= AD-A219 921

» Approved
IENTATION PAGE Ve N 09040188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
= I\é/A — s TR Approved for Public Release;
P NFR SSIFICATION/DOWNGRADING Distribution Unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. Mowrhoa IZATION REPORT NUMBER(S)
Technical Report No. 283 . 90-03 26
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
University of North Carolina (If applicable)
Center for Stochastic Processes AFOSR/NM
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Statistics Department Bldg. 410
CB #3260, Phillips Hall Bolling Air Force Base, DC 20332-6448
Chapel Hill, NC 27599-3260
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
AFOSR NM F49620 85C 0144
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK
Bldg. 410 6 ELEMENT NO. | NO. NO.
Bolling AFB, DC 20332-6448 6.1102F 2304 As

11. TITLE (Include Security Classification)
M-estimators in linear models with long range dependent errors

12. PERSONAL AUTHOR(S)

Koul, H :
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGEEAI
preprint FROM TO 1990, February
[16. SUPPLEMENTARY NOTATION 7
N/A > (
17. COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and_identify by block number)
FIELD GROUP SUB-GROYP—T~ Hermite rank and polynomial S», Linearity.

OO0 xXkxx_

19. ABSTRACT (Continue on reverse if hecessary and identify by block number)
_) his note discusses the asymptotic behavior of a class of M-estimators in linear
models when errors are Gaussiamy. or a function of Gaussian random variables, that

are long range dependent. The asymptotics are discussed when the design variables

are either i.i.d. or long range depend\em\‘h;n\dezendent of the errors, or known

e

constants. It is observed that the class M-estimators of the regression parameter
vector corresponding to skew symmetric scores™and symmetric errors asymptotically
behave 1ike the least squares estimators. Moreoveg, in these cases, if the design
variables are either i.i.d. or known constants then“the limiting distributions

are Normal. But if the design variables are also lon§ range dependent then the

limiting distributions are nonnormal. / -~ )
JJ‘,‘ - . .
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
3 uncrassiFieorunLiMITED [ same As ReT. [ oTic users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22c. OFFICE SYMBOL
Professor Eytan Barouch (202)767-5026 AFOSR/NM
OD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFED




CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

M-Estimators in Linear Models With
Long Range Dependent Errors
by
Hira L. Koul

February 1990
Technical Report No. 283




G8
-1dy ‘walOaY3 UUTUNDOI-UOPTY-Z1FAINY 341 PUT S101DdA wopued [TUoBoyllQ 'TIUTYNEA NN

6S
‘q@4 ‘syopow s3ssad04d jurod D1poOjlad ISOW[E UL UCYITWIISI sasenbs 1sta] ‘moysal f

Jeuadde ¢ ‘fifojoivwn 1)
‘3p1S uo Bulisay ‘Iu] Yin 2044 68 “uef "sarias faeuotriels A([edjistieas
uj sanjea yBry jo BuldaIsn(d u) ‘UPZI00Y 'H 'UTEH 9p '] 'URWSSISY '] J3119qpedT YK

cqddy Co0ud I1iS0YD01S 68 CUR[ CSIunsTaw
1 puv J13118Qpe3T "Y'k

‘- 1eadde 01
wopuea AJeuoileis Buixjw A{BUOIIS JOJ SWIIOYI ITWIT ‘BUISH

Qg D3 ‘slapow
1] WHLUINTR mOMS3T [

sassad0ad 511STYD03s 2jpoliad Isowiv 10j JOITIISI pPOO

‘06E-1SE
¥ dSSY 1TDUAY IR 8S
@00 (raioadg TpanH i

'gg61 ‘stjodeauury ‘RuIlapoy PUT uonitwiisy undidadg ua do
AON ‘$9s52001d D13STYD01S JUIISUTII puv AITUOIITISUOU 50 2D

.mwm“u:d:v AW IIXI JO SIOILWLISI 10§ susniweixoadde asuvraus pue svlg

csvadde 01 tged 1 Csuolienby {T1iuslajiin DiisTYOUIG [FUOIsuaw(
33TUTJU] WO JUOD) 01UaI]  20id "G 10 ‘saduds uvuionu vo suo(1rnba uoriInioAl

© 513STYD0IS JO SUOLINTOS JO 3DUBFIAAUOD Loy "NAIQY-Zoiig A pue Jndueriiey "o

civadde 01 'spalg 1ey LCayl GRIC g ‘sE 1Cag uyllieRo]
P91R121] SY1 JO AE] [TUO}IDUN § UISSEIIS Ul 20uaBiaau0d Jo a.ri Y1 ug Cdeayulry f

seadde 01 08 yivk Caawy g 'eg 1dag
Je1dnog ST $ascunid DIISTUDOLG TBIPNOY D

‘saJnsesw 10109A JO uollT[Ip puv wﬁﬁikuf:

“1dag ‘sassanodd papunoq-(d g) @1eIJTAlI[NG jo uOlIdIpadd Lvaut] Ayl W) C24pnoy D

