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I. INTRODUCTION

Recently, there has been a renewal of interest in the relatively old
technique of mapping reaction-zone temperature profiles in burning solid
propellants using imbedded fine-wire thermoc:ouples.l’2 Combustion-zone
temperatures are important both to the long-term goal of modeling the specific
chemical reactions involved in propellant combustion as well as to the near-
term effort’ to describe the rate of energy release in a global sense. The
imbedded-thermocouple method possesses a number of attractive advantages.
Thermocouples can produce temperature profiles through all of the
condensed/gas-phase reaction zones in a single trace, and at present are the
only means of determining temperature profiles in the condensed-phase portion
of the combustion wave. Also, since wives of diameters down to ! micron have
heen used, no other existing technique can match their spatial resolution. On
the other hand, there are many potential sources of error in such
measurements., Response lags, temperature-field perturbation, catalytic
heating, and radiation losses are the principal difficulties, but there are a
host of other factors, such as failure to achieve steady-state combustion,
entrainment of cool shroud gas, inhomogeneities in the propellant sample,
etc., which can spoil the data. Although about a dozen groups have reported
using imbedded thermocouples over the last 40 years, these technical issues
are still not comprehensively resolved.] This report descrihes the approach
and fledgling results of a new effort at the Ballistic PResearch Laboratory
aimed at a definitive assessment (and, hopefully, exploitation) of the
technique.,

The use of imbedded thermocouples in solid propellants was first
described by Kilein, et al.,4 who also discussed the errors that can occur in
using platinum wires in propellant flames. Tn addition they recognized the
value of the temperature profile in providing the heat-release distribution
through the flame. Hunt, Heller, and Cordon? showed that, for a double-hase
propellant at | atm, the temperature profile using headed junctions formed
from Pt and Pt-1N%Rh wires was unchamved if the wire diameter was decreased
from 25 microns to 12.5 microns., This result susgested that the response of
25-micron wire was adequate under the given conditions, 7Zenin,’ using rihbon
thermocouples (3.5 microns thick x 90 microns wide) of tungsten/rhenium
alloys, has produced the most comprehensive hody of work to date. 7enin
emploved the novel (and still uniaque) idea of imbedding an additional wire
probe close to the thermocouple junction and measuring the conduction current
between it and one thermocouple leg., Since the electrical conductivity of the
polymer increases with temperature and the conductivity of the gas phase is
low, the surface temperature on the thermocouple trace was identified by the
time at which peak current was measured through the probe. The smallest
thermocouples yet used were reported by Kubhota, et al,,’ and consisted of
beaded (i.e., flame-welded) junctions constructed fram ?2.,5-micron wire
diameter with beads no Targer than 4 microns. Since that work, Xubota has
successfully employed wires as small as | micron in diameter. Suh and Tsai
devised a new strategy for determining surface temperature in deflagrating
propellants. Recognizing that it may not be possible to use wires small
enouch to prevent response errors for some propellant formulations and
pressures of interest, they attempted to model the candensed-phase response
with wire size as a parameter. The mndel could be used to predict a perturbed
temperature nrofile for various comhinations of wire and head sizes, given an
assumed troe temperature profile in the propellant. The assumed profile was




then varied until the perturbed-profile predictions matched those actually
measured by thermocouples with the same dimensions used in the model. The
most successful assumed profile was thereby validated. Most recently, Parr
and Parrl® modeled the condensed-phase response of a thin-ribbon thermocouple
(of different material and imbedding configuration than Zenin) and calibrated
their heat-transfer coefficient by ohserving the decay of temperature
resulting from a current pulse through the thermocouple under non-burning
conditions. They also examined the effect on the response of changing the
angle between the thermocouple leads with respect to the direction of maximum
gradient in the energetic material during combustion.

