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- Abstract

This paper introduces and analyzes two ways of extracting the hydrostatic pressure
when solving Stokes problem using the p version of the finite element method. When
one uses a local HI projection, we show that optimal rates of convergence for the
pressure approximation is achieved. When the pressure is not in H-, or the value of
the pressure is only needed at a few points, one may extract the pressure pointwise
using e.g. a single layer potential recovery. Negative norm and interior estimates for -

the Stokes velocity are derived within the framework of the p version of the F.E.M.
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1. Introduction.

There are cases in which a continuum is subjected to an incompressibility constraint,
such as a divergence constraint. We will investigate some problems dealing with
stability of a class of numerical discretizations of such problems. As an important
example we consider Stokes equations in two dimensions:

-AU+VP = F in nCR2 (

V.U = 0 in fl
with appropriate boundary conditions on o911. In the standard weak formulation,

Find U E V C [H'(fl)]2  and P E W C L'(11) such that
a(U,v) + b(v,P) = (F,v) Vv E V (1.2)

b(U,q) 0 0 Vq E W

where the bilinear forms a and b are given by

a(U,v) = 2 fO .,. j,,(U)Ei(v)dx (1.3)
b(v,P) = -foV.vPdx

and (F,v) denotes the usual [L2(fl)] 2 inner product. Ei(v) is the symmetric part
of the deformation gradient (a + a11). The pair of spaces (V, W) depends on the

boundary conditons. For no-slip bounaary conditions,

(V,W) = ([H1 (fl)] 2 , {q E L2 (fl) : qdx = 0})

and for stress-free boundary conditions,

(V,W) = ({v E H1(0) : Eq (v) = O},L 2 (n)).

We discretize by choosing finite dimensional spaces VN C VWN 9 W, such that we
are to

FindUNE VN and PNE WN such that
a(UN,v)+ b(v, PN) - (F,v) Vv E VN (1.4)

b(UN, q) = 0 Vq E WN

The main problem is whether it is possible to select a sequence of pairs (VN,WN)
that is stable and that has good approximation properties. The Babutka - Brezzi
condition fnV.v qdx

qEWN\(0}VEVN\{O) 1 II 1HI11 q 11L. - (1.5)
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with c independent of N, is sufficient to guarantee stability in the sense that the
discretization errors are within a uniform constant of the distances from (U, P) to
(VN,WN) (cf. [41,[81).

We shall concern ourselves with methods using high degree polynomials to ap-
proximate the solution to the Stokes equations. Among possible choices: spectral
methods (cf. [11]) and the p-version of the finite element method, we shall deal with
the latter. Accuracy is improved by increasing the polynomial degree p in the (usually
small number of) elements in the mesh, see 15].

We saw in [16] that the pair ([QP] 2 , V . QP) was unstable, since the right inverse
(V.) : WN --+ VN had a norm in B(L 2,H') that was growing linearly with p. When
WN V . VN, it is well known that at uniform bound on (V.)-' in B(L 2,H') is
equivalent to the Babu~ka - Brezzi condition (cf. [23] ). Similar results hold for other
pairs in which the degrees of the polynomials in the (VN,WN) pair is one less in WN
than in Vv, see [16]. That the inf-sup constant tends to 0 like 1 as p --+ oo does
not mean automatic suboptimal covergence for the velocity as was explained in [16],
e.g. But the pressure convergence rate can be slowed down by 1 as was seen in an
example there, and following another example does not necessarily have to, see [16].
We will try to recover the pressure through some additional effort - solving a Poisson
problem - at optimal rate.

From (1.1) we see that P satisfies

AP = V.F in n1
L_p = (F + AU). n on (1.6)an

and fn Pdx = 0. n denotes the unit outward normal defined almost everywhere. (1.6)
is a Poisson problem for which the accuracy of any numerical procedure will depend
on the accuracy of approximation of U.

2. Stability and velocity convergence.

A lack of stability (deterioration of the inf-sup constant) does not imply suboptimal
convergence of the velocities. Let

ZN = {vEVN :v =0onafl,V.v =0 in fl} (2.1)

where we have taken no-slip boundary conditions. Let WN - V • VN. Then UN is an
elliptic projection of U onto ZN such that

U - UN II,n_< min 11 U - vII,,n (2.2)

VEZ,
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where I1I,n=11" IIH-(n) the standard Sobolev norm, see (1]. Therefore, there exist
stream functions (o,'PN E H0(fl) such that

U= V xP, UN =V X N (2.3)

where V x () . Let R (-1,1) 2 and

QP = span{xm y' :0 < m,n < p} (2.4)

be the spaces of polynomials of separate degree less than or equal to p. We now have
for one square element.

