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PREFACE

This report documents the dynamic and kinematic study of a Stewart platform,
which is the initial step toward the development of a comprehensive
mathematical model of the Turret Motion Base Simulator (TMBS). The TMBS is a
Stewart platform system providing six degree-of-freedom motion which is being
developed for TACOM by Contraves Goerz Corporation. This report may be
difficult to read for the casual reader. It was written assuming that the
reader has some fundamental background in dynamics.

The author wishes to acknowledge the contributions of several people whose
help made this report possible: Nick Andrianos from Contraves Goerz
Corporation, for his technical notes used in this study. Even though the
software presented in this report was written by the author, most of it was
conceived using the technical notes of Mr. Andrianos; James Aardema from
TACOM, who had conducted the Dynamic Analysis and Design Simulation (DADS)
simulation runs to support this study; Dr. Roger Wehage from TACOM, for who
technically reviewed and assisted in some of the equations presented in this
report; James Overholt from TACOM, who technically reviewed some of the
FORTRAN code written for this study; Devendra Garg from Duke University, who
contributed to the start of this study; Alexander Reid from TACOM, who is
working with the author on a new and improved hydraulic actuator model which
will be combined with the dynamic/kinematic model presented in this report.
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1.0 INTRODUCTION

This report, prepared by the Systems Simulation and Technology Division, of
the Tank-Automotive Technology Directorate of the U. S. Army Tank-Automotive
Command (TACOM), describes an analytical study of the dynamics and kinematics
of a Turret Motion Base Simulator (TMBS). The TMBS is a six degree-of-
freedom motion base simulator being developed for TACOM. The TMBS is
described as a Stewart platform which consists of a base which is fixed to
the ground, and an upper, or driven platform. As shown in Figure 5-1, the
movable platform of the TMBS to which the turret is attached, is driven by 6
linear hydraulic actuators. Each actuator is attached between the fixed base
and the moveable platform and is mounted at a different angle in space to
deliver six independent motions to the platform. The basis of the Stewart
platform was developed for flight simulators and is described in reference 1.
Many types of Stewart platforms have been developed for laboratory
simulation. However, what makes the TMBS unique is the design capability to
handle up to a 25-ton load with a goal to achieve up to a 10 Hz bandwidth
motion.

This report covers the dynamic and kinematic study of the TMBS, that is, the
mathematical analysis to describe the actuator and platform motions. This
portion of the study consists of an analytical investigation utilizing and
developing computer software. Several issues will be mentioned regarding the
incorporation of the dynamic/kinematic model with the hydraulic control model
but this area is considered the next stage of the analysis and will be
addressed in more detail at a later time. The goal is to develop a complete
comprehensive model which will be used for the dynamic/kinematic analysis
described in this study, along with the entire hydraulic and control systems
of the TMBS. This report documents the FORTRAN software which has been
developed to conduct analysis on the TMBS dynamics and kinematics. This
software was written in subroutine/modular form so that it can be
conveniently imported to a comprehensive model and other applications. A
portion of the software developed in this study was used recently in support
of a kinematic animation study of the TMBS which is shown in Figure 5-1.

The future goal is to develop a complete comprehensive model which will be
used to evaluate and conduct analysis on various TMBS test scenarios before
being applied to the real system. In addition, the comprehensive model may
be used to determine if a particular test specimen (vehicle subsystem,
turret, etc.) is compatible with the TMBS control system. Low resonant
natural frequencies from a test specimen could hamper the overall stability
of the TMBS control system. Further analysis with the comprehensive model
could provide impact studies and insight with the potential to derive control
design modifications to maintain proper TMBS operations. Furthermore the
comprehensive model could be used to conduct analysis on advanced techniques
and strategies for man-in-the-loop testing, which is one of the applications
planned for the TMBS.

2.0 OBJECTIVE

The objective of this portion of the study is to develop a means of
evaluating the dynamics and kinematics of the TMBS which consists of the
various motions of the platform and six actuators and their mathematical
relationships. This report contains FORTRAN software developed for this
study which is listed in the appendices for each task. In addition a time
domain simulation was conducted to simulate the platform/actuator motion for
a given set of actuator forces. The simulation was conducted using Advanced
Continuous Simulation Language (ACSL) and the FORTRAN subroutines mentioned
above which are listed in Appendix C and D respectively. As mentioned above,
the objective is primarily to build the blocks for a comprehensive
mathematical model of the entire TMBS system. This would include modeling
the operation of the TMBS. Since the foundation of the TMBS operation is

9



.........

............. .. . . . . . . . .
............. .. . . . . . . . . ... :& j~

... ......

. . . . . . . . . ................ .

M'IX~



based on classical dynamics, the technique chosen for this study employs
Newton/Euler equations based partly on technical notes received from
Contraves Goertz Corporation, the contractor for the development and design
of the TMBS. Although the System Simulation and Technology Division of TACOM
is conducting research in the area of more efficient numerical techniques for
evaluating dynamics and kinematics, this analysis is based on Euler angle
transformations due to the nature of the TMBS. The TMBS will be driven by
command signals which are representative of Euler angles. In addition, part
of the TMBS control monitor system will be based on Euler angles.

3.0 CONCLUSIONS

As shown in this report the results produced by this study were compared with
results of a Dynamic Analysis and Design Systems (DADS) simulation. DADS was
jointly developed by the University of Iowa and TACOM and is well known in
the area of dynamic and kinematic system modeling. The results for the time-
based simulation are comparable for each state of the TMBS up to the 2nd and
3rd decimal place. It is concluded that the study presented in this report
is fundamentally correct. The difference between the DADS and ACSL/FORTRAN
model results can be considered the difference in numerical techniques of
integration and precision.

4.0 RECOMMENDATIONS

There appears to be problems when the model of this study is combined with
the hydraulic control model for the TMBS. There seems to be instability in
the model results when the hydraulic actuator model is combined with the
model presented in this report. The problem, at first, was believed to be a
numerical instability caused by insufficient precision, since ACSL is
governed by single precision. A further investigation is being made at this
time. The results may show an inadequate control system proposed for the
TMBS. The entire model has been rewritten in ADSIM (Applied Dynamics
Simulation Language) for evaluation on a AD100 computer system which will be
used for other TMBS applications.

5.0 DISCUSSION

Each portion of the analysis covered in this report will be supported by
FORTRAN software which consist of a program called 'TMBS KINEMATICS' listed
in Appendix B and the subroutines used are listed in Appendix D. Appendix A
includes a listing of all variables used in both the equations listed in this
report and in the FORTRAN listings. This will make it convenient to cross
reference the variables from equation form to FORTRAN code. The program
TMBS KINEMATIC is broken down to the tasks required to evaluate the TMBS
kinematics and is menu driven so that a task can easily be selected. The
tasks offered in the menu are detailed in table 5-1.

TABLE 5-1 Tasks Used in the KINEMATIC Program

Option/Task

1. Given the six degrees of freedom of the platform.
What are the six corresponding actuator lengths?

2. Given the six degrees-of-freedom of the platform and
the magnitude of the six actuator forces.
What are the net torques and forces on the platform?

3. Given the six-degrees-of-freedom of the platform and
the six degrees of freedom platform rates?
What are the magnitudes of the six actuator rates?

11



4. Given the six degrees of freedom of the platform.
What is the Jacobian Matrix (S matrix) and Decoupling
Matrix (D matrix)?

In addition, when given the S matrix and when:

A. Given the magnitude of the six actuator rates.
What are the six-degree-of-freedom platform rates?

(Inverse of option 3)

B. Given the six-degree-of-freedom platform rates.
What is the magnitude of the six actuator rates?

(Different method but produces same results as option 3)

5. Given the six actuator lengths.
What are the corresponding six degrees of freedom of the platform?
(Inverse of option 1)

These tasks represent the minimum capabilities required to produce a dynamic
kinematic model of the TMBS. Further tasks may have to be established for
the complete comprehensive model. The TMBS KINEMATIC program was the initial
step of this study, which consisted of hav-ing each task produce the correct
results from the FORTRAN program and subroutines. The next step was the
development of a time-base simulation of the TMBS by importing the FORTRAN
subroutines into a simulation language which has sorting and integration
process capabilities. Although other forms of software could have been used
at this point, the final goal once again, was to have simulation capability
for the complete comprehensive model. The simulation language available for
this study was the Advanced Continuous Simulation Language (ACSL) which was
used to evaluate time simulation of the TMBS dynamics. The listing is shown
in Appendix C which uses some of the subroutines from Appendix D in the
procedurals.

The rest of this report documents the methodologies used to develop these
analytical tools along with some of the results produced from the FORTRAN
program.

5.1 TMBS COORDINATE CONFIGURATION

Shown in Figure 5-2 is a drawing of the TMBS system that illustrates the
coordinate systems and vector configurations. Although this drawing is a
rather simplistic view of the TMBS system, it will be sufficient for the
mathematical representation. The two disks shown represent the platform and
base of the TMBS. The platform and base are joined by the actuator vectors
(Ll,L2,L3,L4,L5, and L6) and the P vector. The platform is free to move in
the six degrees of freedom described by three translational and three
rotational motions, while the base is fixed to ground. The two coordinate
systems shown represent the platform coordinates (body coordinates) and base
coordinates (global coordinates) which are fixed to the two bodies
respectively. Vectors will be associated with these coordinate systems by
the subscript "p" and "b" respectively. The actuators are connecting the
base and platform by means of swivel joints which are free to rotate around
the swivel axes within reasonable limits The swivel joints are located in
the figure by each arrow of the platform vectors and base vectors. The
platform is described by six platform vectors (Ppl, Pp2, Pp3, Pp 4 , Pp5 & Pp6)
which are fixed to the platform and connect the platform coordinate system to
the platform swivel joints. The base vectors (Bbl, Bb2, Bb3, Bb4, Bb5 & Bb6)
are configured in a similar fashion between the base coordinate system and
the base swivel joints. As shown, the vector, which represents the actuator
(Ll, L2, L3, L4, L5 & L6) in three-dimensional space, connects the swivel
joints of the platform to the swivel joints of the base. Each platform
vector (Ppi), base vector (Bbi), and actuator vector (Li) are associated with

12
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an index subscript "i" (i=l,2, 3, 4, 5, 6) . The P vector connects the two
coordinate systems and basically describes the position between the two
coordinate systems. The base and platform vectors are better illustrated in
Figure 5-3, which shows the geometry from a top view. This is the coordinate
configuration used for this study. Table 3 shows the values for the platform
and base vectors. These values are produced from the subroutine "CONFIG".
(See Appendix D)

Table 1 CONFIGURATION VECTORS Bbi & Ppi

Base Vectors Bbi

Actuator(i)
1 124.68 -9.00 0.0

2 -54.54 -112.47 0.0

3 -70.13 -103.47 0.0

4 -70.13 103.47 0.0

5 -54.54 112.47 0.0

6 124.60 9.00 0.0

Platform Vectors Ppi

Actuator(i) X Y z

1 57.59 -51.75 0.0

2 42.00 -90.75 0.0

3 -99.59 -9.0 0.0

4 -99.59 9.0 0.0

5 42.00 90.75 0.0

6 57.59 81.75 0.0

5.2 EULER TRANSFORMATION MATRIX

The Euler angle configuration for this study consists of a rotation about the
Z axis, then the resultant axis is rotated about the y axis, and finally the
resultant axis is rotated about the x axis. The Euler angles will be denoted
as EUz, EUy, and EUx respectively. The transformations for the individual
rotations are defined as follows:

1. 0. 0. (Eq 1)
Rx(EUx) - 0. COSCEUx) -Sin(EUX)

0. SIn(EUx) COS(EUX)

Cos(EUy) 0. SWi(EUy) (Eq 2)

Ry(EUy) - 0. 1. 0.

-SIn(EUy) 0. COS(EUy)

CoX(EUZ) -Sin(Euz) 0. (Eq 3)

Rz(EUz) - Sin(EUz) COS(EUZ) 0.

0. 0. 1.

The resulting rotation matrix (transformation matrix) is defined as the
product of the individual matrices as follows:

14
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R = Rz(EUz) Ry(EUy) Rx(EUx) = Rzyx(EUz,EUy,EUx) =

Cos(EUZ)Coi(9Uy) -Sin(EUz)Co,(EUxJ + Sin(EUy)Co8(EUz)Sin(EUx) Sin(EUz•S1n(EUx) + Sin(EUy)Cos(Uz)Co,(EUx) (Eq 4)

Cos(EUY)8in(EUz) COS(EUz)Cos(EUx) + Sin(EUz)Sin(EUy)Sin(EUx) -Cos(EUz)Sin(EUx) + Sin(EUz)Sin(EUy)Cos(EUx)

-Sin(EUy) Cos(EUY)Sin(£Ux) Cos(EUy)Cos(EUx)

This transformation matrix will be used to transform vectors from platform
coordinates to base coordinates, and it will be known as the forward
transformation matrix. The reverse transformation matrix produces the
opposite transformation by converting vectors from base coordinates to
platform coordinates. The reverse transformation is the inverse of the
forward transformation which is reduced to the transpose of the forward
transformation matrix due to orthogonal matrix properties (See reference 5
pp. 336). It should be mentioned that there are singularity problems when
using these transformation matrices. However, for the range of Euler angles
used for the TMBS (EUx, EUy, EUz < 90 deg.), this will not present a problem.
Both of these transformation matrices are computed in subroutines "TRANSMAT"
and "RTRANSMAT", respectively. (See Appendix D)

Rxyz = Rzyx-1 = RzyxT  (Eq 5)

From now on in this report, the transformation notation will be:

Forward transformation
(Rxyz) is denoted as: PRP (Platform to Base coordinates)

Reverse transformation
(Rzyx) is denoted as: bR (Base to Platform coordinates)

For example a vector 'V' in platform coordinates 'VP' could be transformed to
base coordinates by Vb = PRE, * Vp or denoted as Vb = (PRb * Vp), where PRb is a
3X3 matrix and vector VP can be considered a 3Xl matrix causing the resultant
product Vb to be a 3Xl matrix (vector).

5.3 POSITION FORWARD KINEMATICS

Now that the tools are in hand, the first task can be accomplished, which is
to determine the actuator length by knowing the platform orientation. Shown
in Figure 5-4 is a drawing representing the position vectors of the TMBS.
This drawing is a simplified case of Figure 5-2, where the vectors are
reduced to one set for one general actuator/swivel joint. The index "i" will
be used to specify which of the six actuators/swivels is being presented.
The vector Pb will account for the distance between the two coordinate
systems. The vector Pb will include the translational degrees of freedom of
the platform plus the initial z offset. The initial z offset is the nominal
distance between the platform and base (See figure 5-3) . Figure 5-2 also
introduces a new vector BSi which is the vector from the base coordinate
system origin to the platform swivel joint. The following vector algebra
will first determine the vector BSi and then the actuator vector (Li):

P, = X, Y, Z-Offset Offset = 125.73

BSib = Pb +( pRb * Ppi,) b (Eq 6)

and BSib = Bbib + Lib or Lib = BSib - Bbib (Eq 7)

Thus Lib = Pb +(PRb * PPi,)b - Bbib (Eq 8)

16
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Magnitude of Li \fLix + Li, 2 + Liý2  (Eq 9)

where i = 1,2,3,4,5,6

The actuator length is determined by using the above equations. This task
was accomplished using FORTRAN in the subroutine "ACTUATOR". The
transformation was performed in subroutine "FORWARD TRANS" and the magnitude
of the vector was determined in subroutine "NORM". See Appendix D for
listings. Some of the results produced by this task are shown in the
following table:

TABLE 5-2 RESULTS OF FORWARD POSITION KINEMATICS

Platform 6 Degrees Of Freedom Actuator Lengths

lux Buy IUz X Z 1 2 3 4 5 6
(Rad) (Rad) (Rad) (In) (In) (In) (In) (In) (In) (In) (In) (In)

0.0 0.0 0.0 0.0 0.0 0.0 160.0 160.0 160.0 160.0 160.0 160.0

0.349 0.0 0.0 0.0 0.0 0.0 136.6 137.9 157.9 162.7 186.1 180.9

0.0 0.349 0.0 0.0 0.0 0.0 146.7 147.4 187.1 187.1 147.4 146.7

0.0 0.0 0.349 0.0 0.0 0.0 141.2 182.1 141.2 182.1 141.2 182.1

0.0 0.0 0.0 30.0 0.0 0.0 149.9 179.7 157.3 157.3 119.7 149.9

0.0 0.0 0.0 0.0 30.0 0.0 148.8 166.7 179.4 144.4 158.7 175.7

0.0 0.0 0.0 0.0 0.0 30.0 184.5 184.5 184.5 184.5 184.5 184.5

0.26 0.26 0.26 10.0 10.0 10.0 119.1 1645.9 178.5 197.5 171.3 185.4

-0.26 0.26 0.26 10.0 10.0 10.0 151.4 204.1 182.6 194.0 127.4 160.4

-0.26 -0.26 -0.26 10.0 10.0 10.0 203.9 187.3 172.5 124.1 183.6 148.4

0.0 0.0 0.0 10.0 10.0 10.0 160.1 175.4 172.4 161.0 172.9 168.9

The results of Task 1 illustrate a large variation in actuator lengths to
produce the desired six degrees of platform orientations. The first case is
considered the nominal position, where the six degrees describing the
platform orientation are all zero which results in actuator lengths of 160
inches. The six degrees of freedom of the platform will be considered
relative to this nominal position. The results of this task were compared
with DADS simulations for numerous different orientations of the platform,
and it was found that the same results were produced.

