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I. ACCOMPLISHMENTS

The following is a brief summary of the research accomplishments funded by AFOSR-88-0262, a grant to

seven researchers of the Institute for Computatonal Mathematics and Applications, University of Pittsburgh.

1. Additive Correction Methods.

Using a general theorem that gives a bound on the iteration error in terms of an approximation error for

the subspace containing the additive correction, realistic mesh independent contraction numbers have been

derived for the convergence of a model two grid method. A second result shows that if the subspaces are chosen

to be certain Krylov subspaces related to pseudo-residual vectors produced by the iterations, then the method is

exactly a restarted preconditioned conjugate gradient method in which the splitting matrix plays the role of the

preconditioner. Thus, the additive correction methods include this important class of iterative methods as a spe-

cial case.

Regarding the convergence of generic iterative methods employing an additive correction phase, it has

been shown [1] that if the coefficient matrix is symmetric, positive definite (SPD), if each additive correction

step uses orthogonal projection with respect to the "energy" inner product, and if the range of each projector

contains the most recent residual vector, then a contraction number for the error is (Kc - 1)/( + 1), where ic is

the spectral condition number of the system. Thus, such methods are necessarily convergent. This work has

recently been generalized [2] to the case where the ccr,.i' ' matrix is only positive real; i.e., its symmetric

part is SPD. The analysis in [2] is also general enough to yield contraction numbers for restarted versions of the

ORTHOMIN and GCW generalized conjugate gradient methods described in [3].

It appears possible to sharpen the contracuon numbers obtained in [1] and [2] by incorporating more infor-

mation on the range of the projectors. This leads to the notion of abstract angles in projection methods.

References

[1] Chou, S. H. and Porsching, T. A., "A Note on Contraction Numbers for Additive Correction Methods",
Appl. Math. Lett. 2 (1989), 83-86.

[2] Chou, S. H. and Porsching, T. A., "Contraction Numbers for Additive Correction Methods", to appear Lin.
Alg. and its Appl..

[31 lageman, L. A. and Young, D. M., Applied Iterative Methods, Academic Press, New York, 1981.
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2. Iterative Solution to Navier-Stokes Difference Equations.

The time-dependent two-dimensional Navier-Stokes equations are used to model the evolution of the flow

of a Newtonian fluid. Implicit finite difference equations on a MAC discretization grid are used to approximate

the continuity, enthalpy and momentum equations. By time-lagging the pressure and velocity variables in the

enthalpy equations, the discrete enthalpy equations Pre uncoupled from the continuity and momentum equations

and solved separately. The coupled system of discrete momentum and continuity equations is then transformed

into the dual variable system [1, 2, 3], which is one-third the size of the coupled system.

The dual variable system was shown to be solvable for all problems unless the time step chosen is one of

a finite number of values. New conditions which guarantee the solvability of the system for all positive real

values of the time step were derived.

Special iterative methods for solving the dual variable system were developed. These methods were

shown to converge to the solution under a variety of conditions. Also techniques for accelerating these iterative

methods were constructed. These special iterative methods require the solution, on each iteration, of a linear

:;ystcm whose structure resembles a discrete Laplace equation; special methods of handling this with a minimum

of operations were investigated.

DUALIT is a computer code which solves the time-dependent two-dimensional Navier-Stokes problem. To

solve the dual variable system, DUALIT uses the transformed Jacobi iterative method and accelerates conver-

gence with a second-order Richardson method. The aforementioned discrete Laplace system is solved with

reduced-system Richardson iteration accelerated by the conjugate gradient method [4]. A comparison of

DUALIT with DUVAL, a commercial program which uses banded Gaussian elimination to solve the same sys-

tem of equations, shows that the dual variable solver in DUALIT uses less computer memory and considerably

less computer time to solve the same problems. In [7], a simulation of the flow of air along the exterior of an

aircraft and into an opening in the fuselage is anlayzed numerically. Inside the cavity, there is a sensor which is

treated as a blockage. In front of the opening in the fuselage is a ramp or spoiler which causes the jetstream of

air to shoot up over the opening and reduces the amount of flow into the cavity.

The inlet velocities on the bottom of the region correspond to a free stream Mach number of .75 while
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pressures of 14.7 psi are specified at the outlet on the top of the region. The walls of the cavity and sensor are

no-slip walls. The DUALIT code cannot handle walls on the interior of the region; therefore, the fuselage,

spoiler, and sensor are approximated by adding large friction factors to the appropriate momentum equations to

force the mass-velocities to be zero.

The solutions achieved by DUALIT and DUVAL agree to 2 significant places throughout the transient.

Velocity magnitude contours are given in Figure 2 at time 25 seconds. From the figure one ,.n see the

effectiveness of using friction factors to simulate the interior blockages.

Figure 3 shows the streamlines of the flow at 25.0 seconds. As expected, the spoiler causes most of the

air to stream up and over the opening. There is a small vortex just above and to the left of the sensor.

Figure 4 is representative of the gain in efficiency using the algorithm in DUALIT.

This research is contained in a Ph.D. thesis [5] of George Mesina, a student of Professor Charles Hall, and

is also contained in a forthcoming joint paper [6].
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Figure 2. Aircraft Cavity Velocity Magnitude Contours at 25.0 Seconds

Figure 3. Aircraft Cavity Streamlines at 25.0 Seconds

We have developed an algorithm to construct cycle bases for MAC finite difference equations to extend

the dual variable method [1, 21 to three dimensional analyses. This has been implemented on the CRAY/XMP.
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An initial testing phase has been completed in which uniform flow, Poiseuille flow and driven cavity flows have

been simulated successfully.
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Mathematics and Applications Technical Report ICMA-88-122, University of Pittsburgh, 1988.
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Pittsburgh, 1989. Submitted to J. Comp. Phys.
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3. Solving Discrete Navier-Stokes Systems.

The focus of this project was solving the system of equations arising from discretizations of the

incompressible Navier-Stokes equations in an efficient way. This remains one of the most challenging problems

in computational fluid dynamics, with at least thr-'e basic issues:

(a) Linearization of the nonlinear system,

(b) Handling the incompressibility constraint,

(c) Finding an alternative less costly way to solve convection dominated diffusion equations than direct

methods.