LC0T-10G1
0®0~ .Fﬁ .3uu~..~ﬁ~nX~h.Ll uuy &S uﬁwm .EG@.{.UX ‘d'H 0 ELALOLQ r Uy .uu«& a
Jeadde ) 0861 10Uy Jawny

‘I KYIS '88 "1das ‘u0jiviBeiul OJF) 21U0K [EPIOZAduI CSiuequt) § pue AJsuy j

cavedde 01 " quqougd

caqoay] f "88 1dag ceurid 8yl ul SHINSEIL WOPUTL I{GUATITYINY ‘FasquarieN Q
rJdueadde o)

*6861 ‘Dippupg ‘g8 “1dag (SIN[EA BWIIING Yl Im PIIDALLOD BFPLIG UTIUMOIG Y TUTTY ap ]

swadde o3 o ddy qoug
‘yy g8 ‘1dag ‘advds 113q[IH [EDIUOUTI BATITPPT A[S1TUTF UO STINDITD [VUOISUIWID
23jurjuy pue Jaded s Jako PUR Ni U0 SHITWSI Bwog JndirUI{{TY 'O PUV UOSUYO[ M'D

svadde 01 'spyjai{ "12¥ Yl qo4d 88 Any
'$9$$8504d DJ1SEYD01IS JO SSAUPIPUNOG-(d ') '$SAUPIPUNOQ-A A11]1QUZIUOWITH 'RIPNOH "D

‘g8 "By "S1TUO}IdUN) PazileaauldB jo adnds
® uo uojienba [BjIUSIIJJIp dliseydors adAi-UjAdBuE] ¥ ‘BWOIE ] pue anduejiiey ‘9

syer4

‘+Ge

)74

ST

s

0,874

Cke

st¢

FA 24

oz

[4:4

% 4

N4x4

124

({14

(8%

8¢

"€89-189 '§SG1 02 " quqosd
‘1ddy capy ‘g8 ‘Fny ‘xapuj [ewalixe ays Bujussduod I|dwexaialunod ¥ ‘Yijws "1y

88 "Bny ‘Ai1suajug
dwn{ [ed0] yilm wnjpaw wopued u} ssad>o0id uojsnioxa BUes apia B WY ‘UAIT]4 3

'8s AI1nf
‘S]Hpow mau dwos pue AoAlne ¥ :s3ssadold 3{qEIS JO S2IB[SUTII I[QISSjwpy ‘sjueque) §

‘aeadde 01 €861 "SDisvy2015 8§ AInf
suolienba uoIsnjjip panjea-atads searony ‘iaadjon 7Y CTWolly ] CLnduriliey 9

ravaddv 01 ' say inuadg
Yivy 48 Sy "(]]1) soansnb uy suovivwixosdde orjjedd 1yFy “iMstoy 1 ‘Aeywy @

‘8§ Jdy "saunseIw wepurl uoss1od AQ uaatdp unTivnba teliIullajjip
PTISTYDCIS pINTrA-3dbds JEI[ONU ¥y ULTUTWRIQNSTWY 'S PUB Induvitiey 9 "ApJey 9

1waodde 03 o yddy "dcug D11SDY2031S§ "8G JCY ‘S3ssadoid
2LCISTAID AL32YULGUS GO ROIITITIIS0O BYY UG CIASUISOY [ pUB UElOK ‘g [ ‘stueque) g

5669 o861 T4eFulidg spa ‘ssiay ¥ pue zarsny [ CRuodyl 3NIDA (DWALIXF
o QU YT omaag() T D0ud ge Jdy 'SsUN1LD1138a1 UOTIB{IINSO i Iapun §30uanbas
JTUOTINIS J0j £3552500d autod 8ouTpausNs uQ "urIvdoRrpueN § DUP 13112QPERT ¥ N

<& ady Cswaledid 3TAUYY pasod-1i) U0 SaiiiSs [TUOliouny u) ‘ejofiug (¥

“zuadde 03 'f11111Q0Qo.ay uuy SS TR Sessadodd LUissnen AITUOIITIS
JO SUOTIDUT JC1IZ3A JVSULTUOU JO H0NINQIIISIP BFUjiiwy] "ung "3°1 pue O ‘O H

‘RS 1¥R "suolaieqinazad
NENCIYY SUTTYD AONITR JO SUCTINGTAISIP £iTUCIITIS Jo uojleindwed @yl ‘ddiuny [

fisinquqony wuy Ces Qa4 “1eaBaiul 31qEIS-D dYJiaumhs
;0 uonienieas srioiduwhse uy ‘wRInzg [ pue ANsijupoloweg 5

“EoCl TEsGT T
30 ey ey

svadde o3 weisrsiwiidg yipk ddy 68 gQag suoliTnba UOTINTOAS D1ISTYN03S panjea
0tds JBATINU 3O SSTID T JU SUVIINIOS PITJIVIIUIY "LZI]ISOLON f) | pue Uosme] Y