5.4 NET PLATFORM FORCE AND TORQUE

The next task was to determine the net torque and forces on the platform
given the actuator force magnitudes and platform orientation. The magnitude
of the six actuators forces will be denoted as Qi. The actuator vector Li
will be normalized to determine an actuator unit vector (ULi) as follows:

ULi = Li

Magnitude (Li) (Eq 10)

where Magnitude (Li) =-Lix 2 + Li0
2 +Li, 2

The actuator force vector (Fai) will be determined by multiplying the
actuator force magnitude by the actuator unit vector as follows:

Faib = Qi * ULib (Eq 11)

The net external force on the platform is simply the sum of all the actuator
force vectors minus the weight force in the z direction as follows:

18



6
FORCEb = Sum Faib - (0, 0, Mass * g)b (Eq 12)i=l1

The torque applied to the platform by each actuator is determined by a vector
cross product as follows:

Tai = Ppi x Fai (Eq 13)

In terms of cross product operation on a common coordinate system the
following equation is used:

Taip = Ppip x (bRp * Faib)p (Eq 14)

It should be mentioned that these equations describe a simplified case. To
consider turret rotation, an additional torque applied by the turret would
have to be considered. The net torque on the platform is simply the sum of
the applied torques from each actuator as follows:

6
TORQUEp = Sum Taip (Eq 15)

i=l

The net force vector "FORCE" is left in base coordinates for the time being,
while the net torque vector "TORQUE" is left in platform coordinates. This
is due to the convenience of determining the angular acceleration from
inertia properties described in platform coordinates.

5.5 ACTUATOR RATES BY VECTOR CROSS PRODUCT

The next task was to determine the actuator rates when the platform
orientation and rates are known. The magnitude of the actuator rate is
needed for the comprehensive model, because each sub-loop independently
controls the motion of cach actuator. In other words, the actuator sub-loop
simply sees the actuator motion in a single axis translation sense. The
magnitude of actuator rate is one of the states in the feedback sub-loop.
The task will be accomplished by a simple vector cross product and dot
product relationship. It will also be done with a different technique in
section 5.6. The platform rates will be described by w., w, and w, for the
general X,Y and Z axis, respectively. In terms of platform coordinates the
angular rates w. will be described by w., wy, and w., accordingly. The linear
(translational) velocities of the platform coordinate origin will be
described by V or by V,,, V,,, and V,, respectively. The first part of this
task is to determine the velocity of each of the platform swivel joints. The
position of the platform swivel relative to the base coordinate origin is as
follows:

BSi = P + Ppi (Eq 16)

Taking the derivative of this vector will result in the velocity of a point
representing the swivel joint as follows:

BSi' = P' + Ppi' (Eq 17)

BSi' = V + Wp x Ppi ( x denotes vector cross product ) (Eq 18)

In terms of operation on a common coordinate system, the following equation
is the final solution used in the FORTRAN program.

BSib' = V + [ p * (WP x Ppid)p ]b (Eq 19)

19



Now that the swivel velocity is determined in equation 6, the magnitude of
the actuator velocity rate can be determined by the finding the component of
swivel velocity that is in the direction of the actuator vector (Li) This
is done by a simple vector dot product as follows:

Magnitude (LVi) = BSib' . ULi, ( . denotes vector dot product ) (Eq 20)

Where ULi was discussed in the previous section.

5.6 DETERMINING THE RATE MATRIX (S MATRIX)

This section is based on technical notes from Contraves Goertz Corporation,
the contractor for the design and development of the TMBS. The FORTRAN
portion in Appendix B for this section is simply labeled "CONTRAVES NOTES"
and the corresponding subroutine in Appendix D is called "SMATRIX". The S
matrix can be considered equivalent to all the operations described in the
previous section combined. The S matrix was derived in reference 3 & 7. The
S matrix is considered in this study to be a transformation matrix to convert
the platform space to actuator space in terms of rates. Utilizing the S
matrix produces the same numbers as those obtained by means of the method
described in the previous section. The product of the S matrix and platform
rate vector give the actuator rate vector as follows:

L = S * Vp where S is rate matrix (6x6) (Eq 21)

Actuator Rates L' = ( Mag(Li') i=1,6 Ir (6xl) (Eq 22)

Platform Rates Vp = [ W.,WWwV(,V",V, I T (6xl) (Eq 23)

Before deriving the S matrix, a matrix Cr is introduced which represents the
cross product operation.

0 -Wx Wy Wx, Wy, Wz are angular velocity (Eq 24)
Cr = Wz 0 -Wx components in platfrom cordinates

-Wy Wx 0

Property of Cr for a vector V is Cr V = (W x V) (Eq 25)

The S matrix is derived as follows:

Lib2 
= (BSib - Bbib) 2  (Eq 26)

Taking the time derivative of both sides results in the following:

2 Lib Lib' = 2 (BSib - Bbib) T (BSib' - Bbib') (Eq 27)

where Bbib' = 0

and BSib' = (Ppip + Pb)' = PR, (Wp x Ppip) + Pb' = (PRb Cr PpiP)I + Pb' (Eq 28)

Reducing equation 27 and substituting equation 28 results in the following:

Lib Lib' = [BSib - Bbib] T [(PRb Cr PPiP)b + Pb']

= (Ppi P + Pb - Bbib] [T (PR, Cr Ppip)b + Pb'] (Eq 29)
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Multiplying equation 29 results in the following:

Lib Lib' = (Eq 30)
Ppip T p7 P Cr Ppip + PpipT pR'b pb' + (Pb-Bbib) T PRb Cr Ppip + (Pb-Bbib) T Pb

Due to antisymetric property of Cr the relationship PpipT Cr Ppip = 0 and
pR b pRb = I can be used to determine the following equation:

Lib Lib' = Ppi p TRb Pb' + (Pb - Bbib) t pR, Cr Ppip + (Pb - Bbib)T Pb' (Eq 31)

= (Pb - Bbib) PR, Cr Ppip + (BSib - Bbib)T Pb'

Solving for Lib' gives the following equation:

Lib' = (1/Li) [ (BSib - Bbib) T Pb' + (Pb - Bbib)' pRb Cr Ppip ] (Eq 32)

Let Vi T 
= (Pb - Bbib) T PRb

Then

Lib' = (1/Li) (BSib - Bbib) T Pb' + Vi T Cr Ppi, ] (Eq 33)

Where Vi T (W. x Ppip) = Vi T Cr Ppip - (Ppip x Vi) T W,

The following equation is the results:

Lib' = (1/Li) [ (BSib - Bbib) T Pb' + (PpiP x Vi)I Wp ] (Eq 34)

The S matrix can now be derived by inspection of equation 34. The S matrix
will be partitioned into two submatrices denoted as S, & S, which will be
determined separately. The S matrix is split up because half of the matrix
describes rotational properties and the other half considers translational
properties. The S matrix is partitioned as follows, where the rows for both
submatrices are indexed according to the six actuators. The three columns of
both submatrices are indexed by the three components. (x,y and z)

S (6x6) = S (6x3) I SB (6x3) (Eq 35)

The construction of S, starts with the vector Vip calculated as follows:

ViT = [ Pb - Bbi ]T pR, or Vi = bRP [ Pbb - Bbib I (Eq 36)

And using equation 30 results in the following submatrices

S, = ( Ppib x Vib ) / Magnitude (Li) (Eq 37)

SB = ( BSib - Bbib ) / Magnitude (Li) where i=l,6 (Eq 38)

The S matrix is now constructed. The inverse of equation 21 can also be used
to solve for the platform rates as follows:

Vp = S-' * L' (Eq 39)

5.7 DETERMINATION OF THE DECOUPLING MATRIX (D MATRIX)

The D matrix is considered the dynamic decoupling matrix The results of the
D matrix subroutine were compared with a study conducted by Contraves Goertz
Corporation and are presented in reference 6. The results were identical to
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reference 6, when the configuration shown in Appendix E was used. The D
matrix is Contraves Goertz Corporation's solution to the coupling effects
present in a multi-actuator system. The D matrix will be incorporated in the
control law of the TMBS to compensate for the dynamic coupling effects of the
independently driven actuators. This will be accomplished by software
operation which will change the gains of the sub-loops "on the fly", creating
a form of adaptive control. This technique will be covered in more detail at
a later time, when this technique has been validated with the comprehensive
model and test data. At this time, it is considered another means of
comparing the results of this study. The D matrix is determined as follows
with the introduction of an inertia/mass matrix "I".

I 0 0 0 0 0
0 IY 0 0 0 0
0 0 I, 0 0 0 I1, I¾, I.; Total Inertias (Eq 40)

= 0 0 0 m 0 0
0 0 0 0 m 0 m ; Total Mass
0 0 0 0 0 m

For this study I,, IY = 59000 in-lb-s2  I, = 118000 in-lb-s 2 and mass
m = 468.75 slug

For simplicity, the origin of the platform cordinates will be the center of
gravity (cg) and principle axes at this time. Further modifications in the
mass properties will be evaluated at a later time.
In terms of kinetic energy (KE) of the platform, ignoring the gyroscopic
effects, the following equation is considered:

KE = 1/2 Vp T I Vp (Eq 41)

Substituting equation 39 gives:

KE = 1 L'T [ S-1 I S-I L' (Eq 42)

Let D = S-T I S-1 (Eq 43)

KE = 1 L'T D L (Eq 44)

Considering equation 44 to be analogy to a single translational motion on a
mass, the matrix D can be considered the effective mass on each actuator for
a given platform orientation and mass properties. The D matrix will be
implemented into the actuator control compensation for the rate loop and will
be discussed in more detail when the comprehensive model is developed.

The inertias will be assumed to be constant for this study: however, they
include the total inertia of the turret and platform and should be considered
to be a function of turret rotation. The comprehensive model will have to
account for the change of inertia due to the rotating turret. The
orientation of the actuators are also assumed to have negligible effects on
the total inertia at this time.

5.8 POSITION INVERSE KINEMATICS

The inverse of Task 1 (Section 5.3) as follows:

Given the six individual actuator lengths, what are the corresponding six
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degrees of freedom of the platform orientation?

We use the Newton Raphson technique for solving a set of nonlinear equations
and was taken from reference 7. Since this is the inverse of Task 1, the
results were easily checked for numerous cases. The Newton Raphson technique
uses an iterative process to determine the solution. The software in the
appendices gives the user the choice of selecting the process to be governed
by the number of iterations or the acceptable error tolerance (epsilon) of
each degree of freedom of the platform. The process initially requires 6
guess on the actuator lengths as a starting point which will be denoted as a
6xl vector (array) "Wk". The Wk array will contain the updated actuator
length approximation throughout the process and should be considered to be
more accurate after each iteration (for most cases). The following equations
show the basic technique:

W = (EUx,EUy,EUz,X,Y,Z)T (Eq 45)

Let Fi = [ Mag(Li*) ] 2 _ [ Mag(Li) ]2 (Eq 46)

where Mag(Li*) is the current approximation of actuator length and Mag(Li)
which was the actuator length given.

The desired solution is Fi=0 for i=1,6 where Li* = Li

The Newton Raphson method is formulated by the following equation, where the
trial solution Wk(°) is the initial guess followed by successive
approximations Wk"')1 .

6
Fi + Sum dFi (Wk"''-Wk') = 0 (Eq 47)

k=1 dWk

Let dFi = Tik where Tik will be the elements of a T matrix (Eq 48)
dWk

Fi + T [ Wk"÷* - Wkn ] = 0 (Eq 49)

Thus W"÷' = Wn - T- * Fi (Eq 50)

The T matrix and array Fi are calculated in the subroutine T MATRIX in
Appendix D. Equation 50 is the main part of the Newton Raphson -technique,
where the T matrix is inverted and the main objective is observing how
quickly the iteration converges. The following shows how the T matrix will
be formulated.

T Matrix Formulation

Equations 7-9, which solved for the actuator vector will be rewritten (Or
recall equation 26) as follows:

Lib2 = [ BSib _ Bbib ] 2 (Eq 51)

Then let Fi = [ BSib - Bbib ]2 - Li 2  (Eq 52)

Taking the derivative with respect to Wk results in

d(Fi) = 2 * (BSib - Bbib) * d(BSib) (Eq 53)
d(Wk) d(Wk)

Recall (Eq 6) where BSib = ( PRb * Ppip ) + Ppib.
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Taking the derivative with respect to Wk and considering Ppib as constant
gives the following:

d(BSi) = d(R) * Ppi + d(P) (Eq 54)
d(Wk) d(Wk) d(Wk)

where the subscripts 'b' and 'p' will be eliminated for the time being for
simplicity.

d(BSi) - d(R) * Ppi (Eq 55)
d(EUx) d(EUx)

d(BSi) - d(R) * Ppi (Eq 56)
d(EUy) d(EUy)

d(BSi) - d(R) * Ppi (Eq 57)
d(EUz) d(EUz)

Recall (Eq 4) where R = Rz * Ry * Rx, taking the derivative results in the
following:

d(R) = d(Rz) * Ry * Rx (Eq 58)

d(EUz) d(EUz)

The following rotational matrix properties are used:

d(Rx) = Mx * Rx = Rx * Mx (Eq 59)
d(EUx)

d(Ry) = My * Ry = Ry * My (Eq 60)
d(EUy)

d(Rz) = Mz * Rz = Rz * Mz (Eq 61)
d(EUz)

Mx, My, and Mz represent infinitesimal rotations about the three Euler axis.
These matrices were calculated by taking the derivatives of the rotation
matrices (Eq 1-3), with respect to each axis of rotation, and applying zero
to represent small angular displacement, as shown in the following:

0 0 0 (Eq 62)
Mx = d( Rx(EUx) ) I = 0 0 -1

d(EUx) IEux - 0 0 1 -1

0 0 1 (Eq 63)
My = d( Ry(EUy) ) I - 0 0 0

d(EUy) IEuy - 0 1 0 0

0 -1 0 (Eq 64)

Mz = d( Rz(EUz) ) I - 1 0 0
d(EUz) EUZ . 0 0 0 0

These matrix properties reduce Equation 59 and 61 to the following:

d(R) = Mz * Rz * Rx * Ry = Mz * R (Eq 65)
d(EUz)
similarly d(R) = Mx * R (Eq 66)

d(EUx)
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d(R) = Rz * d(Ry) * RX (Eq 67)

d(EUy) d(EUy)

= Rz * [ My * Ry ] * Rx

= Rz * My *Rz-] * Rz * Ry * Rx

= My * R where My = Rz *My *Rz-' (Eq 68),

From properties of rotation matrices:

My = My(EUy) = -Mx * Sin(EUy) + My * Cos(EUy) (Eq 69)

Now the derivative of the BSi vector with respect to the platform degrees of
freedom "Wk" can be determined as follows:

d(BSi) = d(BSi) = Mz * R * Ppi (Eq 70)
d(Wl) d(EUx)

d(BSi) = d(BSi) = My(EUy) * R * Ppi (Eq 71)
d(W2) d(EUy)

d(BSi) = d(BSi) = R * Mx * Ppi (Eq 72)
d(W3) d(EUz)

d(BSi) d(BSi) = (1, 0, 0) = Ii (Eq 73)
d(W4) d(X)

d(BSi) = d(BSi) = (0, 1, 0) = 12 (Eq 74)
d(W5) d(Y)

d(BSi) = d(BSi) = (0, 0, 1) = 13 (Eq 75)
d(W6) d(Z)

And finally the T matrix, which can be considered a constraint Jacobian
matrix, is formulated by all the equations above in this section as follows:

LI-R-Mx*Ppl LI*My(EUy)R*ppl Ll*Mz-R-Ppl LI-II LI112 LI1I3

L2*R*Mx*Pp2 L2*My(EUY) R*Pp2 L2-MZ*R-Pp2 L2*I1 L2-12 L2-I3

L3*R-Mx*Pp3 L3-My(EUY)*R*Pp3 L3*Mz*R*Pp3 L3*II L3012 L3-I3

T= 2 *
L4*R*Mx*Pp4 L4-My (EUy) *R*Pp4 L4*Mz*R*Pp4 L4*I1 L4*12 L4"13

LS*R*Mx*PpS L5*My (EUy)*R*Pp5 L5*Mz*R*PpS L5*I1 L5-12 L5*13

L6*R*Mx*Pp6 L6*My (Euy) *RPp6 L6*Mz*R*Pp6 L6*II L6*12 L6*I3

(Eq 76)

5.9 DYNAMIC MODEL

Before the dynamic model can be assembled, several other relationships must
be determined. The Euler equations for an orthogonal inertia system are as
follows:

TORQUE = IP Wp' + (WK x Id) W" (Eq 77)
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Which results in:

TORQxp = IxP * WXp' - (Iyp - Izp) * WyP * Wzp (Eq 78)

TORQyp = Iy, * WyP' - (Izp - Ixp) * WzP * p

TORQzp = IzP * Wz/' - (Ix., - Iyp) * Wx * Wyp

where TORQxP, TORQyp, TORQzp are net torques on platform
Wxp', Wyp' and WzP' are angular accelerations
Wx,, Wyp and WzP are angular velocities
Ix,, Iyp and IzP are inertias

If the angular rates are considerably small, the gyroscopic effects can be
neglected which reduces equation 78 to the following:

TORQx, = IxP * WXp' (Eq 79)

TORQyp = Iyp * Wyp'

TORQzp = IzP * WzP'

These equations are applied in the subroutine "ACCEL" to solve for the
angular accelerations (Wx', Wy', Wz') in platform coordinates. Either
equation 78 or 79 is used, depending on the logical variable "GYROSCOPIC" in
the subroutine. Many trial runs have shown that the gyroscopic effects are
negligible due to the small angular rates of the platform.

