

a.-2Sn- 2 + an- 3sn 3 + .. ao
(3.54)

basn + bn- n 'I + ... + b0

will yield the desired error equation in (3.39). A more interesting choice, however, is:

_1__ (K vs + K(3.5.5)F(s)=-L(s +Kp)(35)
2 p

where K and K are velocity and position feedback matrices, respectively. The motive
v p

behind choosing F~s) as in equation (3.55) lies in the fact that it relaxes the computation

considerabiy. This can be seen by evaluating z(t), i(t), and i(t) corresponding to this

choice:

2(t) = Li(s 2F(s)E(s))

2(t) = K v(t) + Kpe(t) (3.56)

which is actually no more than velocity and position measurements feedback. The

quantities i(t) and z(t) can then be obtained from the above expression of i(t) by a simple

and a double integration, respectively. With Fis) selected as in equation (3.55), the error

equation in (3.53) becomes:

+ K v, +Kpe= -A-'[W + dr] (3.57a)

Equation (3.57a) is an equivalent error model representation of the proposed adaptive

control law. It can be partitioned into a linear time invariant system connected with a
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nonlinear time varying block in the feedback as shown in Figure 3.35. It should be clear

that Kv and K are chosen such that the forward ransmission function is stable.

Notice that, if a filter of the type given in equation (3.54) is used instead, the term is

decomposed as:

s) -F(s)

Hence, equation (3.53) becomes:

ie + KV + Kpe -Ai [Wl + d] 1  (3.57b)

with

W, = W + L"(F(s)F~s))

which is a more general form of equation (3.57a).

It remains now to determine the control inputs dr based on the knowledge of some

upper bounds of:

such that 11 e(t) 11 < c, for t -, o and for any initial conditions. Here C is a small number.

Let

q~)= i(t) = L-I(s 2fs)Es))

q t) = Kv (t) + Kpe(t) (3.58)

The quantity iXt) is given by:

,) Ka7 + AI'[W + drll (3.59)

with a = K 'Kp = diag(ai), a2 > 0 for i = 1,...,n, since

Kv = diag(kvi) , kvi > 0 and Kp = diag(kpi), kpi > 0.

Define dr as:

dr(t) = 1(t) (3.60)
jJ,7t)j

with

f(t) _ Amax(A)IH WTA-'i (3.61)
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FACT:

Equations (3.60) and (3.61) imply:

lim 17(t) = 0 (3.62)
t-4.0

Consequently,
lime(t) = 0 

(3.63)
t-.00

lim e(t) = 0 (3.64)
t- 0o

lim (q.- qd) = 0 (3.65)
t- 00

PROOF:

The above claim can be proven by choosing a Lyapunov function V(n) as follows:

V(0) = 4 t- )J7(t>(t) (3.66)

Then

V(77) =T(t)t t) (3.67)

V(-) - [ eaK v1 + WTA-'Kvr / + drTA-1Kv71 (3.68)

Notice that since a = diag(ai), ai > 0 and Kv = diag(kvi), kvi > 0, then

aKv = fl = diag(3i), Oi > 0.

Now replace dT(t) by their expressions in (3.60) to obtain:

17IV'(1) 1 -i1 Iq WrA'Kvi7 + trITAIK~ ] 771 (3.69)

If we select ((t) so that:

Amin(A")t > 11 WTA-11 (3.70)

then

( )_fl l_-min r T(t) lt) (3.71)

That is.

*( ) 2 min V() (3.72)

with
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'min = min( i), for i= 1,...,n.

by which (3.62), (3.63), (3.64) and (3.65) are satisfied.

The proof for the case where the filter in (3.54) is used, follows along the same lines.

QED

The above control law is simulated on the two link arm model. The following values of 1,

Kp, and K. are used: [16 01
Kp= 0 1 01

Kv p 4 4 01

When 10% error in the load is assumed, the tracking quality, when no feedback corrections

are applied, is poor in both the first (Figure 3.36) and the second (Figure 3.37) links. The

joint errors are of the order of 60 and 170, respectively as shown in Figure 3.38. The toque

signals (Figure 3.39) are similar to the ones obtained from the inverse dynamics law. There

is no noticeable improvement (or little) in the tracking quality of both the first (Figure

3.40) and the second (Figure 3.41) links, when the adjusting signals z(t), i(t), and i(t)

alone are used. This can be seen from the plots of the time evolution of the tracking errors

in Figure 3.42, and of the input torques in Figure 3.43. However, the quality of the tracking

is improved drastically in both the first (Figure 3.44) and the second (Figure 3.45) links.

