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Abstract

Emulators that translate algorithms from the shared-memory model to two different message-
passing models are presented. Both are achieved by implementing a wait-free, atomic, single-
writer multi-reader register in unreliable, asynchronous networks. The two message-passing
models considered are a complete network with processor failures and an arbitrary network
with dynamic link failures.

These results make it possible to view the shared-memory model as a higher-level lan-
guage for designing algorithms in asynchronous distributed systems. Any wait-free algorithm
based on atomic, single-writer multi-reader registers can be automatically emulated in message-
passing systems. The overhead introduced by these emulations is polynomial in the number of
processors in the systems.

Immediate new results are obtained by applying the emulators to known shared-memory
algorithms. These include, among others, protocols to solve the followinf, problems in the
message-passing model in the presence of processor or link failures: multi-writer multi-reader
registers, concurrent time stamp systems, i-exclusion, atomic snapshots, randomized consen-
sus, and implementation of a class of data structures.

Keywords: Message passing, shared memory, dynamic networks, fault tolerance, wait-free
algorithms; emulations, atomic registers.



1 Introduction

Two major interprocessor communication models in distributed systems have attracted much

attention and study: the shared-memory model and the messcje-passing model. In the shared-

memory model, n processors communicate by writing and reading to shared atomic registers. In

the message-passing model, n processors are located at the nodes of a network and communicate

by sending messages over communication liinks.

In both models we consider asynchronous unreliable systems in which failures may occur.

In the shared-memory model, processors may fail by stopping (and a slow process cannot be

distinguished from a failed processor). In the message-passing model failures may occur in

either of two ways. In the complete network mnodel, processors may fail by stopping (without
being detected). In the arbitrary network model, links fail and recover dynamically, possibly

disconnecting the network for some periods.

The design of fault-tolerant (or wait.free) algorithms in either of these models is a delicate
and error-prone task. flowever, this task is somewhat easier in shared-memory systems, where

processors enjoy a more global view of the system. A shared register guarantees that once
a processor reade a particular value, then, unless the value of this register is changed by a
write, every future read of this register by any other processor will obtain the same value.

Furthermore, the value of a shared register is always available, regardless of processor slow-
down or failure. These properties permit us to ignore issues that must be addressed in message-

passing systems. For example, there are discrepancies in the local views of different processors
that are not necessarily determined by the relative order at which processors execute their

operations.

An interesting example is provided by the problem of achieving randomized consensus.

Several solutions for this problem exist in the message-passing model, e.g., [16, 19, 25), and in
the shared-memory model, e.g.. [i3, 1, 9, 121. However, the algorithm of [9] is the first to have
polynomial expected running time and still overcome an "omnipotent" adversary-one that has

access tc the outcomes of local coin-flips. The difficulty of overcoming messages' asynchrony
in the message-passing model made it hard to come up with algorithms that tolerate such

omnipotent adversary with polynomial expected running time.'

This paper presents emulators of shared-memory systems in message-passing systems (net-

works), in the presence of processor or link failures. Any wait-free algorithm in the shared-

memory model that is based on atomic, single-writer multi-reader registers can be emulated in

'The asynchronous message-passing algorithm of [263 is resilient to Byzantine faults, but requires private
communication links and thub is not resilient to an omnipotent adversary,



both message-pabsing models. The overhead for the emulations is polynomial in the number
of processors. The complexity measures considered are the number of messages and their size,
the time and the local memory size for each read or write operation.

Thus, shared-memory systems may serve as a "laboratory" for designing resilient algo-
rithms. Once a problem is solved in the shared-memory model, it is automatically solved in
the message-passing model, and only optimization issues remain to be addressed.

Araong the immediate new results obtained by applying the emulators to existing shared-
mermory algorithms, are network protocols that solve the following problems in the presence

of processor or link failures:

"* Atomic, multi-writer multi-reader registers ([36, 34]).

"* Concurrent time-stamp systems ([31, 2-4]).

"* Variants of f-exclusion ([22, 17, 4]).

"* Atomic snapshot scan ([2, 7, 8]).

"* Randomized consensus '[9, 12]).2

"* Implementation of a class of data structures ([10]).