Proposition 2.1 If VN = [QP n HJ(R)J2 and WN = V . VN, then for p > 4,
UN is an elliptic projection onto ZN with

II U - UN II1,R< Cp - M U1 U IIM+1,R (2.5)

Proof: Let YN = ((Vx)-(ZN)) nH2(R). Then

min 11 U - V I11,R <  min II V X (P-) II1,R
VEZN -- ZEYN

< min II -¢112,R
,OEYN

< Cp - M 11 V IIM+2,R

SCp - M  U IIM+1,R

which combined with (2.2) and the observation that for p > 4, YN = QP n H02 =

(1 - x2) 2(1 - y2)2Qp-, # 0 and has optimal approximation properties, using an inter-
polation argument due to Babu~ka: Optimal rates of approximation were established
in [251 for M > and are clear at M = 0, upon which it follows through interpolation2
by the K-method for intermediate values. The H. trace constraints interpolate as
expected, as shown in [15].

Remark 2.2 When F is 0 or sufficiently smooth, the rate appearing in (2.5) is not
optimal for typical corner singularities that appear in the solution of elliptic boundary
value problems on polygonal domains. It follows from the analysis in [61, that if U is
of the form ra l log r lqo(e) - expressed in polar coordinates at the corner - and 4 is
smooth, then

min 11 U - V 111,5 Cp - 2a+C
VEV~v

which is near twice the rate of (2.5) as U E H' for s < a + 1. Let us briefly recap
approximation theoretical results for the stream function p. Let = r"I log rq 0(8)
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(' - a + 1). Combining the results in [12], Chapter 7, and 19], one sees that for corner
angles w .8128r, the first non Gaussian integer pole of a certain transcendental
equation, which determines the strength y, is double and q = 1. In [251 it was shown
that then the following approximation result holds

min 11 P - 0 1 2  C1 logPjP- 2(' - 1)"  (2.6)
#0EYN

with C independent of p. By the above interpolation argument one can get I log p1'
for any 0 < 0 < 1 and C independent of 0. This indicates that the log factor is not
important in (2.6). The singular form of the solution

= r"I log rlq 0(0) (2.7)

can also stem from the specification of Dirichlet data for U on the boundary. We shall
mention an example of this later and note now that in such a case, the I log pj factor is
not present iff it is not present in the 'p satisfying the boundary conditions and this sin-
gularity is stronger than that inherited from the geometry.

In view of the previous remark, let us introduce a rate of approximation function
R which expresses the hitherto known results, cf. thin. 6.1 in [251

Min 1j 1- P ' 112- CR(p, t, p) (2.8)*EYN

where p is a regularity index:

(0,0,.s) when E H' \ H' + ', VE > 0
is assumed known only,

p() = when 'P E H'+ - " \ H'7, VE > 0 and (2.9)

(y, q, 1 + - ) has known dominating singularity:
(, = rYI log r Iq ( 0 ) in local polar coordinates
at the boundary and V - , 6 E H, s > 2y

so that we may define

f p(2-1) 11 pI when p('P) = (0, 0, a), t <
R 1 1ogpp-2(y- ')R(') when p(V) = (bq, 1 + -Y - E), E > 0 (2.10)

R('p) involves 11p - E 011, and the 11 norm of the vector of coefficients of 5.
Statements similar to those in prop. 2.1 can be made for spaces of polynomials

of total degree < p and those used in PROBE 128] for p > 7. These are defined as
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follows

PP = span{ X"MYn : 0 < ,n <p}

SP =span{ x m Yn :0<,n; m+n<p (2.11)

or (m =pAn=1) or (m=1An=p)}

= p® { xPy, XyP},

respectively. The latter is convenient when approximating Dirichlet boundary condi-
tions. If one relaxes the no-slip boundary conditions along part of the boundary, the
threshold values decrease accordingly.

