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1 Introduction

Many planned Air Force missions require precise slewing and pointing control of

large flexible structures in space. Success of these missions depends critically on achieving

and maintaining highly precise (nano radian) pointing control of line-of-sight over the

duration of the entire mission. Typical missions include surveillance, communications,
target detection, weapon pointing and tracking.

Space structures are subject to disturbances of bandwidths that require control of

many structurl modes. To enable high performance control of these in-band modes re-

quires a good model of the structure. Unfortunately, models based on physical and/or

manufacturing data do not have the requisite accuracy. Model inaccuracies arise from

many sources, e.g. , changes in mechanical properties due to manufacturing variations,
assembly variations, effect of radiation, plasma and temperature, and so on. Even small
variations can have significant negative effects on closed-loop performance. If the control

is made robust to these inaccuracies by treating them as model uncertainties, the resulting

control performance is often orders of magnitude worse than the mission requirements.
System identification reduces these model inaccuracies so that high control performance

can be achieved in the presence of model variations.

Advances in Control Structure Interactions (CSI), based on experience from programs

such as ACOSS and VCOSS [1] and R2P2 [2], have clearly demonstrated the importance

of system identification in achieving high performance control (see Table 1).

Table 1: Performance depends on model accuracy.

Model Information Performance
NASTR.AN + manufacturing tolerances unstable
NASTRAN + ground testing unstable to 50% performance degradation
on-orbit identification meets performancce

Prior to 1983, all work in system identification for CSI was performed using non-

standard custom software or spectral analyzers. Since then a number of tools have emerged

for system identification [18,9]. These tools have proven to be very valuable for off-line

SISO system identification, but mostly in research environments in the hands of experts in

system identification. Current software tools, such as MATRIXx, contain primitives which

implement certain identification methods. Several of these tools have been investigated

under Phase I and have proven to be reliable.

4To design a feedback system, the control engineer typically requires knowledge of the

system transfer function along with a frequency dependent uncertainty profile. Typically,

the model is very accurate over the bandwidth of interest, and can be considerably inac-

curate outside of this range. To understand more fully the needs of system identification

for control design, it is necessary to fully understand the control design requirements.

1



1.1 Organization of Report

Section 2 focuses on the identification issues related to the AST 'rX model as de-
scribed in Section 3.2 . One of the cross-channel transfer functions is ii..ntified by least-
squares estimation, using simulation data from the ASTREX model. The model errors
introduced are within the stability margin of the closed-loop LAC/HAC system in Sec-
tion 5.

Section 3 introduces the plant description and the design assumptions that are made
in order to obtain the model used in the LAC/HAC designs.

Colocated rate-feedback and its limitations are discussed in Section 4 . Improved
disturbance attenuation is achieved by the 7.O high-authority control designs. Section 5
discusses high-authority controller design with no LOS measurement and Section 6 shows
the effect of using LOS measurements.
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2 System Identification for Control Design

2.1 Control Structure for LSS

As demonstrated in the ACOSS and VCOSS programs [1], a two-level control ar-
chitecture consisting of active feedback control and rate damping mechanisms (active or
passive) is a practical necessity for LSS control.

Figure1:t Tw o-Leve Coro Archtectre

Actusetors Dyo-.ICs

R te "Go | l.Zie
Dmpi|nL Rates

Non-Colocated aotl c
Hig h-?erfortunc,
Control

Ada pt ive

Figure 1: Two-Level Control Architecture

The basic two-level control architecture is depicted in Figure 1. The two levels con-
sist of rate damping mechanisms, typically colocated, and a high performance controller,
typically non-colocated. The colocated controller consists of active and/or passive rate

damping devices placed at critical structural locations, and their design requires only a
coarse knowledge of system dynamics. This is an inherently robust controller, but yields
low performance, and has been referred to as the low authority control (LAC) system.
The high performance controller is non-colocated and requires an accurate knowledge of
critical modes, and hence, is very sensitive to structural parameter variations. This con-
troller, referred to as the high authority control (HAC) system, provides high damping

and mode shape adjustment in selected modes in order to meet the performance demands.
The synthesis and design of the HAC/LAC system has to be properly integrated to avoid
performance degradation due to modeling inaccuracies, [4]. With this architecture, as
shown in Figure 1, only the HAC-system is likely to be tuned by an adaptive system, (via

3



on-orbit system identification and control re-design). The LAC system, due to colocation,
provides significant robustness to parameter variations, but the performance increase over
the open loop structure is moderate. The opposite is true for the HAC system, which
provides significant performance increase, but is very sensitive to parameter variations.
Adaptive control of the HAC system (i.e. , system identification and control re-design) al-
lows for a much wider latitude in parameter variation while maintaining the performance
level required.

The two-level design is usually done in two stages. First the LAC system is designed
to achieve some reasonable damping levels in critical performance variables, e.g. , line-of-
sight error and actuator authority. The number of colocated actuators for a LAC system
vary depending upon the type of actuator, but typical numbers are from 10 to 50. "Smart
structures" which have imbedded piezo-electric and ( possibly) semi-conductor material
can be thought of as distributed rate damping mechanisms, but still with low authority.
Design methods can be based on trial and error on some parameter optimization.

After the LAC design is complete, then the HAC is designed using the LAC system
already included in the design model. The HAC system uses a small number of actuators
and sensors usually corresponding to the important degrees of freedom in the line-of-
sight error, say from 3 to 6 inputs and outputs. Methods for HAC design are typically
multivariable methods such as H2 or Hoo approaches, e.g. , [15,8). In Sections 4 and 5 ,
we describe in detail a HAC/LAC design for the ASTREX model. The LAC is designed
based partly on trial and error and the HAC is designed using 7, methods.

2.2 Accuracy of Identified Model

Suppose we wish to identify the transfer matrix from the HAC inputs to the measured
outputs. From Section 3.2 , the HAC actuators are chosen as proof mass actuautors at
nodes 100x and 100y, with colocated velocity sensors. Using the nominal ASTREX model,
gain and phase plots of the four transfer functions from (fl00x, fl00y) to (l00x, vlOOY),
under LAC, are shown in Figure 2.

4
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Suppose that each of the four transfer functions is perturbed by distinct stable trans-
fer functions, each with the same frequency bound. Using the nominal model with the

HAC/LAC design described in Section 5 yields the stability margin1 shown in Figure 3.
This margin is precisely the maximum bound on the above perturbations for which the
HAC/LAC system can maintain stability.

i1i

Figure 3: Stability margin to additive perturbations.

In terms of system identification, the margin is precisely the amount of admissible
error between the nominal system and any identified model. Put another way, as long as
the model error is below the margin, the closed loop system will remain stable.

In the next section we discuss some methods of system identification and compare
the results to the margin in Figure 3.

2.3 Parametric Transfer Function Estimation

The estimation of a system's transfer function from input-output data has, of course,
a long history, and we will not attempt to document that here. There are many excellent
survey articles and textbooks that can be referenced, e.g. , [24,19,16,10,9. These references
clearly explain the theory and practice of both parametric and non-parametric methods of
transfer function estimation.

In this section we describe the Phase I results with the basic tools for parametric

transfer function estimation. The emphasis throughout the discussion is on LSS and we use

1The stability margin is the amount by which the actual system frequency response can differ from the
design model and still maintain stability. There are at present several algorithms which compute various
good approximations of the margin. These are contained in the new MATRIXX Robust Control Module and
their application to the ASTREX model is described in Section 5.
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a linear state-space model of the ASTREX facility to illustrate the tools and requirements.
Non-parametric methods are discussed in Section 2.6.

2.3.1 Prediction Error Models

Parametric methods of identification proceed by first selecting a set of discrete-time
candidate models of the form2

Y = Gu+v (1)
v = Hoe , (2)

where e(t) is an "unpredictable" but bounded sequence; 0 is a vector of model parameters,
u(t) and y(t) are the measured input and output, respectively. The above model form is
quite general; Ge(z) is the input/output transfer function, and He(z) represents the noise
dynamics, e.g. , if e(t) is a zero-mean white noise sequence of intensity A, then v(t) has
spectral density

S. (w) = AIHe(e w)l12  (3)

The dependence of the transfer functions Go and He on the parameter vector 0 is
intimately related to the modeling process. If the models arise from physical considerations,
then the parameters have a physical meaning, e.g. , mass, stiffness, and so on. Often,
canonical models are used where the parameters are simply taken as coefficients in a
transfer function. In the former case there are fewer parameters but these enter into the
transfer function coefficients in a complicated manner. In the latter case there are more
parameters to learn, but they enter the model in a simple manner, thereby reducing the
computational burden.

Assuming that e(t) is white noise, the best prediction of y(t), given the data up to
t - 1, is

po = Hj'Gou + (1 - H;l)y (4)

The transfer matrix from (y, u) to ye as defined by the above expression is referred to as
the one-step ahead predictor. Hence, the prediction error is

ce = Y- go (5)
= H;'(y- Gou) (6)

Some examples of this model structure include the equation error model and the output
error model.

2Discrete-time modeling is natural for identification because data is usually sampled. The standard
notation is to normalize both the time t and the frequency w with respect to the sampling time t.,. Thus,
t takes on only integer values and w is restricted from -7r to r radians. Then, time in seconds = t • t,. and
frequency in rad/see = w/taa.

7



Equation Error Model Certainly one of the most widely used parametric models is
the equation error model

Aoy=Beu+e

where

Be(z) = bz -1 +.+.+bnz-"

As(z) = 1+alz-
1 +...+a z-

0T = (a, ... an b, "" bn)

In terms of the general model structure

G o H 1

Hence, the prediction error is
Ce(t) = y(t) - oTh(t)

with 0(t), the filtered regression vector, given by

OT(t) = [- (t _ 1) .... - (t - n) u(t - 1) ... u(t - n)]

A significant feature of this model is that the prediction error is affine in the parameter
vector 0. Thus, convex functions of the prediction error, such as least-squares, have a

unique global minimum.

Output Error Model In this case the parametric model has the form

B9
Y = Beu+e

The prediction error is now
0(t) = Y(t) - o 0 (t)

where the regressor now depends on 0 as follows,

OT(t)= [-je(t - 1) ... - - n) u(t - 1)-.. u(t - n)]

and where Lg is the one-step ahead prediction of y based on the model, that is,

Be
eU

In terms of the general model structure,

_B 9
Go= - ; H1=1Ao

Unlike the equation error model, the prediction error is not afline in 0, but rather, is linear
fractional. Convex funtions of the prediction do not necessarily have global minimum, and

in fact, there can be local minima in disconnected convex sets in parameter space.
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2.3.2 Least-Squares Criterion

Practically every parameter estimation scheme is based on developing an on-line or

off-line procedure for selecting the model parameters 0 so as to minimize some function of
the prediction error ee(t). For example, the least-squares prediction error estimate is

ON = argminVj(O) (7)

with

VN(o) = _ O (8)

where F(z) is a stable data filter. Techniques for computing 0N involve either iterative or
recursive algorithms, see, e.g. , [10,9].

Using the equation error model structure together with the least-squares criteria
leads to what is universally, but incorrectly, referred to as the "least-squares estimate".
Specifically, the estimate can be obtained in closed form as

I N T]-1

=N = (FO)(t)(FO)(t)] (Fk)(t)(Fy)(t) (9)
t=l t=l

The indicated inverse exists if the inputs are persistently exciting, that is, they contain a
sufficient number of distinct spectral lines, usually the order of the parametric model. The
popularity of the this parameter estimator is principally due to the ease of obtaining a
closed form solution. However, great care must be exercised when computing this for even
as few as 5 parameters. Numerical difficulties can create havoc here. Fortunately much is
known about how to obtain the least-squares estimate rapidly as well as accurately from the
numerical standpoint. Current numerical algorithms use a singular value decomposition
and are extremely accurate, e.g. , MATRIXx. Recursive versions of the computation
involve square-root algorithms, which are not quite as accurate, but are much faster. At
present there are some recursive algorithms using singular values, which are still under
investigation by many research groups.