Since the nature of platform orientation is based on Euler angles in this
analysis, a means must be determined to transfer the platform (body) axis of
xyz to the Euler angle axis (Axis in which the rotations were actually made).
This may not be clear until one considers that the Euler axis is not an
orthogonal axis and should not be mistaken with the xyz body axis. The
transfer is accomplished in terms of angular rates.

Let the cross-product operation be represented by a matrix (Cr) as follows:

0 -Wzp WyP
Cr= WzP 0 -Wxp (Eq 80)

-Wyp Wxp 0

Where Wx, Wy, Wz represent the components of angular velocity (W) in
platform cordinates.

Thus the results give CrOOX3) V(3xl) = W x V (Eq 81)

Where "x" represents vector cross product

The transformation matrix has the following property:

d(R) = Cr R (Eq 82)
dt

Solving for Cr in equation 82 by taking the derivative of the transformation
matrix results in:

WxP = EUx' - Sin(EUy) EUz' (Eq 83)

Wyp = Cos(EUx) EUy' + Cos(EUy) Sin(EUx) EUz'
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Wzp = - Sin(EUy) EUy' + Cos(EUy) Cos(EUx) EUz'
Solving for the Euler angle rates of equation 70 results in the following:

EUx' = Wx, + Wyp * TAN(EUy) * SIN(EUx) + WzP * TAN(EUy) * COS(EUx) (Eq 84)

EUy' = Wyl * COS (EUx) - Wzp * SIN(EUx)

EUz' = Wyp * SIN(EUx) / COS(EUy) + WzP * COS(EUx) / COS(EUy)
Ap

The Euler angles (EUx, EUy, and EUz) are then determined by integrating the
Euler angle rates (EUx', EUy', and EUz'), which are then applied to the next
iteration of the simulation. Shown in Figure 5-5 is the Dynamic Model Flow
Chart, which presents the steps used for the dynamic model. The actuator
rates (LDi), D matrix, Euler Parameters (el, e2, e3 and e4) and the global
(base coordinate) angular velocities and accelerations (ANGVLb & ANGACb) are
determined as part of the results used to compare with other simulations but
are not required in the dynamic simulation loop shown. A comparison is shown
in the following table (Table 5-3), which compares the results of this
analysis and a Dynamic Analysis and Design System (DADS) simulation. The
results shown are just one of many case runs trialed. The results shown in
Table 5-3 were produced by driving the actuators with a 16735 pound force
except for actuator Q6 which was set at a 14735 pound force. This was one of
the trial runs chosen which exibits motion in all six degrees of freedom.
The time histories generated from both models are generally comparable for
all states of the platform and actuators.
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DYNAMIC MODEL FLOW CHART

Determine Configuration i
(Geometry Vectors Ppi, Bbi, Offset

Fniial Conditions
Itlt i Angular & linear states

!Apply input - constant force

magnitudes Magnitude Fai

TD~eterm~ine Actuator Vector from

current platform orientation Li

Determine net platform torque and
force FORCEb, TORUEp

Determine Accelerations
(Linear and angular ANGACp, TRACCb

Determine velocities
(Integrate accelerations) ANGVLp, XVLb, YVLb, ZVLb

Convert Angular Platform Rates to
Angular Euler Rates EUxD, EUyD, EUzD

Determine Position for Linear and
Euler Angles (Interate Rates) EUx, EUy, EUz, X, Y, Z

Determine Actuator Rates
LDi

SDetermine D matrix D

*
Determine Euler Parameters

F e ýr eO, ell, e2, e3

Determine Global Accelerations and ANGVLb, ANGACb
Rates

• Not required for dynamic model
Figure 5-5.
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Table 5-3 TMBS DYNAMIC MODEL RESULTS

Platform driven by six constant actuator forces as follows:

Actuator Forces (LBS)

QI = 16735 Q2 = 16735 Q3 = 16735 Q4 = 16735 Q5 = 16735 Q6 = 14735

ACSL/FORTRAN MODEL DADS MODEL

T = 0 sec. (Nominal Position for Initial Conditions)
Actuator Length. LI 160.0030 160.0033

(In) L2 160.0030 160.0033
Ld 3 160.0030 160.0033
L4 160.0030 160.0033
L5 160.0030 160.0033
L6 160.0030 160.0033

Actuator Rates LDI 0.0 0.0
(In/Sec) LD2 0.0 0.0

LD3 0.0 0.0
LD4 0.0 0.0
LD5 0.0 0.0
LD6 0.0 0.0

Ruler Angles EUx 0.0
(Rad) EUy 0.0

EUz 0.0

Euler Angle Rates EUDx 0.0
(RedlSee) RUDy 0.0

EUDz 0.0

Translational R 0.0 0.0
Position (In) Y 0.0 0.0

0.0 0.0

Translational RD 0.0 0.0
Rate (In/Sec) 00 0.0 0.0

SD 0.0 0.0

Translational XDD 0.0 0.0
Acceleration (In/Sec**2) YDD 0.0 0.0

8DD 0.0 0.0

Angular ANGACx 0.0 0.0
Acceleration (Rad/Secn*2) ANGACy 0.0 0.0

ANGACz 0.0 0.0

Angular ANGVLx 0.0 0.0
Rate (Rad/Sec) ANGVLy 0.0 0.0

ANGVLz 0.0 0.0

Ruler Para-tera EO 0.0 0.0
Magnitude El 0.0 0.0

E2 0.0 0.0
E3 0.0 0.0

T = 0.1 Sec

Actuator Lengths L1 160.7390 160.7389
(In) L2 160.2940 160.2941

L3 161.0500 161.0498
L4 160.2680 160.2870
L5 159.3640 160.3645
L6 158.6760 160.6763

Actuator Rates LDl 14.8626 14.8622
(In/Sec) LD2 5.0776 5.8775

LD3 21.1902 21.1899
LD4 5.6253 5.6255
LO5 -12.7666 12.7665* L06 -26,'422 -26.8416

Euler Angles EUx -0.010908
EUy 0.00772
EZU -0.00526

Euler Angle Rates EUDx -0.22139
(Red/See) ZUDy 0.15545EUDz -0.10823

Translational X 0.02200 0.02199
Position (In) Y -0.02360 -0.02359

S0.08196 0.08200

Translational XD 0.44319 0.4431a
Rate (In/Sec) YD -0.47022 -0.47022

ZD 1.64128 1.64127

Translational XDD 4.56109 4.56104
Acceleratlon (In/Seo**2) YDD -4.63357 -4.63359

ZDD 16.48560 16.48566

Angular ANGACa -2.26071 -2.26104
Acceleration (Rad/Sec**2) ANGACy 1.63192 1.63114

ANGAkC -1.14698 -1.14731

Angular ANGVLX -0.22056 -0.22056
Rate (Rad/Sec) ANGVLy 0.15663 0.15662

ANGVLt -0.10652 -0.10652

Ruler Parameters EO 0.99997 0.99974
Magnitude El 0.00548 0.00548

E2 0.003:7 0.000367
E3 0.00260 0.00261

29



Table 5-3 TMBS Dynamic Model Results (Continued)

ACSL/FORTRAN MODEL DADS MODEL
T = 0.2 sec.
Actuator Lengths L1 163.0370 163.0361

(In) L2 161.2040 161.2031
L3 164.3460 164.3473
L4 161.1010 161.1006
L5 157.4580 157.4506
L6 154.5130 154.5131

Actuator Rates 1,01 31.5406 31.5383
(In/Sec) LD2 12.4976 12.4955

LD3 45.5623 45.5617
L04 10.4007 10.4095
LDS -25.2434 -25.2426
LD6 -57.3397 57.3301

Euler Angles LUX -0.46495
(Rad) EUy 0.32289

EPu 0.25333

Euler Angle Rates EUDx -0.46495
(Rad/Sec) LUDY 0.32209

EUD2 -0.25334

Translational X 0.0994 0.106993
Po itlon (In) Y -0.09335, -0.09335

0.32895 0.32890

Translational :D 0.92525 0.92521
Rate (In/Sec) 10 -0.91946 -0.91949

0D 3.30214 3.30211

Translational XDD 5.14514 5.14508
Acceleration (In/5ec*62) YDD -4.31345 -4.31353

2DD 16.74060 16.74063

Angular ANGACX -2.45674 -2.4928
Acceleration (Rad/Sec*62) ANGACy 1.91903 1.9460

ANGACz -1.54190 -1.5494

Angular ANGVLx -0.45697 -0.45719Rate (Rad/Sec) ANGVLy 0.33395 0.33344
ANGVLz -0.23842 -0.23869

Euler Parameters El 0.999561 0.999560
Magnitude E1 0.022324 0.022320

E2 0.016000 0.015998
E3 0.011075 0.011073

T - 0.4 sec.
Actuator Lengths LI 173.6080 173.6065

(In) L2 165.4010 165.4003
L3 180.0050 180.0027
L4 163.6400 163.6405
L5 150.4310 150.4314
L6 135.1140 135.1168

Actuator Rates LD1 78.0155 70.00747
(In/See) LD2 30.8977 30.69224

LD3 117.9770 117.96610
LD04 12.8095 12.80059
LD5 -41.2221 -41.22158106 143.5540 -143.54290

Euler Angles 0ux -0.198732
(Red) PUy 0.134897

LUZ -0.125385

Euler Angle Rates EUDx -1.12557
(Rad/IcS) EUDy 0.72869

0UD0 -0.88484 -

Translational X 0.390504 0.390460
Position (In) Y -0.356304 -0.356375

0 1.325780 1.325700

Translational Xo 2.15126 2.15103
Rate (In/Sec) YD -1.67064 -1.67000

2D 6.65600 6.65590

Translational XDD 7.2253 7.22513
Acceleration (In/Sec**2) YDD -3.1547 -3.15488

ZDD 16.3519 16.35225

Angular ANGACx -2.91155 -2.911579
Acceleration (Rad/9ec'62) ANGACy 4.05207 4.051720

ANGACz -3.58219 -3.581805

Angular ANGVLx -1.006570 -1.006509
Rate (Rad/Sec) ANGVLy 0.887446 0.807363

ANGVLz -0.715670 -0.715623

Euler Parameters E0 0.991273 0.991273
Magnitude El 0.094581 0.094573

£2 0.073134 0.073127
£3 0.055526 0.055519

DADS - Dynamic Analysis and Design System Double Precision

ACSL/FORTRAN Advanced Continuous Simulation Language Single Precision
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5.10 RESULTS

The results of this analysis have been compared with DADS output for numerous
cases. In addition, comparisons were made with reference 6, which was a D
matrix study conducted by Contraves, the contractor for the TMBS. The
results were in agreement when the coordinate configuration in Appendix E was
applied. Comparisons were made in the kinematics and also in each element of
the D matrix.

A The comparisons with DADS illustrate that the FORTRAN/ACSL model has a
limited accuracy. This conclusion is based on the fact that DADS uses double
precision and is considered very accurate. The results show that the
platform/actuator positions and rates for the FORTRAN/ACSL model are accurate
only to the third decimal place. The ACSL/FORTRAN model is limited to single
precision due to the nature of ACSL, which only allows single-precision
variables to be passed over to the FORTRAN procedurals.

5.10.1 ASSEMBLING THE COMPREHENSIVE MODEL

Unfortunately, the assembling of the comprehensive model has become a
disappointment at this time. The first attempts to apply the hydraulic
feedback control model from reference 2 to the dynamic model have resulted in
an unstable behavior. Many trial runs were made. Some form of numerical
instability was found in the comprehensive model, as a whole. One of the
first cases ran was a step command for the actuator displacement of equal
value for each actuator. This would be equivalent to a vertical position
step command in terms of the six degrees of platform motion. At first, the
actuator responses were equivalent: however, they began to respond
differently after a short time and eventually went unstable. Since each
actuator is precisely modeled the same way and is driven with the same
command, initial conditions and controller configuration, it was difficult to
understand why the actuators would respond differently.

After many trial runs with the comprehensive model, it was time to go back to
the kinematic model and check numbers. It was thought that an undesirable
torque is applied to the platform causing angular drift motion. Further
investigation was made into the net torque calculations of the platform.
Since this portion was determined in FORTRAN, it was easy to isolate from
ACSL so that double precision could be used. Many cases were tried for the
nominal position by applying the same magnitude of force for each actuator
(Task #2 of main menu or section 5.4). Theoretically, for the nominal
position, having a magnitude of force equivalent for the six actuators,
should produce a net torque of zero. In other words, the torque produced by
each actuator should cancel each other out. It was found that as the
actuator force magnitudes were increased beyond 10,000 pounds (roughly the
value at overshoot), the net torque error would become significant. But when
double precision was applied to the same FORTRAN and case run, the net torque
was zero beyond twenty decimal places. From these results, an attempt was
made to apply double precision to the internal calculations among the FORTRAN
procedurals. However, this did not solve the problem because variables
transferred between FORTRAN and ACSL are restricted to single precision
format.

As a result of the study, attempts are being made to transfer the model to a
simulation language which is better suited for this type of analysis. Further
investigation is being made using ADSIM language. ADSIM is a simulation
language used specifically for the AD100 (Applied Dynamics) computer system
which will be used for other TMBS applications. So far, the results show the
same instabilities which are now believed to be due to an inadequate control
scheme for the TMBS.
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Currently a more detailed model of the TMBS is also being developed which
will include such detail as the swivel joint motion and turret motion.
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VARIABLES AND NOTATION

Explanation Equation Notation FORTRAN/ACSL Variable

Position Vectors

Base Vectors Bbi BASBAS(i,ICOMP),
Vector from base coordinate reference BASE BASE (i, ICOMP)
to base swivel joint

Platform Vectors Ppi PLAPLA(i,ICOMP),
Vector from platform coordinate reference PLATPLAT (i, ICOMP)
to platform swivel joint

Base Swivel Vector BSi BSWIVb(i,ICOMP)
Vector from base coordinate reference
to plaform swivel joint

Actuator Vector Li ACTVEC(i,ICOMP)
Vector from base swivel joint to
platform swivel joint

Magnitude of Actuator Vector Mag Li ACTLEN(i)
Distance representing actuator length

Neutral actuator length - DNEUT
Initial actuator length at
nominal position

Unit Actuator Vector ULi = Li I Mag Li ACTUNI(i,ICOMP)
Unit Vector of Actuator

Platform vector P, Pb Pb(ICOMP)
Vector from base coordinate reference
to platform coordinate reference

Actuator and Swivel Joint Velocities

Platform Swivel Velocity d(BSi) PVLxyz
Point velocity representing platform dt
swivel joint

Actuator Rate Mag LDi ACTVEL(i),
Magnitude of actuator rate LDi

LDARRAY (i)
Force and Torque Vectors

Actuator Force Fai FOACTb (i, ICOMP)
Actuator Force Vector

Magnitude of actuator force Qi Qi
Magnitude of force produced by actuator

Net platform force vector FORCE FORCEb(ICOMP)
Wet fore vector being applied to
the platform

Actuator torque vector Tai TOACT(i,ICOMP)
Torque applied to platform per
actuator

Net platform torque vector TORQUE TORQUp(ICOMP)
Vector for net torque on platform

Euler Angles

Euler Angles EUx, EUy, EUz EUx, EUy, EUz
Euler angles representing angular
platform orientation

Euler angular velocities EUx', EUy', EUz' EUxD, EUyD, EUzD
Time derivative of euler angles
representing Euler angular velocities
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Explanation Equation Notation ,---FORTRAN/ACSL Variable

Platform Angular Motion

Angular velocity vector W, (Wx,Wy,Wz) ANGVLb(l,ICOMP)
Platform angular velocity in (Base coordinates]
term of orthogonal axi .,y. ANGVLp (1, ICOMP)

[Platform coordinates]

Angular acceleration vector WD, WDx, WDy, WDz ANGACp(l,ICOMP)
Platform angulr acceleration Wr, Wxf , Wyf ,Wzf 0

Transformation Matrices (3x3)

Rotation x Rx
Rotation y Ry
Rotation z Rz
Individual rotations about axis

Forward transformation Rxyz, kR., R TRANS(3,3)
Forward transformation matrix
(Wx3) from platform to base coordinates

Reverse transformation Rzyx, bRp, R-1  RTRANS (3, 3)
Reverse transformation matrix
(3x3) from base to platform coordinates

Vector Cross Product for Rate

(Wp x Ppi)p (Wp x Ppi)p WXRp(i,ICOMP)
Angular velocity cross platform
vector In platform coordinates

Velocity Vectors

Platform velocity vector PVLb, (XVLb,YVLb,ZVLb), PVLb(ICOMP),
Velocity of platform coordinate V (XVLb, YVLb, ZVLb)
reference

Rate Matrix Formulation

S matrix S - Sa Sb Smat(6,6)
(6x6) matrix which transform
I degrees of freedom of platform
rates to actuator rates

S inverse matrix S-* Sinmat(6,6)
(6x6) matrix which transforms
actuator rates to 6 degrees of
freedom rates of platform

Sub-matrices of s matrix Sa COMPA S (i, ICOMP)
(6ox) matrix which comprises Sb COMPB:S (i, ICOMP)
a portion of a matrix

Vector Vi Vip, VIT(i,ICOMP)
Vector used to formulate S
aubmat r x Ba

Vector Pb-Bbi
Vector from base swivel to Pb-Bbi PMINUSXI (i, ICOMP)
platform origin

Inverse Kinematic Process

Infinitesimal rotation Mx Mx(3,3)
matrices My My(3,3)

My(EUy) My_PSI(3,3)
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Mz Mz (3, 3)
Explanation Equation Notation FORTRAN/ACSL Variable

Iterative Vector Wkn = W(i)
Iterative vector describing (EUx, EUy, EUz, X, Y, Z)
the current six degrees of freedom (for k=l, 2,3,4,5, 6)
of platform orientation

Next Iterative Vector Wka + I NEXTw(i)
Next iterative vector describing

the six degrees of freedom

ID Matrices Ii I1
(3x3) zero matrix except for a 1 in 12 12
corresponding diagnol term 13 13

F vector Fi Fi(i)
Squared difference between actuator
length known and determined from six
degrees of freedom platform approximation

Error tolerance Epsilon wEPS(i)
Error between six degrees of
freedom platform orientation
MDelta between current and
previous iteration)

T matrix (6x6) T Tmat(6,6)
T matrix Is defined as!

d(Fl) - Ttk where I row
d(Wk) k column

D matrix formulation

D matrix D Dmat(6,6)
0 matrix (6x6) which will be
used In the controller to dynamic
decouple the actuators in the rate
loops

Inertia/mass matrix I Amat(6,6)
Matrix which includes the net
Inertiax and mass of platform/turret

Inertia and mass

Inertia array IP INERTp(ICOMP)
Inertia values in platform
coordinate reference

Mass m RMASS
Net mass of platform/turret

Inertia/mass matrix IP Arnat(6,6)
4x6 matrix containing mass
and Inertias In platform
reference

Note: All FORTRAN/ACSL variables denoted with 'if refers to index of actuator
(1 of 6).