([pQP] 2, PP-') - or any other pair with a similar degree selection - is a natural choice
in the sense that it reflects the approximability of the velocity - pressure pair given by
their regularity and that it was proven h-stable for p _> 4 when excluding exceptional
meshes, see 123). The stability does not seem to be restored by merely restricting the
pressures to lie in pp-2. 122] reports the behavior of the inf-sup constant as p-1/4 for
large p. In fig. 1 we give the smallest positive singular value of the discrete Stokes
matrix for ([pQ]2, pp-3). Again p-1/4 seems to be the asymptotic behaviour.

It is possible to stabilize at a cost. In [13] and [14] , etc., it has been proposed
to add weighted least squares terms to the energy. The problem possesses coercivity
and is only in the very limit of saddle point nature. However, it seems that the
least squares terms added require that U E [H 2]2 , which is more regularity than we
would like to require a priori. In fact, the examples computed in [16] indicate that
H 2 regularity of U was sufficient for the pressure to be approximated optimally by
the mixed p F.E.M. We will give a brief explanation of this later. One way to get a
stable (VN,WN) pair is derived in the following example.
Example 2.3 A natural idea for proving a uniform lower bound on the discrete
inf-sup constant is to attempt to inherit the continuous bound by constructing the
maximal right inverse of the Div operator. This general avenue was thoroughly
explored in [301, [23] and references listed there. In the context of the p version we refer
to [161. We will mimic the construction in the nondiscrete case where uniform bounds
exist also for nonsmooth polygonal domains under Dirichlet boundary conditions, [2].

Let R = (-1, 1)2, ON c pP+1 n H01(R) and WN = M4N. Clearly

A
tN- WN

bijection

V V.

\ 7
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with

II (V.)-q II, = II (V.)-'AA-'q Iil
<II V(A-'q) II,

< II A-lq 112
<_ CIIqI0  VqEL 2 (R),

where C depends only on R, not on q, giving a uniform bound on the operator norm
of Div - 1. We may therefore select

WN = A(Po'p) and

VN = V(PO+ ')

with no regard to boundary conditions and under no-slip boundary conditions, we
instead set

WN = A(g}°)]2PP- 7) and

VN = V([NO)2Pp-7)

where N(°) = (1 - X2)(1 - y2 ) is the first internal shape function. As Div' was
uniformly bounded in B(L 2, H'), the pair (VtN,AtN) is p-stable, where 4DN =

[N(°)]2pp- 7 .

Both choices seem unnatural, however, from the regularity point of view as well
as from the stand-point that you would like to be able to combine the p and the h
versions.

3. Negative norm estimates

For future purposes we shall derive error estimates in negative norms for the velocities.
As seen in section 2, it is possible to characterize the velocity convergence by that of
stream functions. UN is an elliptic projection of U onto ZN so that

II U - UN II,(-)=Ill V × (X( - N) IIH.-)_<l W - VN IIH.+'(O)

with

a(Vx (Vo- oN),Vxx) = 0, VxEYN=H2(fl) n(Vx)-ZN

c(fP- VN,X) = 0
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wherer c(u,v) =] AuAvdx Vu,v V Ho'()

(if stress-free b.c., get fn(u,,V,, + uYvYY + 2uzyvy)dx). Let e = - so. We need to
bound 11 e 11-k for some nonnegative inteqer k.

Proposition 3.1 Let 11 = (-1, 1)2, k E N and e be the difference between the exact
(tP) and the discrete (PN) stream functions. Then

11 e 11-k,0:5 CR(p't'p( o))p - J1- 2  (3.1)

where R was defined in (2.10).

Proof:
Se IL- ,e--e ~~Sup -V

'EC,)"()\{o} II V 1k,f

Now we define b to be the solution of

A 2  = v in n3
0 = =on (3.2)On

V G C °(f) = G E C°°(N) and 11¢ 11,.n< C 11 v 11,-4,n as we will discuss in the
remarks following the proof.

(e,v) = (e, A 20) = c(e, 0) = c(e, 0 - q) V E YN

such that

I (e, v) 1 I I e I1,0 min m 1 '- 7 I12,ntEYN

* 11 e 112,0 Cp-k-2 II IIk+4,,
< Cp-- 2  e 112,0 11 V III
< cp-k-2(p,t,p(V))II V Ilk,0

using p(O) = (0, 0, 4 + k) and the regularity assumption on o.