2.3.3 Example of Least-Squares Estimation

During Phase I we investigated the least-squares (equation error) estimator using
data from the ASTREX model described in Section 3.2 . The model contains 60 states
(30 modes) from about 12 to 70 hz. We will try to identify one of the cross channel
transfer functions shown in Figure 2, specifically the transfer function from an applied
force (torque) at node 100 in the x-direction (labeled fl00x) to a velocity measurement

at node 100 in the y-direction (labeled vl00y). To illustrate the issues we chose to find
a model over the frequency range up to 35 hz3. The sampling frequency is chosen as 200

31n Section 6 , where the lint-of-sight measurement was also used in feedback, the "vc-mode racdel
consisting of the first two modes ( 12.2 and 12.6 Hz) was used to achieve a satisfactory W., -design; hence,
35 Hz range was not applicable for this design. However, the design in Section 5, where the line-of-sight
measurement is not used in feedback, relies on an 11-mode model description up to 30 Hz range.

9



hz (more than 5 times the bandwidth of interest) and we take 4096 samples of the input
and output. The input applied at fl00x, referred to as u.,P, is a linear sine-sweep of unit
magnitude from 1hz to 35 hz over about 20 sec. Figure 4 shows the time response of the
measured output, referred to as y,,p, plotted against the sine-sweep frequency. Observe
the oscillations at the modal frequencies.

30. . . _. .
30 .......... -- -- .. .. . - -- -- .. .. . - -------------- .. .. .. - -------..... .. .

20 - ................... . ......................

-10
t ----- -------- T .----- ----------

-20 .

-.. . . . . . ..---- ------ --- - --------- ........ - ........ .. ..

-40
0 5 10 1s 20 25 30 Is

ov ,pls/2 .

Figure 4: Measured output from sine-sweep input.
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40 .. .. -.- .... ... .... ."

o --- :- ..... -- 25

T ----- t

60

-20 ......- ---------- -- -----

~-400-------- -------....-- . ........ ------------------ ---

46 --- --- - -.. . .....

..... ......... '..... . 1.... . . .. ,. ... ..

----0- --- ......--- ----- -----------

0 to 20 30 40 50 Go 70 M

Figure 6: DET of input sine-sweep and filter gain.

To emphasize our interest in the limited bandwidth, the data is filtered using a 16th
order low pass Butterworth digital filter with a cutoff frequency of 32 hz. Figure 5 shows
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the effect of the filter on the output response and Figure 6 displays the magnitude of the
DFT (discrete Fourier transform) of the input u.,. and the filter.

The least- squares estimate using the filtered data is computed for two model orders:
n = 12 (6 modes) and n = 28 (14 modes). In the 32 hz bandwidth of the data filter, there
are actually 9 modes. Figures 7 and 8 show the magnitudes of the identified and true
ASTREX model for the 6 mode and 14 mode case, respectively. They both seem to do a
respectible job up to about 30 hz with the 14 mode model having the better fit at lower
frequencies, as one might expect.

40-- __ __

-201-o0 /0 \ 0 3 4I0-,.
• 7 I ' . A _

I " Il ,

Figure 7: Frequency response magnitude of 6 mode id model from filtered data (dark line)
compared to true system magnitude (dashed line).

40-

_ 20 _ _ _ _ _

04I i 111

II '-I __
-60 -

0 to 20 3o 40 50 o 0 80

Figure 8: Frequency response magnitude of 14 mode id model from filtered data (dark
line) compared to true system magnitude (dashed line).

Figures 9 and 10 show a comparison, in the frequency domain, of model error from
the above two identified models of the ASTREX. The dark plots in both figures show the
magnitude, in decibels (db), of the error between the identified model and the true but
unknown system. The dashed plot is the level of allowable model error from Figure 3, i.e.,
the stability margin. Observe that the model error in both cases falls below the margin at
each frequency. Hence, stability is maintained if the control system were designed using
either the 6 mode or 14 mode identified model. This may be at first surprizing, but this
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Figure 9: Dark line: frequency response magnitude in db of error between true system and
the 6 mode id model from filtered data; Dashed line: stability margin frcm Figure 3.
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Figure 10: Dark line: frequency response magnitude in db of error between true system
and the 14 mode id model from filtered data; Dashed line: stability margin from Figure 3.

phenomena is exactly in the nature of control design. It is not order of the model that
counts, but rather, model accuracy over the bandwidth of interest. Beyond that bandwidth
the controller must "roll-off" sufficiently fast so as not to interact with higher frequency
modes.

The plots in Figure 9 also reveal that performance levels of attenuation will not be
identical for both identified models. The small gaps between the 6 mode model and the
margin in the 20-25 hz range can cause some significant performance degradation (see
Section 5) .

If higher levels of attenuation are needed for this frequency range or beyond 25 hz,
then it is necessary to either identify a model to capture that range, or else re-design the
controller for a reduced performance level.
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2.4 Experiment Design

The equation error model structure is a popular choice because it leads to a closed
form solution of the least-squares estimation problem. But there are some pitfalls which
can be avoided by proper selection of the experiment design variables. Some important
design variables include:

" choice of parametric model structure

" choice of probing or test inputs

" choice of data filter

" choice of feedback (during experiment)

" choice of minimization criteria

" choice of computation method

To see some of the ways in which the above choices affect the identification outcome, let
us continue with the least-squares equation error estimator. It can be shown [9] that for
sufficiently large N, the least squares criterion

E_(fEo)9) E J_ (FAUN)() 2 IG(ej') - . 12+ I(FAVN)(w) 12  (10)

9=1 wEtA(ew)

where UN(w) and VN(w) are the discrete Fourier transforms (DFT) of u and the output dis-
turbance v, respectively. The frequency set 1 consists of the (normalized DFT) frequncies
{wk = 27rk/N : k = 0,...,N- 1}.

The above expression shows a clear frequency domain interpretation of least- squares.
What happens is that the parametric model B/A tries to fit the true system G in accor-
dance with a "weighting function" IFAUNI. Good frequency response fits are obtained
where the weight is large. If the weight is large at high frequencies, where the noise term

IVN I is present, then the identified model will be "biased" at high frequencies. Clearly the
filter, if carefully selected, can easily offset this natural tendency of least-squares.

2.4.1 Choice of Data Filter

To verify this interpretation, we ran another experiment using the same sine-sweep
input and process the data using least-squares but without the filter. We know that the
filter makes little difference if the system is noise-free, which is unrealistic for CSI. Thus,
we simulated a disturbance at the the input actuation nodes using a white noise whose

intensity is 10% of the magnitude of the input sweep. This noise roughly approximates a
disturbance due to coolant flow in the secondary mirrors.

Figure 11 shows the magnitude plot of the model error between true system and
identified model with no data filter and the noise input active. Compare this with Figure 10,
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which is obtained with the data filter. Observe how the identified model obtained from
the unfiltered noisy data has-significant errors at high frequencies.

40 ........... .... --- -- ----- ----- ----- ----- -... ...---.. ... ... .. ---... ..

-2 0 .. ... .... ! . ..... - ... .....----- ----....... . .. ..- ........

-20------- -------- --..... . -

Figure 11: Dark line: frequency response magnitude in db of error between true system
with noisy input and the 14 mode id model from unfiltered data; Dashed line: stability
margin from Figure 3.

What happens in the unfiltered noisy case is that the identified model tries to fit the
noise at high frequency, and hence, the low frequency model, which is important for control
design, suffers. In fact, Figure 11 shows that at about 48 hz the model error magnitude
crosses above the stability margin, and hence, closed-loop stability cannot be guaranteed
using this model.

To further understand this phenomena, Figure 12 shows db plots of the frequency
dependent weighting function I(FAUN)(w)I from (10) for three of the identified models.
The two lower plots. which practically overlap, reflect two 14 mode identified models, both
with data filteri,6 out one has a noise added to the input. The upper plot relects the
weight of the 14 mode identified model with no data filtering and with noise at the input.
Observe that at high frequencies the lack of the data filter causes the weight to be just
about uniform over all frequencies. Hence, the identified model tries to equally fit the noise
which tends to dominate at high frequencies.

2.4.2 Choice of Test Signal

In the simulation experiment we used a sine-sweep to cover the frequency range of
interest. Another good wideband signal is a so-called PRBS ( pseudo random binary
signal). These have been used extensively in identification experiments for process plants,
but for some reason have not found there way into the aerospace community. There is no
particular technical reason, and in fact, the spectral charcterics oi the PRBS are easier to
control. The one drawback is generating the signal, and this requires a shift register.

Another important aspect of on-orbit identification is that the system will undergo
a performance degradation during testing. This necessitates making the testing period as
short as possible. Hence, the purposes of the test will also dictate the type of probing
signals.
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Figure 12: Plots of the weight (FAUN)(w)I from (10). Lower plots: 14 mode id model

with data filtering; one is noise free. Upper plot: 14 mode id model with noise and no

data filter.

2.5 Model Error Estimation

In this section we address the issue of obtaining an estimate of the model error

between an identified model and the system which actually generated the data. In the

above example the true system is a simulation model, and hence, known by querry to the
user. Thus it is possible when the simulation is available to obtain the exact error profile.
This is very useful when one is performing analysis of the identification scheme.

When we turn to the situation of on-orbit identification, the true system is unknown,
and then one has to rely on a priori or identified model. Prior knowledge of model errors
which are typical for a class of identification experiments can be obtained from simulations
which produce data like that shown in Figures 9 and 10. But it is also useful to obtain

on-orbit estimates of the error to gain confidence in the identified model.

There are curently several approaches to this problem, and they can be broadly classi-

fied into parameter error estimation and frequency error estimation, e.g. , [20,21,22,26,23].

Here we will illustrate one of the frequency methods with the ASTREX data.

We use the method described in [221. Form the output error

where is the output of the identified transfer function

Since the measured output obeys
y=Gu+v

it follows that i = AU- V A = - G

where A is the model error between the identified transfer function and the true but

unknown transfer function. We seek to estimate IA(ew )I or to find an upper bound. If u
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and v are independent, then a simple bound is

im UNI

where EN, UN are the DFT's of i, u, respectively. The DFT can be computed using a vari-
ety of methods involving choices of frequency and lag windows, batch frequency averaging
methods, and so on, e.g. , [9).
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Figure 13: Model error for 6 mode identified nmodel from filtered data. Upper: noise free,
lower: noisy input. Solid lines: error estimate; dotted lines: true error; dashed lines:

stability margin from Figure 3.

Figures 13 and 14 show the error estimates compared to the true errors for the 6 mode
and 14 mode identified models discussed previously. The identified models are obtained

using the data filter. Each figure shows the case with and without the input noise. Observe
that in all cases the error estimate is quite accurate in the bandwidth of the filter; but

there is a tendency to be inaccurate outside the band. This impEes that some amount of
prior knowledge should be used in the control design to exert --. ution at tbese frequencies.

These results were obtained using the FFT function in MATt.IXY with no data windows
using the filtered data.
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Figure 14: Model error for 14 mode identified model from filtered data. Upper: noise
free, lower: noisy input. Solid lines: error estimatc; dotted lies: true error; dashed lines:
stability margin from Figure 3.