First we introduce the basic communication primitive which is used in our algorithms. We
then present an unbounded emulator for the complete network in the presence of processor
failures. This implementation exposes some of the basic ideas underlying our constructions.
Moreover, part of the correctness proof for this emulator can be carried over to the other
models. We then describe the modifications needed in order to obtain the bounded emulator
for the complete network in the presence of processor failures. Finally, we modify this emulator
to work in an arbitrary network in the presence ol link failures. We present two ways to do so.
The first modification is based on replacing each physical link of the complete network with a
"vir. 'al viable link" using an end-to-end protocol ([5, 14, C]). i'he second modification results
in a .. efficient emulatioi. (t is based on implementing our commu,iication primitive as a
diffusing computation using the resynchronization technique of [6].

We consider systems that are completely asynchronous sir.e this enables us to isolate the
study from any model-dependent synchronization assumptions. Although many "real" shared-
memory bystems are at least partially syrichronous, asynchrony allows us to provide an abstract
treatment of systems in which different processors have different priorities.

2This result also follows from the transformation of [15].
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We believe that bounded solutions are important, although in reality, 20 bits counters
will not wrap around and thus will suffice for all practical purposes. The reason is because

bounded solutions are much more resilient-- traditional protocols fail if an error occurs and
cause counters to grow without limit. An algorithm designed to handle bounded counters will

be able to recover from such a situation and resume normal operation.

Wait-free protocols in sh&,red-meirory systems enable a processor to complete any operation

regardless of the speed of other processors. In message-passing systems, it can be shown,

following the proof in [11], that for many problems requiring global coordination, there is no

solution that cap prevail over a "strong" adversary- an adversary that can stop a majority
of the processors or disconnect large portions of the network. Such an adversary can cause

two groups of fewer than majority of the processors to operate separately by suspending all

the messages from one group to the other. For many global coordination problems this leads

to contradicting and inconsistent operations by the two groups. As mentioned in [11], similar
arguments show that processors cannot halt after deciding. Thus, in our emulators a processor

which is disconnected (permanently) from a majority of the processors is considered faulty and

is blocked.3 Our solutions do not depend on connection with a specific majority at any time.

Moreover, it might be that at no time there exists a full connection to any party. The only

condition is that messages will eventually reach some majority which will acknowledge thrm.

Although the difficult construction is the solution in the complete network with bounded
size messages, the unbounded construction is not straightforward. In both cases, to avoid

problems resulting from processors having old values we attach time-stamps to the values

written by the writer. In the unbounded construction, the time-stamps are the integer numbers.

In the bounded construction, we use a nontrivial method to let the writer keep track of old

time-stamps that are still in the system. This allows us to employ a bounded sequential time-

stamp system ([31]).

Some of the previous research on dynamic networks (e.g., [28, 3]) assumed a "grace period"
during which the network stabilizes for long enough time in order to guarantee correctness.

Our results do not rely on the existence of such a period, and follow the approach taken in,

e.g., [35, 5, 14, 6].

There are two related studies on the relationships between shared-memory and message-

passing systems. Bar-Noy and Dolev ([15]) provide translations between protocols in the

shared-memory and the message-passing models. These translations apply only to protocols

that ust: a very restricted form of communication. Chor and Moscovici ([20]) present a hierarchy

of resiliency for problems in shared-memory systems and complete networks, and show that

'Such a processor will not be able to terminate its opei ttion but will never produce erroneous results.
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for some problems, the wait-free shared-memory model is not equivalent to complete network,
where up to half of the processors may fail. Their result, however, assumes that processors
halt after deciding.

The rest of this paper is organized as follows. In Section 2, we briefly describe the various
models considered. In Section 3, we introduce the communicat;3n primitive. In Section 4,
we present an unbounded implementation for complete network in the presence of processor
failures. In Section 5, we present the modifications needed in order to obtain the bounded
implementation for the complete network in the presence of link failures. In Section 6, we
modify this emulator to work in an arbitrary network in the presence of link failures. WVe
conclude, in Section 7, with a discussion of the results and some directions for future research.

2 Preliminaries

In this section we discuss the models addressed in this paper. Our definitions follow [32] for
shared-memory systems, [29] for complete networks with processor failures, and [14] for arbi-
trarv networks with link failures. In all models we consider, a system consists of n independent
and asynchronous processors, which we number 1. n.