0
Remark 3.2 It is not trivial that (3.2) can be solved with the indicated, regular shift
theorem holding. It is most easily seen from a construction found in Serbin, [24] or [7],
and utilizes the geometry in an essential way. Let q, denote the reflection about ri,
the four straight line segments forming afn, i = 1,.. ,4. Let fl; = Loifl, i = 1,... ,4.
Now let 4 Jn, (x) = -0(ox). Since ox E f and 4 E C°°(1(), 4 E C-(1UUI=1 0,). Let
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l= (-3,3)2 and define 4' as the odd extension, once more, into the 4 corner regions

(±1,±3)2. Now a, E Coo() and since A2 is even, V) satisfies (3.2) on f] with i the

function defined through the same odd extension procedure. Now standard interior

estimates apply, fl Cc fi and , easily, 3C, 11 v lI_-4,n= C 11 v I-4,6; I1 4t,n!I 4' HL'.

Remark 3.3 The above remark and thus proposition hold true for a rightangled

triangle: f = {(x,y) E R2 :0< x < 1 A y I< 1}. Now we use that A2 is not only

even but also symmetric (in x and y). (When extending V) as an odd function about

the cathetae, 4,. (x) = 4y(ox), e.g.). The same conclusion applies to the Laplacian,

as is well known for the square.

Remark 3.4 In general, such a shift theorem will hold when all angles are sufficiently

small, [15]. In [12] Chapter 7, it is shown for A2 that each corner of interior angle

a supports singular functions with strengths commensurate with the poles r of the

following transcendental characteristic equation

sinh 2(ra) = r 2 sin 2 a.

See also [18] and [201. The roots of this equation were tabulated in [9]. It has been

shown that for a E (0, 7r), the first root has imaginary value (for this particular setting

the factor determining the strength of the singularity)

7rrnT> -

a

Therefore the first singular functions belongs to H' when

iT

s-2

We list the bounds for two cases of special interest. For k = 0 in (3.1), 8 = 4 and it

is sufficient that a E (0,7r/2]. For k = 1 in (3.1), a = 5 and a E (0, 7r/3] suffices.

Remark 3.5 Concludingly, the shift theorem for (3.2) and hence the estimate (3.1)

will hold for domains with smooth boundary, rectangles, triangles with two sides equal

and, with a given ceiling on the shift's upper Sobolev index, for polygonal domains

with sufficiently small angles.

Corollary 3.6 If 'p is singular on 1l with q = 0 in (2.7), i.e. p(Wp) = (,0, 1 + -

c), c > 0, and k E N, eI 11I-A:.n:_ c p-,, ,-- (3.3)
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4. Interior estimates

We will first derive such estimates for unions of elements within fl. By a union of
elements we mean a single element or a patch of elements. Let K 0 cc K, be unions
of elements of the triangulation or lattice such that K is either a rectangle, a triangle
with two sides of equal length, or a polygon with sufficiently small angles. We proceed
using the duality ideas of [19]. We shall for simplicity take a most typical case, F = 0.
Also, we will assume p(cp) = (-y,0, 1 + - - c), VE > 0. Obvious modifications can be
performed for other cases.

Lemma 4.1 Let s > 0 be an integer. Then

11e !I-,,K,,< C(p - ( + " 1  e 112,K, + 11e 1-,-1,K,) (4.1)

where C depends on s, Ko, K1 .

Proof: Let B be a ball separating K0 from K 1 , i.e. K0 cc B cc K 1 and let
w E Co°(B) with w - 1 on K0 (B need only have C' boundary). Then, for s > 0,
we have

e j1- ,&,---j we II-1,K,= SUPf(we,)f)fEH,,(Kl\[o> 11 f 1I,,K,"

But Vf E HS(KI), 3!v E Hs+4(K 1)nH2(K) such that ci(q,v) = (q,f),V17 E H2(KI)
with 11 v [[a+4,K,< c 11 f Ils,K,. Here c1(',') denotes CIK,(.,.). Thus

e II-,K,, c sup cI(we,v)
VEH.+'(K,)\o0 II V IIs+4,Ki

and

cj(we, v) = jI A(we)Avdx = ci(e,wv) + R(e,w,v)

where

I R(e,w, v) f= I (eAwAv + 2Vw. VeAv - AeAwv - 2AeVw . Vv)dx
B. I1

If e[AwAv - 2V. (AvVw) - A(vAw) - 2A(Vw . Vv)idx I

< C(w)II e II-e-1,K, V I+4,K,
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using Green's formulae. Also, we use the fact that for some 0 E YN(K,),

Ici(e,wv) I = Ici(e,wv- 0) I
< C I1e 112,K,11 WV - 0 112,K.