2.6 Nonparametric Transfer Function Estimation

In this section we briefly discuss two methods for estimation of a transfer function
evaluated at many frequency points, namely, the correlation method and the spectral
method. In both cases the assumption is that the system to be estimated is described as
before, that is

11 = Cu + V

where G(z) is the unknown (discrete-time) transfer function. The measured data is

_y(t),u(t) : t = 1,...,N} where (y,u) are input and output sampled sequences, respec-
tively. The sequence v is a disturbance or noise sequence as seen at the plant output.
Although in general the input u could be the output of a feedback system, we will assume
for now that it is an open-loop sequence supplied by the user. Hence, u is independent of
the disturbance v. In addition, G(z) is assumed to be stable, which of course is the case
for LSS, although the damping is small.
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In the next two sections we state some known results for evaluating the model error
accrued by using these nonparametric methods.

2.6.1 Correlation Methods

In the correlation method the input is a single tone at frequency w,

{ acoswt t>1

0 tO<<r

The transfer function estimate at w is then4

CN() 2 y(t)e-jwt2N Z

The estimator can be analyzed under the following assumptions:

1. Let g(t) be the pulse response of G(z), i.e.

G(z) = Eg(t)z-'
t=1

Since G(z) is stable, there are constants M > 1 and 0 < p < 1 such that

fg(t) < Mp t

2. Let v(t) be zero-mean sequence with spectral density S (w).

Under these conditions the following expressions can be obtained for the bias and variance
of the estimate:5

Bias
1 [MP.(1 - pN) IG(e.7wsinN
t1 -)2 + s )j

Variance

As N --* oo, 4Sb1 ,(w)
EIGN(w) - EGN(L)1

2 _ 4 S2
N a 2

Typically the frequencies w of the correlation transfer function estimate are those of
the DFT frequencies

k7r{w= - : k =0,...,N-1}

4If the input is a constant (w = 0), then the 2/N factor is replaced by 1/N.
5These are typical results for any of a number of variations on the correlation method.
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Hence, the term in the bias involving sin Nw is zero and it is the first term which dominates
the bias. This term is due to the transient in the system response to the sinusoidal input
at frequency w.

A useful measure of the error between the estimate and the true system is the meas-
squaxe-error (MSE) - G(e )l2 = bias 2 + variance

For large values of N the variance tends to dominate the bias contribution to the MSE. This
is because the variance contribution contracts at a rate proportional to 1/N as compared
to the (bias) 2 contraction of 1/N 2. However, a small bias can only be had for a very large
value of N, primarily because of the small inherent damping of the flexible structure. To
illustrate this point, suppose there is no disturbances, thus S,,(w) = 0, and let the true
system be given by 8

C(s) = s2 + 2¢ls + S22

which represents one flexible mode from a co-located force input to velocity output. Using
some values compatible with the ASTREX model let the modal frequency be 12 hz with
a 2% damping, thus,

Q = 27r(12) = .002

Using the sampling frequency of 200 hz gives

M = .0049 p = .999246

Figure 15 shows the relative bias error upper bound

Ie GN(W) -G(e) 1 [Mp(1 - ,N)G(e ''j- )  < NG(-j') [ (1- p)2

as a function of frequency for varying values of data points.

i .-" I "
_20 ---- ..--.-..- -. . .-;- .. ,,... .. . . . .

- * I ) I j' ..!. .

10 10.5 it 11.5 12 125 U W3. 14 14.5 Is
Aaz

Figure 15: Bias in relative error vs. frequency for varying number of data points
N = 104, 10S, 106, 107.

The number of data points shown is for N = 104, 105, 106, l01. Since the sampling
frequency is 200 hz, this corresponds to observation times of T = 50 sec, 8.33 min ,83.33
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min, 13.89 hrs. The longer the observation times the smaller the error, which contracts of
course at a rate of 1/N. The plots are to be interpreted so that to acheive the indicated
accuracy at the given frequency, it is necessary to dwell on that frequency for N sample
times. As a result, to obtain at least a -40 db accuracy from 11 to 13 hz would require a
significant percentage of a full days worth of data. Standard "wave analyzer" equipment is
commercially available for this purpose. However, the time required to sequentially process
all the data to obtain a given accuracy may not be necessary for the purposes of control
design from on-orbit data. Moreover, the mission requirements may preclude this type of
identification experiment.

2.6.2 Spectral Methods

Similar convergence properties as a function of data length can also be obtained by
decomposing an arbitrary input into its spectral components, that is, spectral estimation
methods. The standard techniques for spectral estimation involve data windowing in
time and frequency, aligning, anti-aliasing filters, and many other proceedures which it
is not possible to describe here. The details can be found in the previously mentioned
references. However, as in the correlation methods, it is also possible here to obtain
analytic expressions for the model error.

Spectral techniques estimate the frequency response G(ewJ") via

where S .(w) and S.(w) are estimates of the cross-spectrum and auto-spectrum, respec-
tively. Observe that the frequency response is given precisley by

G(w) = S(Co)

where Sy,, and S,,, are the actual spectra. Schemes for obtaining good sprectral estimates
are based on convolving the DFT's of y, u with a lag window W(w). The window is
essentially a frequency function whose shape is determined by the design parameter 7.
The window serves to smooth the estimates obtained from the DFT. The window width
is approximately 1/y, so as - increases, the window becomes more narrow and vice versa.

For large values of N, the mean-square-error (MSE) of the estimate is [9]
£{IG(e i 'w) -Gew1} M(y~~)

_- G(ei') =} ,. M'(-)!R(w)12 + INL( 7 )Sdd(w)/S,,(w)

where
R(w) = G"(ej-) + G (e )s.(w)lSuu@)

with' and" denoting differentiation with respect to w, once and twice, respectively. AlsoX
M(-y) = ,w,) dw
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Observe that as -y increases, M(yI) decreases, and L(-y) increases. Thus, as -, increases, the
first term (the bias) decreases, but the second term (the variance) increases. Clearly for
large N there is an optimal choice of lag window width to minimize the MSE for fixed N,
and this can be calculated [9).

2.7 Summary of Identification Issues

At this point we can draw several conclusions as to what information is needed for
identification:

" The user needs the stability margin associated with a nominal system model for
control design.

" The user needs to display this information together with a model error profile from
the identifi d model.

* If the true system is not available and a priori information is inadequate, then the
user needs to estimate the identified model accuracy from the data.

" If the above tests fail to convince the user that the nominal design has adequate
robustness to identification errors, then the user needs some "expert" advice as to
the next step. Or, in the case of an expert user, what is needed is easy access to a
library of identification and control "design knobs".
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3 Flexible Spacecraft Modeling

3.1 Modal Equations

The crucial information in the dynamic control of a physical system is an "adequate"

model of the system for the desired performance specifications. Any compensator design
methodology relies on this "model" (from now on, referred to as the plant); hence any
idealization or simplification must be done with due care to have a plant that reasonably
represe-nts the physical system.

Programs such as NASTRAN and SPAR are the primary tools for generating dy-
namic models of conceptual spacecraft. Finite-element structural programs provide the
control designers with a set of modal frequencies and a set of mode shapes (eigenvectors)
corresponding to appropriate boundary values (e.g., free-free modes). A brief outline of
the associated eigenproblem is given below.

A linear time-invariant finite-dimensional model of a flexible structure can be de-
scribed as

M4 + D4 + Kq = Fu , (11)

where the mass matrix M is symmetric, positive-definite (i.e., all of the eigenvalues are

positive) and the stiffness matrix K is symmetric positive semi-definite (i.e., all of the
eigenvalues are nonnegative). The vector q in (11) consists of the modal translational-
and rotational-displacements at each nodal station. The forcing matrix F is determined
by the locations of exogenous forces or torques. In most cases the damping matrix D in
(11) is not known, hence the undamped case

M + Kq = Fu (12)

is transformed into a state-space form by a diagonalizing transformation and then, a damp-
ing ratio of C < 1 is assigned to every mode. This procedure is now described.

Since the mass matrix M is real, symmetric, positive-definite, there exits a real
unitary matrix Um (i.e., uTJI Vf = I) such that M = UMEMUL (the Schur decompo-
sition of M ), where the diagonal matrix EM is positive-definite. Define the symmetric

positive semi-definite matrix S as S := M112UMKJMJ' . Let Us be a unitary
matrix such that S = Usf22UT where the diagonal matrix 2 is positive semi-definite.

Define the transformation matrix 4 as -) := U 2 Us. Then

<b T -1 I/2U T T -1/2TK4 M = U M  UI/UTU)U/U = I, (13)

= T- UMM U-u 1UUM MM = M M (14)

Note that such a transformation i and Q2 satisfy the eigenproblem

M(D2 2 = K
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The NASTRAN analysis supplies the matrices 2 and 4) satisfying equations (13) and
(14), with

Q = diag[w, ... u:,w] , wi <_ wi+
'D [01 ... 0,1 ,

where Oi is the mode shape corresponding to the ith modal frequency wi . Substituting
the change of coordinates

q = lr

in (12), and using (13-14), we obtain the modal equations

ii + Q12 r = (rFu (15)

Assigning a uniform damping ratio ( <K 1 to each of the modes in (15), a state-space
description can be obtained as follows:

= Ax + Bu

where

_:= -2 -2(Qj (16)

B := [TF] (17)

3.2 ASTREX Model: Design Assumptions

The NASTRAN analysis of the ASTREX model supplies the matrices Q and 4)
described in the previous section.

There are 30 modes ranging from 12.25 Hz to 71.03 Hz (see Table 2)

There ib a 4 Hz mode due to pedestal motion which has been neglected for this study.
A uniform damping ratio of C = 0.002 is assigned to each mode to obtain the state-matrix
A as in (16). The following input-output description and actuator/sensor assignment is
assumed to build up the ASTREX model used in controller design (see Figure 16 for the
node locations):

" The input matrix Bec Ea 60x2 corresponds to secondary-mirror proof-mass ac-
tuators at node 100; these x- and y-directional actuators are assumed to have a
maximum thrust of 8.9 N [11 .

" The input matrix Bpri E IR60x 18 corresponds to the primary-mirror x- , y- and
z-directional thruster inputs at nodes 1 , 4 , 31 , 37 , 64 and 67; these thrusters are
for station-keeping and slewing maneuvers; they have a maximum thrust of 890 N .
During slewing about the x- and y-axes, the four z-directional thrusters at nodes
1 , 4 , 64 and 67 are used; the input matrix Bsiew consists of the columns of Bpri

corresponding to the z-directional thrusters at nodes I , 4 , 64 and 67
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Table 2: The 30 modes of the ASTREX model (excluding the 4 Hz pedestal mode)

mode no. modal frequency (Hz)
1 12.25
2 12.59
3 14.65
4 17.80
5 22.14
6 25.09
7 25.38
8 29.01
9 29.96
10 30.10
11 30.70
12 32.08
13 35.16
14 35.54
15 36.59
16 38.56
17 43.97
18 44.75
19 48.60
20 49.19
21 49.49
22 52.27
23 53.00
24 56.23
25 57.36
26 63.17
27 65.09
28 66.95
29 68.60
30 71.03
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, The output matrix Ci, E ]R 2x60 determines the line-of-sight (LOS) deflection
about the x- and y-axes; LOS consists of predetermined rotations and translations
of the three mirrors in Figure 16.

