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I. INTRODUCTION

Recentlv, there has been a renewal of interest in the relatively old

technique of mapping reaction-zone temperature profiles in burning solid
propellants using imbedded fine-wire thermocouples. 1 ,2 Combustion-zone

temperatures are important both to the long-term goal of modeling the specific
chemical reactions involved in propellant combustion as well as to the near-
term effort 3 to describe the rate of energy release in a global sense. The
imbedded-thermocouple method possesses a number of attractive advantages.
Thermocouples can produce temperature profiles through all of the
condensed/gas-phase reaction zones in a single trace, and at present are the
only means of determining temperature profiles in the condensed-phase portion
of the combustion wave. Also, since wires of diameters down to 1 micron have
been used, no other existing technique can match their spatial resolution. On
the other hnnd, there are many potential sources of error in such
measurements. Response lags, temperatre-field perturbation, catalytic
heating, and radiation losses are the principal difficulties, but there are a
host of other factors, such as failure to achieve steady-state combustion,
entrainment of cool shroud vas, inhomogeneiries in the propellant sample,
etc., which can spoil the data. Although about a dozen groups have reported
using imbedded thermocouples over the last 40 years, these technical issues
are still not comprehensively resolved.1  This report describes the approach
and fledrliig restlts of a new effort at the Ballistic Research Laboratory
ained at a definitive assessment (and, hopefully, exploitation) of the
techni que.

The use of imbedded thermocoup]los in solid propellants was first
described by Kl]in, et al., 4 who also discussed the errors that can occur in
using platinum wires in propellant flames. Tn addition they recognized the
value of the temperature profile in providing. the heat-release distribution
through the flame. Hunt, iHellor, and (ordon 5 showed that, for a double-base
propellant at I atm, the temperature profile sing headed jtnctlons formed
from Pt and Pt-flRh wires was unchanged if the wire diameter was decreased
from 25 microns to 12.5 microns. This result sugested that the response of
25-micron wire was adequate under the given conditions. 7enin, 6 using ribbon
thermoco,,ples (3.5 microns thick x 50 microns wide) of tungsten/rhenium
alloys, has produced the most comprehensive bod v of work to date. Zenin
employed the novel (and still uni(puj) idea of imhedding an additional wire
probe close to the thermocouple iunction and measuring the conduction current
between it and one thermocouple leg. Since the electrical conductivity of the
polymer increases with temperature and the conductivity of the gas phase is
low, the surface temperature on the thermocouple trace was identified by the
time at which peak current was measured through the probe. The smallest
thermucouoples yet usod were reported by Kubota, et al., and consisted of
headed (i.e., flame-welded) junctions constructed from 2.5-micron wire
dinvlter with heads no larger than 4 microns. Slnce that work, 'Kbota has
successful [y employed wires as small as I micron in diameter.8 Sub and Tsai 9

devised a new strategy for determining' surface temperature in deflagrating
propellants. Pecognizing that it may not be possible to use wires small
enouh to prevent response errors for some propellant formulations and
pressures of interest, they attemptod to model the condensed-phase response
with wire size as a parameter. The model could be used to predict a perturbed
temperature nrofile for various combinations of wire and head sizes, given an
-ssI IT', true tenporature profile in the propellant. The assumed proflle was
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then varied until the perturbed-profile predictions matched those actually
measured by thermocouples with the same dimensions used in the model. The
most successful assumed profile was thereby validated. Most recently, Parr
and Parr modeled the condensed-phase response of a thin-ribbon thermocouple
(of different material and imbedding configuration than Zenin) and calibrated

their heat-transfer coefficient by observing the decay of temperature
resulting from a current pulse through the thermocouple under non-burning
conditions. They also examined the effect on the response of changing the
angle between the thermocouple leads with respect to the direction of maximum
gradient in the energetic material during combustion.