< C(w)p - (°+ ' 11e 112,K, 1I V I+4,K,

using that KI is a union of elements. Otherwise we would get 11 e 112,n. This concludes
the estimate (4.1).

Li

Lemma 4.2 Let Vo E H 2(fl), ON G YN with p > 2 and let k E N. Then

11 e 110,K,< C(p -2  11 e 112 K, + 1II 11-k,K.) (4.2)

where C depends on K0 , K1 ,k.

Proof: For j E Z+, denote the index i(j) - __I. Let Ko cc K 112 CC ... CC Ki(k)
KI be unions of elements. From the previous lemma with a = 0, we get

11 e I0,Ko_ C(P-2 11 e II2,K,,, + 1e II-1,K,12 )

Successively applying the previous lemma to estimate II e ll-j,K,,,, we get the estimate.
0

An easy consequence of (4.2) is obtained by interpolation between (4.2) and the
obvious llell2.Ko _ C(llell 2,K. + llell ,,) to get

lleI,,K. _ C(p-'lleI,K, + Ilell-IK,) (4.2')

The next lemma provides a local growth estimate on the H 2-norm of ON.

Lemma 4.3 Let k E N. Then

II VN 112,K.,:5 C(p- min ( 1,2 ( y-1)) II 'N 112,K + II VN II-k,K,) (4.3)

where C depends on Ko, K1 , k and WI.

Proof: Let 7r be the elliptic projection of Ho(K) onto YN(KI) defined by:

cI(v - rv,0) = 0, Vb E YN(KI).
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7r satisfies

1 rv 112,K, 5 C c-I(irvorv)

< C SUP

0CEY(BIA\{0} 11 V) 112.K 1

< c cI(v,0)
OEYN(Kl)\(o) II k 112,K,

< c II V12,K, •

Let B be a ball separating Ko from K 1 , i.e. Ko cc B CC K1 ,w E C0"(B) with w 1

on K 0 . Then

II PON 112,K,<Il WPN 112,K,!I5 WPN - 7r(woPN) 112,K, + 1 7r(Wo N) 112,K,

Let p(p) = (-y,0, 1 + -Y - E) so W E Hl+7-'(fl), for -y > 1. Then w'o E Hl+"-'(fl) and
is zero in a neighbourhood of KI, so there exists 0 E YN(KI) so that

II wV- 0 112,_ C(,p)P2("-,)II P 112

Also II Vo- N 112:5 C(o)p-'(',-')II P 12. Finally, i 1o I2<11 P - oN 112 + II VPN 112
C(o) II (PN 112, SO that

11 WP - ,r(W N) 11,K, < C 11,O - ,/ II2,K

< Cfll,,(P - o,)112,K, + Ijw - 0112,.K]
< C(W , -)2('-')II ,,, 112,,

The other addend

I r(W ,) 112,K,< Cc,(7r(woN),P) = c,,(WN,,)

where = ir(WN)l 11 7( N) II2,, so that 11 P 112,K = 1.

C I (VN e1 ('N, WP) + R(WoN, W,)

as before and we get that

I Cj(W,,., ,) 1 5 C(p-2 (,-')II PN I12,K, + II 'IN 111,B)

since C1( oN, ) = 0 for F = 0 and supp w C B. Recalling (4.2) with e = V'N and its
corollary (4.2'),

II ,,(,,) 1 ,K,< C(p-min (1'. 2 (' -l) 11 I12,K, + 11 o II-kK,).

Adding the two upper bounds yields (4.3).
0



13

Lemma 4.4 Under the hypothesis of the previous lemma, with 0 < k < 5

II VN 112,K,,:5 C 1 I N II-k,K, (4.4)

with C depending on K 0 , K 1, k and P, (p) = -y 2 - k+l

Proof: Let K0 CC K 1 / 2 CC ... cc Ki(k+1) CC K, be unions of elements; i was
defined just below (4.2). Lemma 4.3 applies to each pair Ki(,), Ki(j+,), 0 < j _K k. So
for -y < 3/2,

II 'PN J12,Kj(,)< C(p - 2 -1 ) II PN II2,K(,j,)+ + 11 'N II-k,.Ki(+,))