* There are colocated (rate-damping) actuators and sensors at nodes 1 , 4 , 31 , 37
64, 67 and 100 . Hence BpriT is the output matrix which determines the velocities
at the primary mirror nodes 1 , 4 , 31 , 37 , 64 and 67. Similarly, B 5ec determines
the velocities at node 100

From the input-output description mentioned above, we obtain the following plant
transfer matrix:6

A [B. B.Iew Bpi

P r C10  ri](8

6The notation G= A B ] is used s a shorthand to denote the transfer matrix6Te ottin I= C D

G = C(sI-A)-'B+D.
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4 Low-Authority Control Design

Consider the ASTREX model in (18), where the primary mirror actuators and sensors
are colocated. Let the transfer function from the primary mirror actuators to the primary
mirror sensors be denoted by Pyp,i,,,i; from (16),(17) and (18), we obtain

Pypriupr = BpriT(SI - A)-'Bpri
30 Sbk (19)

= , S2 + 0.004Wk 2 k,,
k=1  kS+Wk

where bT denotes the (30 + k)th row of Bpi . Since bkb T is positive semi-definite ' for

k = 1, ... , 30 , the transfer function Pyp,ipi in (19) is passive. 8 Hence, if we choose

Upri = -Kypri , (20)

where the matrix K is positive-definite, 9 then the closed-loop system is stable. In fact,

stability is guaranteed if the matrix K in (20) is replaced by any transfer function which is
strictly-passive. 10 Note that a positive-definite matrix K is strictly-passive. Since a well-
posed interconnection of a strictly-passive linear subsystem and a passive linear subsystem
in the standard unity-feedback configuration is exponentially stable, any control law in
the form of (20) will not destabilize the plant [7].

Now choose the rate-feedback matrix in (20) as

K =/kIj ,

where kl,, denotes the rate-feedback gain and I denotes the identity-matrix (in this case,

18 by 18). Colocated velocity-feedback is applied at the primary mirror nodes 1 , 4 , 31

37 , 64 and 67 in order to increase the damping ratios of A in (18). Let

Al,, := A- l Bp.iB,.

After the low-authority control is applied at the primary mirror colocated actuators and
sensors, we obtain the plant description Pj (see Figure 17; d.,, denotes the disturbance
at the secondary mirror):

AIM~ Bm Bdew1
i. := [C. (21)

Br T

7A symmetric matrix Q is said to be positive semi-definite iff zTQz > 0 for all z
'A transfer matrix P is said to be passive iff the symmetric matrix [P(jw) + (P(jw))*] is positive

semi-definite for all real w .
9 A symmetric matrix Q is said to be positive-definite iff zTQz > 0 for all z 0 0

10A transfer matrix Q is said to be strictly-passive iff there esists a 6 positive such that

, m.i[(Q(jw) + (Q(jw))*] > 6 > 0 for all real w .
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d..

u.e ++: Y1o.

dtb r Yom

-k,.I,8

Figure 17: The plant model before ( P )and after LAC ( /, )

For kl,c = 7000, the damping ratios of Al., are shown in Figure 18 ;the maximum

damping ratio is approximately 0.04.

.045

•.0 4 .. ............ .... .... ... .... .. ... ....

........... ....

.03 ....... ....... .... ................ .... .. . .- . . .. . .... ... . ..

.02 . ..... ... ..... ...... ................ ...... ..... ......... . .. .... .. ...

.025

- 1 .0 ..

.015 ---..- ...... : ... ..

0 ...... .. 0 .. ...--- --- ------
0 10 20 30 40 50 go 70

Figure 18: Damping ratios for the 30 modes before ( a horizontal line at C=0.002 is dra"'n
for reference) and after colocated rate-feedback at the primary mirror nodes

Let PIOA ,. and P1 ,so, o,* denote the transfer functions u., '-+ Yl. before and after
colocated velocity-feedback at the primary mirror nodes, respectively; then, we obtain

P 0 U...c = C,.(s - A) - 1 B.,, (22)

Ptcj°.,,,°, = C.(sI - A,..)-' Be. (23)

The state matrix A in (18) has lightly-damped modes by construction (see (16)).
After colocated velocity feedback at the primary mirror nodes. det (sI - Alc) _s still
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strictly Hurwitz for reasons explained above. Hence P,,,, and Pi,oU,,. defined above
are stable transfer matrices. The maximum singular-value plots 11 of Py/oUsec and Piacyloe,

are shown in Figures 19 and 20 , respectively. Due to LAC, the increase in the damping
ratios has smoothed out the peaks.

.30 : : :

0

-40 ............. ............................. . ...... ............ ................

-60
1 10 100

VIZ

Figure 19: 20 1og(&(P °, ...(.Jw))) [1 urad/N] : Singular-value plot of the (openloop) trans-
fer function from the secondary mirror octuators to the line-of-sight

.30

20 .................................... ....... .. . ........ .."- " '" " ...................... ............. ........ ...... ' 'i "- -

20 A

i 0 ..................... ............. ......... ...........-.-.-- .-- --'-. -... . ....... ........... .. . . .. ....- --. -- ---- -- -

10....-..... -...

0

-20.

-60
1 10 100

M Z

Figure 20: 20log(&(Plac,u.,oUs(jw))) [yrad/Nj : Singular-value plot of the (closed-loop)

transfer function from the secondary mirror actuators to the line-of-sight after LAC

11For a given complex matrix (not necessarily square) H , let a(H) denote the maximum eigenvalue
of H'H ( " denotes the complex conjugate transpose). For a stable transfer matrix H, the maximum
singular-value plot of H is the graph (w, &(H(jw))) w > 0
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4.1 Limitations of Rate Feedback

Consider the plant description in (18) (no low-authority control applied), N. 'ere T11c

diagonal matrix Q (in A , see (16)) is positive-definite. Due to the structure of tlh- sta*,.

matrix (16) and input-matrices (17), for any rate-feedback law (not necessarily stabilizin& .1.

utilizing all possible rate measurements at the primary and secondary mirror colcicat,,

actuator and sensors) of the form

E Zsec -K [Ys (24

Upri Yr

where K is any real matrix, the closed-loop map from dsec to Yo, has a blocking-zero

at s=O , i.e., the transfer function is identically zero at s=O . This structure dependir nz

result is due to the followi.:g straightforward calculation:

f 2 2  .SI + ] [ 21 s (2+ MS + Q, B

where Al denotes any n x n matrix; 0 2 and j3T have at most n columns.

A similar calculation shows that

[2 sI+M [ =B

where M denotes any n x n matrix; C1 and tT have at most n columns. Hence.

regardless of the rate-feedback chosen (which will only affect the matrix M ). the closed-

loop transfer function Hl, d,,c (after the feedback law in (24) is applied to the plant in

(18)) from dec to Ylos satisfies

Hyod,,(O) = Cl-.(sI - A + [Bsec Bpri]K B pi )-' B,,c = Ca -2 Bse

where Cio, denotes the first 30 columns of Co, and .c denotes the last 30 rows of

If constant rate-feedback (as in (24)) does not affect H Aosdse(O) , can it be changl,-

by dynamic output-feedback from y.,c to Usec ? The answer is negative due to the blocki

zero at s=O , as explained above. Let C denote the transfer function of the stabilizing

output feedback compensator from ysc to Usec • The achievable closed-loop transfor

function from ds to yl., is given by

H Yiods := PYiosUsec (I + CPyecUsc) 1

since PyseCU,,c(O) = 0 , for all stabilizing compensators

Hwodse(O) = P!1Au~O) =

In other words, any LAC and HAC combination using rate-feedback alone (no displacein:I

feedback) will not affect the DC-gain of the map from d, to In,.
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5 HAC : No LOS Measurements

5.1 Disturbance Modeling

Consider the plant model Pla, in (21) obtained by applying LAC to P in (18) at

the primary mirror nodes (see Figure 17) . There are three sources of disturbances that

are considered in the design (see Figure 21):

* The disturbance d.. comes in additively at the secondary mirror actuator inputs

(e.g., disturbances due to coolant flow); d,, is assumed to be of the form
8

d~ec= 3 Ids, + 4 7r d,

where d denotes any bounded disturbance.

" The output disturbance doUt denotes the wide-band sensor noise at the secondary

mirror velocity measurements.

" The third disturbance do. is a low-frequency disturbance (up to 2 Hz) due to the

z-directional thruster inputs during slewing about the x- and y-axes.

The objective is to design an output feedback compensator at the proof-mass actu-

ators at node 100 such that the secondary mirror disturbance d,. is attenuated at the

line-of-sight y,,. ; the design will also take into account the affect of the low-frequency

slewing command drie at the line-of-sight.

Figure 21: High-authority rate-feedback controller C at node 100
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5.2 Model Reduction

Before proceeding with the high-authority control (HAC) design, which will provide
high damping to meet the performance requirements, a reduced-order version of the 60-
state plant in (21) is obtained.

One way of determining "important" modes, i.e., those modes that will be kept
in the reduced-order model, is to do a balancing transformation to determine a modal
ranking which reflects the "importance" of each mode in terms of joint controllability and
observability [29].

An asymptotically stable state-space description

= Ablx + Bb.IU

Y = CWX

is said to be internally balanced iff

0eAb" BBTeAT tdt = 00AT b.tCT C eal-"dt

0 ~ ablbI 1 bal W Id
= diag[a2,...,aJ '> 2  ,>j

Each of the states ( xi ) in the internally balanced state-space description corresponds to
one the singular-values ( a? ) . A relatively small singular-value implies that the corre-
sponding state is weakly controllable and weakly observable (i.e., too much gain is required
to control and estimate that state) . If the original state-description is not internally bal-
anced, the required state transformation (which puts the state-space description into an
internally balanced form) "scrambles" the original coordinate system and the physical
meaning of the original states is lost.

For the plant description in (21) ,the following steps are taken to obtain the modal
rankings shown in Figures 22 and 23

1. Each of the state-space descriptions (BA., A 1 , B.) and (CIo., Ala,, B.) are
transformed into balanced realizations.

2. Approximating each mode wi in the balanced coordinates as the square-root of
the determinant of the thirty two-by-two diagonal subblocks in the respective trans-
formed state matrices, the modal rankings of the thirty modes are obtained.
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Figure 22: Modal ranking (1E6 a? , i 1, ,30) for the actuator to line-of-sight map
in (21)
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Figure 23: Modal ranking 1 1E6 * a? : 1, 30) for the actuator to sensor map in (2 1)
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Instead of just proceeding with a modal reduction based on the modal rankings in
Figures 22 and 23 (i.e., deleting modes wi with "small" oi ), we also checked the
relative-error introduced by the reduced-order model when compared with the 60-state
model in (21) ; here we foiiow the procedure in [301.

Let Pc.,cus, and aiac,yjecs0ec denote the transfer functions from usc to Ysec for the
60-state model in (21) and its reduced-order model,respectively. Suppose that we represent
PMac. u..c as a perturbation (post-multiplicative) of PM,y..,,.. , where

PFac,ysecusec = (I + AA).ACpec.. (25)

for some stable A . Let us ask the following question: under which conditions can we
guarantee that a compensator that stabilizes Pac,yecu.c, also stabilizes Pc,,.U,,, ? One
conservative answer to this general question can be given by a small-gain argument using
singular-values.

Suppose that a proper compensator C (not necessarily stable) stabilizes .,t,,s,,,
(in the standard unity-feedback configuration); hence the closed-loop map

H := C,ac,,secuec(I + Cy,,,,.,..) -cu s c)

is proper and stable.

Since the perturbation A is proper and stable, the compensator C stabilizes
Piac,.,ect sec if and only if the stable transfer matrix (I + AH) has a stable inverse. The
condition

a((AH)(jw)) < 1 Vw E IR

or more conservatively,

a(A(jw))(H(jw)) < 1 Vw E R

guarantees that the map (I + AH) has a stable inverse.