FEI-I01 TGSOL TE8 TSPIEd 12 402Y4) 'Qodd 'S§ 'Qad sassadoud
.qt:nCCTA«chuuuoawwuzh_xr‘ﬂuaLuaucguunauﬁsx.dmgzumwv:dmnvncuﬂﬂnx,o

EFTZ-€1C 6861 2C T ddy  pouy ayistyocas
§& gag "+a$53302d-4IT 03 suciIvaldde yigm uotivnba adUAIS 1P 21ISTYIOIS € 0}
IN10S JO UNOTATYAG [TWRJINT TSB1JA 9P ) PUT URZI00Y | ‘NDJusay ]°§ UPTH ap 1

(LT "ON sv pasyady) ‘8§ 924
Tedvds [VUCTIDUNG PuZTiTLaueS © U0 U0l ha Ulaa®ue] ayl jO uoyIT[Oos qCay ‘WOl ]

TE6OC-192 TBK61 TULZ T 1wy 2imjaom iy [
QS unf TFUTE3IYL ) ASI0U 331Ym asiippe A1931ury uy uojitridadxa (WUOlijpuod
a1 jo saryuadosd ssauyiovwg CITNIpUTIVY ] ¥ puv anduvl(Ey 5 C@aNdNY 4 H

BAC-UOL 6Nl TeE 1ddy ooug oasyrols  gg Uel siuawaidu) AJTuollels
Yiim s3s8a501d A1GUIs JRTIWIS- (oS ju SBSSTIO Om] “wujfavy | puv sjuvque) S

R ARSO RTINS ) SR § )

ivriuanbag g Oag TSUCTINGIIISTP JO S311jwry Palapio pue sajny Rujddoig “aagaeg [

pix4

= X4

vee

Fax4

ocT

12¢

612




M — Estimators in Linear Models With

Long Range Dependent Errors Aocession For

by NTIS GRAZI
DTIC TAB

Hira L. Koul Unannounced O
Justification _
Department of Statistics and Probability
Michigan State University By
East Lansing, MI 48824 | Distributfon/ = |
Availability Codesf
and Avail and/or

Dist Special

Center for Stochastic Processes
Department of Statistics

University of North Carolina ﬁ - {

Chapel Hill, NC 27599-3260

Abstract. This note discusses the asymptotic behavior of a class of M — estimators in linear
models when errors are Gaussian, or a function of Gaussian random variables, that are long
range dependent. The asymptotics are discussed when the design variables are either i.i.d.
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1. Introduction and Summary. A discrete time stationary stochastic process is said to be
long range dependent if its covariances decrease to zero like a power of lag as the lag tends
to infinity but their absolute sum diverges. Such processes arise in applications in
Hydrology, Economics, Time Series Analysis and other sciences. See, e.g., the review paper
by Mandelbrot and Taqqu (1979) and references therein for the importance of these
processes. See Granger and Joyeux (1980), and Hosking (1981) for the usefulness of these
processes in Economics and Time Series Analysis. For many technical results on these
processes, see Taqqu (1975, 1979), Fox and Taqqu (1987) and Dehling and Taaau (1989),
and Yajima (1985, 1988), among others.

One of the popular class of estimators in linear models that has evolved over the last
two and a half decades is the so called class of M — estimators. Most of the asymptotic
literature on these estimators assumes either independent errors (Huber: 1981 and
references therein) or weakly dependent errors, like strongly mixing, as in Koul (1977).

Because of the importance of both, M — estimators and the long range dependence, it
is of interest to study the large sample behavior of these estimators in a linear regression
setting when errors are either long range dependent Gaussian or functions of such random
variables (r.v.'s). About the design variables in the linear model we shall assume that they
are either r.v.'s or known constants. In the former case it will be further assumed that the
design variables are independent of the errors and either i.i.d. or long range dependent.
The case of the known constant designs will be discussed in Section 3. We shall for the
time being restrict our attention to the case of random designs.

Accordingly, let s Nlgse- be a sequence of strictly stationary mean zero unit
variance Gaussian r.v.'s with p(k) := Er)1 Mes1 k>0. Let {1, §2,... be a sequence of
observable px1 stationary mean zero random vectors with T'(k) := E{l {i 4k k>o0.

Consider the linear model

(1) Yi=XiB+q  X;=(1§) Be i1




[S%]

where € = G(ni), i > 1, G a measurable function form £ to .

Note that the marginal distribution of ¢; need not be Gaussian. In fact if one were to
have a linear regression model with stationary errors whose marginal distribution function
(d.f.) is F, then choosing G = F_1(<I>) would yield the desired errors. Here & is the d.f. of a
N(0,1) r.v. and F*(u) = inf{x; F(x) 2 u}, 0<u<1.

The class of M — estimators, one corresponding to each %, is defined as a solution bN

of the equation

N ,
(2) S(t) := T X,){Y;~X;t) =0

where 9 is a measurable function from £ to & with
(3) E¥(e) =0, 0 < E¢2(¢) < w.