Iterating from j = 0 to k + 1, we get

II PN 112,K 0< C(p -2(Y-- )(k+l) II PN I12,K,(.+I) + II VN JI-k,K,,A+,)

Let Ki(k+,) cc K' cc K1 . But, by Schmidt's inequality [10],

p- -) II 'PN I1I,,+ K- p-2("-2)II p 11 H2,K'

< C1 VN I1-kK'

c 11N II-k,K,,

since (k+l)(-t 1) >k-2 iff -y >2- i+1 and this last expression < 3/2 iff k < 5.
The case -1 > 3/2 follows in a similar way, again we need k < 5.

Next the local version of the main result of the section.

Lemma 4.5 Let Ko CC K1 be unions of elements, o E H'(K,), PN E YN and k E N.

Then for 2 < s < 1 + y,

II e I.,,o_ C(p-2 (,'-+) + p2 (s-2) 1 e II-,k,K,) (4.5)

Proof: Let K0 cc K 11 3 cc K 2/3 cc K, and w = 1 on K 1,Is,w E CU'(K213 ). Then

I w(o - ir(wo) 112,K, < C inf 11 wep- b 112,K,
- EYN (Ki)

< Cp-2( - 1)

and

II 'o- V'N 112,K._5l ' - 7r(WP)II2,' + II + '(.,7 ) - PN 11,,Ko
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where C1 (oN - 7r(ow), 0) = 0, VO E YN(K1/s) so that lemma 4.4 applies with K113

replacing KI,

II N - 7r(wP) 112,K, : C 11 PN - 7r(w,) I1-k,K,,,
C(l e I1-k,K,,I3 + 11 .P - 7r(w'P) II-k,K,1.)
C(I1 e I1-k,, + 11 "P- 7r(w) I1-k,K,)

and collecting, we get

11 e 112,Ko II P - PN 112,K.

< C(ll WV,- 7r(wP) I1-k,K, + II e II-k,K.,)

< C(p-2 ',-)+ 1 e I1-kK.)

which is (4.5) when s = 2. Let s > 2,K 0 CC Ki/p cc K 213 cc K 1 as before. Then

for some Eb e YN,

II II,,K. - II V, - / I,1., + 11 V)'- PN 11.,K2/3

II VP - II.,K, +P2 -s-) 11 - 'P 112,K 1 +p2(s-.2 II e 112,K,

C(p-2("y-s+1) + +2(s-2)-2("y-a+1) + p 2(s-2) e I-,K,)

_ C(p-2 -- +l) + p2(s-2)11 e I1-k,K,,)

which is (4.5).

The main result generalizes (4.5) to hold for fi0 Cc fn1 .

Theorem 4.6 Let 00 cc fli CC R 2, 'P E Ht(fl1 ), 'PN E YN and k E N. Then for
2 < s5 < 1 + -j,

1I e II,.:5 C,'o (p -2 ' - s+ ) + p2 (P-2 ) 11 e I1-,,n). (4.6)

We may think of fl, = f0 or fi CC fc depending on the regularity of 'P.

Proof: Cover flo with a finite number of KO(x,), i = 1,... ,m centered at xi E flo
with sidelengths = 1dist(-,aOf 1i). Let K1 (x) be the same except with sidelengths
= dist(ffo, afij). For s > 0, we have from the previous lemma that

II e 1.,Ko(X,) C,(p - 2 (- +) + P2(s-2) II e I1-k,K,(X,))
< c,(P-2(,-.+,) + P2(*-2) II e-,)

which yields (4.6).
C



15

Corollary 4.7 With the same hypotheses as in Thin. 4.6,

II e C 2 (1+1). (4.7)

Proof: For k > 0, 2(s - 2) + k - 2-y > -2(y - s + 1) and applying cor. 3.6 yields
(4.7).

0
To obtain (4.7) it is thus sufficient to use k = 0, i.e. no restrictions are needed on

-y other than -y > 0, see lemma 4.4. This provides quasi-optimal error estimates for
s>2.
Remark 4.8 For F # 0, we can modify the lemmas to reflect plv satisfying instead

E(b) d=f ci(e,b) = C(V- PN,O), Vk E YN(Kl) (4.8)

where E E IH02(Kg)] ". For s > -2, s E Z, let 11 E 11-1,n= suPVEH,+2(n) IE(,k)l/
II V 11,+2,0. If P0N satisfies (4.8), lemma 4.1 should state instead,

IJeIJ-.,Ko _ C(P-4I[eI2,K, + I[eJJ-,-1,K. + p-411E112,Ki + IIEII-,,K);

and lemma 4.2,

IlelloKo :_ C(p-le2,K, + Ilell-k,K, + p-11El12,K, + IIEIIo,K,).