when both the adjusting signals and the correction torques are implemented. Figure 3.46

shows that the tracking errors in both links are practically reduced to zero. This is about S °

better than [51] and 100 better than [63]. As expected, figure 3.47 shows a moderate

chattering, within a very acceptable range of values, in the control signals. Because

integrators are used to generate z(t) and i(t), it is of interest to check that the presence of
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offset measurements in such signals does not affect the tracking quality of the overall

system. Simulations results with initial conditions of e 1= e2 = 1150 are given in Figures

3.48 through 3.51. There is practically no degradation-in the tracking quality of either the

first (Figure 3.48) or the second link (Figure 3.49). The tracking errors (Figure 3.50) and

the input torques (Figure 3.51) are as before. To show the robustness of this methodology

to parameter disturbances, 50% error in the load is assumed and a term of the form F =

Csgn(li) + V li is added to the plant as unmodelled friction, where C and V are Coulomb

friction and viscous friction constants, respectively. The simulation results from this case

with C = V = 4 are reported in Figures 3.52 through 3.63. The actual trajectories (ql and

q.,) diver-e considerably from the desired trajectories (qd and qd) when no feedback is used

as scen in Figures 3.52 and 3.53, respectively. The tracking errors are in the order of 321 in

the first link and of 1140 in the second link as shown in Figure 3.54. The required input

torques are reported in Figure 3.55. A considerable improvement in the tracking quality of

both links is achieved even when only the adjusting signals alone are used as can be seen in

Figures 3.56 and 3.57. respectively. However, the joint errors are still of the order of 120 in

the first link and of 23o in the second link as seen from Figure 3.58. The control signals are

reported in Figure 3.59. When both the adjusting signals and the feedback correcting

torques are implemented, the tracking quality is close to perfect as can be seen in Figure

3.60, for the first link and in Figure 3.61, for the second link. The errors in both links

(Figure 3.62) are drastically reduced to approximately 0.3° and 0.10, respectively; while the

input torques (Figure 3.63) remain at very acceptable range of magnitudes with mild

chattering. When these same conditions are simulated with the Adaptive Perturbation

Control Law of [51]. the quality of the tracking is poor for both the first (Figure 3.64) and

the second (Figure 3.65) links. Figure 3.66 shows the time variations of such errors. These

errors are of an order of magnitude of 150 in the first link and of 120 in the second link.

Respectively. this is about 50 and 120 times less accurate than the proposed approach (see
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Figure 3.54: The joint one (e, (t)) and the joint two (eL(t))
tracking errors under the Nonlinear Adaptive Model

Following Controller assuming Parametric and
Unstructured Disturbances (No Feedback)

116



30

20 -

10

,0/

-20 -

-30,-

-40
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sec.)

Figure 3.55: The total torques applied to joint one ( (t)) and

to joint two ('(t)) under the Adaptive Model
Following Controller assuming Parametric and

Unstructured Disturbances (No Feedback)

117

MEMMENO



2.4

2.2

2

1..

1.2 -

0.8

0.6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec.)
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Figure 3.63: The total torques applied to joint one (C,(t)) and
to joint two ( 4Z(t)) under the Adaptive Model
Following Controller assuming Parametric and
Unstructured Disturbances (Complete Scheme)

125



1.6

1.4

12

L 0.8

0
- 0.6

C-.
0.4

0.2

0

-0.2 '"'' '

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sec.)

Figure 3.64: The first link desired (qI(t)) and actual (q,(t))
trajectories under the Adaptive Perturbation
Controller (With Unmodeled Disturbances)

126

• il I



2.6

2.4-

2.2

2/
1. 8

1.6-9

1.2

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sec.)
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Figure 3.62). Also, as seen in Figure 3.67, the input torques are about 10 times larger than

the input torques required by our control law (see Figure 3.63). Similarly, when the same

conditions as above are simulated with the Linear Model Following Control Law of [63],
The actual trajectories (ql and q2 ) diverge from the desired trajectories (qd and qd as

Theactal rajctoies(qandq2 1  q2)a

seen in Figures 3.68 and 3.69. Figure 3.70 shows that the tracking errors reach,

approximately, 290 in the first link and 350 in the second link. Here, again, the superiority

of the proposed control methodology is evident.

A deeper insight into this adaptive control method may be gained by considering its

relation to the general structure of Model Reference Adaptive Systems and to the Adaptive

Model Following Controller in particular.

Referring to Figure 3.34, the same system can be represented in a slightly different, but

equivalent, arrangement as shown in Figure 3.71. This pLiticular representation highlights

more clearly the parallel structure of this control law.

Now consider Figure 3.72 which gives a block diagram representation of the standard

Model iollowing Control law (73]. A fundamental difference between Figure 3.71 and 3.72

is the fact that the flow of signals through the reference model in Figure 3.71 is reversed.