Here, and in the sequel, 7, ¢, £ etc. are copies of Mo €1 fl etc. Also for a px1
vector t € AP, t~ will denote its transpose and ||t|| will stand for its Euclidean norm.
The present paper is concerned with investigating the large sample behavior of M -

estimators when the r.v.'s {ni}, in addition, satisfy

-D
(4) pk)=k 'Ly(k), 0<D <1,k21
where L, (k) is positive for large k and slowly varying at infinity, i.e., L (tx)/Ly(t) — 1
as t —  for every x € R.

About {{i} we shall additionally assume that

(5) {§;} are independent of {¢}
and either
(6a) §1, 52,.... areii.d. r.v.'s

or




D
(6b) (£} are dependent with T(k) =k  2.#(k), 0 <D, <1,

where .7 is a pxp matrix of slowly varying functions at infinity and #(k) are positive
definite for all large k.

The processes that have covariances like (4) or (6b) are called long range dependent.
These covariances tend to zero but not fast enough so as to be summable.

In the case when errors are independent or weakly dependent, AN(bN — ) turns out
to be asymptotically normally distributed where Ay equals N in the case {fi} are i.i.d.
r.v.'sor AN equals (X'X)% in the case {{i} are the known constants. Here X X =
N ,
iilxixi.

Recall that the way this result is proved is first to approximate ﬂN -p

N ,
by { T X.X, w'(fi)}_l-S(ﬂ). Then, by the LLN's, the first term in this approximation is
1=1

seen to be of the order N T and this N1 is split so as to stabilize S(f) and ﬂN - f. In the
case the errors are independent or weakly dependent and the design variables are random,
the scores S(f) are of the order O p(Nl/ 2) and hence one must have Ay = Nl/ 2. Note
that, in view of the Ergodic Theorem, the first term in the above approximation is
Op(N—l) as long as the summands {xixi' ¥’(¢;)} are stationary, ergodic, have finite first
moments and {E[Xlxi P ( esl)]}—1 exists, regardless of whether the r.v.'s are long range
dependent or not. Hence, even in the present case, the magnitude of S(f) determines that
of ﬂN — f. The exposition in Section 2 below uses this observation. A similar observation
is used in Section 3 when the design variables are the known constants.

One of the observations of this note is that the class of M — estimators corresponding
to the skew symmetric scores and symmetric errors (i.e. skew symmetric G) asymptotically
behaves like the least squares estimator under (6a) or (6b) or the known constant design

case. This result, in the cases of (6a) and (6b), is stated and proved in Section 2 and in the

other case, in Section 3, below. A similar observation was made by Beran and Kunsch




(1985) in connection with the one sample location model. We further observe that in these
cases if the design variables are either i.i.d. or known constants then the limiting
distributions are Normal. But if the design variables are also strongly dependent and there
is no intercept parameter in the model then the the limiting distributions are nonnormal
and appear at the end of Section 2.

In what follows, L, with or without suffix is a generic notation for a slowly varying
function. All limits are taken as N - «, unless mentioned otherwise. Also in most of our

discussion the design variables need not be Gaussian.

2. The Case of Random — Designs. A preliminary result needed for obtaining a first order
approximation to M — estimators is the asymptotic uniform linearity of S. The following
theorem gives a set of sufficient conditions for such a result to hold. It also gives the
required approximation to M — estimators. The statement of the Theorem is somewhat self

contained.

Theorem 1. Let ({i, cl), (£é, 62) be a strictly stationary sequence of random vectors with
& beingpxl. Let X; = (L,£,),
Yi = X;ﬂ+ € for some B € $p+1’ i>1.

In addition assume the following:
(a) The score function i satisfies (1.3) and is absolutely continuous with a.e. derivative

Y’ satisfying E| ¢’ | < w, and,
EIX, 112 |9 (e~ zllX, ) - ¢7()] =0 asz—o.
(b) For N > p+1, there are sequences {AN} and {BN} of (p+1)x(p+1) matrices which are
positive definite for sufficiently large N and satisfy

() 1By — 0, IARHI — 0, N-AG Il IBRll — 1.
(i) IBR'-S(BIl =0 (1), .




Then, for every0 < b < w,

() E s IBYSI8+AY'A)-S(A) + BY EX;X; V(AN Al =0, (1)

where S is as in (1.2).

In addition, if {fi} are independent of {ei} and if E||§||2 < w, then the random
coefficient of A in the linear expansion (1) may be replaced by R-Ev’(¢) where
R:=EX,X; .

Furthermore, if
(c) R erists, and d) 0 < E¢’ (),
then

-

(2) An(By - B) = [REp ()] By S(B) + o (1).

p

Remark 1. It is perhaps worth repeating that in the above theorem neither {;} nor {€}

need be Gaussian or functions of Gaussian r.v.'s.