Our approach to dealing with these issues was to use a new iterative method based on conjugate gradient

kcg) techniques. This was done with the aim of preserving the attractive features of cg, namely:

(i) Small storage requirements: 0 (N) versus 0 (N5 3) for efficient banded storage for direct methods needed

to solve 2nd order partial differential equations in 3 space dimensions.

(ii) Low computational cost: 0 (N" i3) versus 0 (N 7'3) for efficient banded elimination.

(iii) Ease of implementation: No parameters need to be supplied by the user, as for S.O.R. Also, it is not lim-

ited to simple geometry, as is multi-grid.

(iv) Convergence: cg iterates are theoretically proven to their error decreasing monotonically, and conver-

gence is guaranteed within N iterations. (In practice, the iterations may be stopped on before N, since

sufficient accuracy is obtained after only 0 (N "3 log N "3) iterations.

Unfortunately, the cg method was designed for linear symmetric systems of equations Mx = b. Thus it

could not be applied to Navier Stokes dLSiAW4,aiuns, which are nonsymmetric nonlinear systems with additional



(incompressibility) constraints. Bi-conjugate gradients (hcg) is a generalization, designed for unsymmetric

matrices. In describing how bcg arises from cg, we need to use a three-term recurrence relation satisfied by cg

iterates xk

Xk+1 = (0 Xk + (1 - 0k)Xk- + .Ok O rk

This is not the more standard description of cg, which is in terms of conjugate directions, as in 121. It follows

that the residuals rk = b - Mxk also satisfy a similar relation:

rk+I = wo*rk + (I - (DAk)rk_1 - L1o)ak lrk

Bci' introduces a new sequence of vectors defined to satisfy the residual relation for the transpose of the matrix:

Sk+1 =cokSk + (1 - (ok )Sk-I -oWkXkM Sk

The coeflicients ak and ok are defined as follows

<Sk ,k >
('k --

<Sk , Mrk >

I I <Sk , rk > I
W.k OXk_ 1  <Sk- i , r'k_- .jk-_i

Bcg preserves the (i) storage, (ii) computational cost, and (iii) algorithmic advantages of cg, but loses the

thcorctiza! convergence property (iv. In fact, the residual norms fluctuate quite drasticaly, making the method

unusable. To remedy this, we introduce smoothing via an auxiliary sequence Pk of averaged residuals, which

correspond to averaged solutions .k-

The smoothing forces monotonic descent of residual norms, making hcg a usable method. The cost of

implementing smoothing is negligable, the additional storage being 4 vectors, and the additional computations

being 2 scalar multiplications of vectors -ind I dot products. Furthermore, the smoothing is only a "post-

processing" operation, without interfering in any way with the bcg algorithm itself.

Brg with smoothing is a computationally cheaper iterative method for nonsymmeric linear systems than

others such as Orthonium [1], both in terms of op-counts and storage required. It constitutes one approach to

issue (c) in the context of Navier-Stokes, We deal with issue (b) by actualy carrying out the bcg algorithm in
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the space of solenoidal vector fields bv merinq of projections. Issue (a) is the easiest to handle, via lagging.

Substantial numerical computations with this new algorithm are reported in [3].

Rcferences

[I] H. Elman, Yale Univ. Report.

[21 D. G. Luenberger (1984): Linear and Nonlinear Programming, 2nd edition, Addison-Wes!ey, p. 244.

[31 S. Choudhury, "A Projected Bi-Conjugate Gradient Approach to Solving Discretized Incompresible
Navier-Stokes Equations", ICMA Report.

4. Divergence Free Subspaces.

Finite element algorithms for solving the incompressible fluid flow problems must deal with the conserva-

tion of mass equauons:

div q =0 (1)

where q is the mass velocity vector. Penality methods seem to be the popular approach, although other investi-

gators have been able to construct special divergence free basis elements that satisfy (1) a priori.

Knowing such a basis, Galerkin's method involves a projection into this reduced subspace of divergence

free velocity fields. Unfortunately, efforts in this direction up to now have involved straight sided elements and

low order element approximation to the pressure.

The dual variable method, first introduced by Amit, Hall and Porsching [11, finds a basis for the null space

of the discrete divergence operator using network theory. It was applied to the finite difference scheme pro-

posed by Krzhivitski and Ladyzhenskaya [2] and a scheme using the discrete divergence and gradient operators

of the MAC method studied by Harlow and Weich [3]. The DVM decouples the pressure from the velocity and

results in a large reduction in the size of the linear system to be solved at each time step. Dougall, Hall and

Porsching [41 implemented this method for finite difference discretization of Navier-Stokes equations used in the

simulation of flow of thermally expandable o'em water mixtures in reactor components.

Cha and Porsching [5] extended this method to finite difference discretizations of steady-state Navier-

Stokes equations. Sledge [61 and flail, Peterson, Porsching and Sledge [71 applied the DVM to finite element

discretizaticns of transient Navier-Stokes equations. This work involved a 4-node quadrilateral element for
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velocity and a constant quadrilateral element for pressure. No elements with curved edges were considered.

Mansutti, et al [8] and Bulgarelli, et al [9] applied the dual variable method to two and three dimensional prob-

lems using finite difference approximations. Burkardt, Hall and Porsching [101 formulate a DVM for two

dimensional compressible flow problems and Frey, Hall and Porsching [111 apply the DVM to analyze conlined

aerodynamical flows. Goodrich and Soh [121 interpreted the null basis in terms of the stream function for 2-D

incompressible flow in driven cavities.

There have been many constructions of explicit bases of the divergence free subspace for various finite

element and finite difference schemes. Griffiths [13, 14, 151 obtained an element level divergence free basis for

several finite element schemes on triangular and quadrilateral elements. The techniques used are the same in

each paper. Approximate values of the stream function at corner nodes are used to eliminate the unknown velo-

city components at midside nodes so that a: ,i,.i divergence free function on each element is derived.

In Griffiths [13, 14], three types of finite element schemes were investigated on triangular elements which

were given by Crouzeix and Raviart [16]. A divergence free basis was given for a nonconforming velocity field

where the components of velocity are represented by piecewise linear functions defined in terms of their values

at the midside nodes of the triangles. A divergence free basis also was given for a velocity field where the com-

ponents of the velocity are piecewise quadratic functions defined in terms of values at the vertices and midside

nodes of each triangle. The (discontinuous) piecewise constant pressure space was used for both of the above

velocity spaces. Another divergence free subspace derived by Griffiths [13] involved a velocity field which

comes from adding a cubic term to the quadratic representation. The pressure space used was a piecewise linear

function with a single element support. Griffiths [15] derived a basis for the divergence free subspace of the 9-

node biquadratic element velocity field on quadrilaterial elements. The following corresponding pressure spaces

were investigated: constant, linear and bilinear elements. The basis functions for these pressure spaces have sup-

port on a single element. This allows the incompressible constraint to be analyzed one element at a time. But

the basis function for the pressure space is discontinuous at element boundaries.