The approach envisioned for the present effort is conditioned by an
appreciation of the contributions sketched above. First of all, production of
a systematic body of data with varying sensor size and angles between the
leads is essential as it would immediately enable one to establish the
adequacy of the response in the event that the profiles should become
invariant below some critical size. Since, predictably, one will want the
temperature profile at conditions for which this condition breaks down, this
body of data will provide the validation or calibration needed to develop a
response model which could he used to extrapolate the finite-sensor results to
zero-sized sensors (and, presummably, zero perturbation). Thin but inert
coatings must be found to eliminate the catalytic effects expected above about
10OO°C 4 without unduly exacerbating the response problem. Zenin's
conductivity-probe method appears to he the best means of locating the
position of the surface on the temperature trace. An effort should he made to
calibrate the thermocouple temperature (corrected for radiation losses where
necessary) in regions accessible to other thermometry techniques, e.g., by
uising spontaneous Raman or line reversal in low-gradient combustion zones of
propellants or burner flames. Finally, a techninue for thermocouple
fabrication should bf, chosen or developed to provide minimal junction sizes
and highly reproducible imbedding configorations in terms of the angle between
the leads and orientation to the axis of the propellant strand. The last
requirement anticipates the necessity of a response-modeling effort. This
report documents the progress to date townrd achieving the above objectives.

11. FXPRfMENTAI, PFOTATI,q

With regard to the choice of thermocouple for this study, we rejected the
use of ribbon types because their advantage is only realized if the combustion
front of the propellant is planar and parallel to the plane of the ribbon,
these conditions needingf to be satisfied to accuracies of the order of a
micron for the thinnost ribbons. Several years experience in observing
propellant-strand combustion led us to believe that such expectations would be
unrealistic. Furthermore, on entering the gas phase, the broadness of the
ribbon would likely perturb the ,as flow, which is accelerating awav from the
surface, to a much g;reater degree than would a wire thermocouple. on the
other hand, most wire thermocouples that bad been fabricated for this
application were flame welded, causing headed junctions with diameters 2-4
times the diameter of the wire. These large dimensions seemed unnecessarily
perturbative. A method fo)r electrically hutt weldi og Type S thermocouples
(Pt/Ptlr)/Rh) by passing OC current throvugh the leads was developed at the
Polytechnicil rhniver.i ty of Milan. 1 ptlsed method (capacitor discharge)
hadl been previouisly described by Stover. After experience with both
techniques we foind that a hybrid PC/pI sed procedure worked best. Type S,
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thermocouples with straight leads and reproducible angles between the leads
could he fabricated with hutted junctions no larger than the wire diameter.

To date, only wires of 50-micron diameter have been made by this method;
however, no reason is foreseen to prevent its use with smaller sizes.

Since most finished gun propellant is in the form of small perforated
grains, a procedure was developed to resolvate and die-cast the material into
the form of a solid cylinder 6 mm in diameter by about 18 mm long. No attempt
has yet been made to analyze for residual volatile content above the level of
the original grains, but the burning rates of the cast strands and grains are
very close as shown in Figure la for M30, a triple-base nitrate-ester
pronellant. The grain burning rates were obtained by inhibiting the
perforations with various coatings in an effort to assess their effectiveness
in preventing in-perf burning. The least-effective coatings result in the
highest pressure exponents because of progressive coning at each
perforation. Fpoxy was best and produced burning rates very close to those of
the resolvated strands. Burning rates for resolvated strands of MIO and X"39
are compared in Figure lh.

The cast strands were Prepared for imbedding hy cutting them into pieces
as shown in the exploded view of Figure 2a. Using a precision diamond-hiaded
wafering saw and specially designed chucks, these cuts could he made with
great accuracy. Three lead angles (30, 90, 190 degrees), defined as shown in
Figure 2h, were considered. Reassembly of the propellant pieces was
accomplished in stages: first, one hemi-cylinder was fused to the top
cylinder with acetone and dried; next, the resulting piece was placed with the
cylinder axis horizontal (imbedding plane horizontal) and manipulated by
mechanical stages until properly positioned urder the thermocouple; then, the
thermocouple, itself held by mechanical manipulators was lowered onto the
propellant surface and tacked down with drops of acetone from a I microliter
syringe; finally, the remaining hemi-cylinder was cemented in place using a
propellant!solvent slurry to insure the e [imination of voids surroundinlg the
thermocouple. Tmbedded samples were cured first at room temperature for 5-6
days then at about 60'C for 6 days.