Variables denoted with ' ICOMP' refers to index of vector component where
ICOMP=l,2 or 3 refer to x,y or z respectively.

Angular motions are used with i=l simply because the common subroutines used
are written for vectors with 2 dimensional arrays. (Angular motion is not
really associated with an actuator index)

Additional notation is added to variable names such as subscript 'b' and 'p'
used to denote base or platform coordinate reference.
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PROGRAM TMBSKINEMATICS

* A. L. HELINSKI

* NOTES: This program is simply an experimental study in the kinematics
* of the TMBS. Its subroutines will be eventually used in ACSL
* or possible formatted for ADSIM. The first part concludes my
* own study of the dynamics using Newton-Euler equations.
* The second part is following the Contraves method in determining
* the S & D matrix.

* All vectors related to the actuators are formatted as follows:

* VECTOR(IACT,ICOMP) where
* IACT is ACTUATOR index IACT=1,6
* ICOMP is COMPONENT index ICOMP=1,2,or 3
* for X,Y,or Z

* This format includes such vectors as ANGULARVEL because
* of the general used subroutines.

* The final character of vector-variables will have a "b"
* "p". These represent "Base Cordinates (Global)"
*latform Cordinates (Body)Local Cordinates " respectively.

* Cordinate systems and TMBS geometry is described in
* Subroutine CONFIG.

REAL BASBAS(6,3),PLAPLA(6,3)
REAL Pb(3),TRANS(3,3),R TRANS(3,3)
REAL FOACTb(6,3)
REAL ACTLEN (6) ,ACTVEC(6,3),TOACTp(6,3)
REAL PLAb(6,3) ,BSWIVb (6,3)
REAL COM_ EUz,COMEUy,COM EUx
REAL EUzEUyEUx-
REAL ACT LEG COM(6)
REAL COM-x,COM Y,COM Z
REAL FORtEb (3)7TORQUp(3),FOACTp(6,3)
REAL INERTp (3),ANGACp(6,3)
REAL ACTUNI(6,3)
REAL ANGVLb (6 3),ANGVLp(6,3)
REAL WXRp(6 3 ,WXRb (6,3)
REAL PVLb( 31,PVLxyz(6,3) ,ACTVEL(6)

* ADDITIONAL VARIABLES USED IN THE CONTRAVES SECTION

REAL Smat(6,6),Sinmat(6,6),Dmat(6,6)
REAL LD(6),RATE(6)

* ADDITIONAL VARIABLES USED FOR TRANSFORM ACTUATOR LENGTHS TO
* SIX DEGREES OF FREEDOM

REAL L(6 ,w(6),Tmat (6,6),Tinmat(6,6) Fi(6)
REAL Mz( ,3)My(3,3),M,_
REAL NEXTw(6),wEPS(
DIMENSION NDX(6)
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CHARACTC0*1 REPLY****W***2.***************************ww*********** N*****." "*

PARAMETERS ********************************************

INERTp (1) = 59000. 1 RING inertia in x
INERTp (2) = 59000. 1 RING inertia in y
INERTp(3) = 118000. 1 RING inertia in z
RMASS=468 .75 1 RING MASS
DNEUTRAL=160.0033 ! ACTUATOR LENGTH FOR NEUTRAL POSITION

* Call CONFIG to determine goemetry of platform and base.
* Creates the vectors to describe the swivel points.

CALL CONFIG(BASBAS,PLAPLA,HGT)

2000 WRITE (5,1998)1998 FORMAT//////////////////

+ 'This program is written strictly to play with',
+ ' the kinematics of the TMBS.',/, Once every part',
+ ' of this program is correct it will eventually lead',/,
+ ' into a ACSL simulation for a complete TMBS model',//,
+ ******** PLAY MENU *********'/I
+/,' (1) Given the six degress of freedom',/,
+ ' What are the actuator lengths ?',//,
+ /,' (2) Given the six degress of freedom and',
+ the six actuator FORCES'/,
+ ' What are the net TORQUE and FORCE on the platform?',//,
+ ' (3) Given the six degrees of freedom end the six',
+ ' degress in rates' /,' What are the actuator velocities?',
+//,' (4) CONTRAVES NOTES (S and D matrix):',//,
+ ' (5) Given actuator lengths what are the six degrees?',//,
+' (6) Stop Quit')

WRITE(5,14)
14 FORMAT (/ ' ENTER 1,2,3,4,5 or 6 ')

READ(5,*)IMENU
IF IMENU .EQ. 1)GOTO 408
IF( IMENU .EQ. 2)GOTO 429
IF( IMENU .EQ. 3) GOTO 819
IF (IMENU .EQ. 4) GOTO 820
IF( IMENU .EQ. 6) STOP
IF IMENU EQ. 5)GOTO 3000
GOTO 2000
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*******.. Given the 6 degrees of orientation, ** ***************
what is the length of each actuator.

408 CALL ASKORIENT(EUy,EUx,EUz,Y,X,Z)

CALL ACTUATOR(Pb,BSWIVb ACTVEC,EUx,EUy,EUz,
1 + Y,X,Z,HGT,BASBAS,PLAPLA)

* CALCULATE DESIRED ACTUATOR LENGTHS

* ACTLEN(IACT) = NORM [ ACTVEC(IACT) I

DO 338 IACT= 1,6
CALL NORM(IACT,ACTVEC,ACTLEN,ACTUNI)

338 CONTINUE

** WRITE OUT LEG LEGNTH COMMANDS

WRITE(5,667)
667 FORMAT(////,'**** ACTUATOR LENGTHS ******t)

DO 341 IACT=1,6
ACT LEG COMN(IACT) =ACTLEN(IACT)-DNEUTRAL
WRITEj5T1999)IACT LEG COM(IACT),ACTLENjIACT)1999* FORMA'(' ACTUATOR LEG-COMMAND 1,11,1 = ,F12.4,

+ 4X, ' LENGTH= ',F12.4)
341 CONTINUE

WRITE(5,892)
892 FORMAT (/,' HIT RETURN TO CONTINUE')

READ(5,*)
GOTO 2000
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****************************** **************************************

**** Given the actuator 7:RCES and the 6 degree orientation, ****
** what is the total force ano torque on the platform.

429 CALL ASKORIENT(EUy,EUx,EUz,Y,X,Z)

WRITE(5,418)
418 FORMAT(//,' Enter the 6 actuator FORCEb separated',

+ /.' by commas',/,' for actuator 1,2,3,4,5,6')
READ(5,*)Q1,Q2,Q3,04,Q5,Q6

******** ACTUATOR FORCEb Q1,Q2,Q3,Q4,Q5,Q6 *

* DETERMINE FORCE VECTOR BY KNOWING THE MAGNITUDE OF FORCE
* AND NORMALIZING THE ACTUATOR VECTOR (ACTVEC(IACT ICOMP)
* ACTVEC IS THE VECTOR DESCRIBING THE ACTUTOR LENGtH AND
* ORIENTATION.

CALL ACTUATOR(PbBSWIVb,ACTVEC,EUx,EUy,EUz,Y,X,
+ Z,HGT,BASBAS,PLAPLA)

DO 448 IACT=1 6
CALL NORM(IACT,ACTVEC,ACTLENACTUNI)

448 CONTINUE

DO 410 IACT=1 6'
DO 411 ICOM=1,'3

ACTUNI(IACTICOMP)
+ ACTVEC(IACT,ICOMP)/ACTLEN(IACT)

411 CONTINUE
410 CONTINUE

* CREATE FORCE VECTORS -FOACTb( IACT, X XY, or Z)
i -6, (1,2 or 3)

* FORCEb IN BASE CORDINATES

DO 413 ICOMP=1,3
FOACTb 1,ICOMP =QI*ACTUNI (1,ICOMP
FOACTb 2,ICOMP =Q2*ACTUNI 2,ICOMP
FOACTb 3,ICOMP =Q3*ACTUNI 3,ICOMP
FOACTb 4,ICOMP =Q4*ACTUNI 4,ICOMP
FOACTb 5,ICOMP =Q5*ACTUNI 5,ICOMP
FQACTb 6,ICOMP =Q6*ACTUNI 6,ICOMP

413 CONTINUE

* CONZ FORCEb IN BASE CORDINATES TO PLATFORM CORDINATES

FORCEb:- BASE CORD. FOACTb(IACT 1,2 or 3)
PLATFORM CORD. FOACTp (IACT, 1,2 or 3)

DO 431 IACT=1 6
CALL REVERiETRANS(IACT,EUy,EUxEUz

+ FOACTb, OACTp)
431 CONTINUE

** ACCUMULATE THE FORCEb AND TORQUp IN PLATFORM CORDINATES

**** INITIAL=O.

DO 417 ICOMP=1,3
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F100CEb (ICOMPJ)=0. I INITIAL PREVIOUS At'AYS TO ZERO
TORQUp ( COMP )=0.

417 CONTINUE

DO 414 IACT=l 6 1 FORCEb IN BASE CORD.
FORCEbj (1)ORCEbj(1)+FOACTb ( ACT i) I FORCEb IN X
FORCEb (2)=F ORCEb (2) +FOACTb (IACT 2) 1 FORCEb IN Y
FORCEb (3)=FORCEb (3) +FOACTb (IACT,3) ! FORCEb IN Z

* DETERMINE PLATFORM TORQUE FROM EACH ACTUATOR lN PLATFROM CORD.

CALL CROSS (IACT, PLAP LA, FOACTp ,TOACTp)

+ ~WRITEJ5,446ýIACT TOACTp( IACT, 1) ,TOACTp( IACT,2).

446 FORMAT(//,' TORQUE FROM ACT',I1,' EUx= ',
+ F12.4,' EUy=',F12 .4,1 EUz= J,12.4,

TORQUp (1)=TORQUp (1 + TOACTp(IACT1 li! TORQUp IN X
TORQUP (2) =TORQ~ 2 + TOACTp I IACT,2) I TORQUp IN Y
TORQUp (3) =TORQ ~ (3+ TOACTp (IACT,3) I TORQUp IN Z

414 CONTINUE

* + FOCbfACbflFk~(

444 FORMAT(//,
+' INSTANTANIOUS TORQUE :,/'(PLATFORM CORDS)',/
+1 '= F15.6 ' Y- I F15.6 1 Z= ',F15.6//,
+' INSTANTANIOUS F6RCE :', /, (BS CORDS)',/,

X= ',F15.6, 5= 'F56, Z= ',F15.6,
+///I, HIT RETURN TO CONTINUE')

READ(5,*)

* COMPUTE LOCAL PLATFORM ANGULAR ACCELERATION
* ANGULAR ACCELERATION = SUM OF TORQUP / INERTIA

DO 521 ICOMP=1,3
ANGACp 1 1ICOMP) =TORQUý(CM& NRp(ICOMP)/
WRITE (5.,7BgICOMP,'ANGAplC P()IOM)

789 FORMAT( , ANGAC ('I1,'.)',4X,F12.8)
521 CONTINUE

GOTO 2000
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****************. •***********************'**

**** Given the 6 degree orientation and 6 degree rates,
**** what are the actuator velocities?

819 CALL ASK ORIENT(EUy,EUx,EUz,Y,X,Z)

WRITE(5,510)
510 FORMAT(// I Enter ANGULAR Velocities /PLATFORM Cordinates '

S,' (In RAD/sec)',/,' (x,y, and z Separated',
* 'by commas)'

READ(5,*)AGVLpx,AGVLpy,AGVLpz

DO 3029 IACT=1,6
ANGVLp(IACT,1)=AGVLpx
ANGVLp(IACT,2 )=AGVLpy
ANGVLp(IACT,3 )=AGVLpz

3029 CONTINUE

WRITE(5,516)
516 FORMAT(' Enter LINEAR Velocities/BASE CORDS',/,

+ ' (X.,Y and Z " Separated by commas)')
READ(5,*)XVLb,YVLb,ZVLb

PVLb(2) = YVLb
PVLb(1) = XVLb
PVLb (3) = ZVLb

DO 367 IACT=1,6
CALL CROSS(IACT,ANGVLp PLAPLA,WXRp) ! w x r in plat cords.
CALL FORWARDTRANS(IACT,EUy,EUx,

+ EUz,WXRp,WXRb) ! wx r in base cords.
DO 368 ICOMP=1,3

- I point velocity on platform
PVLxyz(IACT,ICOMP)=PVLb(ICOMP)+WXRb(IACT,ICOMP)

368 CONTINUE
367 CONTINUE

* FIND UL UNIT ACTUATOR VECTOR

CALL ACTUATOR(PbBSWIVb,ACTVECEUx,EUy,EUz,Pb,Y,X,
+ Z,HGT,BASBAS,PLAPLA)

* FIND UNIT VECTOR OF ACTUATOR
.

DO 499 IACT=1 6
CALL NORM(IACT,ACTVEC,ACTLEN,ACTUNI)

499 CONTINUE

WRITE(5,5789)
5789 FORMAT(////, ACTUATOR VECTOR:',///)

* DO 401 IACT=1,6
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+ WRIT Et5102IA T ATjE(ýCTNI(ACTUN~~-l),

*402 FORMAT(' ACT" ill 3X ' MAGNITUDE=',,
+ F9.3,3X,' ACTUATOR UNIT ,'X= 'F6.3s1X,
+ 'Y= ',F6.3,1X,'Z= ',F6.3)"

*401 CONTINUE

* ~WRITE (5,404)
*404 FORMAT(//,' Hit Return To Continue')

* READ(5,*)

* TAKE DOT PRODUCT OF ACTUNI AND PVLxyz TO
* FIND THE ACTUATOR VELOCITY

DO 401 IACT=1,6
ACTVEL( IACT)=0.