In our case, 19,y..,,.,, in (25) is square; solving for A, we obtain the relative error

&(n(j,,,)) = a((P1acy..cu..cac. ....- )(jW) - I)

If &(A(jw)) < 1 (determined during model reduction) and if a(H(jw)) < 1
(determined during HAC design), one can guarantee that the HAC design withstands the
specific perturbation A . In case these conditions fail, nothing can be said until the final
closed-loop eigenvalues are checked.

Along this line of thinking, the first thirteen modes (since the band of interest is up
to 30 Hz range ) were kept and the relative-error plot was checked. The third and the
fourth modes (weakly disturbable and observable (see Figure 22)) were dropped since they
did not change the relative-error plot significantly. Hence, the 22-state version of the plant
in (21) was obtained by modal truncation, keeping modes 1 , 2 , 5 -- 13 ; the associated
relative error is shown in Figure 24.
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Figure 24: Relative error for the 22-state plant, 20 log(a(A(jw))) (see (25))

For high-authority control (HAC) design, the 22-state model fT, is used ((26) in
MATRIXx notation).

index [125:13313235:43]
Ai..,(index, index) B ..(index, :) B.I..(index,)

[[ ( ,ide )T ]0 ](26)
5.3 High-Authority Control Design

The %,,-design methodology is used to designp a dynamic output-feedback com-

pensator from y,, to ue for the 22-state plant PI:, in (26) . A brief outline of this
methodology is given below.

5.3.1 R,-!-Design

Consider the two-vector-input two-vector-output plant A,5E shown in Figure 25.

The input d denotes the disturbances acting on the model; z denotes the regulated

variables; u and y denote the control inputs and measured outputs used in feedback,

respectively. For a linear time-invariant finite-dimensional (not necessarily stable) plant
Pug as in Figure 25 , the set of all stabilizing compensators C (not necessarily stable)
such that the closed-loop system in Figure 26 is stable can be parametrized.
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d z

Figure 25: Two-input two-output plant Pa

d - . z

Pang
U 11

Figure 26: Stable closed-loop system

The plant Paug is assumed to satisfy a necessary condition for stabilizability: all of
the "instabilities" in P.I. must be seen in the map from u to y. An intuitive explanation
can be made as follows: if there are any instabilities in the map from d to z which do
not show up in the map from u to y nothing can be done about these instabilities by
closing the loop from y to u .

The 7-W,,-design method solves the following problem:

Given Pug and Y > 0 , find a compensator C such that the closed-loop system
in Figure 26 is stable and

supd(Hd(jw)) < t ; (27)

Hzd denotes the stable closed-loop map from d to z in Figure 26.

Note that the inequality in (27) allows the designer to do frequency-shaping at the
regulated variables. Suppose that in our case we set

z, = , (28)
d, = d. , (29)

where the scalar transfer function Wl,. is chosen such that it is stable and has a proper
stable inverse. From (27), (28) and (29) , we obtain
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- > d(H.d(jw,)) _ "(H.1 ,d(j.))

= ((W,.Hy1o.d.,)(jW))

- Ii.(jw)l (Ho.d.,U(jW))

hence a(Hyo.d,,,(jw)) < Wk(,) -

In other words, by choosing the weight W1 . such that - IWi,,(Jw) - 1 is below the
specifications, the closed-loop map Hylosde c of interest meets the desired disturbance to
line-of-sight specifications.

In the next subsection, we explain how the augmented plant Paug is o-tained.

5.3.2 Augmented Reduced-Order Plant Paug

From Plac in (26), we construct the augmented plant PAu with weights W 1 , ... ,W5

as shown in in Figure 27 .

----------------------------------------------------- I

I I

The weights W 1 , ... , W5 are chosen as follows:

W1:high-pass with cutoff at 2 Hz ( W1 = ,+" I ). The secondary mirror actuator
disturbance d4c is assumed to be isolated from the low-frequency (up to 1 Hz)
disturbance due to the z-directional thrusters.
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W2 : lowpass with cut-off at 1 Hz ( W 2 = * 14 ). The z-directional thruster inputs

during slewing is assumed to be band-limited up to 1 Hz.

W3 wideband noise at the sensor outputs ( W 3 = 0.112 ).

W4 bandpass with poles at 5 Hz , zeros at 2 Hz ( W 4 = 62.5 (+4,4)2 12 ). The inverse
of this weight is the line-of-sight spec.

W 5 : actuator weight; chosen to have less actuator authority up to 1 Hz in order to
limit dth- u... during slewing ( W5 = 1%J2).

The weights W 1 , ... , Ws are the design "knobs". Not all settings are feasible;

i.e., for certain :hoices of weights, there may not be any compensator that meets the

specifications. It is up to the designer to set these weights accordingly, so that the desired
performance can be achieved by dynamic compensation.

Using P/us in Figure 25 and the state-space solution to ?i 0 -controller design [8] , a
34-state compensator is designed. The closed-loop system satisfies

sup<(H.d(jw)) < 2

hence the line-of-sight spec (the inverse of the line-of-sight weight W4 ) is met within at
most 6 dB .

The 34-state compensator obtained by the W,-design stabilizes the 60-state plant in

(21) (verified by checking the closed-loop eigenvalues).

5.4 Closed-Loop Performance

In this section, we present the performance data for the stable closed-loop system in

Figure 21 ; C denotes the 34-state compensator obtained by W,,-design and Ij., denotes

the 60-state plant model with low-authority control applied at the primary-mirror nodes

(see (21) , Figure 17).

The maximum singular-value plots of the six transfer matrices (from (d., dout, dth.)

to (Y ,., y.,) ) of the closed-loop system in Figure 21 are shown in Figures 28 and 29
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fdSOc J--> Y1021 [8out 1--> ytosj
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Figure 28:

Singular-value plots of the four transfer matrices d,, - yj. , ". -4

d.Ut yi., and dout - usec of the closed-loop (LAG/HAG) system in Figure 21.

-10 r1->Y1a

-20

-30

-4+0

-50

110 100
Hz

1(dthr 1--> usec)

10

5

S0

-5

-10

-I5
1 10 100

Hz

Figure 29:

Singular-value plots of the two transfer matrices dtb yl,, and d '-* u. of the
closed-loop (LAG/HAG) system in Figure 21
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5.4.1 Disturbance Attenuation at the Line-of-Sight

Let the closed-loop transfer function (after LAC and HAC) from dec to yl., in
Figure 21 be denoted by H ,d~ . The maximum singular-value plot of Hy,d. is

shown in Figure 30.

30

20 7

10 1:'

-30

-4.0........ 
.........

-50

-0
100

Figure 30:

- -- a(Ci..(jwI - A)-'B,~) (pradIN .: open-loop dr to , before LAC

-20 log(jW4( jw)l) :magnitude plot of the inverse of the line-of-sight weight W 4

(i.e., the line-of-sight spec) in Figure 27

- IO &( (jw)) [parod/N] closed-loop (after LAC and HAC, see Figure 21) dec
to Yj.

The following subsections evaluate the line-of-sight performance with different mea-
sures.
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5.4.2 7-(oo-norm

For a given stable transfer matrix H the 7-i-norm of H is defined by

IHIJl := sup a(H(jw))
wE(O,oo)

that is
&(H(# j)) < Ilgll, for all w EIR

The '4,-norm is an induced-norm (i.e., the "gain" associated with a stable transfer matrix)
over the set of signals with bounded energies 12. In other words, the following inequality
holds:

IlHull? _< jIHIj.11u112
If a signal u of unit energy is applied to the stable system with transfer matrix H the
output energy can be at most IIHII 2  units; hence IIHII is the worst case cnergy gain.
In fact, there does exit a signal with unit energy which achieves an output with the worst
case energy.

The singular-value plot of the open-loop map from usec to yl,,. (for the description in
(18)), peaks to 26 dB around 10 Hz (see Figure 30). A worst case disturbance around 10 Hz
with one unit energy will yield an output with 19.95 units of energy. The final closed-loop
(after LAC/HAC) map from dsec to &qc, in Figure 21 achieves its maximum singular-value
at 0 Hz (out of the range of Figure 30, however as explained in the previous section nothing
can be done about this value as long as only rate-feedback is used). However, over the
band 2 Hz - 30 Hz , the square of the oo-norm (namely, the energy gain) has been
reduced by 52 dB from 26 dB

5.4.3 2-/2-norm

For a strictly proper stable transfer matrix H , where

H(s) := C(sI - A) - ' B

the H 2-norm, IIHI12 , of H is defined as

IIH112  (trace(BTWo B)) 1/2

A - (trace(C _CT))i/

- trace(H(Jw)(H(jw))*)dw 
1/2

the trace of a square matrix denotes the sum of the diagonal entries; W and W, denote
the controllability and observability gramians of the triple (C, A, B) ; equivalently, they

12(a one-sided signal u (i.e., u(t) is zero for t negative) is said to have bounded energy iff IuI112 < o,

where JIulj := fl Iu(t)12dt).
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are the soh tions to the following set of linear equations:

AW, + WA T = -BBT

ATWO + WoA = -CTC

One word of caution is that 7l2-norm is not an induced norm; given two stable
transfer matrices Hi and H2,

IIH1H211. _< 11H 111 JH2110

holds since R7-to-norm is an induced norm; however, the same inequality does not hold for
the respective 1H2-norms. The reason that the UH2-norm is not an induced norm is due to
its calculation for a specific set of inputs, as explained below.

Let the stable transfer matrix H have ni inputs. For k = 1, ... ,n , apply the
input Uk,

Uk(t) := b(t)ek ;

( 6(.) denotes the impulse functional and ek denotes the k-th column of the ni x ni
identity matrix). Measure the correspondi: g outputs Yk , where

yk(t) = (HUk) (t)

Compute the individual energies Ek , where

Ek := 11YkI12 •

The 7"!2-norm of the transfer function H is given by

IIH112  
2/

The intuitive explanation is as follows: One by one, apply a white-noise input (spec-
trum is 1 for all frequencies, hence every mode of the system is excited) and compute
.he individual energies at the output. The square of the 7i2-norm is the sum of these
individual energies.

Hence, the 7i2-norm is also an energy concept. It reflects the output energy in the
presence of wide-band disturbances. The W2-norm of the open-loop system ( d . yi.
in (18)) is computed as 9.9239 (with a high-pass filter -j, 12 cascaded at the input)

The 7" 2-norm of the clo id-loop transfer function from d, to yl. after LAC and HAC
(see Figure 21 ) is computed as 0.2589 , a reduction of 38.33:1 . Simulations were also
performed to check against these (analytically) computed values. These are explained
within the following subsection.
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5.4.4 RMS (Root-Mean Square) Values

For a given (one-sided) signal u , the rms (root mean square) value of u is defined
as

rms(u) := (L r T T  u()12)dt

Note that the square of the rms value of a signal is the average power of the signal. The
average is assumed to be taken over a sufficiently large time interval when the integration
can not be done analytically. Note that unlike the 2-norm Jlull 2 of u , rms(u) and u

have the same units.