Gustafson, et al 117] combine group theory and fluid mechanics theory to obtain a basis for the divergence

free subspace associated with the choice of quadratic velocity and constant pressure triangular elements in two

dimension. Similar results have been obtained in 3-D for the scheme referred to as APX 3 in Teman 118]. The
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late work by Gustufson, et al [19] can be viewed as augmenting and ending their previous work.

Stephens, et al [20] and Goodrich and Soh [12] applied the Galerkin finite difference method (GFDM) to

the incompressible Navier-Stokes problem. This approach is similar to the Galerkin finite element method. The

subspaces of discrete divergence free mesh vectors were constructed for several finite difference schemes. It is

required that the discrete divergence and discrete gradient operators are formally adjoint. In Fortin [21], a sub-

space of S" is co- nucted in which a function satisfies (1) for a subspace of the pressure space. This subspace

is the orthogonal complement of piecewise constant pressure space. This can reduce the 5-node velocity and

linear discontinuous pressure element to 4-node velocity and discontinuous constant pressure element.

We emphasize that all of the above constructions of divergence free basis velocity vectors require straight

sided elements and that the pressure space contains only dicontinuous functions.

For many finite element and finite difference schemes, divergence free bases and null bases have been

obtained. But most of them are for low order schemes and for very regular domains where the boundary is a

piecewise straight line. In the current work a divergence free basis is constructed for a standard element type

and curved edges are allowed.

Many numerical algorithms have been developed to solve this problem. Even though the null basis is not

unique, we are interested in those which are sparse and banded. This means small support basis functions for

the divergence free subspace and a banded sparse transformation matrix for the dual variable method.

The turn back algorithm is a method for computing a banded and sparse null basis. It was proposed by

Topcu [22] to compute a null basis with a profile structure for equilibrium matrices in structural analysis.

Kaneko, Lawo and Thierauf (23] interpreted this algorithm from a matrix factorization point of view. Berry, et

al [24] refined this algorithm, implemented it using profile data structures and tested it on several structural

problems. Berry and Plemmons [251 have implemented this algorithm on a HEP multiprocessor.

Coleman and Pothen [26] have deiened two methods to obtain a sparse null basis: the first one computes

a fundamental basis (one with an embedded identity matrix); the other one computes a triangular basis (one with

an upper triangular matrix). Both algorithms have two phases. In the first combinatorial phase, a minimum

dependent set of columns is identified by finding a match in the bipartite graph of the matrix. In the second,

numerical phase, nonzero coefficients in the null vector are computed from this dependent set. Finding the
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sparsest basis for the null space of an underdetermined matrix was shown to be NP-hard by Coleman and Pothen

[27].

We have developed an algorithm which yields a basis for the divergence free subspace associated with the

standard isoparametric 8-node velocity approximation and 4-node isoparametric pressure element. This basis has

minimal support (no greater than 9 elements), can be efficiently constructed, and curved elements are allowed.

The relation between this divergence free subspace approach and the dual variable method has been established.

The turnback algorithm is used on a patch of elements. This work is contained in a forthcoming Ph.D. thesis of

X. Ye, a Ph.D. student of Professor Charles Hall.
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5. Numerical Solution of Transport, Slightly Diffusive Transport and Fluid Flow Problems.

A central theme of this project has been the numerical analysis of multidimensional transport and slightly

diffusive transport problems. The rescarh _, b,. broadly divided into the following (closely interrelated) areas:

a. Classification, comparison and parameter selection for difference

schemes for 2-D convection-diffusion problems.

b. Derivation of monotone type discretizations for boundary value problems.

c. Numerical analysis of defect or deferred correction methods for
multi-dimensional convection diffusion equations.

d. Numerical and analytical studies of natural convection problems.

a. Classification of schemes for 2-D convection diffusion problems
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In Layton [1], structure has been given to the many schemes proposed for 2-D convection-diffusion prob-

lems via the theory of modified equations. One desirable feature in a numerical methods for convection-diffusion

problems is that artificial diffusion operate primarily in the streamline direction. In the preliminary study [2] it

was pointed out that with positive type stencils for general (a, b) the amount of "crosswind" smearing due to

artificial viscosity must be substantial in a quantifiable manner. This idea was more fully developed (for general

stencils) in Layton (1].

As a concrete example of the generally applicable theory of Layton [1], consider the celebrated "skew-

upwind" scheme (proposed by Raithby in 1976) which was a precursor of the currently popular streamline

diffusion methods. In [1] it was shown that the principal axes of diffusion of this scheme are not aligned with

the streamline direction unless (a, b) is aligned with the mesh [a = 0, b = 0 or a = b]. Futher, in [1, example

4] it is shown how the skew upwind scheme should be "realigned". The resulting scheme is, in fact, of positive

type while the skew-upwind scheme is not! Numerical experiments in [1, section 4] confirm the superiority of

this new scheme over both the original skew-upwind method and other positive-type upwinding formulas.

b. Derivation of Monotone 7ype Discretizations for Boundary Value Problems

The well-known stability barrier of van Veldhuizen states that for general velocity fields (a, b) a positive

type approximation of L, in (1) is limited to first order accuracy. In Layton [1] it was shown that, even among

first order schemes, for general (a, b) positive type stencils must possess substantial cross-wind diffusion in a

quantifiable sense. Thus, there is also a harrier in the spurious cross-wind diffusion in these schemes. Further,

for second order elliptic equations with cross-derivative (un) term there is also a stability barrier (due to Green-

span and Jain) on the size of the u_, coefficient for the existence of positive type discretizations, (see Layton

[14] for a more complete discussion).

Thus, the sign pattern required of positive type stencils is clearly too restrictive for accuracy. On the

other hand, it is very desirable to have discretizations which satisfy a discrete maximum principle/preserve posi-

tivity. Thus, schemes which lead to monotone type (or inverse positive) discretization matrices must be con-

sidered.