A formal definition of an atomic register can be found in [32], the definition presented here
is an equivalent one (see [32, Proposition 3]) which is simpler to use. An atomic, single-writer
multi-reader register is an abstract data structure. Each register is accessed by two procedures,
write,,(v) which is executed only by some specific processor w, called the writer, and readr(v)
which may be executed by a.ny processor 1 < r < n, called ý. reader. It is assumed the.t the
values of these procedures satisfy the following two properties:

1. Every read operation returns either the last value written or a value that is written
concurrently with this read.

2. If a read operation RZ2 started after a read operation R has finished, then the value RZ2
returns cannot be older than the value returned by P-1.

It message-passing systems, processors are located at the nodes of a network and commu-
nicate by sending messages aiong communication links. Communication is completely asyn-
chronous and messages may incur an unknown delay. At each atomic step, a processor may
receive some set of messages that were sent to it, perform some local computation and send
some messages.

4



In the complete network model we assume that the network formed by the communication

links is complete, and that processors might be faulty. A faulty processor simply stops operat-

ing. A nonfaulty processor is one that takes an infinite number of steps, and all of its messages

are delivered after a finite delay. We assume that at most L2--I processors are faulty in any

execution of the system.

In dynamic networks communication links might become non-viable. A link is non-viable,

if, starting from some message and on, it will not deliver any further messages to the other

end-point. For those messages the delay is considered to be infinite. Otherwise, the link is

viable. This model is called the oc-delay modei in [5]. Afek and Gafni ([5]) point out that tile

standard model of dynamic message-passing systems, where communication links alternate

between periods of operation and non-operation, can be reduced to this model. A processor

that is permanently disconnected from fi] processors or more is considered faulty. We assume

there are [_!] processors that are eventually in the same connected component. Thus, at

most 1•' j processors are faulty.

The complexity measures we consider are the following:

1. The number of messages sent in an executiorn of a write or read operation,

2. the size of the messages,

3. the time it takes to execute a write or read operation, under the assumption that any

message is either delivered within one time unit, or never at all (cf. [13]), and

4. the amount of the overhead local memory used by a processor.

For all these measures, we are interested in the worst case complexity.

3 Procedure communicate

In this section we present the basic primitive used for communication in our algorithms, called

communicate. This primitive operates in complete networks. It enables a processor to send a

message and get acknowledgements (possibly carrying some information) from a majority of

the processors.

Because of possible processors' crash failures, a processor cannot wait for acknowledgements

from all the other processors or from any particular processor. However, at least a majority

of the processors will not crash and thus a processor can wait to get acknowledgements from

them. Notice that processors want to communicate with any majority of the processors, not

5



necessarily the same majority each time. A processor utilizes the primitive to broadcast a

message (M) to all the processors and then to collect a corresponding (ACK) message from a

majority of them. In some cases, information will be added to the (ACK) messages.

For simplicity, we assume that each edge (i,j) is composed of two distinct "virtual" directed

edges (i.j) and (j, i). The communication on (ij) is independent of the communication on

0, i).

Procedare communicate uses a simple ping-pong mechanism. This mechanism ensures FIFO

communication on each directed link in the network, and guarantees that at any time oily one

message is in transit on each link. Informally, this is achieved by the following rule: i sends

the first message on (i,j) and then i and j alternate turns in sending further messages and

acknowledgements on (i,j).

More precisely, the ping-pong on the directed is managed by processor i. Pro-
cessor i maintains a vector turn of length n, wit,.. yr for each processor that can get
the values my or his. If turn(j) = ,ity then it is i's rx n (i,j) and only then i may send
a message to j. If turn(j) -- his then either i's message is in transit, j's acknowledgement

is in transit, or j received i's message and has not replied yet (it might be that j crashed).

Imiitially. turn(j) = my. Hereafter, we assume that the vector turn is updated automatically
by the send and receive operations.4 For simplicity, a processor sends each message also to

itself and responds with the appropriate acknowledgement.

Procedure communicate gets as an input a message M and returns as an output a vector
info, of length n. The jth entry in this vector contains information received with j's ac-

knowledgernent (or I if no acknowledgement was received from j). To control the sending

of messages the procedure maintains a local vector status. The jth entry of this vector may
obtain one of the following values: notsent, meaning M was not sent to j (since turn(j) = his);
notack, meaning Jl was sent but not yet acknowledged by j; ack, meaning M was acknowl-

edged by j. Additional local variables in procedure communicate are the vector turn .,r, the

integer counter #acks which counts the number of acknowledgements received so far.