401 CONTINUE
DO 4445 IACT=1,6
DO 4446 ICOMP=1,3
ACTVEL(IACT)=

+ ACTVEL(IACT) + ACTUNI(IACT,ICOMP)*PVLxyz(IACT, ICOMP)
4446 CONTINUE
4445 CONTINUE

WRITE (5i9624)
9624 FORMAT(///f/////,' LINEAR POINT VELOCITIES',

+1 ON PLA FOR ',//,18X I SWIVEL POINT VELOCITY (XYZ) '
+1 ACTUATOR VELOCITY'9//)
DO 396 IACT=1 6
WRITE(5,962i) IACT,PVLxyz( IACT,1),PVLxyz(IACT,2),

+ PVLxyz (IACT ,3),ACTVEL ( IACT)9623 FORMAT( X,'ACTUATOR(',Il,' ) ',12.4,3XF12.4,
36+ COTNE3X,F12.4,8X,Fl2.4)

WRITE (5,4507)
4507 FORMAT(' HIT RETURN TO CONTINUE-)

GOTO 2OO0
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*.****************** FRGM CONTRAVES NOTZ *****************************

*** BASED ON PROPOSAL FOR A TANK MOTION BASE SIMULATOR P-25615 *
P-25615 VOLUME 2 - APPENDICES

* PART 1 FROM PAGE A-17
* SOLVE FOR THE A AND B MATRIX

** ASK FOR THE SIX DEGREES OF FREEDOM

820 CALL ASKORIENT(EUy,EUx,EUz,Y,X,Z)

* Find S matrix and S INVERSE matrix

CALL SMATRIX(EUy ,EUx,EUzY,X,Z
+ BASBAS,PLAPLA, HGT,Smat,Sinmaet

** Determine D matrix

CALL DMATRIX(Sinmat,INERTp,RMASS,Dmet)

677 WRITEB,633)'
633 FORMAT(///, ** CONTRAVES MENU **

+ ' (1) Given the 6 actuator rates, ',
+ ' what are the degree rates?',/,
+ ' (Based from S inverse matrix)',///,
+ ' (2) Given the 6 degree rates, I,
+ ' what are the 6 actuator rates?',/,
+ ' (Based from the S matrix)',///,
+ ' (3) Return to main menu')

READ(5,*)ICHOICE

IF(ICHOICE .EQ. 3) GOTO 2000

IF(ICHOICE .EQ. 1)THEN

WRITE(5,634)
634 FORMAT(///,' Enter the 6 actuator rates -

+ ' LD1,LD2,LD3,LD4,LD5,LD6 separated by commas')

READ(5,*)LD(1),LD(2),LD(3),LD(4),LD(5),LD(6)

CALL RATES(ICHOICE,LD,Smat,Sinmat,RATE)

DO 4276 IACT=1,6
ANGVLp (IACT, 1)=RATE(1)
ANGVLp (IACT,2 )=RATE(2)
ANGVLp(IACT,3 )=RATE (3)

4276 CONTINUE
*

WRITE(5,40)RATE(l) IRATE(2 RATE(3 ~RATE(4),

40 FORMAT(//////,' RATES: ',//,
0 +' ANGULAR RATES:',//,
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+, X ',F9.3,' RAD/SEC',/,
+' V ',F9.3,' RAD/SEC',I,
+f Z ',F9.3,' RAD/SEC',///,
+' Trans RATES*',//
+' X ',F6.1,' IN/SEC',/,
+' Y ',F9.3,' IN/SEC',/,
+' Z ',F9.3,' IN/SEC',//,
+' Hit Return to Continue')

READ(5,*)

GOTO 677

ENDIF

IF(ICHOICE .EQ. 2)THEN
WRITE(5,635)

635 FORMAT (//,' Enter the 3 angular rates (PLATFORM CORDS)',
+ ' x, y. z separated by commas',/)

READ(5,*)ANGVLp(l,1) ,ANGVLp(1,2),ANGVLp(1,3)
WRIT E15,636)

636 FORMA0(///,' Enter the 3 Translational rates,
+ 'Base cords',!,
+ X , separated by commas',/)

REAU(5,*)XVLUYVLb,ZVLb

RATE 1) =ANGVLp (1,1
RATE 2) =ANGVLp (1,2
RATE 3) =ANGVLp(1,3)
RATE 4) =XVLb
RATE 5) =YVLb
RATE 6 =ZVLb
CALL RATES(ICHOICE,LD,Smat,Sinmat,RATE)
GOTO 677

ENDIF
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* Given the Actuator Lengths, what are the 6 degrees orientation?
* This section is based on notes from Contraves on the inverse
* TRANSFORMATION this involves the Newton Raphson method.

* W = (EUx,EUy,EUz,X,Y,Z+hgt)
* Take initial quess on W

* Initial Matrices based on the generation of infinitesimal *
* rotations about x, y, and z. *

3000 MX(N 1, :0Mx 32 =0.
Mx13 = 0.
Mx 2,1 = 0.
Mx 2,2 =0.
Mx 2,3 = -1.
Mx 3,1 = 0.
Mx 3,2 = 1.
MX13,3 = 0.

My(1,1) = 0.

My~l 2) 0.
1,23 = 0.

My( 2,2) = 0.
My(2,3)=O
My(3,1) = -1.
My(3,2 = 0.
My(3,3 = 0.

Mz 1,1 0.
Mz 1,2 =-1.Mz 1,3 = 0.
Mz 2,1 = 1.
Mz 2,2 = 0.
Mz 2,3 = 0.
Mz 3,1 = 0.
Mz 3,2 = 0.
Mz 3,3 = 0.

WRITE1(5,3001)
3001 FORMAT(' Enter the actuator lengths separated by commas',

+ (In Inches)',
+/ 'Example 160. 160. 160. 160 160.,160.')

READ(5,*) L(1),L(2),L(3),L(4),L(5), L(6)

3067 WRITE(5,3011)
3011 FORMAT( Iterations are governed by:.'.,//,

+ (1) Number of Iterations //,
+ (2) An Epsilon cost error limit',///,
+ ' Enter 1 or 2')

READ(5,*)IGOV
IF(IGOV .NE. 1 .AND. IGOV .NE. 2)THEN

GOTO 3067
ENDIF
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IF"GOV .EQ. 1)TWEN
WRITE (5,3012)

3012 FORMAT (' Enter limit on iterations')
READ(5,*)ITERLM

ELSE
WRITE(5,3013)

3013 FORMATJ' Enter Epsilon for each degree of freedom',
+ separated by commas',/,' (Ux,EUy,EUz,'
+ READ(5,*WwEPS 1),wEPS(2),wEPS(3),wEPS(4),
+ wEPS(5),wEPS(6)

ENDIF

* Take a wild initial guess on the six degrees *
-* (In ACSL this will be based on previous value) *

* w(icomp=1,6) = (rollpitch,yaw,fa,ss,vert) *

* FIND AVERAGE ACTUATOR LENGTH
.

SUM=O
DO 3005 IACT=1,6

SUM=SUM+L(IACT)
3005 CONTINUE

AVERAGE=SUM/6.

w 1 =0. I ATAN((L(1)-L(6))/18 ) ROLL initial guess in Rads
w 2)=0. I ATAN( L( 4) -L 1)/17 PITCH initial guess in Rads
w 3 =0. I YW initial guess in Rads
w 4 =0. I FA initial guess in In
w 5 =0. I SS initial guess in In
w 6 =AVERAGE ! VERT initial guess in In

-ITERATION=1
.

5000 CALL TMATRIX(l,w,PLAPLA BASBASHGT,Mx,My,Mz
+ ,Tmatji)

* Find Tinmat
.

N=6
CALL INVERSE_MATRIX(Tmat,TinmatINDX,N)

Determine new guess on w(l)

* By Newton Raphson method

*6 (jn+1) _ w(n) 0-. fi + Sum [df(i) / dw(k)] * (w(k) k)
* k=1

* or by Contraves notes; win+l) = win) - Tinmat * fi
* 6x1 6x1 6x6 6xl

DO 3070 IROW=1,6
NEXTw(IROW)= 0.
DO 3080 ICOL=1,6

NEXTw(IROW)=NEXTw(IROW) -
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+ Tinmat(IR0W,ICOL'*F4(IOL
3080 CONTINUEICL

3070 NEXTw~ IROW)=NEXTw( IROW)+w( IROW)
300*NI~

IF(IGOV .EQ. )THEN
IFSITERATiON, LE. ITERLM)THEN
GOTO 3053

ENDIF
ELSE

IEXCEED =0
DO 3019 I=1,6
IFJXFi I) .GE. wEPS(I) )THEN

ICE ED=1
WRITE (5,3016)ITERATION-1,I

3016 FORMAT (2X,I3,' Iteration 1,I1,' element of w exceeded')
ENDIF

3019 CONTINUE
ENDIF
IFýIEXCEED *.EQ. 1)THEN

ENDIF

*Write Results

DO 3056 I=196'
3056 co1R=NEXTw( I)

WRITE(C5,3049) ITERATION
3049 FORMAT(' ITERATION = '13,13 I

WRITE (5 ,3040)L(1),L(2),L(3) ,L(4),L(5),L(6)
3040 FORMAT( //I,' L = -,6(2X,GB.3))

WRITE ( 53043)
3043 FORMAT(/I,' w = roll,pitch,yaw,fa,ss vert-hgt0/

WRITE (5 ,3041)w(1),w(2),w(3) W(4),w(5;,w (6)-HGtT"
3041 FORMAT ('w='62XG.3)

* ~ ~~~~~ WRT ,05F 1) Fi() , Fi3),Fi(4),Fi(5),Fi(6)
3045 FORMAT (I'Fi = ,6i2X,G8 .3))

WRITE5 (5,3047)
3047 FORMAT (' HIT RETURN TO CONTINUE')

READ(5,*)

GOTO 2000

3053 ITERATION=ITERATION+1

DO 3057 I=1,6
3057 cojI)=EXTw(I)

GOTO 5000

END
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APPENDIX C

LISTING OF DYNAMIC MODEL/ACSL PROGRAM
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PROGRAM ?VNAMICS

"ft* A. L. HELINSKI

"* All vectors related to the actuators are formatted as follows:*

"VECTOR(IACT,ICOMP) where
ff* IACT is ACTUATOR index IACT=I,6

"ICOMP is COMPONENT value ICOMP=I,2,or 3 "
"for X,Y,or Z

"ft* This format includes such vectors as ANGULAR VEL because "

"ft* of the general used subroutines.

"Cordinate systems and TMBS geometry is described in"* Subroutine CONFIG.

cinterval cint=O.05
"LEG COMMAND FOR 6 ACTUATORS"

" REAL LCOM(6,1000)"
"UNIVERSAL GEOMETRY VECTORS"

REAL BASBAS(6 3),PLXPLA(6,3) HGT
VETORS DESCRIBING SWIVELS AND ACTUATORS"

REAL Pb(3 ,BSWIVb(6,3),ACTVEC(6,3)
"I.ATUATOR MAGNITUDE AND UNIT'VECTOR"

REAL ACTLEN (6) ,ACTUNIJ(6,3)
"PLATFORM FORCEb AND TORQUp "

REAL FORCEb(3),TORQUp(3)
"ANGULAR & TRANS ACCELERATIONS"

REAL ANGACp(6,3),TRACCb (6,3)"FAMOUS ORIENTATION MATRIX S & S inverse"
REAL Smat(6,6),Sinmat(6,6)

VECTORS USED FOR ACTUATOR RATE CALCULATION"
REAL RATE(6),LDARRY(6)

"FAMOUS D MATRIX Decoupling Matrix used in contEUxer"
REAL Dmat(6,6)

"EULER PARAMETER e for DADS comparison
REAL eO,el,e2,e3

"GLOBAL MOTION Velocity & Acceleration "
REAL ANGVLb(6,3),ANGACb(6,3)

"PLATFORM RATES
REAL ANGVLp(6,3)

ARRAY INERTp( 3)
"INERTIAS X,I , Z, PLATFORM"

CONSTANT INERTp = 59000.,59000.,118000.
"MASS "

CONSTANT RMASS=192.
"NEUTRAL ACTUATOR LENGTH"

CONSTANT DNEUT=160.0030

INITIAL

" CALL CONFIG TO DEFINE PLATFORM AND BASE VECTORS "
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PROCE:MiRAL(FORCEb,TORQUp=Ql,Q2,Q3,Q4,Qr,Qý...
Efy, EUx,EUz,ACTUNI ,rAPLA,RMASS

CALL NETF6RCE (FORCEb,TORQUp,Q1,Q2,Q3 Q4,Q5I,Q6..
,EUy EUx EUz ACTUNI,PLAPLA,RMASS)

END$"PROCEDURA LNETfORCF

DETERMINE ACCELERATIONS-

PROCEDURAL(ANGACp,TRACCb=TORQUp, FORCEb...

CALL ACCELJANGA p TRACCb TORQ p,FORC b...
,AGVLpx iGVLPY AGVLpz,INERTp,RMASS)

ENDSI"PROCEDURAL AC EL"

DETERMINE ALL RATES

AGVLpx=INTEG (ANGACp (1,1) ,O.
AGVLpy=INTEG ANGACp (1,2) :0:1
AGVLpz=INTEG (ANGACp (1,3) 0.)

PROCEDURAL( EUxD, EUyD, EUzD=EUx, EUy EUz
* AGVLp(,.AGVLpy,AGVLpzj

CALL EULERRA!ESEUxD,EUýD.EUzDEUx5 EUy,EUZ...

ENDS"Of euler rate"

XVLb=INTEG (TRAC ~ (110,

YVLb=INTEG (TRACCb (1,2) 0.)

EUx=INTEG (EUxD,O.)
EUy=INTEG (EUyD,O.)
EUz=INTEG (EzD,O.)
Y=INTEG ( VLbD0
X=INTEG (XVLbO.)
Z=INTEG (ZVLb,O.)

" DETERMINE S AND S INVERSE MATRIX

PROCEDURAL(SmatSirimat=EUy,EUx,EUz,Y,X,Z ...
,BASBAS, PLAPLA,HGT,BSWIVbACTVEC)

CALL SMATRIX (SmatSinmaty ,ExEUZ YX Z
,BASBAS,PLAPLAHGTBSWiVb , ACtUVC

END$"Of Smatrix procedural"

" DETERMINE ACTUATOR RATES LD by S MATRIX method"

PROCEDURAL (LDARRY=Smat,Sinmat,AGVLpx.
RAE'AGVLpy ,AGVLpz, XVLb,YVLb,ZVxLbRATE)
R[(21)=AGV Lpx

RAT (2 AVLpy
RATE (3) =AGVLpz
RAT (4 XV~b
RATE (5) =YVLb
RATE (6)=ZVLb
CALL RATESý2 ,LDARRY,Smat,Slnmat,RATE)

END$" OF RATES
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CALL CONFL%3(BASBAS,PLAPLA,HGT=)

INITIAL CONDITIONS
" Note also inii ntegrators"

6 DEGRESS"
EUx=O.
EUy=O.
EUz=O.
x=O.
y=O.
z=O.

" 6 DEGREE RATES"
EUxD=O.
EUyD=O.
EUzD=O.
XVLb=O.
YVLb=O.
ZVLb=O.

DERIVATIVE
" DETERMINE ACTUATOR VECTOR AND BASE SWIVEL VECTOR"
PROCEDURAL (Pb,BSWIVb,ACTVEC=EUx EUy..

,EUzY, X ,Z,HGT,BASBAS,PLAPLAI
CALL ACTUATOR( Pb, BSWIVb ACTVEC EUx, EUy.

EUz Y X Z HGT BASBASPLAPLAi
ENDP" OP PROCEDURAL"

" DETERMINE ACTUATOR LENGTH ACTLEN and Lii"

PROCEDURAL (Ll,L2,L3,L4,L5,L6,ACTUNI,ACTLEN=ACTVEC)
CALL Ný,M ( 1.ACTVEC,ACTLEN,ACTUNI)
Li = ACTLEN(1) -DNEUT
CALL NORM (2,ACTVEC,ACTLEN,ACTUNI)
L2 = ACTLEN(2)-DNEUT
CALL NORM (3,ACTVEC,ACTLEN,ACTUNI)
L3 =ACTL EN(3)-DNEUT
CALL NORM (4,ACTVEC,ACTLEN,ACTUNI)
L4 = ACTL EN(4)-DNEUT
CALL NORMJ(5,ACTVEC,ACTLEN.ACTUNI)
L5 = ACTLEN(5)-DNEUT
CALL NORMJ(6,ACTVEC,ACTLEN,ACTUNI)
L6 = ACTLEN(6)-DNEUT

ENDS" of procedural"

if ****** Magnitude of Actuator Forces *****

Q1=16735.55
Q2=16735.55
Q3=16735.55
Q4=16735.55
Q5=16735. 55
Q6=14735. 55

" DETERMINE TOTAL FORCEb AND TORQUP ON PLATFORM
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**********R Y I ****************