This condition on the stencil is global. Onc contribution of this research is that it has been shown how to
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correctly "microlocalize" this condition.

A general methodology for the microlocal construction, which is based upon the theory of regular split-

tings was derived and analyzed in Layton [15]. To describe it, we shall focus on the convection-diffusion prob-

lem (1). Consider first the case e = 0, (we will return to the 0 < e "small" case soon). One basic problem is

going from the microlocal problem (pre-monotone stencils) to the global problem (variable coefficient prob-

lems). Loosely speaking, this difficulty arises because matrix multiplication is row by column, thus, a point-by-

point splitting of Lh into "generalized positive type decompositions" will not induce a matrix splitting when

boundaries or variable coefficients are present. Two principles of "microlocalization" have been proposed which

resolve this difficulty. The first method, in Layton [15], is based upon a novel theory of difference schemes,

intermediate between positive type and general monotone type schemes, Positive Averaged Stencils (PAS).

These were introduced in Layton [14] where the relevant theory is developed.

Thus, positive averaged stencils are one way to pass from local constructions of L h to global conditions

on (L )- 1! Interestingly, all of the classical monotone type discretizations of second order problems are positive

averaged stencils, with one exception in Layton and Morley [17]. The extra degrees of freedom in PAS and

relaxation of the sign pattcrn can be used, for example, to increase the accuracy in methods.

The treatment of boundary conditions inside the P.A.S. framework is not difficult. To preserve monotoni-

city in the non-periodic case we use, at the points adjacent to the boundary, a lower order discretization. This

discretization is determined by computing the operator splitting Ph -Ah restricted to those points. In this fashion

we generate one "compatible" with the interior equations.

To analyze the singularly perturbed case a "collage" type result was proven in Layton [15] monotone (or

inverse positive) matrices. The "collage lemma" of Layton [15] gives a result which has a degree of uniformity

in the dimension of the matrices involved.

The second principle of microlocalization was presented in Layton [14]. It involves differencing variable

coefficient problems, not via the frozen coefficient problems at each point, but rather selectively values of the

coefficients at the meshpoint as well as its nearest neighbors. This procedure is quite general and systematic.

The derivation of the variable coefficient stencil can be summarized as follows:
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Suppose, in the constant coefficient case a stencil L possesses a "generalized positive type decomposi-

tion" (in the sense introduced by Brandt), specifically

LA = A-A- - R , R _> 0 coef ficientwise

A, A- are positive type difference stencils

Then, the correct extension of Lh to variable coefficient problems is in terms of the frozen coefficient problems

in A+ and A- rather than in Lh!

In summary, progress on monotone type discretizations has been substantial. The question of derivation of

stencils of the required type has been substantially solved and promising work is underway on the remaining

issue (2-D convection-diffusion). Th iii,-iu;lization" question is completely resolved in its full generality.

Treatment of points adjacent to computational boundaries has been successfully addressed in several examples

by ad-hoc methods. Additive combination of monotone type stencils with positive type stencils has been

resolved in the case of a "small" perturbation in the collage lemma.

c. Numerical Analysis of Deferred Correction Methods

A promising algorithm for multidimensional conv,2ction problems, originally due to Hemker [6], based on

deferred corrections was analyzed in Ervin and Layton (31 and Axelsson and Layton [4], [5] and (181. Addi-

tional work included extensive numericil cvpcrimcnts, reported in Ervin and Layton [13] and research code,

documented in Ervin and Layton [16]. In spite of intensive computational studies of (DCM), rigorous error

analysis was lacking for problems with realistic boundary layers.

In Ervin and Layton [31, a finite difference implementation of (DCM) was analyzed for the two-point

B.V.P. arising as the 1-D version of (1). In this case, uniform in , (singular perturbation parameter) conver-

gence of optimal orders on subdomains was proven. Precise estimates near layers were given in [3] also.

These estimates were also proven to be sharp in numerical experiments reported in Ervin and Layton [3].

The local error analysis via cutoff functions was carried out for the 2-D problem in Axelsson and Layton (4].

This analysis focused on a finite element interpretation of (DCM). To summarize the basic result, let f2j be a

nested sequence of subdomains.

:D f2lDL22 "" ... Df2, (3)
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such that each Qj does not admit upstream cutoff, as pictured Figure 1. Further, suppose

(i) the characteristic portion of X2; s 0(,7T ln(11h))
distance from Mj-1,

(ii) the outflow portion of Mj is 0(h ln(I1h))
distance from Mj- 1 ,

(see [4] for a precise formulation), where h is the maximum diameter of the finite element triangulation of 2.

The basic result in Axelsson and Layton [4] states that when the finite element space approximates smooth func-

tions to 0(hk) in H'(0), the error u - Uj is of optimal order, uniformly in e on subdomains, modulo a term

which is of infinite order accuracy, nonuniformly in e.

Theorem Let u := true solution of (1). U := jh finite element, defcc: correction approximation, then for

any s > 0,

Iu - UlIJ 111tl) < C1(f, s){(o - e)j + hkj + C2(e)E.

d. Numerical and Analytical Studies of Natural Convection Problems

Convection-diffusion equations are useful models of more complex physical processes, such as coupled

Navier-Stokes system in free or natural convection problems, studied in Boland and Layton [7], [8], [12] and

Ermentrout, Boland, Hall, Layton and Melhem [9]. In this work, a finite element model of natural convection in

an enclosure with thermally conducting walls is studied, based upon a Boussinesq model.

In a preliminary study, the stability and regularity properties of the Boussinesq model (4) was analyzed.

This study includes the discontinuous coefficient K and the coupling between the energy and the Navier-Stokes

equations. This preliminary study elucidates expected regularity properties of the solution (y, p, T) of (4). With

this knowledge in hand, in Boland and Layton [7], the finite element method for the time dependent coupled

system was analyzed. Error estimates were proven for the time dependent problem. These estimates delineate

both expected convergence rates under minimal data restrictions as well dependence of the error upon the

Prandtl and Rayleigh (Pr, Ra) numbers.