The pseudo-code for this procedure appears in Figurie 1. We note that whenever this

procedure is employed we also specify its companion procedure, ack, which specifies the infor-
mation sent with the acknowledgement for each message and the local computation triggered

by receiving a particular message.

The ping-pong mechanism guarantees the following two properties of the communicate

procedure. First, the acknowledgements stored in the output vector info were indeed sent as
acknowledgements to the message M, i.e., at least [f -u] processors received the message M.

'The details of how this is done are omitted from the code.
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Procedure communicate((.If): info)- (* for processor i )
#acks := O0
for all 1 < j < r, do

status(j) = nolscnt
info()) ý=l "

for all 1 < j Sn s.t. furn(j) = my do

send (MA) to j ;

.Mtatus(j) :-- notac;
repeat until #acks > ["2"

upon receiving (m) from j:

if status(j) = notiseni then

(* acknowledgement of an old message *)

send (M) to j ;

staius(j) := notack;

else if staius(j) = notack then

sWatus(j) := ack

,nfo(j) m ;
#acks #acks + 1

end procedure communicate;

Figure 1: The procedure communicate.

7



ScConid, I he number of iuessges Sent (hr1 nig each execution of the procedure is at most 2n.

Also, it is not hard to see that the procedure terminates under our assumptions. The next

lemma summarizes the propcrties and the complexity of procedure communicate.

Lemma 3.1 The following all hold for each etxcution of procedure communicate by processor

I with the mnessage (.1):

if i Con mectd to at lu,4st a I(ajority of t-t p?'occssors then the f recution It ?.?/Izt's,

. at ltast r'+1' processors nceit'c (Al) and return the corresponding acknowledgement,

. at mo.t 2,! messages ne sent duri thIN, t•rcuction,

4. the procedure terminates aftcr at most two time units, and

5. the size of i 's local memnory is 0(n) times the size of the acknowledgements to (Al).

4 The unbounded implementation - complete network

Informally, in order to write a new value, the writer executes communicate to send its new
value to a majority of the processors. It coM1-dotes the write operation only after receiving
acknowledgements from a majority of the peocessors. In order to read a value, the reader
sends a request to all processors and gets in return the latest values known to a majority of the
processors (using communicate). Tlhen it adopts (returns) the maximal among them. Before
finishing the read operation, the reader annlounces the value it intends to adopt to at least a
majority of the processors (again by using communicate).

The writer appends a label to every new value it writes. In the unbounded implementation
this is an integer. For simplicity, we ignore the value itself and identify it with the label.

Processor i stores in its local memory a variable t4li, holding the most recent value of
the register known to i. This value may be acquired either during i's read operations, from
messages sent during other processors' read operations, or directly from the writer. In addition,
i holds a vector of length n of the most recent values of the register sent to i by other processors.
Let V denote the number of bits needed to represent any value from the domain of all possible
values, we have

Proposition 4.1 che size ,,f the local m~mnory at each processor is O(nV).

S



In the implementation, there are three procedures: read for the reader, write for the writer,
and ack, used by all processors to respond to messages. These procedures utilize six types of
messages, arranged in three pairs, each consisting of a message and a corresponding acknowl-
edgement.

1. The pair of write messages.

( W, val): sent by the writer in order to write val in its register.

(A CK- W): the corresponding acknowledgement.

2. The first pair of read messages.

(RI : sent by the reader to request the recent value of the writer.

(vat): the corresponding acknowledgement, contains the sender's most updated value of

the register.

3. The second pair of read messages.

(R,, vet): sent by the reader before terminating in order to announce that it is going to
return val as the value of the register.

(A CK-R2 ): the corresponding acknowledgement.

Clearly, we have

Proposition 4.2 The maximum size of a message is 0(V).

The descriptions of procedures write, read and ack appear in Figure 2. Procedure ack
instructs each processor what to do upon receiving a message according to the template in
Figure 1 (as explained in Section 3). We use void to say that the information sent with the
acknowledgements to a particular message is ignored. Since communication is done only by
communicate, Lemma 3.1 (part 1) implies

Lemma 4.3 Each execution of a read operation or a write operation terminates.

The value contained in the first wu ., ,,_r3a:;,e and the second read message is called the
value communicated by the communicat, dure execution. The maximum value among
the values contained in the acknowledgements of the first read message is called the value
acknowledged by the communicated procedure execution. The following lemma deals with the
ordering of these values, and is the crux of the correctness proof.