LD2=LDARRY 2I
LD2=LDARRY 32
L03=LDARRY (3
L04=LDARRY (4
LD5=LDARRY (6

DETERMINE 0 MATRIX-

" PROCEDURAL (Dmat=Sirimat INERT& ,RMASS)"
" CALL DMATR IX( Dmat,Slnmat,INERfp,RMASS)"
END Of Dmatr ix procedural"

~~~ ~DETERMINE EULER PARAMETERS *******
if **~~ for comparisons with DADS * ****"

PROCEDURALje ( el,e2,e3=EUx,EUy,EUz)
CALL EULERPARAM (eO,el e2,e3,EUx, EUy,EUZ)

ENDS" of EULER PAR AMETEA"

GLOBAL MOTION (Inertial References Frame) ***
"**~ Convert Angular velocity and Angular Acceleration'"
"******in platform cordinates to base cordinates for

comarionwith DADS output.

PROCEDURAL(ANGVLb,ANGACb=EUx,EUY,EI~z,AGVLpx,AGVLpy..
ANGVpll~)=AG~pxAGVLpz)

ANGVLp (1,2) AGVLpy
ANGVLp 1,3) =AGVLpz
CALL PORI'1RDRANS 1,EUY:EUx,EUzANGVLp,ANGVLb)
CALL FORWARDIRANS ( ,EUy ,EIx,EUz.ANGACp.ANGACb)

END$" Of Global"
END$OF DERIVATIVE"
DERIVATIVE

termt(T .GE. 5)
END$"OF DERIVATIVE"
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APPENDIX D

LISTING OF FORTRAN SUBROUTINES

COMMON TO APPENDIX B & C
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SUBROUTINE SECTION

SUBROUTINE CONFIG(BASBAS,PLAPLA,HGT)

* This subroutine contains the geometry configuration of the platform
S* and base of the TMBS. Thus che platform cordinate system and base
* cordinate system are derived here by means of determining the vectors
* from the origin (center) to the swivel points.

* INPUT: NONE
* OUTPUT: BASBAS(IACTICOMP) IACT=1,6 ICOMP= 1,2 or 3
* (Base vectors in base cordinates) X,Y or Z
* PLAPLA(IACT,ICOMP)
* ( Platform vectors in platform cordinates)
* HGT (Neutral position distance between the base and
* platform cordinate systems.)

REAL BASBAS(6,3) PLAPLA(6,3)
SREAL*8PIANGLE,6ELB

HGT= 153.73 - 28. 1 INITIAL DISTANCE BETWEEN BASE & PLATFORM

C BASE GROUND PLATFORM UNIVERSAL CORDINATES:
C VECTOR CONFIGURATION FOR CURRENT DESIGN
C
C
C RB= RADIUS OF BASE = 125.0 IN
C
C "0" REPRESENTS ACTUATOR SWIVEL POINT
C

WRITE(5 669)66 9 FORMAT(; 1,/,
+1 ACT5+' ACT5,/ ,+ t:;
+' ACT4 0 TOP VIEW OF BASE
+' 0

+1S /- + ' .
9/9

+' I /,

+f 'I (GUN) 0 ACT6
+f 120 X ------
+t 720 0 ACT1

+' /

p+' / ,5/,
+' / ,/5
+' A /3 ,/,

+1 0 ACT2
+/,' Hit Return To Continue

READ(5,*)
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C BASBAS( ACTUATOR # ,( 1 2 or 3) )
C XY or Z
C
C

PI=3.141592654
C

IACT=1 I INDEX ACTUATOR
ANGLE= 0. ! INITIAL ANGLE
RB=125.0 I BASE RADIUS
DELB = 4.1288687 I DELTA SMALL ANGLE:SIN-1( 9/125)

DO 10 1=1,3
BASBAS(IACT,1)= RB * DCOSD( ANGLE-DELB) I X component
BASBAS(IACT,2)= RB * DSIND(ANGLE-DELB) I Y component
BASBAS(IACT,3)= 0. 1 Z component

C
BASBAS(IACT+1,1) RB * DCOSD( ANGLE-120.+DELB) I X component
BASBAS (IACT+1,2) RB * OSIND ANGLE-120.+DELB) I Y component
BASBAS(IACT+I = 0. 1 Z component
IACT=I ACT+2
ANGLE=ANGLE-120.

C
10. CONTINUE

WRITE(5,3000)RB
,3000- FORMAT(///////

+/,*** I**r BASE UNIVERSAL VECTORS******;****#
+, /,' RADIUS = '.'F6 2,' IN',
+ //,35X,'VECTOR COMPONENTS',/,' ACTUATOR',8X,
+- X ----- ',8X,' -V- Y a. '-
+ 8 X , ' . . . ---. . . . '

DO 3002 IACT=1,6
WRITE(5,3010)IACT,BASBAS(IACT, 1),BASBAS(IACT,2),

+ BAS AS(IACT,3)
3010 FORMAT(6X,I1,lOX,F15.5,8X,F15.5,SX,FlO.3)
3002 CONTINUE

WRITE(5,3004)
3004 FORMAT (' HIT RETURN TO CONTINUE')

READ(5,*)

C
C PLATFORM UNIVERSAL CORDINATES
C VECTOR CONFIGURATION FOR CURRENT DESIGN
C
C
C RP = RADIUS OF PLATFORM = 100 IN
C
C "0" REPRESENTS ACTUATOR SWIVEL POINT
C

WRITE(5,667)
667 FORMAT ('

0 represents swivel point',!,
ACT5

+' TOP VIEW OF PLATFORM ,/,
+1 0 -------------------- ,/

+, / 0
+' / ACT6 !

+' I '//

I!
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+1 0 1/ 6-n,
+' -- --------------- X ............ 0 DEG ,
+' 0 1207TM (GUN) ,

+' ACT3 • /
+'. ACT1
+1 0 ,
4.' •0 ,/

+' 0
+' ACT24.' ,/,

+/,' Hit Return To Continue ',/)
READ(5,*)

C PLAPLA( ACTUATOR 0 , (1 2 or 3)
C

IACT= I
RP= 100. ! RADIUS OF PLATFORM
ANGLE=-60. I INITIAL ANGLE
DELP= 5.1636072 1 DELTA SMALL ANGLE BETWEEN ACTS:SIN -1 (9/100)

C
DO 200 I=1,3

C
PLAPLA IACT,1) = RP * DCOSD(ANGLE+DELP) ! X component
PLAPLA IACT,2) = RP * DSIND(ANGLE+DELP) I Y component
PLAPLA IACT,3) = 0. I Z component
PLAPLA IACT+1,1) = RP * DCOSD (ANGLE-DELP) I X component
PLAPLA IACT+I,2) = RP * DSIND(ANGLE-DELP) I Y component
PLAPLA IACT+1,3) = 0. 1 Z component

IACT = IACT + 2 ! INDEX ACTUATOR
ANGLE = ANGLE - 120. !

C
200 CONTINUE
C

WRITE(,53011)RP3011 FORMAT(M/////,***************
+ /,.************** PLATFORM UNIVERSAL VECTORS***********'
+,//,' RADIUS = ',F6.2,' IN',
+ //,35X,'VECTOR COMPONENTS',/,' ACTUATOR',1OX,
+' -------- X--. ',lOX,'- ----- Y -----
+10Xlo .- --- Z -----

DO 3022 IACT=1,6
WRITE(5,3014)IACT,PLAPLA(IACT,1),PLAPLA(IACT,2),

+ PLAPLA(IACT,3)
3014. FORMAT(6X,I1,12X,F15.5,8X,F15.5,8X,F12.5)
3022 CONTINUE

WRITE(5,663)
663 FORMAT(' HIT RETURN TO-CONTINUE')READ(5,*)

RETURN
END

SUBROUTINE ASK.ORIENT(EUy,EUx,EUz,Y,X,Z)

• This subroutine asks for the currnt orientation of the platform
* in terms of the six degrees of freedom.
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REAL EUx,EUy,EUz
• ' INPUT: NONE
• OUTPUT: EUy,EUx,EUz,Y,X,Z

408 WRITE(5,3025)
3025 FORMAT(I//l////,' Enter command EUx, EUy, EUz (In rads)?',

+ /,' X Y, Z rotations repectively')
READ(5,*) EUx,EUy,EUz
WRITE (5,3027)

3027 FORMAT(////////,' Enter F/A, S/S, Z (In inches)?',
+ /,' X Y, Z respectively )

READ(5,*)X,V,Z

RETURN
END

SUBROUTINE NORM(IACT,VECTOR,MAG,UNITVECTOR)

• This subroutine normalizes a vector into a unit vector by
• dividing each component by its magnitude (norm).

* INPUT- IACT,VECTOR
OUTPUT: MAG,UNIT VECTOR

REAL VECTOR(6,3),MAG(6),UNITVECTOR(6,3)• FIND NORM A(AT

MAG(IACT) = SQRT*
+ VECTOR (IACT, 1)**2+ + VECTOR(IACT,2)**2
+ + VECTOR(IACT,3)**2)

• DETERMINE THE UNIT VECTOR
UNITVECTOR IACT,1) =

+ VECTOR IACT,1 )/MAG(IACT)
UNIT VECTOR IACT,2) =

+ VECTOR IACT,2 )/MAG(IACT)
UNIT VECTOR IACT,3) =

+ VECTOR.IACT,3)/MAG(IACT)

RETURN
END

SUBROUTINE ACTUATOR(Pb,BSWIVb,EUx,EUy,EUz,Pb,
+ Y,X,Z,HGT,BASBAS,PLAPLA)

* This subroutine calculates the actuator vector describing the actuator
* length and orientation in space by Base Cordinates.

* INPUT: EUxEUyEUz (In rads)
* Y,X,Z (In inches)
• BASBAS,PLAPLA

* OUTPUT: Pb,BSWIVb,ACTVEC

REAL PLAb(6,3),PLAPLA(6,3),Pb(3)
REAL BASBAS(6,3),ACTVEC(6,3), SWIVb(6,3)
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REAL Y,X,Z,HGT

* P VECTOR IS REFERENCE FROM ORIGIN OF BASE CORDINATES TO
* ORIGIN OF PLATFORM CORDINATES

Pb(2) = Y f Y component
Pb(1) = X I X component
Pb (3) = HGT+Z I Z component

* DETERMINE VECTOR FROM SWIVEL PLATFORM TO BASE

WRITE(5,12)
12 FORMAT( Il////,' SWIVEL POINT VECTORS 1,

+ ' (Base cordinate origin to platfrom swivel)',///)

DO 512 IACT=1,6
CALL FORWARDTRANS(IACT,EUy, EUx,EUz,+ PLAPLA, PLAb)DO 511 ICOMP=1,3

BSWIVb(IACT,ICOMP)=PLAb(IACT, ICOMP)+ + Pb(ICOMP)
511 CONTINUE

WRITE(5,13)IACT,BSWIVb(IACT, 1)BSWIVb(IACT,2),
+ BSWIVb(IACT,3)

. +13 FORMAT(' ACTUATOR (',II,')',4,'X ',F12.5,4X,'Y= '+ Fg.2,4X,'Z= ',Fg.2) .
512 CONTINUE

* ~WRITE(516
"*16 FORMAT(/16, Hit Return to Continue')
* READ(5,*)

* CALCULATE THE ACTUATOR VECTOR IN BASE CORDINATES

* ACTVEC( ACTUATOR , X Y or Z
* ( 1-6 1 2 or3)

* BSWIVb - BASBAS
* 3xl 3xl 3x1

DO 336 IACT=1,6
00 337 IROW=1,3

ACTVEC(IACT, IROW) =
+ BSWIVb(IACT, IROW) - BASBAS(IACT,IROW)

337 CONTINUE
336 CONTINUE

WRITE(5,645) - BASE CORDINATES'
645 FORMAT(//////,' ACTUATOR VECTORS /

+ t x v 11
DO 890 I=1,6

WRITE1(5,669)I,ACTVEC(I 1),ACTVEC(I,2),ACTVEC(I,3)
669 FORMA T(' ACT ',I1,' = 1,3X,F12.4,3X,F12.4,3X,F12.4)
890 CONTINUE

* WRITE(5,888)
*888 FORMAT(' HIT RETURN TO CONTINUE')
* READ(5,*)

RETURN
END
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****************w************•****, *********7..*******

SUBROUTINE FORWARDTRANS(IACT,EUy, EUx,
+ REAL E EUxEUz EUz,VECT_INPVECTOUT)

REAL TRANS(3,3)
REAL VECT_INP(6,3),VECTOUT(6,3)

* This subroutine conZs vector in platform cordinates to
* vector in base cordinetes by using EULER Angle
* TRANSFORMATION.

INPUT: EUy, EUx, EUz ( ANGLES IN RADS
* VECT INP (INPUT VECTOR IN PLATFORM CORDINATES)
* IACT- (INDEX ACTUATOR)

* OUTPUT: VECT OUT (OUTPUT VECTOR IN BASE CORDINATES)
* Trani (TRANSFORMATION MATRIX)

************************* ** ******* *** ***** **** **** *** ******** *

,

CALL TransMAT(EUy,EUx,EUz,Trans)

* VECTOR FROM BASE ORIGIN TO PLATFORM SWIVEL POINTS
* (IN PLATFORM CORDINATES)

* VECT INPUT (IN BASE CORDINATES)
* -- 1 2 or 3
.

* PLAb = Trans * PLAPLA
* VECT OUT Trans * VECT INP
* 3xT 3x3 3R1

DO 334 IROW=1,3
VECT OUT(IACT IROW)=

+ TRANS(IROW,1)*VECT INP( IACT,1)
+ + TRANS( IROW,2)*VECT-INPIACT,2)
+ + TRANS(IROW,3)*VECTINP(IACT,3

334 CONTINUE

RETURN
END

************** ***** ***** ***** ** ***** ************************

SUBROUTINE REVERSETRANS(IACT,EUy,EUx,EUz,
+ VEC T_INP,VECTOUT)

• REAL EUy ,EUx,EUz

REAL R TRANS(3,3)
REAL VECTIN (6,3),VECTOUT(6,3)

* This subroutine converts a Vector in base cordinates
* to a vector in platform condinates by using EULER Angle
* TRANSFORMATION.

* INPUT: EUy, EUx, EUz (ANGLE IN RADS)
* VECT_INP (INPUT VECTOR IN BASE CORDINATES)

D-8



* OUTOUT-. VECT OUT 'OUTPUT VECTOR IN PLATFORM CORDINATFS)
R-Trins (TRANSFORMATION MA~kLA,)

SINVERSE TRANFORMATION MATRIX (TRANSPOSE OF ORIGINAL Trans)

CALL R TransMAT( EUy, EUx, EUz ,R-Trens)

* PLATFORMVECT = RTrans * BASE VECT

DO 343 IROW=1,3
VECT OUT(IACT,IROW)

RTRANS (IROW,1 *VECT INP (IACT 1)
+ +R TRANS (IROW,2 )*VECT INP (IACT,2)

+ + R-TRANS (IROW,3 )*VECT INPi(IACT,3)
343 CONTINUE

RETURN
END

SUBROUTINE CROSS( IACT,VECT_1,VECT_2,P*RODUCT)

* This subroutine determines'the cross product of two vectors.'

* ~PRODUCT = VECT 1 .CROSS. VECT 2

*INPUT: VECT 1,VECT 2 (IACT,ICOMP)
* ~OUTPUT: PRODUCT -

REAL VECT_1(6,3),VECT_2(6,3),PROOUCT(6,3)

VECT1 UIAC T X Y ,V or Z

PRODUCT(IACT,1) =!X PRODUCT
+ VECT_1( IACT,2 )*VECT 2 (IACT,3)
+ - VECT_2( IACT,2 )*VECT-1 (IACT,3)

PRODUCT(IACT,2) = -1.* 1 Y PRODUCT
+. VECT1 (IACT1 ) *VECT_2 (IACT.3)

-VECT-2( ACT,1 ) EC ( IACT,3))

+ V OD CTC1 IACT,1*VECT_2 (IACT,2) I Z PRODUCT
+ - VECT-1 ACT,2 )*VECT-2( IACT,1)

RETURN
END

C

SUBROUTINE Trans MAT(EUy,EUx,EUz,Trans)

* This subroutine calculates the forward TRANSFORMATION matrix
* derived from Euler Angles.
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* ~INPUT: EUy,cvz,,EUx (In RAOS)
* OUTPUT: TRANS(3,3)

REAL EWy EUx,EUz
REAL TRANS(3,3) I TRANS(ROW,COLUMN)

TRANSi (11) =COS(EUz)*COS(EUy)
TRANS (1,2) = -SIN(EUz)*COS(E X)

+ +S IN(EUy) *CUS(EUz)*SIN(EUx)
TRANS(1,3) = IN (EUZ)*IN(CEUx)

+ + I N(EUy)*COS(EUz ) COS(EUx)
TRANS (2,1) = COS (EUy )*SIN (EUz)
TRANS (2,2) =COS (EUz )*CQ5 EUx)

+ +SIN (EUzj)*SIN (EUy )*SIN(EUx)
TRANS(2,3) =- COS (EUz )*SIN (EUx)

+ +SIN (EUz )*SIN (EUy) *COS(EUx)
TRANS (3,1) = -SIN NEUyTRANS (3,2) = COS ( Uy ) SINJ(EUx)TRANS (3,3) = COS (EUY * COS (EUx)
RETURN
END

SUBROUTINE RTRANS MAT(EUyEUx,'EUz,RTravis)

* This subroutine calculates the reverse TRANSFORMATION matrix
* derived from Euler Angles.

* INPUT: EUy,EUx,EUz (In reds)