In a companion analysis [12] (incorporating the report [8]), we consider the steady state problem. Error

estimates, under global and local uniqueness conditions, are proven for the finite element model. The assump-

tions on the continuous problem are also proven in a separate section of [12]. One interesting auxiliary result
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proven in Boland and Layton [19] is a,; follows. Consider the steady state problem arising before subtracting of

the boundary conditions specifically y = 0 with inhomogeneous Dirichlet boundary conditions on a2(Q in (4). It

was shown in [12] that the continuous problem always has at least one steady state solution, which is unique for

small data and generically, locally unique for large data. The corresponding question can be asked for the finite

element model: does the finite element model admit steady state solution?

Case 1: dist(@Q,, an) > 0. The answer here is yes.

Case 2: Linear or bilinear elements plus an angle or aspect ratio condition. The answer here is yes, via

a discrete maximum principle argument in the energy equation.

Case 3: Quadratic or higher elements for the temperature. In this case the following condition is needed

to ensure a yes answer: either dist (an, M,) > 0 or n = n, and: the local mesh density near the vertical sides

of an, must be sufficiently small, in a quantifiable sense, depending on Pr and Ra : hlo¢ = C Ra - 114 near an,

This result is in accordance with the engineering practice of grading the mesh near 8n as in (5). In fact, a for-

mal asymptotic analysis of layers in (9) suggests that the boundary layers are in fact within O(Ra - 114) of an'.

This idea was developed in a different direction in [9]. It is well known that discretizations of nonlinear

problems frequently introduce spurious solutions. In, e.g., Stephens and Shubin [10], it was shown how these

spurious steady state solutions are introduced for Burger's equation, by spatial discretization. Motivated by non-

physical dynamics observed in the finite element model of hollow glass blocks, in [9], we study how these non-

physical steady states influence the dynamics of the time dependent Burger's equation. In some cases, we have

rigorously proven that a Hopf bifurcation does occur in the discrete system. This is consistent with the compu-

tational results reported in Melhem [11].
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6. Equilibrium Manifolds in Computational Mechanics

Throughout the past several years, one aspect of our research program concerned the computational solu-

tion of equilibrium problems as they arise naturally in continuum and fluid mechanics. The mathematical models

for describing these problems are formed by nonlinear equations, including algebraic, differential, or integral

equations, all of which involve several parameters, and hence have tUe generic form F (z ,.) = 0 . Here z varies

in some space Z and characterizes the state of the physical system while X denotes the vector of parameters

from some finite dimensional space A.

Our research in this area has been based on a consistent use of the fact that the solution set of such

parametrized equations constitute in general, a differentiable manifold in the product space X = ZxA. Our

results so far certainly show the value and power of this geometric approach.

Our work concerns essentially the following topics:

(1) Development of methods for analyzing various features of equilibrium manifolds on the basis of a com-

puted simplicial approximation.

(2) Methods for the computation of sub-manifolds of foldpoints on equilibrium manifold.

(3) Study of estimation techniques for the errors arising in the various computational procedures under (1) and

(2).

Some details of the current work are given in the following sub-sections.

i. Methods for Analyzing Features of Equilibrium Manifolds.

A new method for computing simplicial approximation of the solution manifolds of a parametrized equa-

tion has been developed. An essential pr, of" the method is a constructive algorithm for computing moving

frames; that is, of orthonormal bases of the tangent spaces that vary smoothly with their points of contact. The

approximation process uses these bases together with a chord form of the Gauss-Newton method as a corrector,

to compute the desired nodes of the simplicial mesh on the manifold.
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The process has been implemented for two-dimensional as well as three-dimensional manifolds in spaces

of arbitrary dimension. All experience with these codes so far has been excellent. In particular, it turns out that

the method is extremely efficient and in fact has a better computational complexity than most continuation pro-

cedures. For example, for a two-dimensional manifold a typical computation produces a triangulation involving

114 triangles with 19 evaluations and decompositions of the Jacobian of the mapping. Work is continuing on the

process. In particular, we are currently experimenting with adaptive approaches for handling situations involving

large changes of the curvature of the manifold.

Any simplicial approximation computed with this method provides a wealth of information about the

equilibrium manifold. This opens up numerous possibilities for determining various features of such manifolds.

A first possibility is of course to provide a graphical representation of parts of the manifold. Such an

opportunity has not existed before and already simple examples indicate what new insight can be obtained in

this way. At the same time, effective graphics techniques for visualizing a p-dimensional manifold defined in a

high dimensional space are by no means readily available. During the past year a set of post-processing routines

have been developed which generate a sequence of slices of a simplicial approximation of a three-dimensional

manifold. Suitable projections of these two-dimensional slices can then be represented graphically by means of

standard programs, such as MOVIE.BYU. By viewing these slices in sequence on- has the impression of

"flying" through the 3-dimensional maintoil ana this provides often some unique insight into its features. Work

is now continuing to incorporate plots of prescribed contour surfaces into these graphical representations.

Graphical representations are, of course, only one way to analyze the various features of our manifolds.

The wealth of computed data offer numerous possibilities for the application of post-processing routines to cal-

ulate approximations of various specific features.

A particularly important feature is the curvature tensor of the manifold M which has many important

applications. The numerical calculation of the curvature tensor from the data made available by the moving

frame algorithm was set as one of the goals of the previous proposal. The differential geometric and numerical

difficulties, the latter being essentially due to the fact that curvature depends upon second-order quantities, have

been successfully overcome in [1]. The corresponding algorithm has provided surprisingly good results. More-

over, an unexpected by-product of this method was found in the form of the apparently first efficient and
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rigorous technique for the calculation of all the bifurcated branches of solutions in bifurcation problems involv-

ing a higher dimensional null-space. Up to now, only the one-dimensional null-space case had been considered

(and so, extensively) in the numerical literature.

As noted earlier the availability of some approximation of the curvature tensor has many important appli-

cations. One of them concerns the question of estimating the distance from a given point x on M to some fold-

point x* of that manifold. As part of the methodds for computing foldpoints discussed in the next subsection we

have developed a method for obtaining such estimates. In essence, a foldpoint on M is defined by the property

that one or several normal vectors of M at that point are parallel to the given natural parameter space A. This

suggests the computation of the smallest principal angle between the (n-p)-dimensional normal space rgeDF(x)*

and the p-dimensional natural parameter space A. These principal angles are readily computed, but, of course,

without any further information they do not provide the desired estimate of IIx-x*II. Here the approximate curva-

ture tensor can be used very effectively. This provides, for the first time, a computable estimate for this impor-

tant distance. Results so far with the technique are very encouraging but further work is needed to make the

method generally applicable.