The approach envisioned for the present effort 1s conditioned by an
appreciation of the contributions sketched above. First of all, production of
a systematic body of data with varying scnsor size and angles between the
leads is essential as it would immediately enahle one to estahlish the
adequacy of the response in the event that the profiles should become
invariant below some critical size. Since, predictably, one will want the
temperature profile at conditions for which this condition breaks down, this
body of data will provide the validation or calibration needed to develop a
response model which could be used to extrapolate the finite-sensor results to
zero-sized sensors (and, presumably, zero perturbation). Thin but inert
coatings must be found to eliminate the catalytic effects expected ahove about
1000°¢* without unduly exacerbating the response probhlem. Zenin's
conductivity-probe method appears to be the bhest means of locating the
position of the surface on the temperature trace. An effort should bhe made to
calibrate the thermocouple temperature (corrected for radiation losses where
necessary) in regions accessibhle to other thermometry techniques, e.g., by
using spontaneous Raman or line reversal in low-gradient combustion zones of
propellants or burner flames. Finally, a techniaue for thermocouple
fabrication should he chosen or developed to provide minimal junction sizes
arnd highly reproducihle imbedding configurations in terms of the angle between
the leads and orientation to the axis of the propellant strand. The last
requirement anticipates the necessitv of a response-modeling effort. This
report documents the progress to date toward achieving the above ohjectives.

IT. FXPERIMENTAL DPETATLS

With regard to the choice of thermocouple for this study, we rejected the
use of ribbon tvpes hecause their advantage is only realized if the combustion
front of the propellant is planar and parallel to the plane of the ribbon,
these conditions needing to be satisfied to accuracies of the order of a
micron for the thinnest ribbons. Several vears experience in observing
propellant-strand combustion led us te believe that such cxpectations would bhe
unrealistic., Farthermore, on entering the gas phase, the broadness of the
ribbon would likely perturbh the was flow, which is accelerating awav from the
surface, to a much greater degree than would a wire thermoconple. 0On the
nther hand, most wire thermocouples that had heen fahricated for this
application were flame welded, causing beaded junctions with diameters 2-4
times the diameter of the wire, These larye dimensions seemed unnecessarily
perturbative., A method for ¢lectrically butt welding Type § thermocouples
(Pt/PtIN7RNh) hy passing DO current throngh the leads was developed at the
Polytechnical I'miversity of MilanJ L A ulsed method (capacitor discharge)
had been previously described hy Stover. 7 After oxperience with both
techniques we found that a hybrid PG/pulsed procedure worked best. Type S




thermocouples with straight leads and reproducible angles between the leads
could be fabricated with butted junctions no larger than the wire diameter.
To date, only wires of 50-micron diameter have heen made by this method;
however, no reason is foreseen to prevent its use with smaller sizes.

Since most finished gun propellant is in the form of small perforated
grains, a procedure was developed to resolvate and die-cast the material into
the form of a solid cylinder 6 mm in diameter by about 18 mm long. No attempt
has yet been made to analyze for residual volatile content above the level of
the original grains, but the burning rates of the cast strands and grains are
very close as shown in Figure la for M30, a triple-base nitrate-ester
pronellant. The grain burning rates were obtained by inhibiting the
perforations with various coatings in an effort to assess their effectiveness
in preventing in-perf burning. The least-effective coatings result in the
highest pressure exponents because of progressive coning at each
perforation. Fpoxy was best and produced burning rates very close to those of
the resolvated strands. Burning rates for resolvated strands of M3IN and XM39
are compared in Figure lh,

The cast strands were prepared far imbedding by cutting them into pieces
as shown in the exploded view of Figure 2a. llsing a precision diamond-hladed
wafering saw and specially designed chucks, these cuts could be made with
great accuracy. Three lead angles (30, 90, 150 degrees), defined as shown in
Figure 2b, were considered. Reassembly of the propellant pieces was
accomplished in stages: first, one hemi-cvlinder was fused to the top
cvlinder with acetone and dried; next, the resulting piece was placed with the
cylinder axis horizontal (imbedding plane horizontal) and manipulated bv
mechanical stages until properly nositioned under the thermocouple; then, the
thermocouple, itself held by mechanical manipulators was lowered onto the
propellant surface and tacked down with drops of acetone from a 10 microliter
syringe; finally, the remaining hemi-cylinder was cemented in place using A
propellant/solvent slurry to insure the elimination of voids surrounding the
thermocouple. Tmhedded samples were cured first at room temperature for 5-6
davs then at about AN°C for 6 days,

The samples were burned in a strand burner under constant pressure
conditions. An axial shroud of flowing nitrogen prevented the flame from
snreading down the sides, making chemical inhibition unnecessary. The burning
rate for each run was determined by coordinate-digitizing a time-conded video
recording and subjecting the resulting coordinates to least-squares
analysis., Fisure 3 shows a typical set of coordinate/time data along with the
least-saquares fit. The degree to which the data fall on a straight line is a
measure of the attainment of steady-state combustion, an essential reauirement
if the temperature profile is to have a well-defined interpretation. The
chambher nressure typically varied hy a few percent or less during the run,
also as seen in Figure 3.