Proof From the definition of S, S(8+ A§'A) = £ X w(¢, - X;Ay'A). Now , use the
1

definition of absolute continuity and routine arguments to get that the

IAS
LHS.(1) SES BE XX [ (% (e2liXillb) - y7(e) | dz
’ -lAg
. IARM )
<ONIBRUIAR T BIX I (el Xy D) - ()] dz — o,
A

by (a) and (b)(i).
The claim about replacing Bﬁl‘.‘l Xixiw'(ci)AEI by R:Ey’(¢) follows from the
i

Ergodic Theorem. The claim (2) is obtained from (1), (a)(ii), (c) and (d), with the help of
Scheweder fixed point Theorem, just as in Huber (1981). o



Remark 2. Observe that y(x) = x a priori satisfies (a). Another example of ¢ satisfying (a)
is the Huber function ¥(x) := xI(|x|<c) + ¢ sgn(x), ¢ > 0, provided {{i} are independent

of {ci}, E||§||2 < «, and F is continuous at +c. To see this observe that for this i the
LHS.(2) < EJX I {[F(c+2llX, 1) - Fle~zlX, ] + [F(-c+21X,]I) - F(-c—2llX I)]}.

Now the Dominated Convergence Theorem gives the claim. o

Observe that so far we have not used (1.4) or (1.6a) or (1.6b) or even the assumption
about { ni} being Gaussian. We shall now use these assumptions to determine the
sequences of matrices {Ay} and {By}. The main requirement on By is (b)(ii). Once
By is determined, Ay can be determined from (b)(i).

In order to assess the magnitude of S (write S for S(8)) we shall use the Hermite
expansion of L2(52; d®) functions. What follows about Hermite expansions etc. is
borrowed from Feller (1971) and Taqqu (1975). With { Hq, q 2 0} denoting the Hermite
polynomials, let Jq = Ewl(n)Hq(n), where ¥, = (G). Let m := min{g>1, Jq? 0}

denote the Hermite rank of wl(n). The Hermite expansion of rank m of wl( n) is given by
o J
z q—(} H q(1)).

q=m

Recall from Feller (1971) that {Hq(ni)} is a set of orthonormal r.v.'s in Ly(&#; d®)

satisfying
) Hy(x) = 1, BH () = 0,02 I
(B ()= | 47"
EH (7.)H_(n.) = Vi
e qp%(i-j), g =n

Now, we begin the argument for determining By and Ay. Forae IRp+1, write A’
= (A Ag)s A € &, Ay € #P. From (1.5) and (3),V Ae aPt1,

’ 2 'N N 2 ’ - my;. .
(4) E[A 51-: xiHm(ﬂi)] = m.i-El jzl[/\l + ’\2 I(i-j) "2]/’ (i=j)-




At this point we need to consider (1.6a) and (1.6b) separately.
Suppose that (1.6a) holds. Then the

RHS(4) = m![A] £ £ p™(i~j) + ApAy N]
i ]

Now, if we restrict D1 < 1/m, then from Taqqu (1975; Lemma 3) it follows that the

9 2-mD
RHS(4) ~ c1/\1N

1 ’
L(N) + m! AyAy N
where ¢, is a constant depending on D, and m. Thus in this case if we choose

H

1
N 'L(N) 0, byy O
(5) By = o |- N , say,
0 1
pxl Nl |0 By,
with 2H1 = 2—mD1, then we see that
(6) E(ABR TXH_(n)?=0(1) Vae aPtL,

1

We note that D; < 1/m implies that {w(ci)} are also long range dependent. The case
D1 > 1/m would yield that these r.v.'s are asymptotically weakly dependent and not
interesting to us from the current point of view.

Now suppose that (1.6b) holds. Then the
9 —le , —D2—mD1
RHS(4) » m![A] £ E|i-j| L(i-j) + £ T Ay Z(i-)) A, |i-j]
ij ij

]

Note that . being a matrix of slowly varying functions at infinity and that (k) being
positive definite for all large k, it follows that for every Ay € 2P, Ay £A, is slowly
varying at infinity and that Aé Z(k) A2 > 0 for all large k and for every Ay € #P.

Once again, use the arguments as in Taqqu (op cit.) to conclude that the

2-mD 2—mD1—D2

RHS(4) ¢ AN !4y dyf(N) AN



provided we assume

(7) 0< D1 < 1/m, mD1+D2 <1, 0< D2 <1.

Here ¢, and c, are constants depending on m, D, and D,. Thus a choice of BN here is

1
N 0
1 x 1
(8) By = Poun = N | say

H
0 2
pxl N Ipxp 0 BN2

with H, as in (5) and 2H, =2 -mD, - D,,.

With this BN, one can again verify that (6) above holds in this case. Note that (7)

implies
(9) 1/2<H1<1, 1/2<H2< 1.

Next, in view of (1.3), (1.5) and (3),V A € 2PT1,

J o J
’ __1 2 ’ —1 2
EIABY £ X{wy(m) - 57 Hp()2 = EEABR'X; T 3H (n)]
i i q m+1

72

> —‘}zzE,\ By X.X;By A p%(ij)
q=m+1 9" i j

= +1
<z gt ABN [p r{ig) By A 1G9
(10) — 0,
by arguing as in Taqqu (1975, p. 294), under both (1.6a) of (1.6b), using BN as in (5) or in

(8), as the case may be.