* OUTPUT: R-TRANS(3,3)

REAL EUyEUx,EUz
RA -TRANS(3,3) 1 RTRANS(ROW,COLUMN)

R TRANS (1,1)= COS(EUz)*COS( EUy)
R-TRANS (2,1)= -S IN(EUz)*COS (EWx

+ +SIN(EUy)*COS(EUz)*S I(EUx)
RTRANS(3,1)= SIN EyUz)*SIN(EUx)
++SIN(E6*O(EUz)*COS(EUx)
RTRANS (1,2) = COS E y *5 N (Eft)

+RTRANS (2,2)= COS EUz *COS(EUx)
+ +IIN(EUz )*SIN( EUy)*SIN(EUx)

RTRANS(3,2)= -COS EUz)*S INEUx)
+ +SfN(EUz)*SIN(EUy)*COS(EUx)

R TRANSl (13)= -SIN(EUy)
R-TRANS (2,3) = COS (EUy )*SIN (EUx)
R-TRANS (3,3)= COS (EUy) *COS ( Ux)
RETURN
END

SUBROUTINE SMATRIX EUy,EUx,EUz,Y,X Z,
+ BASBAS,PLAPL LHGT,Smat,Sinmat)

* INPUT: EUy,EUx,EUz,Y,X,Z,BASBAS,PLAPLA
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* OUTPUT: Smat,Sinmat

. This subroutine solves for the S matrix and S Inverse matrix

, described in the Contraves notes.

REAL Pb(3),TRANS(3,3),PLAPLA(6 3)

REAL BASBAS(6,3),PLAb(6,3),BWtiVb(6,3)
REAL P MINUS XI(6,3 ,COMPAS(6,3),COMPBS(6,3)

REAL VTT(6 3, 6
REAL ACTUN H(•, A 6,3),ACTLEN(6)
REAL Sinmat (6,6),DUM MAT(6,6)
DIMENSION INDX(6)

Pb (1 = X
Pb 2) =V
Pb 3 = Z+HGT

* SOLVE FOR V VECTOR

D0 3456 IACT=1 6
DO 3457 IC0M=I.. 3.

_PMINUS XI(IA T,ICOMPC
SC P(ICOMP)-BASBAI(IECT,ICOMP)

3457 CONTINUE3456 CONTINUE

, T T
Determine Vi = (P-Xi) o R from contraves notes

CALL Trans MAT(EUy,EUx,EUz,Trans) ! Find Trans (R matrix)

* VIT = P MINUS XI o Trans

* (lx3) (Tx3) - (3x3)

* V] i R1 R12 R13

* VIT [x y z [xy z 10 R21 R22 R23
R31 R32 R331

* . DO 111 IACT=1,6

VIT(IACT,1)= I X COMPONENT

+ P MINUS XI(IACT,1)*TRANS(1,1)
.+. + P-MINUS-XI (IACT,2 )*TRANS(2,1)
+ + P-MINUSXI( IACT,3 )*TRANS (3,1)

VIT(IACT,2)= 1 Y COMPONENT

+ P MINUS XI(IACT,1)*TRANS(1,2)
4 + P-MINUS-XI (IACT,2 )*TRANS(2,2)
+ + P-MINUSXI( IACT,3 )*TRANS (3,2)

VIT(IACT 3)= ! Z COMPONENT

+ P MINUS XI (IACT, )*TRANS (1,3)
+ + P-MINUS-XI (IACT,2 )*TRANS (2,3)

+ + P:MINUS-XI(IACT,3)*TRANS(3,3)
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ill CONTINUE

* Determine the A component of Matrix S (COMPA-S)
* A = (Us x Vi) k/li i=1,6 k=1,3

l i actuator length
* Us PLAPLA platform vectors
* Vi Determined above

* GET ACTUATOR VECTOR AND BSWIVb

CALL ACTUATOR (Pb,BSWIVb EUx EUy,EUz,Pb,
+ Y,X,Z,HGT, BASBAS,PLAýLA,1

DO 112 IACT=1,6
CALL NORM( IACTACTVEC,ACTLEN,ACTUNI)
CALL CROSS (IACTPLAPLA,VIT,COMPAS)

DO 113 I COMP=1,3
COMPAS(IACT, ICOMP)

13 + COTNECON PAS(IACT,ICOMP)/ACTLEN(IACT)
113 CONTINUE

*********** DETERMINE B PORTION. OF S MATRIX *******

00'1888 IACT-1 6
DO 1889 IC6MI'=-1,3'

COMPB SC IACTICOMP)
+ ( BSWIVb(IACTO ICOMP) - BASB;S(IACT ICOMP) ~

189+ COTNEACTLEN( TACf)
1889 CONTINUE

*JOIN THE S MATRIX FROM A & B

*6x6 6x3 6x3
S SMATRIX= COMPAS COMPBS I

DO 18 IACT=1.6
DO 19 ICOMP=1,3

Smat(IACT,ICOMP) =COMPA S(IACT ICOMP)
Smet (IACT,ICOMP+3) = COMFB-S(IAkT,ICOMP)

19 CONTINUE
18 CONTINUE

WRITE (5,13)
13 FORMAT///III,'* S MATRIX *

DO 15 IROW=1,6
WRT( 17)Smatl IROW 1',Smt'IO 2j

,+ Smt IOWlSmt (IROw, 45, mat(I~OW,5 Smnat(CIROW,6)
17 ýORMAT(IX,F9.4 ,3X,F9.4,3X, F9.4,3X,F9.4, 3X,F9.4,

*+ 3X,F9.4,/)
15 CONTINUE

* 21 FORMA /, Hit Return to Continue')
READ(5,*)

*Find the S inverse matrix

* Set dumm~y matrix (DUN MAT) before calling inverse
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r00 1234 I=1,6
DO 1235 J=1,6
DUN MAT(I,J)=Smat(I,J)

1235 CONTTNUE
1234 CONTINUE

N=6

CALL INVERSE MATRIX(DUM MAT,Slnmat,INDX,N)

WRITE (5,10)
10 FORMAT(//I,'**** S INVERSE MATRIX (Jocoblan)',

+ I

DO0 20 IROW=1,6
WRITE(5,40)Sinmat(IROW, 1) ,Srimat(IROW,2),

+ Sinmat (IROW,3) ,Sinmat (IROW,4),
+ Sinmat (IROW,5 ,kSinmat (IROW,6)

40 FORMAT(1Xl (F9.4,3X))
20 CONTINUE

WRITE (5,669)
669 FORMAT(/, HIT RETURN TO CONTINUE')

READ(5,*)

RETURN
*END

SUBROUTINE S MATRIX ( SMAT,S INV MAT,EUy,EUxEUz,SS,FA,VERT,
+ BASEBASEYLATPLAT,-HGT,B-KSE-SWVWI VACTf EC

* INPUT: EUy,EUx,EUz,S S,F A,VERT,BASEBASE,PLAT-PLAT
* OUTPUT: SMAT,S_ INVM'KT

* This subroutine solves for the S matrix and S Inverse matrix
* described in the Contraves notes.

REAL P VECT (3) TRANS (3,3),PLAT PLAT(63
REAL BIASE BAS E( 6,3) BASE PLAT(9, 3) ,1ASESWIV(6,3)
REAL P MIN1US XI (6, 3 ,COMIYA S( 6 3),COMP97S(6,3)
REAL VTT(6,31 ,SMAT(6,6)
REAL ACT UNI T(6,3) ACT VECT (6,3) ,ACTLENGTH(6)
REAL S INV MAT (6, ,65,UF[MAT (6,6)

* DIMENSTON -INDX(6) -

P VECT(1) = FA I X
PVECT 2) =5SS - I Y
PVECT (3) = VERT+HGT I Z

-* SOLVE FOR V VECTOR

DO 3456 IACT=1,6
DO 3457 ICOMP=1,3
PMINUS_XI(IACT,ICOMP)
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+ P VECT(ICOMP)-BASE BASE(IACT.ICOMP)
3457 CONTINUE -
3456 CONTINUE

* T T
Determine Vi = (P-Xi) o R from contraves notes

CALL TRANSMAT(EUy,EUx,EUz,TRANS) ! Find TRANS (R matrix)

* VIT = P MINUS XI o TRANS
* (Wx3) (Tx3) (3x3)

* RlI R12 R13
VITx y z1= [x y zIo R21 R22 R23

x ] o R31 R32 R33 I

DO Ill IACT=1,6

VIT(IACT,1)= I X COMPONENT
+ P MINUS XI(IACT,1)*TRANS(1,1)
+ + P-MINUS-XI(IACT,2)*TRANS (2,1)
+ .+ P)IINUSXI(IACT,3)*TRANS (3,1)

VIT(IACT 2)= ' A 1,2 I V COMPONENT+ "" P. MINUS XTI(ACTI)*TRANS(I2j' "
+ +P-MINUS-XI(IACT,2)*TRA S(122)

+ + PhMINUS-XI IACT,3)*TRANS 3,2)
*

VIT(IACT,3)= ! Z COMPONENT
+ P MINUS XI(IACT,1)*TRANS (,3)
+ + P-MINUS-XI(IACT,2)*TRANS(2,3
+ + P-MINUSXI(IACT,3 )*TRANS (3,3

111 CONTINUE

* Determine the A component of Matrix S (COMPAS)
* A = (Us x Vi)k/li i=1,6 k=1,3
* iI actuator ength
* Us PLAT PLAT platform vectors
* Vi DeteFmined above

* GET ACTUATOR VECTOR AND BASESWIV

DO 112 IACT=1,6
CALL NORM(IACT,ACT VECT,ACT LENGTH,ACT UNIT)
CALL CROSS(IACT,PLATPLAT,VTT,COMPAS)-

DO 113 ICOMP=1,3
COMPAS(IACT,ICOMP) =

+ COMPAS(IACT,ICOMP)/ACTLENGTH(IACT)
113 CONTINUE112 CONTINUE

************ DETERMINE B PORTION OF S MATRIX *

DO 1888 IACT=1,6
DO 1889 ICOMP=1,3

COMP6 S(IACT,ICOMP) =
+ ( BASESWIV(TACT,ICOMP) - BASE BASE(IACT,ICOMP) )/
+ - TACTLENGTH(IACT)
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1889 CONTIN"E
1886 CONTINUE

* JOIN THE S MATRIX FROM A & B

* 6x6 6x3 6x3
* S MATRIX= E COMPAS I COMPBS ]
* - I

DO 18 IACT=1 6
DO 19 ICOMP=1,3

S MAT(IACTICOMP) = COMPA S(IACT,ICOMP)
S-MAT(IACT,ICOMP+3) = COMVB_S(IACT,ICOMP)

19 CONTINUE
18 CONTINUE

* Find the S inverse matrix

* Set dummy matrix (DUMMAT) before calling inverse
DO 1234 I=1,6

DO 1235 J=1,6

DUM MAT(I,J)=SMAT(I,J)
S1235 CONTINUE

1234 CONTINUE

N=6

CALL INVERSEMATRIX(DUMMAT,S_INVMAT,INDX,N)

RETURN
END

SUBROUTINE INVERSEMATRIX(AAINV,INDX,N)

****** This subroutine is the general inverse matrix subroutine it also
* uses subroutines LUBKSB & LUDCMP. These routines are set to solve

** a 6X6 matrix at this time.

* INPUT: A Matrix to inZ
* INDX Work space Array
* N Order of Matrix

* OUTPUT: AINV Inverse Matrix of A

"REAL A(6,6) ,AINV(6,6)
DIMENSION INDX(6)

* Set initial AINV matrix to a identity matrix

DO 100 I=I,N
DO 100 J=1,N

AINV(IJ)=O.O
IF(I .EQ. J) AINV(I,J)=1.0

100 CONTINUE

CALL LUDCMP(A,N,N,INDX,D)
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DO 200 I=1,N

CALL LUBKSB(A,N,N,INDX,AINV(1,I))

200 CONTINUE

RETURN
END

SUBROUTINE LUBKSB(A,N,NP,INDX,B)
REAL A6 (6,6 .(6)
DIMENS I N I DX(6)
II=0
DO 12 I=1,N

LL=INDX( 1)
SUM=8(LL)
B(LL? =B(I)
IF~ INE.OITHEN

SUM=SUM-A( 1,J)*B(J)
11 CONTINUE

ELSE IF (SUM.NE.O.) THEN

* ENDIF

12 BO IU
DO 14 I=N 1,-i

SUM= B(I S
IFýILT.NTHEN

SUM=SUM-A(I,J)*B(J)
13 CONTINUE

ENDIF
B (I)=SUM/A(I,I)

14 CONTINUE
RETURN
END

** This routine does a upper and lower decomposition on the matrix *

SUBROUTINE LUDCMP(A,N,NP,INDX,D)
PARAMETER (NMAX=100,TINY=1.OE-20)
DIMENSION A(6,6),INDX(6),VV(NMAX)
D=l1.
DO 12 I=1,N

AAMAX=O.
DO 11 J=1,N

IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))
11 CONTINUE

IF (AAMAX.EQ.O.) PAUSE 'Singular matrix.'
VV (I) =1./AAMAX

12 CONT INUE
DO 19 J=1,N
IF (3GT.1) THEN

DO 14 I=1,J-1
SUM=A(I,J)
IF IGT. I)THEN

D~3k=1,1I-1
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SUM=":IJM-A( I,K)"*A(K,J'
13 CONTINuE

A (I,J)=SUM
END IF

14 CONTINUE
ENDIF
AAMAX=O.
00 16 I=J,N
SUM=A(I,J)
IF GT1THEN

SUM=SUM-A( I,K)*A(K,J)
15 CONTINUE

DUM=VV(I )*ABS(SUM)
IF (DUM. GE.AAMAX) THEN

IMAX=I
AAMAX=DUM

ENDIF
16 CONTINUE

IF (J.NE. IMAX)THEN
D0 17 K=1,N

DUM=A (IMAX9K)
A( IMAX,K)=A(3J,k).

17 CONTINUE
0=- 0

ENDIýIMAX)=VV(J)
INDX(J )=IMAX
IF(J. NE. N) THEN

IF(A (J,J).EQ.O.)A(J,J)=TINY
DUM=l./A(.J,J)
DO 18 I=J+1,N
A (I,.b=A(I,J)*DUM

18 CONTINUE
ENDIF

19 CONTINUE
IFj.AýNN).EQ.O. )A(N,N)=TINY

END

********** END OF MATRIX INVERSION ROUTINES

* SUBROUTINE DMATRIX(Sinmat,INERTp,RMASS,Dmat)

This subroutine determines the 0 matrix from contraves notes by
* the following;

* Omat = TRANSPOSE(Sinmet) * Amat * Sinmat)

*INPUT; Sinmat,INERTp,RMASS
*OUTPUT; Dmat

* Where
* JX 0 0 0 0 0
* 0 JY 0 0 0 0

*Amat =0 0 JZ 0 0 0 JX,JY,JZ INERTIAS RESPECTIVELY
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* 0 0 0 M 0 M M MASS
* v u 0 Mu
* 0 0 00 M

* Determine the A matrix AND TRANSPOSE(AINVMAT)

REAL Amat(6,6),INERTp(3),RMASS,Dmat(6,6)
REAL Sinmat(6,6),SinmatTRANS(6,6),ASinmat(6,6)

DO 10 1=1,6
DO 20 J=1,6

Amat(I,J )=0.0 1 INITIAL A- mat as zero
Sinmat TRANS(J,I)=Sinmat(I,J) I TRANSPOSE the Sinmat

20 CONTINUE-10 CONTINUE
Amat (,1)=INERTp(1) ! Set A- mat diagnol to it's values.
Amat(2,2)=INERTp (2)
Amat (3,3 =INERTp (3)
Amat (4,4 =RMASS
Amat (5,5 =RMASS
Amat(6,6)=RMASS***************** ** **** *** **** ** * *** *** **** ***

* I ASinmat = Amat * Sinmat
CALL MATRIXMULT_6X6(AAmat,Sinmat,ASinmat)

I Dmat = Sinmat Trans * ASinmat
CALLMATRIXMULT_6X6(Sinmat_Trans,ASinmat,DmatT*

WRITE(5,1723)
1723 FORMAT(/Il///////,' * D-MATRIX *******,///)

DO 1724 IROW=1,6
WRITE(5,1726)Dmat IROW,1) ,Dmat( IROW,2),Dmat IROW,3),

+ Dmat(IROW 4),Dmat(IROW,5),Dmati
1726 FORMAT(1X,6(F9.4,3X),/)
1724 CONTINUE

WRITE(5,700)
700 FORMAT (/,' Hit Return to Continue')

READ(5,*)

RETURN
END

*** First Find ASinmat = Amat * Sinmat

SUBROUTINE MATRIXMULT_6X6(A,B,PROD)
*

* This subroutine multiplies two matrices (6x6) together by
* . the following:
* PROD = A * B

* INPUT: MATRIX A and MATRIX B (6x6)
* OUTPUT: PRODUCT (6x6)

REAL A(6,6),B(6,6),PROD(6,6)
DO 10 I=1,6

DO 10 J=1,6
PROD(IJ)=O.O ! Initialize summation to 0.

DO 10 K=1,6
10 PROD(I,J) = PROD(I,J) + A(I,K)*B(K,J) I COLUMN ROW MULTIPLICATION
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RETURN
END

SUBROUTINE RATES(ICHOICE,LD,SmatSinmat,RATE)

This subroutine computes the 6 degree rates from the 6 actuator rates
* or computes the 6 actuator rates from the 6 degree rates.

* Input: ICHOICE,LD(6),Sinmat(6,6),Smat(6,6)
* * Output: RATE(6) or L&(6)

* ICHOICE=I LD = S o RATE
* 6xl 6x6 6xl
* OR

* ICHOICE=2 RATE = S o LD
* 6xl 6x6 6xi

* where; LD = 6 ACTUATOR RATES
* RATES = [3 ROTATIONAL : 3 TransLATIONAL)

* REAL LD(6),Smat Sinmat(6,6),RATE(6)

IF(ICHOICE .EQ. 1)THEN
DO 10 IROW=, 6

RATE(IROW)=O.
DO 20 ICOL=1,6

RATE(IROW)=RATE(IROW) + Sinmat(IROW,ICOL)*LD(ICOL)
20 CONTINUE
10 CONTINUE
,

ENDIF

IF(ICHOICE .EQ. 2)THEN

DO 110 IROW=1,6
LD(IROW)=O.

DO 120 ICOL=1,6
LD(IROW)=LD(IROW) + Smat(IROW,ICOL)*RATE(ICOL)

120 CONTINUE
110 CONTINUE

WRITE(5,140)
140 FORMAT(I////////,' ACTUATOR RATES;',///)

S- DO 777 I=1,6