This results from our formulation of the general manipulator control problem in which we

assume that in practice a desired trajectory is specified by the user and not the input

torques to the manipulator.

The reference model in the standard Adaptive Model Following Control is chosen to be

asymptotically stable. That is, Am is a Hurwitz matrix. The Newton-Euler recursion we

are using is also a stable algorithm, in the sense that for every desired trajectory point

(qd,4d) where Jqd < o and < o, it yields a vector torque rd where I7il < ®.

The feedforward matrix gain Kul the plant feedback matrix gain Kp, and the model

feedback matrix gain K in Figure 3.72 are chosen such that. for null initial conditions and.D m
specific plant parameter values, perfect model following exists. That is:
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lim A (t) = Am(t) (3.73)

t- 00 p

IiM B (t)= Bm(t) (3.74)

or,

lim e(t) = 0 (3.75)
t-,00

Iim e(t) = 0 (3.76)
t-+ 00

In the proposed adaptive control methodology of Figure 3.71 , the reference model is an

available nominal model of the plant itself used as an inverse dynamics. That is, in at least

a limited range of applications for which it has been calculated, this model adequately

describes the plant under consideration. When this is the case, perfect model following can

be achieved without the need for any adjustment, by choosing Kp = 0, Km = 0 and Ku

In. This particular choice of Kp, Km' and Ku means that in the case where the values of

the plant parameters are precisely known and do not vary during operation, the adaptation

mechanism is not needed just as in the standard Adaptive Model Following Control. In

fact, the control law reduces to an inverse dynamics control. Simulation results of this

situation are shown in Figures 3.73 through 3.76. Figures 3.73 and 3.74 show that, in the

ideal case where all the parameters are known, the actual trajectories (ql and q2 ) follow

very closely the desired trajectories (q d and qd), with no need for adaptation. The time

evolution of the joint errors (eI and e2 ) are converging to zero as we can see from Figure

3.75. Figure 3.76 shows that the corresponding input torques are within an acceptable

range of values and of reasonable chattering.

As for the standard Adaptive Model Following Control, when the perfect model

following exists, the role of the adaptation is to assure the convergence to this solution

when the plant parameters are uncertain or vary during operation. This is shown to be the

case in equations (3.64) through (3.70). This adaptation law can be classified as a signal

synthesis adaptation since the feedback signals z(t), i(t) and 2(t) are used to either reshape
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the forward torques rn or to generate additional torques dr which are both acting as input

signals to the plant when the values of its parameters differ from the nominal ones.

The fact that the flow of the signals through the reference model in Figure 3.71 is

reversed, does not, theoretically, affect the equations governing the overall system. This

can be seen from the equivalent error model representation of equation (3.57) and Figure

3.35 which is the same structure as for the standard Adaptive Model Following Control.

Finally note that this method is very insensitive to the parameters 1(t). Simulation

results when
[20 01

0~) [ 161
and when

F120 01
f( t ) 0 1 1 81

are reported in Figures 3.77 through 3.80. Figures 3.77 and 3.78 are practically the same as

Figures 3.60 and 3.61 obtained earlier with a different gain matrix t(t). The robustness

property is inherent to the fact that the proposed control law is a switching law as can be

seen from Equation (3.60). Figures 3.79 and 3.80 show that, when the gains matrix is

excessively large (8 times the nominal values), the quality of the tracking is degraded.

However. the joint errors experienc, n this case may still be more tolerable than the the

joints errors experienced with the control law of (51] or the control law of [63].

It is also very important to point out that the proposed adaptive control law is

numerically more efficient than [51] since it does not explicitly estimate the feedback

model, and more efficient than [63] because it does not require the use of model matching

matrices. This should be very attractive feature since adaptive control techniques suffer

from computational complexity in general.
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E. CONCLUSIONS AND FUTURE RESEARCH

A new adaptive control law for mechanical manipulators that maintains uniformly good

performance over a wide range of motions and payloads has been developed. This control

strategy has been shown to combine properties from both the Model Reference Adaptive

Control and the Self Tuning Regulator theory. It has also been shown that this method

serves to extend the Adaptive Model Following Control Approach into using a nonlinear

model as a reference.

The design procedure is simple and systematic resulting in an overall system which is

globally stable and offers itself to microprocessor implementation. We have also shown that

this control law is robust with respect to variations of the plant parameters. The

effectiveness of the approach has been demonstrated on several computer simulations which

compare its performances against some of the commonly known adaptive control

techniques. In all cases, the proposed adaptive control strategy has performed better.