9



Procedure read,(va4i); (* executed by processor i and returns va4 *)
communicate((Rj), info);

vat1 := max1 ,<_•5_{info(j) I info(j) •1.};
communicate((Rg, vat,), void);

end procedure readi

Procedure write,; (* for the writer i,

va,, := vat,,, + 1; (* the new value of the register *)
communicate((W, vat.,), void);

end procedure write.;

Procedure ack,; (* executed by processor j )
case received from w

.~W, vat.~); vats :;- mnax [vat,,, valj}
send (ACK-W) to w;

case received from i
(RI): send (valt) to i;
(R2 , vati): vatj := max{vali, val ;

send (ACK-R1 ) to i;

end procedure ackj;

Figure 2: The read, write and ack procedures of the unbounded emulator

10



Lemma 4.4 Assume a communicate procedure execution C1 communicated x, and a commu-

nicate procedure execution C2 acknowledged y. Assume that C1 has completed before C2 has

started. Then x < y.

Proof: By Lemma 3.1 (part 2) and the code for ack, when C, is completed at least majority

of the processors store x', such that x' > x. Similarly, by Lemma 3.1 (part 2), in C2 acknowl-

edgements were received from at least a majority of the processors. Thus, there must be at

least one processor that stored a value x' > x and acknowledged in C2 . Since y is maximal

among the values contained in the acknowledgements of C2 , it follows that y > x' > X. M

Since a write operation completes only after its communicate procedure completes, Lemma 4.4

implies

Lemma 4.5 Assume a read opaeration, R•, returns the value y. Then V is either the value of
the last write operation that was completed before RI started or it is the value of a concurrent

write operation.

In a similar manner, since a read operation completes only after its second execution of

communicate is completed, Lemma 4.4 implies

Lemma 4.6 Assume some read operation, RT1, returns the value x, and that another read

operation, R"2, that started after 1IZ completed, returns y. Then x < y.

Since processors communicate only by using the communicate procedure, Lemma 3.1 (parts

3 and 4) implies the following complexity propositions.

Proposition 4.7 At most 4n messages are sent during each execution of a read operation. At

most 2n messages are sent during each execution of a write operation.

Proposition 4.8 Each execution of a read operation takes at most 4 time units. Each execu-

tion of a write operation takes at most 2 time unit.j.

The next theorem summarizes the above discussion.

Theorem 4.9 There exists an unbounded emulator of (n atomic, single-writer multi-reader

rcgister in a comj'.te network, in the prcsence of at most L'-21J processor failures. Each

cxecut iol of a read operation or a write operation requires O(n) messages and 0(1) time.

11



5 The bounded implementation - complete network

5.1 Informal Description

The only source of unboundedness in the above emulation is the integer labels utilized by the

writer. In order to eliminate this, we use an idea which was employed previously in [31, 14].

'[ile integer labels are replaced by bounded sequential time-stamp system ([31]), which is a

finite domain L: of label values together with a total order relation -<. Whenever the writer

needs a new label it produces a new one, larger (with respect to the -< order) than all the

labels that ext,;t in the system. Thus, instead of just adding one to the label, as inl tile

unbounded emulation, here the writer invokes a special procedure called LABEL. The input
for this procedure is a set of labels and the output is a new label which is greater than all the

labels in this set. This cani be achieved by the constructions presented in [31, 23] for bow:ded
sc(qteItial timne-starnp systems.

Thie mail difficulty in carrying this idea over to the message-passing model is in maintaioing

the set of labels existing in the system, a task which need not be addressed in the shared-

memory model (cf. [31, 33]). Notice that in order to assure correctness, it suffices to guarantee
that the set of labels that exist in the system is contained in the input set of labels of procedure

LABEL. The key idea is as follows.

Whenever a processor adopts a label (as the maximum value of the writer it knows about),
it records this fact in the system. This is done by broadcasting an appropriate message and
waiting for acknowledgements from a majority of the processors (using communicate). Upon

receiving a recording message, a processor stores the information it contains in its local memory.,
but ignores the values it carries. This process guarantees that labels do not get lost as a
majority of the processors have recorded them.

To avoid inconsistencies that might occur, a processor blocks all computation that is re.
lated to new labels (luring the recording process. It does not adopt new labels and does not
send nonrecording messages c:ontaining new labels. An independent ping-pong mechanism is

employed for each type of messages, e.g., i may send a recording message to j although j (lid
lhot acknowledge a read message of i. Since recording messages do not cause a processor to

aldopt a label, deadlock is avoided.