WRITE(5,141)I,LD(),

141 FORMAT(' L (', 1,') = ',F9.2)
777 CONTINUE

WRITE(5,778)
778 FORMAT (//,' Hit Return To Continue')

READ(5,*)

ENDIF

RETURN
END
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SUBROUTINE TMATRIX(L,W PLAT-PLAT,BASE-BASE,HGT.Mx,My,Mz
+ ,TmatFi)

* This subroutine determines the T matrix & Fi array which are
* based from Contraves notes which is used for Inverse Kinematics

* INPUT; L(6) Actuator Lengths
W(6) 6degree ap oximatin

PLA PLAT ýIXC CA
* ~BASE-BASE (IACT, ICOMP)
* HGT

MX x3 3ý Based on Infinitesimal rotations

Mz 3,3

* INTERNAL;
* TRANS(3,3)
* My pSI(3, 3)

YU *MUIACT,ICOMP) I M * PLAT PLAT
*R-MU(IACT,ICOMP) I R(Trans)-* M PLAT-PLAT

* OUTPUT Tmat(6,6),Fi(6)

* T MATRIX CONSTUCTION BASED ON CONTRAVES NOTES

*L1*Rbp*Mx*Ul L1*MyPSI*Rbp*Ul L1*Mz*Rbp*U1 L1*P1 L1*P2 L1*P3
*2RpM*2 L*yPIRpU L*zRpU 2P 2P 2P

*L2*Rbp*Mx*U2 L2*MyPSI*Rbp*U2 L3*Mz*Rbp*U2 L2*P1 L2*P2 L2*P3
T=2

*L4*Rbp*Mx*U3 L3*MyPSI*Rbp*U3 L3*Mz*Rbp*U3 L3*P1 L3*P2 L3*P3
*5Rp*xU T=MSIRpU 2*M*b*5L*P 5P 5P

*L4*Rbp*Mx*U4 L4*MyPSI*Rbp*U4 L4*Mz*Rbp*U4 L4*P1 L4*P2 L4*P3

* L6*Rp*IMX*U Infinitsimal*U rotation *U Latrice L6*P My 6 P3

* i AtatformSie Vector LACT VECLT'(IATICOMP)"

*P1,P2,P3 Basis Vectors x,y,z "Not used directly"

REL*(1W6,G

REL*ALT63)BSAE63
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REAL Tmat(6 61.ci(6),ACTVECT(6.3),BASESWIV(6,?)REAL Mx(3,3).My(3,3),Mz(3,3),My PSiý-,31)
REAL ROLL,P CH YAWSS, A,V RT,TRANS(3,
REAL LGUESS(6),UGUESS(6,3)

* Dummy Arrays for multiplying

* REAL M U(6,3),RMU(6,3),LR M U(6)
REAL RU (6,3) ,MRU (6,3),L-M-R-U(6)

ROLL =W 1PITCH=W2
YAW W13
FA W 4

* SS W 5
VERT W 6

* Find actuator vector for this current guess

VERT=VERT-HGT I AVOID CONSIDERING HGT TWICE

CALL ACTUATOR(Pb.BSWIVb,ACTVEC ROLLPITCH,YAW,SS,FA,VERT,

+ HGT,BASE_BASEPLAT_PLAT)

* LGUESS(IACT) = NORM [ ACTVECT(IACT) I

DO 338 IACT= 1,6
CALL NORM(IACT,ACTVECT,LGUESS,UGUESS)

338 CONTINUE

* Get TRANSFORMATION matrix for future use

CALL Trans_MAT(PITCH,ROLL,YAW,Trans) ! GET R (Trans)

* Determine infinitesimal rotation matrix

SY=SIN YAW)
CY=COS YAW
My PSI 1,) = -Mx(1,1 *SY + My 1,1 *CY
My PSI ,2 = -Mx (,2)*SY + My 1,2 *CY
MyPSI 1,3 = -Mxi1,3 *SY + My 1,3 *CY
My PSI2,1 = -Mx 2,1)*SY + My 2,1 *CY
My PSIQ2,2 = -Mx(2,2)* Y + My 2,2 *CY
MyPSI 2,3 = ,3* + My 2,3 *CY
My PSI 3,1 = -Mx 3,1 *SY + My 3,1 *CY
My PSI 3,2 = -Mx 3,2 *SY + My 3,2 *CY
My PSI 3,3 = -Mx(3,3 *SY + My(3,3 *CY

* Construct Column 1 of T matrix

DO 10 IACT=1,6
CALL MULT3X3 3X1(IACT,Mx,PLAT PLAT,M U)
CALL MULT3X3-3X (IACT,Trans,M-U R M U)
CALL MULT1X3-3X (IACT,ACT VECT,R R U,L R M U)
Tmat(IACT,1)=2.*L R M U(IACT)

10 CONTINUE - - (- CT

* Construct Column 2 of T matrix

DO 20 IACT=1,6
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CALL MULT3X3 3X1(IAC',Trans,PLAT PLAT,R U)
CALL .-,dLT3X3-3X1(IACT,My PSI,R UM R U)-
CALL MULTIX3-3X1(IACT,ACT VECTTM RUTLM RU)
Tmat(IACT,2)=2.*LMR_U(IACT)

20 CONTINUE

* Construct Column 3 of T matrix
,

DO 30 IACT=1,6
* R U is Predetermined above

CALL MUl:T3X3 3XI(IACT,Mz,R U,M R U)
CALL MULT1X3-3X1(IACT,ACT VECTTM-RU,LMRU)
Tmat(IACT,3)=2.*L_M_R_U(IACT) .. .

30 CONTINUE

* Construct Column 4,5 6 of T matrix

DO 40 IACT=l,6
Tmat (IACT,4)=2.*(ACT VECT IACT,1))
Tmat (IACT,5 )=2.* (ACT-VECT (IACT,2
Tmat(TACT,6) =2.* (ACTIVECT IACT,3N

40 CONTINUE

Construct Fi array which is actuator lengthl[Guess**2- Actual*21
* used as cost function for the'inverse kinematic estimation.

* WRITE(5,441)
"*441 FORMAT(////////////,' * T-MATRIX **
* DO 444 1=1,6
* WRITE(5,445)Tmat(I,1) ,Tmat(I,2),Tmat(I,3),
* + Tmat(I,4) ,Tmat(I,5),Tmat(I,6)
*445 FORMAT(6(2XG10.3))
*444 CONTINUE

*WRITEf5,1446)
*446 FORMAT(I HIT RETURN ')
* READ(5,*)

DO 50 IACT=1,6
Fi(IACT)=LGUESS(IACT)**2-L(IACT)**2

50 CONTINUE

RETURN
END

SUBROUTINE MULT3X3_3XI(IACT,MAT3X3,MAT3X1,MATRIXP)

* This subroutine multiplies a matrix by a vector as follows;
* MATRIXP (3xl) = MAT3X3 (3x3) * MAT3X1 (3X1)
* where the vector is dimensioned also by IACT (index of actuator #)
* for convenience.

* INPUT; MAT3X1(IACT,ICOMP) I VECTOR
* IACT I INDEX representing actuator F
* MAT3X3(ROW,COLUMN)

OUTPUT; MATRIXP(IACT,ICOMP) I PRODUCT MATRIX

REAL MAT3X1(6,3) MAT3X3(3,3)
REAL MATRIXP(6,3)
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* Initialize product to zero

DO 95 I=1,3
a MATRIXP(IACT, I)=O.

95 CONTINUE

DO 100 I=1,3

MATRIXP(IACT,I) = MATRIXP(IACT,I) + MAT3X3(I,1) * MAT3X (IACT,1) +1+ MAT3X3(1,2) * MAT3XI(IACT,2) + MAT3X3(I,3) * MAT3X1(IACT, 3)
+ MA3312 *MTX.A

100 CONTINUE
*

RETURN
END

SUBROUTINE MULTIX3_3X1(IACT,MATIX3,MAT3XI,SCALER)

* This subroutine multiplies a (TRANSPOSE[vector] by a vector as follows;
* SCALER = MAT1X3 (Wx3) * MAT3X1 (3X1)
* where the vector is dimensioned also by IACT (index of actuator #)
* for convenience.

* INPUT; MATIX3(IACT,ICONP) I -VECTOR,
* IACT I INDEX representing actuator 9
* MAT3X1(IACT) I VECTOR

* OUTPUT; SCALER(IACT) I SCALER

REAL MAT1X3 (6 3),MAT3X1(6,3)
REA1 SCALERM(

* Initialize product to zero

SCALER(IACT)=O.

SCALER(IACT) =*SCALER(IACT) + MAT1X3(IACT, 1) * MAT3X1(IACT,1) +
+MAT1X3(IACT,2) * MAT3X1(IACT ,2) + MAT1X3(IACT,3) * MAT3Xl(IACT,3)

RETURN
END

SUBROUTINE ACCEL(ANGACp,TRACCb,TORQUp,FORCEb,
r + AGVLpx,AGVLpy,AGVLpz,INERTp,RMASS)

This subroutine determines the acceleration of the platform given
* the forces and torques on the platform.

INPUT: AGVLpx,AGVLpy,AGVLpz
TORQ p,FORC

* INERTp,RMASS

* OUTPUT: ANGACp (Angular Acc. local-platform cords.)
* TRACCb (Translational Acc. base cords)

REAL ANGACp(6,3)
REAL TRACCb (6,3) Only (1,3) is used
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REAL TORQt~o(3),FORC Eb (3)
REAL EUx,EUy,E~iz

* REAL AGVLpx,AGVLpy,AGVLpz
REAL RMASS, INERTp(3)
LOGICAL GYROSCOPIC

* GYROSCOPIC=.TRUE. I GYROSCOPIC AFFECTS

* DETERMINE ANGULAR ACCELERATIONS IN PLATFORM CORDINATES

IF(GYROSCOPIC)THEN
ANGACp(1,1) =

+ (TORQUp(1)+(INERTp (2 -INERTp(3))*
+ AGVLpy*AGVLpz) / £NRTp(1)

+ ATOR p(12 +(INERTp(3 INERTp'1''*
+ 4GVLpz*AGVLpx) / Nt~E-RTp(2)''

ANGACp(1,3)
+ (TORQUp (3 +(=INERTp (1) INERTp(2))*
+ AGVLpx*AGVLpy) /INERTp(3)

ELSE

DO 521 ICOIIP=1,3
521 ANGACp (1,ICOMP) =TORQUp(ICOMP)/INERTp(ICOMP)

'END IF

DO 522 ICOMP=1,3
TRACCb(1,ICOMP) =FORCEb(ICOMP)/RMASS

522 CONTINUE

RETURN
END

SUBROUTINE EULERRATE(EUxD,EUyD,EUxD,EUx,EUy,EUz
+ ,AGVLpx,AGVLpy,AGV Lpz)

* This subroutine uses the Euler Rate Transformation.
It converts the Angular Rates of the platforyM (Body! Local)

* to Euler Angle Rates. Based from page 382 OPrinciples of
* ~Dynamics" Donald Greenwood and also Contraves notes.

REAL*8 EUx,EUy,EUz

*INPUT: EUx,EUy,EUz (Euler Angles)
*AGVLpx,AGVLpy,AGVLpz (AnxuTar Vel

* PLATFORM-BODY)

*OUTPUT: EUxD,EUyD,EUzD (Euler Angular Rates) -
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EUxD = aPVLpx + AGVLny*nTAN(EI"y)*DSIN(EUx) +
+ AGVLpz*DTAN(EUy)*DCva(EUx)

EUyD = AGVLpy*DCOS(EUx) - AGVLpz*DSIN(EUx)
EUzD = AGVLpy*DSIN (EUx )/DCOS(EUy) +

+ AGVLpz*DCOS (EUx )/DCOS(EUy)

RETURN
END

SUBROUTINE EULERPARAM(eO,el,e2,e3,EUx,EUy,EUz)

This subroutine determines the Euler Parameters for
the orientation of the platform. This routine is based

* on the notes on page 476-478 of DADS Theoretical Manual
* where e(1-4) is determined from the transformation matrix

(A). This routine is good for determining the absolute
S value of Euler Parameters, thus the sign is not determined.

* INPUT: EUx, EUy,EUz Euler Angles
* OUTPUT: e(4) Euler Parameters

REAL eO,el,e2 e3,A(3,3)
REAL EUxEUy,Uz.

* Get transformation Matrix A

CALL TRANSMAT(EUy,EUx,EUz,A)

TrA = A(1,1)+A(2,2)+A(3,3) ! tr(A)

eO:2 = (TrA + )/4
eO-= SQRT(ABS(eO_2))

el2 ( + 2*A(1 1) - TrA)/4
el-= SQR(ABS(el_2)

e2-2 = ( 1 + 2"A(2,2) - TrA)/4
e2 = SQRT(ABS(e2_2))

e3_3 = ( 1 + 2*A(3 3) - TrA)/4
e3 = SQRT(ABS(e3_3i)

RETURN
END

¥ - *

SUBROUTINE NETFORCE(FORCEb,TORQUp,Q1,Q2,Q3,Q4,
+ Q5,Q6,EUy,EUx,EUz,ACTUNIT,P ATPLATRMASS)

* This subroutine determines the net TORQUp and FORCEb
* on the platform given the orientation, actuator unit
* vector and magnitudes of the FORCEb.

* INPUT: Q1,Q2,Q3,Q4,Q5,Q6
* ACTUNI (For all 6 actuators)
* EUy, EUx EUz (Orientation)
* PLAT-PLAT
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* RMASS

*OUTPUT: FORCEb
* TORQUp

REAL TORQUp( 3), FORCEb(3)
REAL ACT U NIT,6,3j E~,EUx, EUz
REAL PLA L (66 33FORCE ACT VECT(6,3)REAL FORC'EPLAT (6,3 TOR-XCT('9,3), RMASS

~~ ACTUATOR FORCEb 01, 02, Q3, Q4.,Q5 ,Q6 ******w*****

CREATE FORCE VECTORS FORCEACTVECT( IACT, XY or Z
* FORCM IN BASE CORDINATES

DO 413 ICOMP=1,3
FORCE ACT VECT(11 EICMP,:Qj*ACT UNIT (1,ICOM;)
FORCE-ACTVEC 2ICM QAT UNIT (2,1CMP
FORCEACTEC [T (3,ICOMP Q3*ACT UNIT(3COP
FORCEACTVEC (4, ICOMP Q4*ACT-UNIT (4,1COMP
FORCE ACT VECT 5, ICOMP =Q5*ACT:UNIT 5, ICOMP
FORCE-ACT-VECT 6, ICOMP ='Q6*ACT-UNIT .6, ICOMP

413 CONTINUE

*** CONVERT FORCEb IN BASE CORDINATES TO*PLATFORM.CORDINATES

FORCEb: BASE CORD. FORCE ACT VECT (IACT, 1,2 or 3)
PLATFORM CORD. FORCE-PLAT (IACT, 1,2 or 3)

DO 431 IACT=1,6
+CALL _ACTVECTFORCEPLAT)xE~z

431 CONTINUE FAEATVCOCLT

*** ACCUMULATE THE FORCEb AND TORQUp IN PLATFORM CORDINATES

DO 417 ICOMP=1,3
.FORCEb (ICOMP ) 0. 1INITIAL PREVIOUS ARRAYS TO ZERO
TORQUp (ICOMP ) =0.

417 CONTINUE

DO 414 IACT=1,6 IFORCEb IN BASE CORD.
FORCEb (1)=FORCEb (1)+FORCEACTVECT (IACT,1) I FORCM IN X
FORCEb (2)=FORCEbf(2)+FORCE ACTVVECT (IACT,2) I FORCEb IN Y
FORCEb (3) =FORCEb (3) -FORCE-ACT-VECT (IACT,3) I FORCEb IN Z

* _ DETERMINE PLATFORM TORQUE FROM EACH ACTUATOR IN PLATFROM CORD.

CALL CROSS( IACT, PLATPLAT, FORCEPLAT,TORACT)

TORQUp (1 =TORQUp (1) + TORACT (IACT,l) I TOROUp IN X
TORp(2 =zTORQ~ 2 + TOR-ACT (IACT,2) I TORQUp IN Y
TORp(3 =TORQ~ 3 + TORACT (IACT,3) I TORQUp IN Z

414 CONTINUE -

FORCEb(3)=FORCEb(3) -RMASS*32. 2*12.

RETURN

END

SEND OF SUBROUTINE SECTION *********************
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APPENDIX E

TMBS COORDINATE CONFIGURATIONS
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The following pages show the various TMBS coordinate configurations known from
various studies.

TMBS COQRDINATE CONFIGURATION #1

Was used in the study presented in this report and in early analysis of the
U TMBS.

TMBS COORDINATE CONFIGURATION #2

A This coordinate configuration was used by Contraves Goertz Corporation in the
study of the eigen values of the D matrix. Incorporating this configuration
in the kinematic study presented in this report resulted in complete agreement
with reference 6.

TMBS COORDINATE CONFIGURATION #3

This coordinate configuration is suggested for future use in the software which
will drive the TMBS.

Incorporating the various coordinate configurations in the kinematic study
presented in this report consist of making the appropriate vector geometry
descriptions in subroutine CONFIG and also the appropriate sign convention on
the weight vector in subroutine NETFORCE. The remaining FORTRAN programs should
work accordingly.
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