The computed simplicial approximations also provide an effective tool for deter, fning the approximate

location of the foldset of the manifold M. For this one has to monitor the orientation of the projection of the

tangent basis at the nodal points onto the parameter space A. If there is a change in this orientation then we are

in the neighborhood of a foldpoint; but the converse is not necessarily true, since not every foldpoint can be

detected this way. The orientation can be characterized, for example, by the determinant of the projected basis in

the parameter space. Thus, in essence, if we plot lines of constant determinant values, then lines of zero deter-

minant values are approximations of the desired foldlines. Of course, determinants are not always the best way

to proceed here, and we are currently studying alternate techniques for the effective determination of the desired

orientation changes and for combining the technique with the above mentioned method for estimating the dis-

tance to the desired foldpoint(s).

ii. Methods for Computing Foldpoints.

One of the central computational problems in connection with the equilibrium manifold M of a given



parametrized equation is the determination of the foldsets of M. These sets are of special importance in stability

considerations for the equilibrium problems under study.

As mentioned in the previous sub-section, the availability of the simplicial meshes opens up a unique way

of detecting the presence of such foldpoints. The points on the simplicial approximation also provide approxima-

tions for these foldpoints from where local iterative processes can be started for their accurate calculation. All

such iterative methods require a suitably augmented system of equations for which the Jacobian is non-singular

at the desired foldpoint. For some time now, the study of various classes of such augmenting schemes has been

an active topic of research under this project. In particular, in [2] we consider augmentations of the form

F(x) = 0

C" T U 0 j=l, , p

where the u, form an orthonormal basis of the tangent space at the point x and c is a vector in the intersection

of the normal space at that point with the parameter space A. This augmentation was shown to be feasible at

singular points of socalled type (p,ll) which includes the standard turning points, simple bifurcation points, and

also various other types of singularities.

The crucial point in the utilization of this augmentation is the choice of the "unfolding" vector c. During

the past year a new method has been developed to obtain such a vector c when x is an approximation of some

foldpoint x* of the manifold [3]. The technique is closely related to the approach mentioned in the previous

sub-section for estimating the distance I Ix-x* I I. A principal idea is the use of the so-called gap between the

tangent space at x and the parameter space A. As part of this approach it has become possible to generate a new

augmentation

F(x) = 0

g,(x)=0, j=l, p

with the desirable propcrty that the finite difference approximations of the derivatives of the g, can be obtain

directly from the Jacobian of F. Moreover, for paths of foldpoints this particular choice of the augmentation

allows us to determine the approximate direction of a path of foldpoints on the manifold. With this we have
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obtained a new method for continuing along such paths of foldpoints which turns out to be considerably more

efficient than other methods known so far. More generally, the new augmentation has also opened up the possi-

bility of determining the tangent directions of a higher dimensional sub-manifold of foldpoints. This, in turn,

provides for the application of the simplicial approximation algorithm to such sub-manifolds. Such "triangula-

tions" of foldsets have never been obtained before and they offer promising new approaches for the analysis of

stability problems.

iii. Error Estimations

There are numerous error questions arising in the different processes for computing foldpoints on a solu-

tion manifold. During the past ycar we have begun a systematic study of the sources of these errors and of

methods for estimating them. This work has addressed the following computational tasks related to the determi-

nation of foldpoints.

(a) Detection problem:

This important problem may be phrased ,,. f,1!j,vs: Given a set {x1. x ) of points and appropriate addi-

tional information about the mapping at these points, determine whether some foldpoint of the manifold M is in

a neighborhood of this set.

This is in essence a question of determining how far a given point is from a solution of a suitable aug-

mented system of equations. Evidently, on the basis of information at finitely many points alone we cannot

expect to obtain a guaranteed inclusion result; at least some information about the mapping in a suitable neigh-

borhood of the given set of points is needed. This is already seen Ior very simple cases. Suppose that

A=span(v) and that x1 and x2 are two successive points produced by a continuation procedure. If both poinv,

belong to the same connected component of the continuation path and u' and u2 are the corresponding

(oriented) tangent vectors then sgn (vTul);sgn (vTu 2) implies that there is a limit point of odd order between

these poirts. Evidently without further information about the mapping we cannot verify that both points belong

to the same connected component of the path and without that assumption the statement need not hold. On the

other hand, suppose that we only know that the two points are on thz path and that we have oriented the tangent

vectors by the requirement (ui)T(u2) > 0. Now, it turns out that when a certain determinant changes sign
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between the points and the points are not too far apart, then they cannot belong to the same connected com-

ponent and hence there must be a bifurcation point between them.

These observations extend to the general case of a p-dimensional manifold. Once again the availability of

a simplicial approximation of the manifold and of some derived quantities, as, for instance, an approximate cur-

vature tensor, provides here some of the needed information for the development of methods for handling the

detection problem.

(b) Approximation error

For a given approximation x of a foldpoint x* of M estimate the distance I Ix-x* I I between these points.

This depends on the measure of the distance between the points; at the same time some information about the

mapping is needed to derive estimates of the distance. Here, as noted in subsection 1 above the size of the smal-

lest principal angle between the m-dimensional normal space of the manifold at the point x and the p-

dimensional natural parameter space A gives some information about this error. These principal angles are

readily computed. but again information about the mapping is needed to derive from this an actual estimate of

I Ix-x* II. As mentioned earlier, an approximate value of the local curvature tensor proves very useful in this

connection.

(c) Foldpoint computation

We have discussed already methods for the computation of specific foldpoints on our manifold. In all

cases a suitably augmented system of equations is formed which then allows the application of a standard,

locally convergent iterative process. The behavior of this process is controlled by the error of the initial approxi-

mation, the termination error of the method, and the influence of round-off on the reliability of the result. The

initial approximation error was already discussed under (a) above. But the application of the iterative process

provides some additional data which pcLiit a JIu.cr estimation of that error. In connection with the termination

error we are not only interested in the question how close the computed point is to the manifold, but how well it

actually approximates the desired foldpoint. Thus we are again back to the previous problem. But once again,

the behavior of the iterative process provides some information that was not available before and that appears to

help in gaining a closer estimate.
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7. Differential Algebraic Equations (DAE'S) in Mechanics

Many problems in mechanics are of the generic form:

E(x.) = 0 (1)

A(x.) _ = G(x.) (2)

where x (z, ), z is from a state space Z and X is from a p dimensional parameter space A. Equation (1) is

a set of nonlinear algebraic equations and (2) is a set of differential equations, hence the system (1)-(2) is

termed a DAE.