5.2 Data Structures arid Messages

"10 implemelLt tile recording process, each processor i maintain1s art n x n matrix L; of labels.
"'llhj ith [ow ve(:tor L,(i) is updated dynamically by i according to messages i sends. Il"h, jtth
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row vector Li(j) is updated by the messages i receives from j during a recording process initi-
ated by j. Each entry, L1(i, k), is composed of two fields: sent and ack. The field Li(i, k).sent

contains the last label i sent to k and the field Li(i, k).ack is the last label i sent to k as an

acknowledgement to a read request of k. In particular, Li(i, i) is the current maximum label of
the writer known to i. The writer starts each write operation by obtaining from a majority of

the processors their most updated values for the matrix L (using communicate). The union of
the labels that appear in its own matrix and these matrices is the input to procedure LABEL.

Procedures read and write use five pairs of messages and corresponding acknowledgements.

1. The first pair of write messages.

(WIj ): sent by the writer ae the beginning of its operation in order to collect information

about existing labels.

(L): the corresponding acknowledgement, L is the sender's updated value of the labels'

matrix.

2. The second pair of write messages, ( TVv, Val) and (ACK-IWE), the first pair of read mes-

sages, (RI) and (val), and the second pair of read messages, (R2, val) and (ACK-R2),

are the same as the corresponding messages in the unbounded algorithm.

3. The pair of recording messages.

(REC, L(i)): before adopting any new value for the register, processor i sends Li(i) to
other processors. The vector Li(i) contains this new value and all the recent values

that i sent or. its links to other processors.

(ACK-REQ: the corresponding acknowledgement.

The longest message is (L), denote V = log ILI. we have,

Proposition 5.1 The maximum size of a message is 0(n 2 • V).

Recall that during the recording process, processors do not reply to nonrecording messages.

Therefore, messages are accumulated in the local memory of the processor and are ordered in
a queue. As soon as the recording process ends, the processor first handles the messages on the

queue.' Due to the ping-pong mechanism the length of this queue is at most O(n). As each

message on the queue contains (at most) a vector of n labels and the matrix Li is O(n 2 
. V),

we have,

6•'he details of how this queue is handled are omitted.
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Proposition 5.2 The size of the local memory of a reader i8 O(n 2 • V). The size of the local

incmnory of a writer is O(n 3 _ V).

5.3 The Algorithm

The pseudo-code for the algorithm appears in Figure 3. Procedure update aad the first part

of procedure recording update dynamically the vector Lj(i). Therefore, in procedure read, it

is enough to take vali as Li(i, i). The flag blocked is set to true during the recording process

and prevents the processor from receiving or sending some messages as described in procedure

ack. As mentioned before, in order to prevent deadlocks a separate ping-pong mechanism is

employed for each type of message. In order to distinguish between the different mechanisms,

calls to communicate are subscripted with the message type.

5.4 Correctness and Complexity

Atoinicity of the bounded emulator follow from the same reasoning as in the unbounded case

(Lemma 4.5 and Lemma 4.6). The following lemma is the core of the correctness proof for the

bounded emulator-it assures that the writer always obtain a supetset of the labels that might

be adopted as the register's value by some processor. We call a label x viable, if in some system
state, at some possible extension from this state, for some processor i, vali = x. Intuitively,

a viable label is held by some processor as the current register's value or it will become the
current register's value for some processor.

Lemma 5.3 Eacti viable label is stored either in the writer matrix or in the matrices of at
Icasl a majority of the processors.

Proof: We say that processor i is responsible for label x, if x is stored in Li(i), i.e., if eil'her

L,(z, i) = x, L,(i,j).sent = x or Li(i,j).ack = z. We first claim that for any viable label t0ere

exists a processor that is responsible for it. Assume that x is a label that is held by i as tho

c'irrent register's value, then by the code of the algorithm Li(i,i) = x and by definition is

responsible for x. Assume x will become the current register's vaiue for processor j in the
future, then it must be that some piocessor i has sent it to j (either by R2 (W 2) messages of

i or in response to an R1 request message by j) thus x E Li(ij).