The thermoconuple signal, corrected by an clectronic ice-pnint
compensator, was boosted by a differential amplifier with a gain of 200 and
captured hy a digital storage oscilloscope. M0 profiles typicallv consisted
of abhout 1900 points and XM39 ahout 5000 points., This data was then
transferred via a GPIB to a microcomputer for conversion to ahsolnte
temperature, apalysis, and display. The signal noise level was tvpicallv less
than 2 ¥,
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Iribedding of Thermocouple in Propellant Strand

Figure 2.

Aa.

0
0

DISTANCE ~ »

Thermncounle/Prnpellant-Sample Configuration.

Imbedding Steps.

Lead Angles Studied_

b. Lead Anvles Defined.

M30 at 1.0 MPa : Burning Rate and Pressure

2.00 .
1.50
»
v
e
1.00
.soo-/
.000 ' '
3.00 5.00 7.00 8.00
TINE [ SEC ]

3.00

1.0

URE SN T2 MEAN

QS
=3

1.00

p 3223

Fipure 3., Surface Coordinates as a Function of Time (Points), least
fquares Fit for 3.cning Pate (Straight Line), and variation of Chamber
Pressure Nuring Run (Wavy Line) for M3I0 at |

MP A




T11. RESULTS

No att wpts have yet been made to determine the locatjion of the surface
on the temperature profiles obtained. Although both Zenin6 and Subh and Tsai
have observed a small plateau in the trace at the surface, our larger
thermocouples exhibit none. The surface is a natural reference point for
comparing one profile to another. Without it there exists a degree of
ambiguitv in making these comparisons. Worse, computed profile averages can
he sensitive to the choice of matching temperature. Here we adont the
convention of matching two or more profiles at a temperature low enough that
their responses are, ldeally, the same. TIn nractice, if the matching
temperature is too low, noise levels or slight differences in emf/temperature
relationships can lead to poor matches at higher temperature where these
effects are small, This matching problem is exacerbated by flaws in the
imbedding process which could result in non—-uniformities in thermal
diffusivity of the propellant between the junction and the advancing
combustion wave. The latter prohlem, of course, leads to a flawed profile in
the condensed phase, and that profile should be rejected altogether. Perhaps
the only wav to identify these anomalous profiles is by comparison with
repeated runs under the same nominal conditions. At this early stage in the
present study, however, it has not becen possible to identify such anomalies
positively.

Figure 4a shows the worst reproducibility among profiles obtained thus
far. As experience is gained, valid cause may be found to reject trace
S50.29; however, for the purposes of this report, such data will be retained
and included in any profile averages displayed. The best reproducibility is
illustrated by Figure 4b. Traces are identified hy the thermocouple type,
"8", followed hy the wire diameter in microns, followed by the thermocouple
identifying number after the period.

Fisrure 5 illustrates the effect of lead angle on the thermocounle
response, Tf the plane of the combustion front in the propellant is normal to
the strand axis, then the component of the temperature gradient along the
thermocouple leads is largest for the smallest lead angles (as defined in
Fismire 2h), so that these smaller—-angles confisurations are expected tn
perturh the temperature field the most hv conducting heat away from the
junction site, In this fivure the 150- and 90-degree curves are ecach averaged
over three individual runs; the 30-deprcece curve is from a single run since the
J0-degree junctions proved to he more prone to hreakage,