For the final closed-loop system in Figure 21, the maximum real part of the closed-
loop eigenvalues is approximately -0.2 . Taking a time interval of T = 30 seconds (6
times the time constant) and a sampling rate of 200 Hz (At = 0.005 ), we performed the
following simulations:

Using a random number generator, a noise vector w is generated. Under the
assumption that the magnitude of the spectrum of w can be approximated by the average
of the absolute value of the discrete-Fourier transform of w, we approximated the spectrum
of w as constant with magnitude a = 0.3474. Approximating the 2-norm of a signal u

over T seconds from samples at every At seconds, we obtain

f Iu(t)12dt f Iu(t)12dt

Nat

E iu((k - 1)At)12At
h=-1

= [norm(u)] 2At

norm(u) denotes the euclidean norm of the vector u E IR N , where N denotes the
number of sample points. During simulations, all of the signals are represented by a vector
with N entries, hence there is a slight abuse of notation when we express the following
approximation in terms of the same variable u :

IlU112 Pt /"tnorm(u)

In the notation of the previous subsection, we obtain the output vectors yj and y2

corresponding to the inputs [0] and []w , respectively. Calculating the individual

energies E1 and E2 as

El = norm(tyl(:,1); y(:,2)1) V/'ii/a = 0.2046

E2 = norm([y2(:,1);y2(:,2)]) V'"/a = 0.1953

we obtain a simulation estimate of the 1 2-norm as

norm([El E2]) = 0.2829
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compared to the analytical computation 0.2589 (within 9%). On top of all approximations
and possibly not high enough sampling rate, one other source contributing to the mismatch
is the noise spectrum. In an fl 2-norm computation, it is assumed that every mode is
excited by the same magnitude; however, the simulated noise w had apparent magnitude
fluctuations.

Approximating the rms value of a time signal u (a vector with N entries, rather)
as

Irms(U)12  ffi 1 (N-I)At IU(t)12dt~NA---0

1 N" E N I--' u( (k -1)At)12At
k=1

- .jnorm(u)12

we obtain the following rms ratio from d., to yI,:

rms(yl + y2) = 00122 pradlN

-,f2 rms(w)

In other words, a disturbance d. with 1 N rms value will cause 12.2 nrad rms deflection

at the line-of-sight. Considering the fact that the secondary mirror actuators have a force
limit of 8.9 N, this translates into 12.2 nrad rms deflection for 11.23% input disturbance.

Let P,*, denote the open-loop transfer matrix from u, to ylo (equivalently,
d, c '- o ) determined by (18). Let

Y :=Py-": 1w

Computing y , we obtain the open-loop (without LAC/HAC) disturbance to line-of-sight
rms ratio of

rms(y)

,4 rms(w) = 0.4386 prad/N

hence the LAC/HAC design has achieved an rms reduction of 35.95:1 .

5.5 Robustness of the LAC/HAC Design

Consider the unity-feedback system in Figure 21; C denotes the 34-state compen-
sator obtained by the 7oo-design and Pc denotes the plant model with low-authority
control applied at the primary mirror nodes. The compensator C stabilizes Pi, ; how-
ever, the major concern is how much plant uncertainty it will tolerate. In other words,

if the open-loop transfer function from u,, to y;. is not as determined by (21) (which
will definitely be the case due to unmodelled dynamics, uncertainties in the model deriva-

tion, etc. ) will the compensator C still stabilize this family of plants ? By modeling
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the uncertainties, stability robustness margin for each perturbation class determines the

admissible perturbations under which the compensator still stabilizes the closed-loop.

In the following subsections we consider four classes of plant perturbations and discuss
the associated robustness margins of the closed-loop system in Figure 21

5.5.1 Additive Perturbation Margin

Let 19Ci.sec..c be the transfer function secondary mirror actuators to the secondary
mirror velocity sensors (i.e., P~c . =. Bu... =B (sI- Ai )- B, )e . For a given scalar stable
transfer function ra,,d , let Bdd denote the set of transfer matrices in (30)

B,.dd {Pacy5GcUjc + LI A is stable and a(A(jw)) < Ir.4d(jw) for all real w}

(30)
If C stabilizes 1.cy,.c then C stabilizes all plants in BTd if and only if

a(C(I + Pc,y .. u..)-'(jw)) Iradd(jw)I _< 1 (31)

for all real w .

Note that the closed-loop transfer matrix

C (I + P19.,.. U,..oC) -_ HU, ,

where HudoUt denotes the stable closed-loop transfer matrix from d..t to u,,c in

Figure 21 . "Hence the inverse of the singular-value plot of the closed-loop transfer function
from dout to u,.e determines the (unstructured) additive perturbation margin as shown

in Figure 31.
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Figure 31:

Admissible additive uncertainty in the transfer matrix from u,., to y in Figure 21;
i.e., 20logjrdd(jW)j [prad/N] (see (30)-(31)).

5.5.2 Pre-Multiplicative Perturbation Margin

In this case, suppose that the perturbations (due to uncertainties, unmodeled or
neglected dynamics) come in cascade at the plant input. Let Pj.j , be as in the
previous subsection. For a given scalai .table transfer function rpr. , let B.,, denote the
set of transfer matrices in (32) .

Bpre := 1 '...-,(I + A) I A is stable and &(A(jw)) < Irp,.(jw)l for all real w}
(32)

If C stabilizes P U... ,then C stabilizes all plants in B,,. if and only if

(P y,:,.=I+ CAP = .. ,... )-1UW ))1rp, (UW)1 <__ 1 (33)

for all real w

Note that the closed-loop transfer matrix

...(z + CP..,..) 1 = H.,d ,

where H, d denotes the stable closed-loop transfer matrix from d,, to u, in
Figure 21 .S-ence the inverse of the singular-value plot of Hu d. determines the pre-
multiplicative perturbation margin as shown in Figure 32. Noteltat the pre-multiplicative
perturbation setup is suitable for considering unmodelled actuator dynamics.
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Figure 32:

Admissible pre-multiplicative uncertainty in the transfer matrix from uc to y, in
Figure 21; i.e., 20log Irpre(jw)j (see (32)-(33)).

From Figure 32, we conclude that for frequencies for which the plot is above 0 dB,
the actuator uncertainty can be above 100% ; since the minumum is about -2.5 dB, the
worst case actuator uncertainty the LAC/HAC design will withstand is ±74.99%.

The perturbation A in (32) is not structured; in our case, it is a two by two
stable transfer matrix. The description in (32) may be quite conservative if the actuator
uncertainties are decoupled, that is, perturbations are of the form

A = ciag[Si , 62]

In this case, one is interested in the "structured" singular-value of the stable transfer
matrix Husecdsec . At any frequency w , one is interested in the minimum (structured)
norm of A(jw) , such that

det(I + [b t(jw) 62(jw) ] Hu" 4 (jw) ) = 0

Computing this structured perturbation bound, we obtain Figure 33. Note the resemblance
to Figure 32.
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Figure 33:

Admissible multiplicative uncertainty at the secondary mirror actuators provided that
A in (32) is diagonal.

In both of the above robustness margin computations, it is assumed that there is no
uncertainty in the LAC design. In other words, Figure 32 is the secondary mirror actuator
uncertainty bound provided that the LAC gain is precisely & I . Suppose that we

consider the case where the rate-feedback has a pre-multiplicative dynamic uncertainty A.
Computing the maximum singular-value of the closed-loop (LAC/HAC) transfer matrix

that the uncertainty A "sees", we obtain the robustness margin in Figure 34.
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Figure 34:

Admissible pre-multiplicative uncertainty in the LAC rate-feedback provided that there
is no secondary mirror actuator uncertainty.

It is interesting to note that the HAC design withstands perturbations in the rate-
feedback in the order of 100% ; in other words, the HAC design will still stabilize the plant
even if the rate-feedback loop totally fails.

5.5.3 Performance Robustness

The previous subsections addressed the stability robustness of the LAC/HAC de-
sign. Provided that the specific class of perturbation is within the associated margin, it is
guaranteed that the feedback system remains stable.

In this subsection, we look at the performance degradation of the closed-loop map
from d,, in the x-direction to the line-of-sight deflection yl,. about the y-axis, subject to
two cases of uncertainties. For each set of perturbations, the nominal and worst-case Bode
plots are obtained. The nominal Bode plot is the closed-loop transfer function from d, (x-
direction) to yb. (about y-axis) determined by the system in Figure 21 ; i.e., the associated
uncertainty is set to zero. At a given frequency, the worst-case Bode plot determines the
worst-case gain when the associated uncertainty is within a specified bound.

Recall that Figure 33 shows the perturbation margin for the structured actuator
uncertainty. Suppose that the structured perturbations remain 1 dB lower than the bound
in Figure 33 (that is, perturbations can be as high as 89.13% of the stability margin).
The corresponding nominal and worst-case Bode plots of the closed-loop map are shown
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in Figure 35.
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Figure 35:

Nominal (......) and worst-case (--) Bode plots of the closed-loop map (after
LAC/HAC) from d., (x-direction) to y/os (y-direction) provided that the structured

pre-multiplicative plant uncertainties are 1 dB below the margin in Figure 33
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For the case that the structured perturbations remain 6 dB lower than the bound
in Figure 33 (that is, perturbations can be as high as 50% of the stability margin), the
corresponding nominal and worst-case Bode plots of the closed-loop map are shown in
Figure 36.
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Figure 36:

Nominal ( ...... ) and worst-case (- ) Bode plots of the closed-loop map (after
LAC/HAC) from duc (x-direction) to y (y-direction) provided that the structured

pre-multiplicative plant uncertainties are 6 dB below the margin in Figure 33.
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5.6 Slewing Maneuver Performance

The main point of the LAC/HAC design was attenuation of the secondary mirror
actuator disturbance dc,, at the line-of-sight output y!i. . Having achieved this, we
now simulate a slewing maneuver about the x-axis, using the primary mirror z-directional
thrusters at nodes 1 , 4 , 64 and 67.

For the given inertia I.,, = 16710 kgm 2 and the maximum angular accelaration of
10°/s2 , using the simplified model

Ixxo - r , (34)

we obtain the maximum allowable torque r,x = I.,.r/18 Nm . Applying identical inputs
to the thrusters at nodes 1 , 4 in the negative z-direction and 64 , 67 in the positive z-
direction simultaneously and taking into account the length of the moment arm ( 2.5 m),
the maximum allowable thrust is I_ 7r/180 N . Applying an input of the form

u(t) := 224 sin(27rt/4)(1 - cos(27rt/4)) N

guarantees that the maximum torque is not exceeded; moerover, u does not excite the
high-frequency modes of the system (contrary to a bang-bang input signal). For r - 10u,
the plots of u and 9 (determined by (34)) are shown in Figure 37.

30 E(t)I
300
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-3001
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Figure 37:

u and 0 plots, where 9 L~
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5.6.1 Simulation

For the slewing profile mentioned above (approximately -14.67 about the x-axis),
the line-of-sight output and the secondary mirror actuator input are plotted in Figure 38.

oe- . . 15 tl*-y]
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Figure 38:

Closed-loop (LAC/HAC) system responses during the 14.670 slew about the x-axis
using the primary mirror thrusters at nodes 1 , 4, 64 and 67.

Since the actuators at node 100 can exert at most 8.9 N , a limiter ( ±8 N ) was
cascaded at the compensator output. Figure 39 shows the simulation results with the
limiter.
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Figure 39:

Closed-loop (LAC/HAC) system responses during the 14.670 slew about the x-axis
using the primary mirror thrusters at nodes 1 , 4 , 64 and 67 with ±8 N limiter at the

secondary mirror actuator inputs.
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6 HAC : With LOS Measurements

In this design, it is assumed that the line-of-sight output yl is measured and can
be used in feedback. The same plant descriptions P in (18) and PI., in (21) will be used
in the design.

