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ABSTRACT

This thesis presents an integer programming model to help the Navy develop

long-range shipbuilding plans. The model is of a general nature, but is proposed

specifically as a decision aid for the developers of the Navy's Extended Planning

Annex (EPA). The EPA sets forth planned ship purchases five to 20 years in the

future. It is currently produced with a mainly manual process that c weeks at a

time, hence it is extremely difficult for the EPA planners to respond quickly to

changes in the given data and assumptions. The optimization model suggests

delivery dates for new ships, based on given budgets and requirements, and

accounts for such complexities as the extra costs of building a leadship or of

resuming construction after a production break. The model has been formulated

with the General Algebraic Modeling System (GAMS) and effectively solved with

two commercial optimization packages. It performs fast enough to allow the planner

to make several "what if" runs in the course of developing the EPA.
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I. BACKGROUND

This research is an attempt to assist the Navy in planning ship purchases five to

20 years in the future. An optimization model is developed which will produce an

initial ship purchase plan. This proposed plan can then be used as a starting point

for developing the actual plan set forth in the Extended Planning Annex.

A. EXTENDED PLANNING ANNEX (EPA)

The Extended Planning Annex (EPA) is an annex to the Five Year Defense

Program which shows the planned status of the Navy and Marine Corps assets in

the years following those covered by the Five Year Defense Program. It is a "best

guess" of what the Navy will consist of in those years far in the future. It is not an

approved expenditures list, but a long range plan which can be updated or changed

as the budget, the current status of the Navy, or its requirements change. The basic

concept behind the EPA is an affordability analysis of future programs.

B. HOW THE EPA IS USED

Many decision makers in the Department of the Navy use the EPA in preparing

their own long range plans. The EPA shows the projected status of the Navy's

ships, aircraft, and personnel based on the Navy's analysts' expectation of what will

be affordable. Many decisions concerning today's assets invariably depend on what

kinds of assets are expected to be available in the future. For example, if a new

carrier is planned in the EPA to come on line in seven years, the personnel who will

be rotating at that time will have to decide whether they want to serve on that carrier,

and the detailers will be penciling in people to be the high ranking officers. If the

new carrier comes on line as scheduled in the EPA the escort ships must be ready to



proceed with the new carrier when it goes out to sea. Also, an older carrier may be

sent to the yards for an overhaul based on when the new carrier comes on the line to

take its place. This is of course only one example, many others could be cited.

C. HOW THE EPA IS CURRENTLY DEVELOPED

The current procedure for developing the EPA involves a member of the Chief

of Naval Operation's OP-81 staff (currently LCDR M. J. Zurey) spending a great

amount of time trying to develop a ship purchase schedule which will be affordable

and maintain desired fleet characteristics. Some of the scheduling is relatively easy

since the decision is mandated by other documents (e.g., the number of ballistic

missile submarines is included in treaties). Most decisions have more latitude and are

made through a manual trial and error process. Many considerations must be taken

into account, and examples of these include:

1. When are ships going to be retiring and thus require replacement?

2. When are ships going to be built to replace retiring ships?

3. How much money in each year is left over after the required ship purchases?

4. Is it better to build a new ship or extend the life of the ships coming up on
retirement through the Ship Life Extension Program?

5. Is there enough money to build several ships all of which need to be
delivered in the same year? If not, when should each be built?

6. Should the production line for one type of ship be stopped in order to
release funds to build another type ship?

7. Will there be enough personnel to man the ships which are being built?

8. Will the budget for ship construction increase or decrease, and by how
much?

9. If a ship retires without a replacement, will the Navy be able to meet the
national force requirements with the remaining ships?
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This is not an exhaustive list of questions and important factors. Fiscal

considerations are complex. Ships are not paid for when they are delivered, but

require installments years ahead of delivery, and lead ships do not cost the same as a

typical ship off the production line. Also, one must remember that allocations of

millions or billions of dollars are being planned for use five to twenty years in the

future. The need to satisfy many conditions and to keep track of expenditures for

several years suggests the use of a computer rather than a manual procedure. The

need to make good decisions about how to best allocate money suggests the use of

an optimization or simulation model. Optimization or simulation techniques can then

be used to assist the decision maker in choosing the best values for the decision

variables. Reference 1 describes simulation models as "strategy evaluation models"

and optimization models as "strategy generation models." Thus, in order to use a

simulation model, every possible combination of purchase plans (or at least every

sensible plan) must be generated ahead of time. Each plan is evaluated by the model

and the best plan selected. This is simply not feasible with the number of possible

alternatives available. This is the reason for choosing an optimization model.