The remaining lemmas and theorems hold unchanged. In the proofs one has to carry
along and estimate terms IIEll7.

0
Remark 4.0 It is not always necessary to have fio cc 1i1 or K0 cc K1, since it is
at times possible to extend about parts of the boundary by the methods mentioned
in remarks 3.2 and 3.3 (or the smoothness of the solution otherwise warrants this).
In such cases, we may use the estimates up to that part of the boundary.

0

5. A projection method.

We now discuss how to recover the hydrostatic pressure utilizing that it satisfies the
Poisson problem (1.6). We shall see that there seems to be a fundamental interplay
between the lacks of stability and regularity.

First suppose P is smooth, i.e. P E H, n W for some a > 1. We will as before
assume that the regularity of P is dictated by that near the boundary of fl. We will
then use the following weak formulation
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Find P E H 1 n W such that Vq E H'()fl n W,

d1 (P,q) = g(U,q) + (F, Vq) (5.1)

where the forms in (5.1) are defined by

di (P, q) = VP. Vq dx,

g(U,q)=-f AU'nqds. (5.2)

In order to discretize, we use instead g(UN, q), which is, of course, why we needed
higher order error estimates for IIN - UNII, since for 8 > 0,

IIAU • n - AUN" nil,- 3/2,0n < C jU - UNII1+,n. (5.3)

Note that it is possible (and sometimes desirable) to pose (5.1) locally, i.e. over
a union of elements, rather than over all of fl. We may discretize selecting WN =

pP-i n W. We will estimate in turn each of the two terms on the right-hand-side of

liP - PNII1,Ko -- 1IP - PUN 111,K + IIPUN - PNII11,K

where PUN satisfies di(PuN,q) = g(UN,q), Vq E WN. Let q = P - PUN, then since
d, is symmetric and coerces the 1-norm,

liP - PUN I,n lIP- PUN lIs/2-,onlIA(U - UN) " nl_.-3/ 2,ea

<_ ClP- PUNII2-. ,nIIU- UNII1+.,n

which with s = 1 and (4.7) gives

lip - PUN III _ Cp -2 ( 2

For the second addend, P inherits a singularity from U in (1.6), P = ' (9) so
that at worst,

IIPN - PUN III < Cp-2(-2)

Hence,

lip- pNIjI : Cp-2(- ).  (5.4)

Example 5.1 Consider the "driven cavity" flow problem

-AU+VP = OinR=(-1,1)2

V.U = OinR

U(Z, 1) = (1-X2)p(0 for -1<<1

U = 0 elsewhere on aR.
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where/3 > 0. According to Thm. 6.2 of [21, the last three equations has a solution in

IH'+O-(R)2 and no solution is in [H'+,(R)]2 . This then carries over to hold for the
solution of the full system by known regularity results for Stokes problem [18], [12].

Proposition 5.2 Let l = (-1, 1)2. WN = Pp- 1 n W and

Find PN C WN such that Vq E WN, (5.5)
dl(PN,q) = g(UN,q)

where dl,g and UN E (HO) 2 have been defined above. For the driven cavity, / > 1,

we obtain

IP - PNIIIn < Cp- 2(, - 2) and

IIP - PNIIo,n Cp-2( -Y) (5.6)

Note that the second half of (5.6) corresponds exactly to the rate of approximation
of the velocity in H1 .

Proof: For the square, the odd extension procedure works for U,UN E (H//0) 2 and
UI(-1,l)x{l} E H026((-1,1) x {1}) in such a way that the smoothness properties are

preserved and the norms of the extended functions remain the same as those of

the original functions. Applying (5.4) yields the 1-norm estimate in (5.6). To get the

second half, we employ Aubin-Nitsche's construction: Let 6 = P - PN and X E Hi(f0)

solve the auxilliary problem

dl(X, V) = (6, V), VV E W.