6.1 Disturbance Modeling

Consider the plant model P1 , in (21) obtained by applying LAC to P in (18) at the
primary mirror nodes (see Figure 17) . As before, there are three sources of disturbances
that are considered in the design (see Figure 40):

" The disturbance d,, comes in additively at the secondary mirror actuator inputs
(e.g., disturbances due to coolant flow); dc is assumed to be a wide-band distur-
bance.

* The output disturbance dour denotes the wide-band sensor noise at the line-of-sight
deflection and the secondary mirror velocity measurements.

" The third disturbance dthr is a low-frequency disturbance (up to 2 Hz) due to the
z-directional thruster inputs during slewing about the x- and y-axes.

Again, the main objective is to design an output feedback compensator to attenuate
the effect of dsec at yl,, ; the effect of dthr at ylos during slewing is also considered in
the design.

d.c

Figure 40: High-authority controller C

6.2 Model Reduction

Consider the plant model FL, in (21) . Without going into any sophisticated model
reduction technique or reasoning, an initial design was tried out using a 4-state reduced-
order approximation ( Ac ) of IJc obtained by keeping the first two modes (12.2 Hz and
12.6 Hz); the design was satisfactory. Using MATRIXx notation, Pi. is given by:

A1 ([1 231 32]1, [123132]) B ,([1 231 32], :)0B.I..([l 23132], :)

Pac j ] [12310 (35)[B.Tc(:, [12 3132])
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6.3 High-Authority Control Design with LOS Measurements

The ?,,-design methodology is used to design a dynamic output-feedback compen-

sator from F Ylos 1 to u.,. for the 4-state plant A., in (35) . For a brief outline of this
I. Ysec I

methodology, refer to Section 5.3.1

6.3.1 Augmented Reduced-Order Plant Paug

From Pllac in (35), we construct the augmented plant Pug with weights W1 , ... W,
as shown in in Figure 41 .

---------------------------------------------

W, W4: -

2 S

I I

' do,

U

Figure 41: P... obtained by augmenting the 4-state reduced plant P

The weights W 1 , ... , W5 are chosen as follows:

W, : W, -- 12 . Since there is no limitation at reducing the DC gain at the line-of-sight
(as in the previous rate-feedback design), d.. is assumed to be wide-band.

W2 : In order not to increase the order of the compensator, initial designs were tried
with dthr as a wide-band noise ( W 2 = 14 ). The line-of-sight spec was achieved

without increasing the order of the compensator due to the low-frequency description

of dthr.

W3 : The noise intensities at the line-of-sight and secondary mirror velocity mea-
surements. These weights affect the additive-stability margin and the closed-loop
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eigenvalue locations. The choice ( W 3 = 0.001diag[1 1 5 5] ) was a trade-off
between faster settling time versus larger additive robustness margin.

W4 : IV4 = 1000 [12 0] . If the designed compensator achieves a closed-loop transfer
function Hzd with IIH-dlloo __ 1, then the singular-value plot of the closed-loop
map from d.ec to yto, in Figure 40 will be below -60 dB ; an approximate 40 dB peak-
to-peak reduction with respect to the open-loop singular-value plot (see Figure 19) .

4, 5 IV 5 = ,102 . Compared to a constant weight, this specific actuator weights+2002•

resulted in a better pre-multiplicative robustness margin; the closed-loop map from
dsec to u,,c rolled-off sooner (thus, the design had a larger stability margin at high
frequencies) .

For the augmented plant in Figure 41 , a six-state compensator C is obtained by
7-(,-design where the closed-loop map Hd from d to z in Figure 26 satisfies

IInHzdllo < 7=3

The choice of y as obtained from trial-and-error. Design iterations indicated that the
optimal -y ( y-y ;i.e., the least upper bound) is in the interval (2,3).

6.4 Closed-Loop Performance

In this section, we present the performance data for the stable closed-loop system
in Figure 40 ; C denotes the six-state compensator obtained by %,.-design and /1.c
denotes the 60-state plant model with low-authority control applied at the primary-mirror
nodes (see (21) , Figure 17).

The maximum singular-value plots of the six transfer matrices (from (d,, d.,, dth)
to ( y ,c ) ) of the closed-loop system in Figure 40 are shown in Figures 42 and 43.
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Figure 42.

Singular-value plots of the four transfer matrices d,, yl. d., , u.,
d 't -4 yo and d,,t '-+ usec of the closed-loop (LAC/HAC) system in Figure 40.

(dthr 1--> yios)
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Figure 43:

Singular-value plots of the two transfer matrices d, 1-4 yl,, and d,, tlseu.. of the
closed-loop (LAG/HAC) system in Figure 40.
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6.4.1 Disturbance Attenuation at the Line-of-Sight

Let the closed-loop transfer function (after LAC and HAC) from d., to yIos in
Figure 40 be denoted by Hvod . The maximum singular-value plot of H od

shown in Figure 44 . There is an approximate 40 dB peak-to-peak reduction up to 15 Hz.
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Figure 44:

.(Co,(jwI A)- Be,) open-loop d,., to yl, before LAC

a (H Yosds,(jw)) : closed-loop (after LAC and HAC, see Figure 40) dc to Ylo

When the LAC is removed in Figure 40 (i.e., the colocated rate-feedback loop at the
primary-mirror nodes is broken), the six-state compensator C still stabilizes the 60-state
plant P ; the effect of removing LAC is shown in Figure 45.

The 712-norms in Table 3 are computed analytically from the state-space represen-
tations of associated transfer matrices.

Table 3: TH2-norrns and reduction ratios (with respect to the openloop) for LAC and HAC
designs

d..cto ylo. 1i I1 112 [prad/NV-sl I reduction I
openloop 10.0526 _

lac 2.536 3.96:1
hac/lac 0.025 402:1
hac 0.0541 185:1
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Figure 45:

. .(Cio,(jwI- A)-B c) :open-loop d. to yo. before LAO

--- a(Hosdec(jW)) closed-loop (after LAC and HAC, see Figure 40) d,, to ylk

&5 (H od.,(jw)) closed-loop (HAC only after LAC is removed in Figure 40)

Simulations were performed to check the rms value of the line-of-sight for a simulated
noise input. These simulations are now described.

Two 10 sec duration, zero mean, unit variance noise inputs w, and w2  were
generated using a sampling interval of 1 ms (hence w1 , W2 E IR 1"). For the noise

vectors generated, the rms value of [w ] is computed as 1.4123 N rms; ideally, the rms

value would be V2 N . Let

yi := Co(sI -A)-'B"e[W, w

Note that yj denotes the line-of-sight output for the open-loop system (before LAC and
HAC) (see Figure 46) . The rms value of yj is computed as 210.8 nrad rms . In other
words, the open-loop (before LAG and HAG) rms value of the line-of-sight for a 1 N rms
disturbance at the secondary mirror actuators is 149.3 nrad rms.
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Figure 46:

The line-of-sight responses before LAO and HAC for d,,, [w 1]w

Let

Y2 := Hyosdsec w1

where the transfer function H dlodec denotes the closed-loop map from d,, to yl, after

LAC and HAC (see Figure 40) . The line-of-sight response of the LAC/HAC system is
shown in Figure 47 . The rms value of Y2 is computed as 0.795 nrad rms . In other
words, after LAC and HAC (see Figure 40), the rms value of the line-of-sight for a 1 N rms
disturbance at the secondary mirror actuators is 0.563 nrad rms (a reduction of 265:1 ).
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Figure 47:

The line-of-sight responses ater LAG and HAC (see Figure 40) for d' = [wi ]

When the LAG is removed in Figure 40, the closed-loop line-of-sight response Ya
is shown in Figure 48 . The rms value of y3 is computed as 1.3149 nirad rms . In
other words, with HAG only (after LAG is removed in Figure 40), the rms value of the
line-of-sight for a 1 N r-ms disturbance at the secondary mirror actuators is 0.931 nrad
rms .

64



4

8

- 4 . .. . . .... ........ ...... .... . .. . .. .

- 0

-2

08 , 2 3 4 a a 7 10 ,

rigure 48:

The line-of-sight responses with HAC only (LAC removed in Figure 40) for d,, W1 ]
L W 2

The rms ratios obtained by the simulations mentioned above are summarized in
Table 4.

Table 4: rms-ratios obtained by simulation

[rms(ylo,)/rms(d.) [nrad/N]

openloop 149.3
lac/hac 0.563
hac 0.931

6.5 Robustness of the LAC/HAC Design

In the following subsections, we consider two classes of plant perturbations and plot
the associated robustness margins of the closed-loop system in Figure 40

6.5.1 Additive Robustness Margin

The inverse of the maximum singular-value plot of the closed-loop map dot,,
usec in Figure 40 determines the maximum admissible stable additive perturbation in

Pl from u,,c to [1"] The maximum singular-value plot of the open-loop map
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B1 (s1 - Alac)-'Bs, is included in Figure 49 for comparison; at a given frequency,

the difference gives an idea about the relative contribution of the worst case admissible

uncertainty from u.,c to [Yl°] compared with the worst case gain of the nominal

two-input four-output plant Pu.

so

20 .... .... ........... . .: . . . ' ': '. - " " ...... ...... :........ " .. '" ' -" "-.' ................. ......... ..
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-30.

10 100

Figure 49:

.[ °] (jwI- Aia)-Bc)

1/&(Hu d t(jw)) where Hu, do., denotes the closed loop map from do, tto uti

in Figure4 6 .

When the LAG is removed in Figure 40, the six-state compensator still stabilizes the
60-state plant P ; the change in the additive robustness margin when the LAC is removed
is shown in Figure 50 .
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B T] (jwI - Alac)-'Be)

- 1/&(fHUsdout(jw)) where Hu d denotes the closed loop map from dour to u, ¢
in Figure 40 with LAC remov d eedo

. . . 1/a(Hu cdout(jw)) where Hucdot denotes the closed loop map from do,, to u,
in Figure 40 (HAC and LAC) .

6.5.2 Pre-Multiplicative Robustness Margin

The inverse of the maximum singular-value plot of the closed-loop map d. ' u.
in Figure 40 determines the maximum admissible stable pre-multiplicative perturbation at
the input of PI . This margin can be interpreted as the admissible unstructured actuator
uncertainty in the HAC/LAC system. From Figure 51, one sees that the margin is below
100% over the band 10 Hz - 200 Hz; worst-case margin is approximately 80%.
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1/&j(H8,d ,(jw)) where Hu.,d, denotes the closed loop map from d.,c to u, in
Sec Figure 40

When the LAC is removed in Figure 40 , the change in the pre-multiplicative robust-
ness margin is shown in Figure 52
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11/d(ttu,,,d,,(jw)) where Htused~ec denotes the closed loop map from d,,, to useo
in Figure 40 (HAC and LAC).

1/&(Hu d (jw)) where Hu d/ denotes the closed loop map from d.,c to us,c
in rigure4}cwith LAC remove;.Uc

6.5.3 Performance Robustness

The additive and pre-multiplicative robustness margins mentioned in the previous
sections are conservative bounds on admissible plant perturbations under which the 6-
state compensator still stabilizes the perturbed plant. Provided that the associated class
of perturbations are within bounds, the closed-loop system will remain stable; however,
the performances other than stabilization may degrade considerably. In order to have an
idea on the de¢ to ylo, performance degradation under planL uncertainties, the following
worst-case Bode plots are obtained.