Only a single run was ohtained at 4 MPa for M3IO and XM39, These are
shown compared to averaged traces at | and 2 MPa in Fianre 6. Althoursh the
true terperaturce yradient is not resolved by these S0O-micron thermocouples,
the expected trend of increasing gradient with increasing pressure (harning
rate) is ecvident. For M30 (Figure 6a) the maximum temperature recorded was
slightly over 2000 ¥ and was approximately independent of pressure. This
comparrs with an adiabhatic equilibrinm value (from the RIAKE code! 3) of 2423 «
at | MPa and 24732 ¥ at 4 MPa, FEstimates of the radiation correction vsinmg two
different heat transfor correlations were less than 50 K, [t is not known at
present what the cause of this deficit is., One possihility is incomnlete
reactions, but the relative independence of the measured flame temperature
with pressure leads us to discount this explanatior in favor of probabloe
cooling by partial mixing with the cool shrond yas, Tn the future this
aquestion will he probed further,
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XM39, on the other hand, exhibits a strong dependence of the measured
maximum temperature on pressure. At 1 MPa this temperature was just under
1200 K. Above about 120N K the averaged 2-MPa profile in Figure 6b gives
misleading maximum temperatures. The fluctuating values in the high
temperature region is a result of the incipient nature of the visible flame at
this pressure. The video record shows this visihle flame to alternately
attach to and detach from the surface in an unsteady fashion. From an
examination of the individual profiles, the maximum temperaturce measured at
2 MPa was ahout 1800 K. Ry comparison the RIAKE equilibrium values!3 are
2214 ¥ at 1 MPa and 2217 at 2 MPa, As the secondarv flame is not evident in
the video records at } Mpa, it is probable that the reactions are incomplete
at that pressure. At 2 MPa, where the visible flane is weak and intermittent,
the measured maximum temperature way fall short of the ecquilibrium value
either hecause of incomplete reactions or shroud=isas cooling or both,
Unfortunately, the 4 MPa profile data was truncated at about 1400 K due to
hrealage.

As a final example of the preliminarv data obtained to date, Fijures 7a
and 7h compare the averaded temperature profiles for MIN with ¥M39 at | and
2 MPa., Again with the caveat that actual sradients are likely underestimated
by the S5N-micron thermocounles hut as<snming relarive measurements have some
validity, 1t is interesting to compare the two propellants under the same
conditions. At 2 MPa M3I0 burns ahout four times faster than XMI9, yet the
maximum temperature z2radient in the near~field reaction zone is abhout the
same. Tf the surface temperature is in the ranve 500 to 00N K, which is
likely, then the conductive heat feedback is ahout the same for the two

—
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propellants at 2 MPa., If this is the case, then, in the simplest
idedlization, differences in burning rate must be assocliated with differences
Ip rondensed-phese attributes, i.e., 1in surface temperature or condensed-phase
heat release, A simple expression nf the conservation of energy at the

sur face {g'?

D(cal/cmz-s)=Mcp[Tg—TO-Qs/cp]
where  is the heat flux fed back to the surface from the gas-phase energy
release, M is the mass burning rate, c; is the specific heat, Tg is the
surface temperature, T, is the initial propellant temperature, and Qg 1is the
condensed-phase heat release. Assuming the thermal conductivities and
specific heats for M30 and XM39 to be approximately the same and equating the
temperature gradients at the surface for the two propellants, one obtains

4T ~-1,-0./c,] =[T~T,~0./c]
s  to s’ “piM30 s o Vs’ tplixM39

This equation states that the difference between surface temperature and
temperature increment due to condensed-phase heat release for M30 must be much
smaller thar for XM39. The implication is that the surface temperature for
XM39 is higher than that for M30, provided that 0g for ¥M39 is at least as
great as that for M30,

Iv. SUMMARY

A new effort has bheen described with the goal of obtaining accurate
temperature profiles through the reaction zones of deflagrating solid
propellants using Imbedded fine-gauge thermocouples., Previous work has
estahlished that such profiles are probably accurate at least under some
conditions; however, the general range of validity of the method has yet to be
estahlished. The approach developed here seeks to resolve this deficiency
through 4 study involving systematic variation of wire size, lead angle, anti-
catalytic coating, propellant type, and combustion pressure. First results
are presented for MIN and XM39 at 1, 2, and 4 MPa with three different angles
between the thermocouple leads. These measurements were all made with butt-
welded Pt/PtIN%Rh wires of 50 micron diameter. Reproducibility of profiles
under the same nominal conditions is good in some cases and not in others.
Such variability may be due to inconsistencies in the imbedding procedure and
will be studied further., Measured secondary-flame temperatures are about 400
K bhelow adiabatic equilibrium flame temperatures for reasons that are as yet
unclear; this matter will also be studied further. At 1 MPa XM39 burns
without a visible flame with a maximum temperature about half the adiabatic
equilibrium value, most likely as a result of incomplete reactions. Continued
work will focus on decrecasing the size of the thermocouple, locating the
surface on the trace using 7enin's method, examining various anti-catalytic
coatings, and calibhrating the high-temperature measurements using laser Raman
spectroscopy.,
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