Then Ilx12 < C11611o because n is convex. 116112 = (6,6) = di(6,x) = dI(b,X - ) _

CllII611x - tIII < Cp-2l1611,11lo as we can choose t so that IIx - t 111 < Cp-21lx12.

Remark 5.3 Thus we are able to explain why it should be possible to get optimal
convergence rate also for the pressure as observed in (16] for P = 2. PN defined

in (5.5) solves the same problem as in the method from [16] since we observe from

Prop. 2.1 that 3 po E Z+, such that for p > Po, b(UN,q) = 0, Vq E WN and

b(v, PN) = 0, Vv E ZN, rotations of streamfunctions. Now let v = Vq in (1.3) and

integrate by parts to get (5.5).
0

Remark 5.4 With P smooth, it is also possible to introduce mixed methods to solve

for PN as in [261 and use either Raviart-Thomas or Brezzi-Douglas-Marini elements

to get almost optimal order convergence for VP.
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Remark 5.5 We can interpret (5.1) as local averaging bringing this method into the
same general frame of ideas as that of [71 or [171.

For a pressure P which is not assumed smooth globally, P E He n W for some
s > 0, the above procedure can be employed locally on an element or a patch of
elements in the interior of fl, where P could be assumed smooth. This would yield
an interior optimal rate approximation to P.

For P still not smooth one might be tempted to modify (5.1) to some other weak
form of (1.6) presupposing minimal smoothness on P.
Example 5.6 In stead of (5.1) take the following problem on fl = (-1, 1)2:

Find P E W such that Vq E H2 n {q : R = 0 on afl}
d2 (P,q) = g(U,q) (5.7)

where the bilinear form d 2 is defined by

d2(P,q) = -fPAq dx (5.8)

Note that for the discrete form of (5.7), PN would be identical to that of (5.5) since
0 = fanPN ds = d2(PN,q) + di(PN,q) for q E WN. So one might expect to get
optimal rate 0-norm estimates for P - PN, since also

inf sup d2(P, q) > C > 0
PEW qEH 2 , I=0 on an l011ql12-

because Vp E W \ {0}, 3q* E H 2n{ I = 0 on afl} such that Aq* = p, llq*11 < Cilplo.
Nevertheless one will fail to get optimal rate of convergence since d2 is p-unstable,
see (2.2.28) in [3] for one dimension.

0

6. A method using potentials

We will demonstrate pressure recovery, still using the Poisson equation (1.6), but now
in a way so that we get the hydrostatic pressure evaluated at an interior point of fl.
Let F = 0 so that P satisfies, for any fl, C f) with al') sufficiently regular,

AP = 0inf(]
= (AU).n on O 1f) (6.1)an
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Then , if a91, G C 3 ,

fa(x)g 1 (AU.n)(y) ds(y) (6.2)

and PUN is obtained by replacing U in (6.2) by UN.

Corollary 6.1 If PUN is evaluated exactly on dfl, smooth, x E 0o cc fhi cc f
according to (6.2) with UN in stead of U, and U E H1+(fl 1 ) for some s > 0 and of
singularity strength -y - 1, then for k E N,

[P - PUN(x) _< C(n)pk 2 (-) (6.3)

Note this represents a superconvergence result for the p version in the interior of
elements.
Proof: From (5.3), (3.3), and the fact that the single layer potential is smooth away
from af ,.

0

Remark 6.2 It might be possible to deal with all, --+ an] by using explicit knowledge
about U near corners of fl. Such explicit knowledge can be generated a priori, e.g.
using the methods of P. Papadakis, [21].

El

Remark 6.3 It might be desirable to evaluate the right hand side of (6.2) with UN
replacing U by quadrature.

El

Remark 6.4 We note that this procedure can be performed without smoothness
assumptions other that U E H'+'(n1 ), i.e. for P E HS, > 0.

0l
Other such extraction procedures have been investigated for nearly incompressible

plane-strain elasticity in [27]. The two continuous problems are connected as shown
in [29], Chap. 6.

7. Concluding remarks

We have introduced two methods for recovering the hydrostatic pressure in Stokes
problem. The necessity for this was demonstrated in 116]. We derived negative norm
and interior estimates enabling us to prove optimal convergence rate in the interior
elements and for special geometries and boundary conditions up to the boundary.
Thus we were able to explain the ability of the mixed method introduced in [161 to
approximate P at optimal rates when the boundary data were sufficiently smooth.
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