Let the pre-multiplicative stable uncertainty be diagonal A = diag[SIl 821 ; i.e., the
actuator uncertainties can be modelled as decoupled. For two levels of uncertainty, the
Bode plot of the worst-case actuator-x to line-of-sight-y transfer functions are shown in
Figure 53.
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Figure 53:

Nominal closed-loop transfer function from d,,-x to yl-y (see Figure 40)

... -Worst-case closed-loop transfer function from d,. -x to y-y provided that the un-
certainties 61 and b2 are uniformly bounded above by -10 dB

- orst-case closed-loop transfer function from d.,6 -x to yoS.-y provided that the un-
certainties 61 and S2 are uniformly bounded above by -5 dB
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6.6 Slewing Maneuver Performance

Consider the same slewing maneuver mentioned in Section 5.6 . Applying -u at
the z-directional thrusters at nodes 1 , 4 and u at the z-directional thrusters at nodes 64

-1"

67 yields approximately a negative 150 slew about the x-axis (i.e., apply dthr - [ U

and set all other inputs to zero iii Figure 40) . After the slewing inputs are turned off at
the fourth second, the line-of-sight and actuator time responses are shown in Figure 54.

o
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^ - - . ........ . ... ....... .. ............. ............. ..............
2 03 . . . . . . .. . . .... .. ............. .... ..... ............ ............. ... .......... ..... ... . . .
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Pigure 54:

The line-of-sight and actuator responses (for the LAC/HAC system in Figure 40) after
the slewing inputs ( dthr ) are turned off at the end of 4 s -15 ° slew about the x-axis.
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Since the actuators at node 100 can exert at most 8.9 N by assumption (see Sec-
tion 3.2) , a jimiter ( + 8 N) is cascaded at the compensator output. The simulation
results with the limiter are shown in Figure 55.
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Fgure 55:

The line-of-sight and actuator responses (for the LAC/HAC system in Figure 40 with a
+ 8 N limiter at the compensator output) after the slewing inputs ( dth ) are turned off

at the end of 4 s -15 ° slew about the x-axis.
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7 Control Design: Summary and Conclusions

The goal of the two designs in Sections 5 Pnd 6 was to establish the feasibility of
achieving disturbance attenuation at the line-of-sight together with a robust feedback co>
troller.

In the first design, the high-authority controller applies colocated rate-feedback at
the secondary mirror node 100 . No LOS measurements are available. An 7H-design is
obtained using a 22-state reduced-order model of the nominal 60-state plant with low-
authority control applied at the primary mirror nodes.

In the second design, the line-of-sight measurement was used in feedback. This
avoided the limitation on attenuating the DC-gain of the disturbance to the line-of-sight
map. An initial K -design using a 4-state reduced-order model proved satisfactory. Hence
a detailed model reduction treatment was skipped for this design.

A detailed discussion of the individual design performances are in Sections 5 and 6
An immediate comparison may give the impression that the second design is superior to
the first; we do not support this argument. The two designs are seperate feasibility studi,,s:
after the second desigii was completed, we did not go back and iterate on the fitst design to
bring it tip to the same level of performance as the second one. Moreover, the asunption
on measuring the line-of-sight may be unsuitable for the specific application.

For both of the designs, slewing commands at the primary mirror thrusters caused
the proof-mass actuators to saturate. The simulations with limited actuators did not show
considerable performance degradation. However, attention must be drawn to the closed-
loop maps from slewing thruster inputs to the actuators (Figures 29 and 43 ) . These show
considerable amplification (approximately 10 dB) above 20 Hz . No attempt was made to
reduce this effect in the design, the assumption being that no signals are at this frequency
range.
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8 System Identification: Conclusions and
Recommendations

8.1 Conclusions

The Phase I study has demonstrated the feasibility of developing system identification
tools for control design of a large space structure from measured data, either in a ground-
test envirommrent or on-orbit.

A fundamental technical issue is to obtain a model estimate which when used in
conjunction with some control design procedure would result in acceptable closed-loop
performance. In this study the control system was designed using "i" methods. System
identification was accomplished using least-squares with filtered data to obtain a nominal
model and a frequency domain uncertainty profile which could be used with the control
design methods.

The methodologies were tested on a 30 mode simulation model of the ASTPEX
facility. Representative actuator/sensor types and location were assumed along with a
simple mission profile involving disturbance attenuation at the line-of-sight along with a
slewing specification.

As a result of this Phase I study, it is clear that several computer-aided design tools
are needed in both system identification as well as control design, although ill a general
way, existing control design tools are further along than existing system identification
tools. Nonetheless, we conclude that it is absolutely necessary to have both sets of tools
easily available to the user. Several recommendations accrue from this study and these are
described in the next section.

8.2 Recorn mendations

Prior to 1983, all work in system identification for CSI was performed using non-
standard cuztom software or spectral analyzers. Since then a number of tools have emerged
for system identification [18,9]. These tools have proven to be very valuable for off-line
SISO system identification, but mostly in research environments in the hands of experts
in system identification. Outside of this environment they are quite fragile. Thus, it is
necessary to develop new tools for dealing with the problem of system identification for
control design.

Figure 56 shows the relation of identification and control design. In a sense system
identificaion for control design is a form of model reduction where the data represents the
"model" which is reduced to a controller which when applied to the actual system that
generated the data would provide acceptable closed-loop performance.

Each path in Figure 56 represents a series of algorithms for which various software
tools are required. In particular, the software should perform the functions next described.
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Figure 56: Paths in identification for control design.

Parametric Identification Parametric methods involve the minimization of some time-
domain function of model parameters using an iterative or recursive algorithm. A typical
parametric model is a transfer function of fixed order where the coefficients of the numer-
ator and denominator polynomials are the parameters to be estimated. Prediction error
models with a least-squares criteria is the standard. Prediction error models arise from
a statistical framework and can lead to a Kalman filter or innovations based model. The
maximum likelihood method arises from this formulation. However, the formulation ca 
be simply used as a means to obtain a parametric model.

Nonparametric Methods Non-parametric methods involve the computation of cor-
relation functions and/or their respective spectral densities. A non-parametric model istypically the real and complex values (or gain and phase) of the transfer function at many

frequency points. In a sense one can view non-parametric models as high order parametricmodels. It should be mentioned here that knowledge of the transfer function at inaiiv

frequency points cannot be directly used for control design. For control one needs thetransfer function, so usually non-parametric models have to be transformed to parametric
models, usuially via parametric methods.

Experiment design Designing the identification experiment involves many choices, and
each choice has a definitive effect on the identified model. These choices include the model
structure, probing or test signals, data filters, feedback compensator. criteria of 11odhe]
fit, and computation method. When the intended use of the model is control design, tli ,

relations of these choices to the acheivable closed-loop performance can be predicted.
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Model Validation Various methods of model evaluation are b)ascd on statistical fornii-
lations, e.g. , maximum likelihood, Cramer-Rao bounds, and confidence tests. These all
provide information on the bias and variance of whole classes of estimators, and hence,
their primary use is in anylyzing estimation experiments. Some of the procedures can be
used on actual data to give an indication of model validity.

Model error estimation To design a high performance control for a flexible space
structure it is necessary to have an estimate of model accuracy. Prior information is not
sufficient. Several methods exist which can determine model error associated with an
identified model from on-orbit data. The model error can be estimted via parameter error
estiamtes or via frequency response methods.

Limitations of Current Tools Current software tools, such as MATRIX x , con-
tain primitives which perform some of the above functions, but as already mentioned,
are quite fragile in the hands of the non-expert user. Several of these tools have been

investigated under Phase I and have proven to be reliable.

Unfortunately, the current tools do not offer the user any guidelines or even provide
an easy interface to the expert user. The identification process has to be built up from a
few primitives into special purpose macros which only the original user can understand. In
addition most of these tools have not been extended for MIMO systems, which is extremely
important for CSI problems. Fortunately, many of the necessary lower level tools already
exist in some software packages, such as MATRIXx .

The approach we recommend is to encapsulate esisting system identification and
control design expertize into new tools so that the non-expert users can gain access to
system identification for large MIMO problems typical of CSI as well as to free researchers
from time-consuming programming tasks. For example, such tools would also permit on-
line identification for CSI by neking full use of the already exisiting capabilities of the
CDAC (Control and Data Acquisition Computer) on the ASTREX facility at AFAL.

A program to develop these tools should have the following objectives:

" Provide a reliable, repeatable and efficient mechanism for performing system identi-
fication for control design.

" Provide an encapsulation of recent advances in system identification for control design
in a form useable by normal users.

" Provide a mechanism for rapid transfer of results of on-going research programs to
other laboratories and operational programs.

Such a program would result in a set of comprehensive system identification tools for
use in the CSI environment. These skools would include off-line and on-line (real-time)
capabilities. The user interface would consist of a point-and-click mouse driven workstation
based system, both for the off-line and on-line functions. The tools would be part of an
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environment that supports system identification and its related functions such as data
display, signal processing and test data management. On-line identification algorithms
would be easily available and could be tested off-line on a work station and then instantiated
in C or Ada code and run in real-time. The tools would be open so that results of new
research can be easily integrated into the tools.

The CDAC/ASTREX facility provides a valuable test bed for evaluating and demon-
strating these capabilities. As an illustration, Figure 57 shows the overall capabilities of
the tools as they would appear in the MATRIX x environment.

To meet the objectives listed above would require the development of:

" Software primitives for system identification.

" A prototype user-interface to run the primitives.

" On-line system identification algorithms.

All these functions should be designed for compatibility with CDAC and should be tested
using the ASTREX facility. These tasks would fulfill the above objectives by providing
the user with an interactive interface to aid in the system identification process. The
user-interface would facilitate running the necessary primitives or sequence of primitives
to perform the identification task. The user- interface encompasses all aspects of system
identification including on-line identification and should be able to provide the user with
a checklist or even suggestions as to what steps to follow during a session.

Obviously, an important element in the development is the user interface. We envision
the interface containing a mouse- oriented set of graphical 'panels'. These panels can
display data in custom formats or diagrams, be used to interact with and control ongoing
operations, and be extended and customized by experienced users.

Some comments can be made about the panels as envisioned:

* The proposed environment would allow only the operations appropriate at a given
time. (For example, loading a system must p: ecede an attempt to simulate it). In the
proposed environment, only appropriate operations would be enabled at any given
time, and inappropriate operations would not be possible.

" Most normal operations would be outlined in the form of panels which would offer
choices. (For example, a plotting panel would allow selection between all the pos-
sible plotting choices wih a default shown. This panel would allow entry of labels,
etc., so tLat the user need never enter lower level commands to specify the plotting

parameters).

" Choices of operation parameters on panels would be shown only when appropriate
and not be visible otherwise. (For example, only after one chooses a bar chart would
a bar fill pattern choise be presented to the user.)
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9 Each panel would offer a screen of 'help' and a continuously updated 'Hints window'
to help the user.

Another aspect involves the generation of real-time identification algorithms which
are very important for on-orbit testing as well as on-line ground testing. The current
CDAC, which uses MATRIXx , is well suited for this task. Real-time algorithms could

be generated with CDAC from MATRIX x block diagrams. The block diagrams can also
be instantiated in C or Ada as machine-independent code. Appropriate parametrization
allows some degree of cutomization of the on-line algorithm.

Typical on-line algorithms would include:

" Recursive Predection Error (RPE) algorithms for transfer function models.

" Digital filters for data preprocessing.

" Recursive Prediction Error algorithms for state space models similar to an Extended
Kalman Filter (EKF).

" On-line non-parametric identification such as correlations, spectra, transfer functions,
and coherence functions.

" On-line measures of model error.

The emphasis should be on pratically useful algorithms for MIMO problems typical of CSI.

Extensive documentation and user interface shouild be available as this would allow the
user to either use a pre-packaged tool or build another suitable template.
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Figure 57: An open environment for system identification and control of large flexible
space structures.
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