Combining (5), (6), (8), and (10), one sees that under either (1.6a) or (1.6b) (with
By as in (5) or as in (8), respectively) one has, by (3),




Var(A'BY' £ X9, (n)
1

‘r—1 Tm Im "m—1
= Var[Z (A By Xi){wl(ni) “mr Hm(ni)}] + Var[m—! 213(’\ By xi)Hm(ni)]
i

= o(1) + O(1) = O(1).

This then determines By and verifies the assumption (b)(ii) of the Theorem 1 above when

{&} {n}, {ei} are as in (1.1), (1.4), (1.5), (1.6a) or (1.6b). Now, if By is given by (5),

then

a 0
(11) Ay = =™ , 82y,
0

1
NP 0 Ay,

an, O
(12) Av= i, L = Y sy,

will satisfy (b)(i), with H1 and H, as in (5) and (8) satisfying (9).

The above discussion is now summarized as

Theorem 2. Let {Y;}, {Ei}, {n.}, B, ¥ satisfy (1.1), (1.3), (1.4), (1.5), and (1.6a) or (1.6b).
In addition assume that v is nondecreasing satisfying (a) of Theorem 1 with 0 < Ev’ (¢).

Then, with bN defined as a solution of (1.2),

-

AN(By-A) = [REy (0] BY' T XH (1) 5T + 0, (1).

where By, Ay are as in (5), (11), ((8), (12)) in the case of(1.6a) ((1.6b)).
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Remark 4. Hermile rank m of wl. Often the function ¢ is chosen to be skew symmetric,
viz, ¥(—x) = ¥(x). Thus if G is also skew symmetric then wl(—x) = Y(G(—x)) = Y -G(x)) =
~¥(G(x)) = =¥, (x). In such cases, using the fact that Hq(—x) = (—l)qu(x) for all q, we

have

Jo = B (mH (n) = 1+(-DI ) Ely (H (D107 > 0)) 0, q=1.

q q

Therefore, m = 1, J, =2 E{v,l)l(n)nl(n>0)}, H,(n) = n and, from Theorem 2,

(13) AN(ByB) = [REw ()] Bl £ Xip, - J 40

i (D).

Now let By be the least squares estimator of # in (1.1). Then carrying out an
analysis like the above one can derive the following:

If EG(n) = 0,0 < EG*(1) <w and G is skew symmetric, then

Ay(By -8 =R BY! X7, - o +0p(1),
where @, = EG(n)n where Ay and By are the same as in (13).

The r.v. XX, 1, is precisely the leading term in the least squares estimator of the
regression parameter with the errors {7} and the design vectors {Xi}. Thus it follows that
the above class of M — estimators corresponding to the skew symmetric scores and
symmetric errors are asymptotically like the least squares estimators regardless of whether
the errors are Gaussian or not.

Now, suppose that there is no intercept parameter in (1.1). Then the result like (13),
with X, replaced by & AN, By replaced by AN2’ By, of (5) and/or (8) remains valid.

Of course now By is px1 asis B. Note that in the case of (1.6a),
ABLL S En =N ) => N (0,A'T ), Vie 2P
N2 3 &% = A ) =2 Nplh ’ ’

where ' = I(0) = E¢, £,.
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But in the case of (1.6b) the limiting distribution is different. To determine this
limiting distribution, we use Theorem 6.1 of Fox and Taqqu (1987). Observe that if {Ei}
are long range dependent and Gaussian then so are the r.v.'s {,\’ fi} for every A€ &P
with the same exponent D, as in (1.6b). Now, take Xi and Yi in Theorem 6.1 of Fox
and Taqqu to be ,\/5i and s respectively. One then sees that (1.4), (1.5) and (1.6b)
together with the Gaussianness assumptions imply all the conditions of that Theorem for

every A. Hence,

’ - '_H.—) ’ . ’ i
ABR Dgn =N LN EQ g =>2(1) (A TAY

with Z(1) obtained from (6.1) of Fox and Taqqu after t is set equal to 1 in there. o

3. The Case of Non — Random Designs. In order to seperate this case from that of the
random designs, we shall now denote an Nxp design matrix of known constants by C
and its ith row by clili’ 1 <i < N. Consider the linear regression model where one observes
{Yy;} satisfying
(1) Yy =egft e 1Si<N, feaP,
with {e} asin(L.1).
Throughout we shall assume that
(L1) (€"C)7L exists for all N » p.
The class of M — estimators ﬂN is defined as a solution t of

where 1 is assumed to satisfy (1.3). Again, our objective here is to investigate the large
sample behavior of these estimators when {n.} satisfy (1.4). Of course conceputally the

discussion that follows is similar to that in Section 2 above except for the difficulties




created by the nonstationarity that is introduced in the problem by {cy;}- We begin by

giving

Theorem 1. Let €€ be a strictly stationary sequence of r.v's and C be as above
satisfying (L1) and assume (1) above holds. In addition, assume that the following hold:
(L2) The score function  is absolutely continuous with its almost everywhere derivative v
satisfying E| ¢ (€)| < w and such that the function
z— E|y(ez)-yv’(¢)| is continuous at zero.
(L3) There exists sequences {AN} and {BN} of pxp matrices such that they are positive
definite for sufficiently large N and satisfy
M) IAN"T— 0, 1BY I — 0 (i) By'C'CAN =1