Now assume that i is responsible for x. Look at a simple path on which the label x has

arrived at i, i.e., a sequence io, il,...,im, where io is the writer and im = i. In this sequence,

for any t, I _< < m, processor ij adopted z as a result of a message from it-1.

14



Procedure readi(vali) ; (* executed by processor i and returns va4 *)
communicateR((RI), info)

vali :--Li(i, i) ;
communicateR((R 2 , val,), void)

end procedure read,

Procedure write,,; (* for the writer w
communicatew((IWz), L) ;

Lt,(w,w) := LABEL(U L) (* al the non-empty entries in L *)
communicatew (( W2 , L.(w, w)), void)

end procedure write.;

Procedure tecordingi ; (* executed by processor i *)

upon receiving new label z > L,(i, i):
blocked true
L,(i, i) :=z;
communicate,Ec((REC, L,(i)), void)
blocked :=false

end procedure recordingi ;

Procedure updatei ; (* executed by processor i *)

upon sending label x to j in i's read operation:
L,(ij).sent .= r;
upon sending label x to j in j's read operation:
L.(ij).ack x

end procedure updatei

Procedure ackj; (* executed by processor j
case received from w

(WI): send (L,) to w;

(W2 , val,,): if val. > Lj (j, j) then wait until blocked =-false
send (ACK-W 2 ) to w;

case received from i
(Rj): wait until blocked = false

send (L,(j,j)) to i;
(Rg, val,): if vali > L,(j, j) then wait until blocked = false

send (ACK-Rg) to i;
(REC, L,(i)): Lj(i) := L,(i) ;

send (ACK-REG) to i;
end procedure ackj;

Figure 3: The read, write, recording, update and ack procedures of the bounded emulator.



The claim is proved by induction on m, the length of this path. The base case, m = 0,
occurs when i is the writer. Then the codes of procedures update and write imply that x
is stored in i's matrix. For the induction step, assume that m > 0, and that the induction
hypothesis holds for any 1, 0 < f < m. We have two cases.

1. The first case is when i has not finished the recording process for X. It follows from the
code of procedure recording that L,(i, i) = x. We show that k = i,_1 is responsible for

x, and the lemma follows from the induction hypothesis.

If i received x from k through an R 2 (1, 2 ) message, then since i is blocked during tile

recording process it would not reply until the recording process of x is done. Conse-

quently, Lk(k, i).sent = x.

If i received x from k through an ACK-R1 message, then since i would not terminate a
read operation until it finishes the recording process of x, it would not start a new read

operation. Consequently, Lk(k, i).ack = x.

2. The second case is when i has finished the recording process for z. If L,(i, i) = x, i.e., x is
still the current value that i holds, then the code for procedure record, and the properties
of procedure communicate (Lemma 3.1, part 2) imply that x is stored in the matrices of
at least a majority of the processors.

If L,(i, i) # x, then since i is responsible for x there must exist a j such that x E L,(i,j).

Furihermore, since i has a more recent value for the register it must be that L,(i, i) =

y >- x. By the code for procedure recording and the properties of procedure communumate
(Lemma 3.1), at the end of the recording process for z, x is stored as L(ii) in the
matrices of at least a majority of the processors. Let k be some processor that recorded
z for i, i.e., such that Lh(i,i) = z at the end of the recording process for x.

If currently, Lk(i, i) = z j z then it must be that x - z. Since forwarding a new value
is blocked during the recording process, it must be that x was sent by i to j before the
recording process for z started. Thus x E L,(i,j) during the recording process for z,
and consequently x E Lk(i,j). Therefore, x appears in the matrices of a majority of the

processors.

Lemma 5.3 and the constructions of bounded sequential time-stamp systems of [31, 23]

imply

Corollary 5.4 The new label generated by procedure LABEL is greater than any viable label in

the system.
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Recording messages are acknowledged immediately and are never blocked. Thus, a pro-

cessor hever deadlocks during a recording process and will eventually acknowledge all the

messages it receives. The next lemma follows since during a read or a write operation, at most

2n recording processes could occur.

Lemma 5.5 Each execution of a read operation or a write operation terminates.

Each acknowledgement the reader receives might cause it to initiate a recording process.
By Lemma 3.1, part 3, at most 2n messages are sent during each of these recording processes.

In addition, each message of type W2, or R2 might cause other processors to initiate a recording

piocess. Thus, at most O(n 2 ) messages are sent during each execution of an operation, and it

takes at most 0(1) time units. Thus we have

Proposition 5.6 At most O(n 2 ) messages are sent during each execution of a read or a write

operation.