The samples were burned in a strand hurner under constant pressure
conditions. \n axial shroud of flowing nitrogen prevented the flame frn
snreading down the sides, makinrg hemical inhihition unnecessary. The burin
rate for each run was determined by coordinate-digitizing a time-coded video
recording and suhjecting the resulting coordinates to least-squares
analysis. Figure I shows a typical set of coordinatp/time data along ,ith the
least-squares fit. The degree to which the data fall on a straight line is a
measure of the attainment of steady-stato combustion, an essential reniremenL
if the temnerature profile is to have a well-defined interpretation. The
chamber nressure typically varied hy a few percent or less durinog the ru,
also as seen in Figure 3.

The thermocouple signal, corrected by an electronic ice-nnint
compensator, was boosted by a differential amnl ifier with a gain of 2011 ard
captured hy a digital storage oscilloscope. MQO profiles typically consist :e
,of ihout 1000 noints and XM39 about 500) points. This data was then

tr;nsferred via a ,PIH to a microcomputer for conversion to ahsolte
t mpTlerature, analysis, and display. The signal noise level was typicatly vIss
than 12 K.
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ITT. RE SIT TS

No attimpts have yet been made to determine the location of the surface
on the temperature profiles obtained. Although both Zenin6 and Suh and Tsai 9

have observed a small plateau in the trace at the surface, our larger
thermocouples exhibit none. The surface is a natural reference point for
comparing one profile to another. Without it there exists a degree of
ambiguity in making these comparisons. Worse, computed profile averages can
he sensitive to the choice of matching temperature. Here we adont the
conention of matching two or more profiles at a temperature low enough that
their responses are, ideally, the same. In Practice, if the matching
temperature is too low, noise levels or slight differences in emf/temperature
relationships can lead to poor matches at higher temperature where these
effects are small. This matching problem is exacerbated by flaws in the

imbedding process which could result in non-uniformities in thermal
difftisivity of the propellant between the junction and the advancing
combustion wave. The latter problem, of course, leads to a flawed profile in
the condensed phase, and that profile should be rejected altogether. Perhaps
the only way to identify these anomalous profiles is by comparison with
repeated runs tinder the same nominal conditions. At this early stage in the
present study, however, it has not been possible to identify such anomalies
posi tively.

Figure 4a shows the worst reproducibility among profiles obtained thus
far. As experience is gained, valid cause may be found to reject trace
S50.29; however, for the purposes of this report, suich data will be retained
and included in any profile averages displayed. The best reproducibility is
illustrated by Figure 4b. Traces are Identi fied by the thermocouple type,
".S", followed by the wire diameter in microns, followed by the thermocouple

identifying number after the period.

Figuire 5 illustrates the effect of lead angle on the thermocounle
response. Tf the plane of the combustion front in the propellant is normal to
the strand axis, then the component of the temperatire gradient along, the
thermocouple leads is largest for the small ; st lead anglos (as defined in
Figuire 2b), so that these smaller-angles confit.rirations are expected tn
perturb the temperature field the most bv conducting heat away from the
junrtion site. ro this figTure the 150- and 90-degree curv.s are each averaged
over three individual runs- the 30-degree curve is from a single run since the
30-degree junctions proved to be more prone to brea1,agn.

Only a single run was obtained at A Mfla for 13() and XMB9 . These are
shown com;uared to averaged traces at 1 and 2 MPa in Figure 6 . Al though the
true temperature )gradlent is not resolved by these 5)-micron thermocouuples,
the expoctedl trend of increasing gradient with increasin-, press,,re (butrning
rate) is evident. For M130 (Figure 6a) the maximum te'mperatuire recorded was
slightly over 200f) V and was approximately independent of pressuore. This
comnarrs with an adiahatic equil ibri u'n val , ( fro t. he tlAKE code 13 ) of 2423 K
at 1 M ra anl 2432 K at 4 MI'a. Estimteu; of the radi at ) ( rrecti(i ,sint two

difforent hc;it transfer correlations were Is than 50 V. It is not known nt
pre sent what the cause of this deficit is. One possihilit,, is in,',rn)l,,L,
reactions, biit the rel ative independence of the masuredI fli ane temperature,
with pr,,ssure le;ids it's to discount this explanation in favr of probable
rouuliny. by partial mixing with the cool shrouid gas. In the future this