—1 . -1
(i) max AT eyl — o, (i) IBY (A = O (1).
Then, for every 0 < b < o,

® E s By L[T(BANA) - T(B)] + BY' S eien v (6)AR Al = o().
1

If, in addition, ¢, = G(n,), with {n} satifying(1.4),

(L4) o is nondecreasing, 0<Ey’(¢), E(w’(c))2 < w, and

(L5) N1=(D/2) max IBR eyl IAY eyl — 0, with D =D, of (1.4)
<i<N

then

®) By - ey ¥ (6) AR = Lo BV () + 0,(1),

and

(5) An(By - B) = [Ew (] B'T() + 0 (1).

Remark 1. Some comments about the assumptions are in order. The assumptions (L2) and

(L3) are similar to the assumptions (a) and (b) of Theorem 2.1 above. Recall that in the
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linear regression model with independent or weakly dependent errors and with the design
matrix C, the magnitude of T(f) is of the order 6N = (CIC)%. However in the current
situation, where {ci} are functions of long range dependent r.v.'s, we can not expect this
magnitude. But we must still have (L3)(ii) in order to stabilize the LHS(4).

In the case of random and stationary design variables, as in Section 2 above, an
analogue of (4) is given by the Ergodic Theorem which does not require the second moment
of the summands. But in the present situation, the LHS of (4) is neither stationary nor
independent. The assumptions (L4), (L5) and (L3)(ii) together with the Gaussianness of

{m} is used to conclude (4) below.

e Al ol .
Proof To simplify writing, let a = AN Cny» by -= By ¢ypp 1 €1<N. Now, by the

absolute continuity of ¢, the Fubini Theorem and the Cauchy-Schwarz inequality, the

la]
LHS(3) € 20 £ bl fa] {2ly]) ™ —nﬁluE'w'(”b) — (o) dz

”ai”
< 2b(S ||b|? £ flag]%)x max((2l|a;]))™ ' EI9(e=ab) = ¥(6) de] — o,
1 1 1 =l a.

by (L2), (L3)((i) - (iii)). Note that by (L3)(ii),
2 2 _ —l~ =] A=l a1
Siillbill Ziillarl” =tr.By"C CBy Ay 'C CAy =p=0(1)

where tr.A :=trace A for any matrix A.

Next, let wz(n) = ¢’ (e) = ¥’ (G(n)) and &, = E¢v2(n)Hq(n). In view of (L4), the

2| R

[¢ ]

Hermite expansion of w2(ni) - Ez/)2(77) is ¥

q=1

above is now X bia.; wz(ni). Hence Y A € #P,
i

Hq("i)' Also note that the LHS(4)

’ ’ 2 ’ , o O
EIIA" 2 ba; (4(m) - Edp(m]lI” = ElIA” Eba; S AH
1

2
(n)Il
; q=19" a1
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o O
= X EZAbaabAp(l—j) by (2.3),
=17 %1%

< Var (y(n)) - 1A max [[ba; | ZE (o)l
1

(6) = max {IByjegl-IAY Lewil}? - O(NZD),

because £ T |p(i-j)i = O(N2_D) and because
1)

’ 2__ 4 4 _ ’ ) ’
Iba; | = tr-(b.a;ab.) = tr.(b;b,)- (a;a)
2 2 —1 2 =l 2
= [|bil1” fla 17 = 1By epll® AN o ll*

Therefore (4) follows from the assumption (L4) and (6). The result (5) follows as in Huber

(op cit.). Qo

Our next objective is to determine By, using (L3)(iv). Again, to simplify exposition

we shall write {c;} for {cy;}. Proceeding as in Section 2, we observe that V A € P,
' 2 ' Im,2 ' Iy 2
E{A 21: ciwl(ni)} = E{A 213 ciHm(ni)'m} + E{A 21: cj['pl(ﬂi) - Hm(ﬂi)'m‘]}
=E{A'TcH_(n) J"“}2 + EpSe % f%l H (n.)]2
{ 1 mi/ mT i lpme1 @ QD

J
—AEEc-cp (1—]):\—,—+ )y —(%SEACC/\PQ(I—J)

ij H : q>m+1 i
Jm 4 ’
(7) ==TA Ky A+ A Kyo A
where
32

Ky -)32c.c pM(i-), Kygi= T —-‘}EEc.c pA(i-j).

j 1 q>m+1 ij
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At this point one is clearly persuaded to choose BN X Kléll and then try to show that

||K_§1KN2K§%I| — 0 so that we would have (L3)(iv) satisfied. Such a process, though

feasible, appears to be quite involved for general {ci}. However, if we make some further

assumptions on the design variable then this process is less involved and more transparant.
Accordingly, let :pt (= ((pl,...,gop) be a vector of measurable functions on [0,1] to £

satisfying the following conditions:

(al) With D = D, and L asin (1.4), m as the Hermite rank of wl(n),

1—u

(1) é i‘r’g (u) ¢k(u+v)v—mDL(v)| dvdu<w, D<1/m,

(ii) |c,7t, (u) <pk(u)| du<ow, £Lk=1.2,...,p.