An alternate interpretation comes from the observation that (1) defines a manifold M of dimensions p

in the combined space X = ZxA and that (2) is a differential equation on M; hence the system (1)-(2) is also

referred to as a differential equation on a manifold (DEM).

Two applications of interest to the investigators in which DEM's or DAE's occur are:

(i) Incompressible Fluid Flow. The continuity equation is an algebraic constraint of the form (1) and the

time-dependent Navier-Stokes equation is a differential equation of the form (2).

(ii) Punch Stetching of Sheet Metal. The principle of virtual work provides a force equilibrium equation

which defines an equilibrium manifold upon which one seeks solutions to differential constitutive laws of

the form (2).

i. Elastic-Plastic Deformation
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In [12], a new numerical method was presented for computer simulations of punch stretching of sheet

metal. Most current approaches to finite element modeling of large deformation, elastic-plastic sheet metal

forming use a rate form of the equilibrium equations and then must correct at each time step to insure that

equilibrium is satisfied. Such methods are referred to as incremental methods [3]. The new method, a DEM

approach discretizes the more fundamental equilibrium equations in non-rate form and insures equilibrium of

forces at each time step. Formulating the problem as a DEM or DAE also allowed for solution of the discre-

tized system using off-the-shelf software such as LSODI [14]. Numerical experimentation indicated that the

DEM approach was, in many cases, compwrition lly more efficient than the incremental approach.

Differential-algebraic systems (DAE's) are usually solved by means of software developed originally for

the solution of initial value problems of ordinary differential equations (ODE's). This approach has become

widely accepted ever since it was proposed by Gear [4]. Such codes as LSODI [14] and DASSL [15] are based

on this approach in which the algebraic equations are viewed as degenerate ODE's.

An alternative approach is the DEM approach mentioned earlier, (see also [5]). The DAE is viewed as a

differential equation on a manifold; the latter determined by the algebraic equations. Hence we seek a curve

passing through the initial point whoc tin- it conforms to the direction field defined by the differential equa-

tions. This interpretation allows for the application of the differential- geometric techniques discussed in earlier

sections. In particular, it suggests to new methods for the solution of DAE's especially in cases where the ODE

methods no longer work very well.

Our experience in [12,13] gave strong indications that the DAE's arising in finite element discretizations

of elasto-viscoplastic problems can not always be solved efficiently by ODE-software, such as LSODI. Problems

appear to be related to the inability of the predictor to handle sudden changes in external forces due to punch or

die contact, and to the onset of plasticity.

Computerized mathematical models which produce accurate and efficient simulations of sheet metal form-

ing processes are highly useful for example in the automobile industry as a means of predicting the success or

failure of a punch-die design, or evaluating formability properties of new materials. The differential equations

on a manifold (DEN) method, coupled with state-of-the-art software packages designed to integrate differential
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algebraic equations (DAE's), has proven to be such a model.

The basic equations governing the solution of large deformation plasticity problems in continuum mechan-

ics are the equilibrium equations and the constitutive equations. In discretized form, the equilibrium conditions

become a system of nonlinear algebraic cquauons, while the elastic-plastic constitutive equations are a system of

ordinary differential equations (ODE's). Two general approaches to the solution of such differential-algebraic

equations (DAE's) are typically used in displacement-based finite element methods. In one approach, the time

derivative of the equilibrium equations is calculated and the DAE becomes an ODE in nodal displacements. In

another, the equilibrium equation is left unchanged and during each time iteration of the nodal displacements,

the constitutive equations are integrated to yield the stress, which is then used to check for equilibrium.

The Differential Equation on a Manifold (DEM) method as presented in [12] is similar to the latter

approach in that the original equilibrium equations are used, however, as in the mixed methods the stresses as

well as the displacements have finite element approximations. The equilibrium equations are viewed as a mani-

fold in the solution space on which the solutions to the ODE (constitutive equations) must be traced. State-of-

the-art numerical software is then used to solve the resulting DAE. Equilibrium is satisfied at each time step.

The DEM method was applied successfully to axisymmetric hydrostatic bulging [12] and to axisymmetric

and plane strain sheet metal forming problems [131. As compared to previous results [3], the DEM method pro-

duced accurate solutions for rate-sensitive materials for computational running times which range from 6 to 26

times less than for previous methods. The software package LSODI [14] was used for the numerical integration

of the DAE's. These implementations of !,- DENI method for punch stretching resulted in an efficient and

accurate, but somewhat non-robust algorithm.

In order to assess better the expected behavior of the solutions, a study of the existence and uniqueness of

nonlinear DAEs was begun. In [21] such a theory was presented for first and second order systems of the form

FI(x) = 0

F 2 (x, x', z) = 0

and

FI(x) = 0

F 2(X , X", X ", Z ) = 0
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respectively. For these systems it was shown that they induce smooth vector fields on certain open subsets of

the space of their differentiable variable, r. Moreover, in the first order case these vector fields are tangential to

the constraint manifolds {x; FI(x) = constant) while for the second order equations they are tangential to the

tangent bundles of these manifolds. This in turn provides directly for the desired existence and uniqueness of

these DAEs. The theory has also opened up the development of a new local parametrization approach for the

computational solution of these systems. This generalizes earlier developed techniques for the Euler-Lagrange

equations arising in constrained multibody dynamics.

ii. Bifurcation Phenomena

Our computational experience with zhepr-meral forming has also given strong indication that in the solu-

tion of DAE's there are situations in which singularities, such as bifurcations, occur. In particular, certain non-

linear DAE's may exhibit multiple solutions in some domains. Two examples of such a situation are the follow-

ing:

(a) A geometrically symmetric plane strain punch problem, such as we considered in [12, 13], was modeled

successfully using a natural symmetry. However, when this symmetry was ignored the solver (in this case

LSODI) produced, what appeared to be, two distinct solution curves after the onset of plasticity depending

on the particular problem parameters. One of these curves corresponded to the expected symmetric solu-

tion while the other one was clearly un-symmetric, which suggests the occurrence of a symmetry breaking

bifurcation point.