nestion ,ill 1he )probed firthor.
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X13q, on the other hand, exhibits a strong dependence of the measured
maximum temperature on pressure. At I tfPa this temperature was just under
1200 K. Above about 120n K the averaged 2-MPa profile in Figure 6b gives
misleading maximum temperatures. The fluctuating values in tile high
temperature region is a result of the incipient nature of the visible flame at
this pressure. The video record shows this visible flame to alternately
attach to and detach from the surface in an unsteady fashion. From an
examination of the individual profiles, the maximum temperature measured at
2 MPa was about 1(1 K. Ky comparison the RIAKF equiibrium, values | 3 are
2214 K at 1 MPa and 2217 at 2 HPa. As the secondary flame is not evident in
the video records at I MPa, it is probable that the reactions are incomplete
at that pressure. \t 2 MPa, where the visible flane is weak and intermittent,
the measured maximum temperature may fal L short of the equilibrium value
either because of incomplete reactions or shroud-s!as cooling or both.
Unfortunately, the 4 MPa profile data was truncated It about 1400 K due to
breakage.

Xs a final example of the preliminary data obtained to date, Figures 7a
and 7h compare the averaged temperature profiles for MIP with Xv39 at I and
2 MPa. Again with the caveat that actual gradient; are likely underestimated
by the 50-micron thermocouples but .-s'|inip rol;at ivo measilrements have some
validttv, It is interesting to compare the- two )ropelants under the same
conditions. At 2 MPa M10 burns ahout foir times faster than XM3I9, yet the
maximum temperattre grdidlent in the near-field reaction zone is about the
same. Tf the sJrface trqn)erattre is in the rarne 50 to 100n10 K, which is
likely, then the conductive hoeat fed hark is abouit the sine for the two
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propellants at 2 Kpa. If this is the case, then, in the simplest
ieb lizltion, differences in burning rate must be associated with differences
in Yo)densvd-ph,,e attributes, i.e., in surface temperature or condensed-phase
heit releaq-o. A simple expression of the conservation of energy at the

qw tic' isl-'

( cal/cm2-s)= Mp[TS-To-Qs/c p]

where I is the heat flux fed back to the surface from the gas-phase energy
release, M Is the mass burning rate, c_ is the specific heat, Ts is the

surface temperature, To is the initial propellant temperature, and Q. is the
condensed-phase heat release. Assuming the thermal conductivities and
specific heats for M30 and XM09 to he approximately the same and equating the
temperature gradients at the surface for the two propellants, one obtains

4L1Ts-To-0h-/Cp] 30 = [ Ts-To-Os/c p x M3 9

This equation states that the difference between surface temperature and
temperature increment due to condensed-phase heat release for M30 must be much
smaller than for XM39. The implication is that the surface temperature for
XM39 is higher than that for N30, provided that 0s for XM39 is at least as
great as that for M30.

IV. SUMMARY

A new effort has been described with the goal of obtaining accurate

temperature profiles through the reaction zones of deflagrating solid
propellants using Imbedded fine-gauge thermocouples. Previous work has
established that such profiles are probably accurate at least under some
conditions; however, the general range of validity of the method has yet to be
established. The approach developed here seeks to resolve this deficiency
through a study involving systematic variation of wire size, lead angle, anti-
catalytic coating, propellant type, and combustlon pressure. First results
are presented for M30 and XM39 at 1, 2, and 4 MPa with three different angles
between the thermocouple leads. These measurements were all made with butt-
welded Pt/PtlOlRh wires of 50 micron diameter. Reproducibility of profiles
under the same nominal conditions is good in some cases and not in others.

Such variability may be dHe to inconsistencies in the imbedding procedure and
will be studied further. Measured secondary-flame temperatures are about 400
K below adiabatic equilibrium flame temperatures for reasons that are as yet
unclear; this matter will also be studied further. At I MPa XM39 burns
withoot a visible flame with a maximum temperature about half the adiabatic
equilibrium value, most likely as a result of incomplete reactions. Continued
work will focus on decreasing the size of the thermocouple, locating the
surface on the trace using Zenin's method, examining various anti-catalytic
c atirwn, and calibrating the high-tpmperatre measurements using laser Raman
spect roscopy
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