Proposition 5.7 Each exccution of a read or, write operation takes at most 6 time units.

The constructions of bounded sequential time-stamp system ([31, 23)) imply that a label

can be represented using O(n) bits. The next theorem summarizes the above discussion.

Theorem 5.8 There exists a bounded emulator of an atomic, single-writer multi-reader regis-

ter in a complete network, in the presence of at most [2 1 J processor failures. Each execution

of a read operation or a write operation requires 0(n 2) messages each of size O(n), 0(1) time,

and 0(n 4 ) local memory.

6 The bounded implementation - arbitrary network

In an arbitrary network a processor is considered faulty if it cannot communicate with a

majority of the processors, and a correctly functioning processor is guaranteed to be eventually
in the same connected component with a majority of the processors. The first construction

in this section is achieved by replacing every send operation from i to j by an execution of

an end-to-end protocol between i and j. Implementations of such a protocol are known (see

[5, 14, 6]). An end-to-end protocol establishes traffic between i and j if there is eventually
a path between them. In our case, eventually there will be a path between any nonfaulty

mi7



processor and a majority of the processors, thus the system behaves as in the case of complete

network with processor failures.

Note that there are labels in the system that will not appear in the input of procedure

LABEL. However, these are not viable labels because the end-to-end protocol will prevent
processors from adopting them as the writer's label and hence correctness is preserved.

The complexity claims in the next theorem are implied by the end-to-end protocol of [6].6

Theorem 6.1 There cxists a boundcd cmulator of an atomic, single-writer multi-reader regis-
ter in an arbitrary nttwork mn the presence of link failures the do not disconnect a majority of
the processors. Each execution of a read operation or a write operation requires O(n 5) messages,
each of size O(n), and 0(n 2) time.

instead of implementing each virtual link separately we can achieve improved performance
by impiementing communicate directly. We make use of the fact that Afek and Gafnm ([6])
show how to resynchronize any diffusing computation ([21]), not only an end-to-end protocol.
Although the task achieved by communicate is not exactly a diffusing computation, we can
modifv the algorithm of [6], by "piggybacking" acknowledgement information. The resulting
imfplciineiitation reqi-ires 0(n 3 ) messages per invocation of communicate. Thus we have

Theorem 6.2 There exists a bounded (mulator of an atomic, single-writer multi-reader regis-
ter in an arbitrary network in the presence of link failures the do not disconnect a majority of
the processors. Each execution of a read operation or a write operation requir-s O(n 4 ) messages,
each of size O(n), and 0(0 2 ) time.

7 Discussion and further research

We have presented emulators of atomic, single-writer multi-reader registers in message-passing
systems (networks), in the presence of processor or link failures. In the complete network, in
the presence of processor failures, each operation to the register requires 0(n 2 ) messages, each
of size O(n), and constant time. In ami arbitrary network, in the presence of link failures, each
operation to the register requires O(n') messages, each of size O(n), and 0(n 3 ) time.

It is interesting to irmpbove the complexity of the emulations, in either of the message-
passing systems. Alternatively, it might be possible to prove lower bounds on the cost of such
emulations.

6Any improvement in the complexity of the end-to-end protocol will immediately result in an improvement

to the complexity of our implementation.
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An interesting direction is to emulate stronger shared memory primitives in message-passing
systems in the presence of failures. Any primitive that can be implemented from wait-free,
atomic, single-writer multi-reader registers, can be also implemented in message-passing sys-
tems, using the emulators we have presented. This includes wait-free, atomic, multi-writer
multi-reader registers, atomic snapshots, and many others. However, there are shared memory
data-structures that cannot be implemented from wait-free, atomic, single-writer multi-reader
registers ((30]). Some of these primitives, such as Read-Modify-Write, can be used to solve
consensus ([30]), and thus any emulation of them in the presence of failures will imply a solu-
tion to consensus in the presence of failures. It is known ([29]) that consensus cannot be solved
in asynchronous systems even in the presence of one failure. Thus, we need to strengthen the
message-passing model in order to emulate primitive such as Read-Modify-Write. Additional
power can be added to the message-passing model considered in this paper by, e.g., failure
detection mechanisms or automatic icknowledgement mechanisms (cf. [27]). We leave all of
this as a subject for future work.
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