O = O —

(a2) () N2/ max Jlo(i/N)ll—0; (i) NI may jiofi/Ny2 0.
1<i¢ 1<i<N

(a3) The matrix ?—1 exists, where
11 —mD
¥ =((gg)) 8o = (f) (I) pAW)@ (v)[v=u| FL(|v-u|)dudv, ¢k =1,..p.
Given such a collection of ¢'s, choose

(8) ¢ = @(i/N), 1<i¢N.

Now observe that

L . , 1-1/N . 1 .
N'CC=N"% cc, % | p(u)p’(u)du — [ p(u)ep’(u)du,
i 1/N 0
so that
(9) N2tMD ¢'c o, because -1 + mD < 0.

From (1.4), (8) and the slowly varying property of L it follows that

: p P e g
VRN =E LB NS S ol /N )
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—ACCA+28 ¥ AeAkz: chg(l/N o G/N) p™ (i)

1

2-mD P

&N 2)3 E AN S
27!

=1 k=1

lg l( gok(u+v)v_mDL(v)dudv

=1 k=1
= NZmD \'ga
Now let
(10) By =N g2 H=1(mD/2), D=D, of (1.4).

Our next objective is to show that the second term in the RHS(7) is O(N2H). To

that effect, note that q > m+1,

[p(k)| <1, Vk 2 1, imply that

(1) VT SecdH)Al< B T AT B 1odilMa ) o)

PINE

{=1 k=1

Now, since |p(k)] —0ask — o,V e>0 IN_such that lo(k)| < € Vk>N_. Hence,

VN>N,

S T 1i/Ng (i/N) PTG ¢ = 8 [ofi/N)g (i/N))]

i<j

But, V l, k = 11"',p7

|j—i|<N

. . m s s
+¢ 121 (JEI)>N Lo (i/N)ey (i/N) (i)

Tyg NN - max (/N2 = o2y, by (a2)ii),

Tz < T 2 10, (/NN 6™ )|

11—
00

|6, (W (v ™PL(v) | du dv = O D), by (a1) (i)
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Hence,V ¢ > 0, 3 Nc such that
(12) LHS(11) < o(N>™D) 4 c.oN?™P) vN > N .
From (9), (12) and the definition of KN2 it follows that v N > Nc,

NZHID 3 K gy Al < Var 9y(n)-{1A°C'C A] + LHS(11))
<o(1) + ¢ 0(1) — 0, by now letting e — 0.

It thus follows that (L3)(iv) holds with BN given by (10). From (L3)(ii) we get
-1 ~ 1-H ~
(13) Ay =Byl-c'canTHg 2 L, p

Notethatm>1 =>

max [[AqTe [l ¥ max NP/Z)o(i/N)|| < NP/ max |1 i/ M)
1 1 |

and

1-D — —1 -D .
NP2 max [JIA eyl 1B el » IN"D/4 max 1 ti/m)l)2
1 1

so that (a2) implies (L3)(ii) and (L5). This shows that all the assumptions of Theorem 1

are satisfied. We now summarize the above discussion as

Theorem 2. Suppose that the linear regression model (1), with errors as in (1.1) and (1.4),
holds. About the design variables {cNi} and the score function ¢ assume that (8), (al)—a3),
(1.3), (L2) and (L4) hold. Then M — estimators {;3N} defined as solutions of (2) satisfy

(14) N"Hgy-p = (mrf] wt-Ew'(e)}‘l-N‘Hzi: Wi/NH_(1)-3_+o0 (1),

p

where H = (1-mD/2), D = D, of(1.4).

Remark 2. Observe that if the design generating functions are bounded then 0<D<1/m

guarantees the satisfaction of (al) and (a2). In particular if vy (u) = u‘, {=1,...,p, then
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(al) — (a3) are all satisfied. That is, all of these conditions are satisfied in the case of the
pth order polynomials.
An example of an unbounded design is obtained by taking p=1, cpl(u) =u ', r>0.

Then (al)—(a3) are satisfied as long as r < (1-mD)/2.

Remark 3. An analogue of Remark 2.4 applies here also with obvious modifications.
Consequently, for skew symmetric 9 and symmetric errors the asymptotic distribution of

NI_H( ﬂN - f) is p — variate Normal with mean vector 0 and the covariance matrix

(g oY 9 (g 0t ] (B ()2 02
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