D. THE NEED FOR A COMPUTER MODEL

The current long range plan is developed manually by an analyst at OP-81. One

plan generally requires weeks to prepare. If there is a change either in the budget or

the threat scenario, the plan must be redeveloped from the beginning. In order to

reduce the time required to develop long range plans LCDR Zurey requested that

the Naval Postgraduate School's Operations Research Department conduct research

on how to computerize the process. As part of the computerization, a model must

be developed. The main purpose of this study is the development of an optimization

model to aid analysts in preparing long range plans.
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II. OPTIMIZATION MODEL

The model is presented in two versions: conceptual and implementation. The

conceptual version of the model is designed for ease of presentation, to provide a

rough idea of the model's capability before presenting the more complicated version

that was actually implemented. Both models use "elastic" [Ref. 2] or "soft" [Ref. 3:

pp. 36-371 constraints and a penalty function associated with the elastic variables as a

means for finding a highly desirable, if not classically "optimal," long range plan.

Elastic variables allow constraints to be violated at a cost. They allow the model to

reflect the common managerial practice of violating some constraints in order to

satisfy others or to improve the objective function. To accomplish this, two elastic

variables are added to each equality constraint, and one elastic variable to each

inequality constraint. Elastic variables have penalties as their coefficients in the

objective functions. They are restricted to be nonnegative and will take on positive

values when the corresponding constraints are violated. One advantage of elastic

constraints is the ease of obtaining an initial feasible solution to the model.

Following the notation originated in Brown and Graves [Ref. 2], relational

operators with a small circle on the top indicate elastic constraints. This notation

eliminates the need for explicitly displaying the actual elastic variables in the model,

thereby making it easier to read. (The notation also reflects Brown and Gaves'

computional practice in their X-System solver [Ref. 41 of treating elastic variables

implicitly.)

4



A. CONSIDERATIONS

To be useful, the model must be realistic and flexible. To be flexible, a model

should allow the user to perform "what if' type of analysis (e.g., "What happens to

the plan if the piojected budget goes down instead of up?", or "What happens to the

plan if we need another carrier?"). To be realistic, a model must include the

following features:

1. A production line for a ship type may stop and be restarted. This happens
when funds must be transferred from one ship type to another. In general,
there is also a cost associated with restarting a production line.

2. Allow for bounds on the number of ships being constructed in a given year.
Each ship type has an upper bound and a lower bound on the number that can
be constructed per year, if any are constructed. There is also an overall bound
on the number of ships which may be under construction at any one time.

3. Payments for a ship are required long before the ship is delivered. Some ships
require payments in multiple years prior to delivery. Some ships require
expenditures after delivery, e.g., for outfitting. Each ship type has its own
payment schedule.

4. Leadships require payment structures that are different from the follow-on
ships. A leadship costs rmore and takes longer to build. Additionally, the
leadship is delivered in a year by itself, with a year (or perhaps two years)
enforced delay before any more ships of that type are delivered.

B. CONCEPTUAL MODEL

1. Index Use

i Ship type { CV, CGN, FFG, ... }

d Calender year of ship delivery { 1990, 1991, 1992, ... }

p Calender year of payment { 1990, 1991, 1992, ... }

k Ship's production status { typical, resumption, leadship }

A "resumption" status indicates that this is the first ship of its type to be

constructed following a break in the production line. All the cost of restarting the
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production line is added to this ship. The "leadship" -tatus is reserved for the very

first ship of a given type. All other ships are given the status of "typical." All

inappropriate index combinations are screened out.

2. Given Data

ship quantity d i

need/, Quantity of ship type i needed in year d.

haveid Quantity of ship type i that are in year 0 inventory and will still be in
operation in year d.

gettingid Quantity of ship type i that are currently under construction and will
become available in year d.

The net demand for ship type i up to year d is derived as follows:

netdemid = needid - haveid - ,gettingid,
d ' d

It should be emphasized that the number of ships needed in future years is an

input to this model. These needs are determined by other analysts and

communicated to the OP-81 officer in charge of scheduling the ship purchases.

fiscal data

c.~dp Cost in year p for each ship of type i and status k delivered in year d.

budgetp Money available to purchase ships in year p.

Fiscal data is generally given in units of millions or hundreds of millions

of constant year dollars. Defining the cost parameter with two time subscripts (d and

p) allows for greater flexibility in modeling ship costs. For example, if p < d then

the cost is due to construction, and if p > d then the cost is due to outfitting. The

actual method for inputting the cost is much easier than filling in the four

dimensional array cik, as shown in the Appendix.
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production limitations data

lag Number of years required to construct a ship of type i..

upbndid Upper bound on quantity of ship type i that can be delivered in. year d.

lwbndid Lower bound on quantity of ship type i that can be delivered in year d
if any are delivered.

sybndp Upper bound on total number of ships that can be under construction
in year p.

policy data

Relative penalties for elastic variables associated with elastic constraints. The

value assigned to these penalties has a profound influence on the solution. The

method used in this research is described in Chapter III.