(b) An extension of the DEM approach to in-plane stretching by Punch [6] led to a similar situation in which

LSODI failed to follow a geometrically symmetric solution curve in favor of one which was non-

symmetric.

These examples point to the necessity of a clobcr study of the singularities of DAE's. It appears that up to

now very few results are available in this area.

The recent theoretical work [10], givcq , complete and rigorous analysis of the dynamics in the vicinity of

a generic singular point. The results in [10] explain why such deviations from the expected symmetric solution

occur, which are due to the slightest breaking of a perfectly symmetric problem. Numerically, such a breaking
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may be caused e.g. by roundoff. More interestingly, since actual problems are never perfectly symmetric, these

results show that the true solution may well eventually lose symmetry completely, because the symmetric

configuration becomes, loosely speaking, "unstable" beyond the singularity. This demonstrates that enforcing

symmetry of the solution by reducing the size of the system, although tempting numerically, is not a safe pro-

cedure if a singularity is encountered, lor icn Uic calculated solution is no longer significant beyond the singu-

larity. This phenomenon is largely (and probably totally) unknown and its discovery could have considerable

importance in problems in which symmetry of the solution is routinely taken for granted because it is "obvi-

ous.". From now on, consideration should be given to the nonobvious and unsuspected fact that the slightest

breaking of symmetry has drastic effects on the solution in fixed finite time.

In the case of the punch problem described in [13], a careful monitoring of the eigenvalues by Y. Huang,

a Ph.D. student of Professors Hall and Rabier, has shown that, indeed, a singularity of the expected type is

involved. This has been observed using various mesh sizes for the discretization and only little dependence on

the critical time has been observed. A summary of these calculations with expanded comments is currently in

preparation ([111]).

Of c=.rse, the understanding of the dynamics in the vicinity of generic ("standard" in the terminology of

[10]) singular points of differential equations allows one to ask precise corresponding numerical questions, with

a natural priority given to the development of reliable techniques for the characterization and computation of

such points. One difficulty in this respect is that the approach taken in (10] is essentially theoretical and has no

numerical counterpart. However, striking analogies between these standard singular points and the much more

familiar turning points in transcendental eaminrions make it plausible that appropriate variants of methods for the

calculation of turning points exist, that can successfully be used for the determination of singular points.

The investigation of problems exhibiting symmetries has led, indirectly and unexpectedly, to new results

in problems of bifurcation involving symmetry (see (20]) and having consequences in abstract group theory itself

([21]). These results also have important potential applications to the numerical treatment of such problems

which are currently under study.
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8. Bifurcation Theory and Singular ODE's.

In connection with differential algebraic equations (DAE's), a theoretical analysis of singular differential

equations has been started in [5]. The problem is to determine the structure of the set of solutions to an initial

value problem

t A (x).i = G (x),

x(t0) = x0, (1)

when the n X n matrix A (x) is singular at x = x0 . The above formulation is suitable for the analysis of singu-

larities occurring in DAE's as well, a framework in which the problem has received a great deal of attention

from singular perturbation theory specialists. The approach taken in [5] follows ideas of bifurcation theory and

has permitted, apparently for the first time, to eliminate the usual but restrictive assumption that A (x) is singular

on an entire neighborhood of x 0.

In actual applications, equation (1) gnerqlly does not exhibit a singularity at the beginning of evolution.

However, it is quite possible that singularities appear at some later time along a trajectory. To describe what

happens next, one must analyze problems of the form (1) with singular A (x0). As is shown in [5], existence of

a singularity along a trajectory is not affected by small perturbations of the (nonsingular) initial condition: it is

a stable and hence important phenomenon.

Our recent work on singular differential equations has followed two directions. First, we have derivei

reliable algorithms for the calculation of the singular points called "standard" in [4]. These points are of pri-

mary interest because, according to [5], most singular points are or this type in the generic case.

Starting with a problem of the form (1) with nonsingular A (xo), we assume existence of an unknown time

t. > 0 such that A (x (t.)) is singular and propose methods for calculating t. and x. - x (t.) in the assumption

that x. is a standard singular point.

The need for such methods can be hinted from the fact that the simple approach consisting in writing (1)

in the explicit form

{ = A-'(x)G (x),
X(0) = xo
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although legitimate for I E [0, t.), leads to a problem in which the matrix A (x (t)) becomes singular as t

approaches t.. This, of course, may result in inaccuracies in the numerical calculation of both t. and

x. = x (t.). It is important to point out that the singularity cannot be jumped over. Indeed, the analysis in [5]

reveals that a trajectory encountering a standard singular point must necessarily terminate at the point: the solu-

tion x (t) cannot be extended continuously for t > t.. As far as numerical aspects are concerned, this forces the

matrix A (x (t)) to remain in a state of quasi-singularity without possible escape as t approaches or exceeds t.

(numerically, t may exceed t. despite the fact that this is theoretically impossible). This emphasizes the impor-

tance of having ad-hoc algorithms for the accurate calculation of standard singular points.

Such algorithms have been developed, which reduce the problem to solving a nonsingular ODE and scalar

algebraic equations. Part of the procedure uses a variant of a minimal augmentation technique introduced by

Griewank and Reddien [2] and extended by Rabier and Reddien [4], in connection with calculation of singulari-

ties in bifurcation problems. The possibilitv of modifying methods of numerical bifurcation theory to handle

singular differential equations was anticipated in the previous research proposal. A related report [6] is currently

being prepared.

The second component of the work recently accomplished in the domain of singular differential equations

deals with their relevance in real life problems. Some of the authors of this proposal had been suspecting for a

while that numerical inconsistencies observed in a problem of metal punching (see [1]) were due to the presence

of a singularity. This has now been fully corroborated by numerical calculations based on the previously men-

tioned algorithms for the calculation of singular points. A report by Hall, Huang and Rabier ([3]) on this prob-

lem, and its importance and implicatiuoo, is in picparation. Figure 1 illustrates the behavior of X, the smallest

eigenvalue (in modulus) of the Jacobian of the DAE (differential algebraic equation) resulting from the DEM

modelling of a symmetric punch stretching of sheet metal problem described in [1]. As X tends to zero in the

vicinity of 28 secs, the numerical solution loses symmetry. It has been verified numerically, that the purely

symmetric problem in fact has a Jacobian which is singular near this value of time. (See [3] for more details.).

For various finite element meshes behavior is qualitatively similar.
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