This adaptive control scheme has reduced the chattering in the input torques to a

"reasonable" value compared to [59] and [63]. We are currently investigating ways to

eliminate this chattering completely. As has been shown in the previous section, the

chattering is the result of the correction torques attempting to counterbalance the effect of

errors in the manipulator parameters. If the manipulator model is precisely known., the

correction torques are reduced to zero and the controller becomes an inverse dynamics.

This can be achieved by off line identification tests. Also it ha, been shown that in practice

most of the manipulator parameters can be measured or estimated beforehand and only the

parameters that are load dependent are unknown [74]. Using this fact, simulations with on

line recursive least squares estimation of the load alone are currently underway.
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APPENDIX

DYNAMICS OF THE TWO LINKS PLANAR MECHANICAL MANIPULATOR

A. INTRODUCTION

The two revolute joints planar mechanical manipulator shown in Figure A.1 is used as

the basis for our simulations throughout this study. In this Appendix, the dynamic

equations describing the motion of this physical system are derived using the Lagrangian

Euler equations of Chapter 2.

B. NOTATION

The same notation and conventions as established in Chapter 2 are also employed here.

In addition, for i = 1, 2, the following variables are used to denote:

9. the joint angle, which also serves as the generalized coordinate;

Mi the mass of link 1,

1. the length of link i:
1

16 the distance from the proximate joint to the center of mass of link i; and

I the moment of inertia of link i about the axis z.

C. EQUATIONS OF MOTIONS

Equation (2.15) of Chapter 2 can be used to derive the kinetic energy K i of link i. This

equation can also be broken down into a translational and a rotational parts as:
Ki = . T m ve v i + I wT Ii w  (A. 1)

where vci denotes the linear velocity of the center of mass of link i and w. the angular

velocity of link i about zi.
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Figure A. 1: A two link Mechanical Manipulator
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The total kinetic energy K of the manipulator is then:

2
K=,EK. (A.2)

hI

The total potential energy is found using equation (2.20) of Chapter 2 as:

2
- mig ci (A.3)

where ci is the position of the center of mass of link i and g the gravity row vector.

From Figure A.1,
, [ - I c 1 1 s i n (O1d

Vcl I= 1c 1 cos(01) (A.4)

0

I I sin (01) + Ic2sin(01+02 )} 01 - 1 2 sin(1+02 ) P2

vc= {1 1 cos (01) + lc2 COS(9 1 +02 )} 01 + lc2cos(01+02 ) 2 (A.5)0o
W= [0 (A.6)

and
0

w2= 0 (A.7)

Therefore.
22

K2 n, m" 01 (A.8)
2

1 2 9 .2K 2 = '-2 m{11 + "-&"- + 11 1 2 cos(02)} 01

212

+ T -ms lZcs(91 +92 ) {lieos(91 ) + -2--- cs(91+92 )} 0102+ 1 12

S-- m2 12 sin(O1 +02 ) {l1 sin(0 1) +- 2--- sin(O1 +0 2 )} Y102

+ -1-- m2 ( + p2)2 (A.9)
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112
P = (mi + 2m 2 ) g - sin(O1 ) + mr2 g9 -- sin( 1 +0 2 ) (A.10)

11 1I2where Ic1 and 'c2 have been replaced by --- and - ' respectively.

Without loss in generality, we assume 11 = 12 = 1, and perform the operations in the

Lagrangian equations. After rearranging, we obtain the following actuators torques:
.2

2v112 v121 v12 2  + (A. 11)
= v211 v212 v2 2 1 v2 22  2 1 + G2

.2

where

a+ ?+M (A.12)11 3 1 3- 2} 2 m os(0 2)

a12 3 2 2 m22 cosk 2 ) (A.13)
a 1 2+ 1a21 = - - 2 2 ng cos(02) ( .4

a = (A.15)a22 =--- 2

Vll = 0 (A.16)

V1 12 = -m 2 ?sin(02 ) (A.17)

V121 =0 (A.18)

v1 sin( (A.19)
122 = 2( 2 )V - ? s }in(02 (A.20)

=211 02)

= 0 (A.21)
v 221 = 0 (A.22)

v222 = 0 (A.23)
m I  cos(01+02)

G1  =gl{----cs(O1)+ m2s(cs(O 2  ) (A.24)

G (A.25)2 =---m 2 glcs(01+02)

Equations (A.11) through (A.25) constitute what is known as the inverse dynamics form

of the equations of motion of the two link mechanical manipulator of Figure A.1. These
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equations are used in Chapter Three to evaluate the performance of many commonly

known adaptive control algorithms as applied to robotic manipulators. The reason for this

choice is that Equations (A.11) through (A.25) are relatively simple enough to keep the

operations manageable, and yet, representative of the systems under study.
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