3. Decision Variables

The decision variables in the conceptual model are:

Xikd Number of ships of type i and status k to be delivered in year d.

Elastic variables associated with elastic constraints also exist, but are not

explicitly referred to as decision variables. The value of Xikd for k = "resumption"

or "leadship" must be binary, while for k = "typical" it is a general integer.

4. Formulation

The conceptual formulation minimizes the total penalty cost associated with

violation of the elastic constraints to be described below. This type of planning

usually invelves so many conflicting constraints that it is generally impossible to

satisfy all the constraints inelastically.

MIN: Y PENALTIES

ST: 1) DEMANDid: [Ensure that the number of type i ships
delivered during or prior to year d meets the net demand.]

I I Xikd' - netdemid, V i,d
d' d k
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2) FISCALp: [Observe budget in year p.]

ECikdp Xikd " budgetp, V p
ikd

3) CONSTRUCTp: [Observe limit on the number of ships
under construction in year p.]

, Y, Xikd " sybndp,Vp
ik Od-p _lagi

4) Ensure the total number of ship type i delivered in year d
is E { 0, lwbndid, ... , upbndid ).

5) For new ship types, force the leadship to be delivered before
any typical ships.

6) Force a resumption unit to be deli lered following a
production break.

The first zhree sets of constraints are relatively easy to handle. The logical

constraints (4) - (6) require further development. In particular, constraints (5) and

(6) involve non-convex costs, and therefore a linear programming optimizer will

tend to violate them. Constraint (4) requires using general integer decision variables

with a range of values from a disjoint set of integers (e.g., (0, 3, 4, 5 }). Like the

non-convex costs, this condition causes computational difficulty in practice.

C. IMPLEMENTATION MODEL

1. Decision Variables

The implemented version of the model uses binary decision variables

exclusively. This choice is more amenable than general integer variables to most

solvers and it proves advantageous when constructing logical constraints.

However, it increases the number of decision variables. The conceptual model uses

index k to distinguish ship status, "typical", "resumption", or "leadship". The

implemented version instead uses three separate variables for this purpose.
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Additionally, a new indexj is used to indicate the quantity ordered for typical ships.

The new binary variables and their meaning are:

XTidj = 1 4-:* j = number of typical ships of type i to be delivered in year d.

XRid = I <, A resumption ship of type i is to be delivered in year d.

XLid = 1 4* A leadship of type i is to be delivered in year d.

Since the index k has been dropped, the cost coefficients are similarly

redefined:

ct*, Cost in year p for each typical ship of type i delivered in year d.

cridp  Cost in year p for each resumption ship of type i delivered in year d.

cli, Cost in year p for each leadship of type i delivered in year d.

All inappropriate index combinations are screened out prior to sending the

model to the solver. The binary variables with index j are related to the original

variables as follows:

Xid'typical' j XTidj
J

A binary variable must be defined for each possible positive value of Xid'typical.

To allow at most one of the new binary variables to take the value of I for each pair

of i and d, the following generalized upper bound (GUB) is added:

,XTidj < 1, Vid

Using this construction of binary variables rather than the usual "powers-

of-two" factorization [Ref. 5:p. 190] allows discontinuity to be more easily handled.

For example, if Xid'typical' E {0, 3, 4, 5 ) then XTidj will be defined only forj =

3, 4, and 5. The other values will be screened out. It easy to see that j could be

defined for any discrete set, even when several discontinuities exist. Handling this

with the usual "powers-of-two" factorization would be difficult. The major
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drawback to this method is that it is only practical when the number of possible j

values is small, otherwise too many binary variables will be introduced.

In the implementation model, we define XTidj for j = lwbndid- 1,

upbndid. This allows a resumption ship after a production break to be delivered in

the same year as lwbndid- 1 typical ships.

2. Formulation

The three constraints that were expressed mathematically in the ;onceptual

model translate directly to the implementation model as follows:

DEMANDid: I [ Yj XTid' + XRid' + XLid'] -- netdemid, V i d
d'_ !d j

FISCALp: , [ i XTidCtidp + XRidcridp + XLidclidp] - budgetp, V p
id j

CONSIRUCTp: I , [ , j XTidj + XRid + XLid] sybndp, V p,

iO_-d-p<lagi j

provided that the following constraint is also included,

GUBid: XXTidj Z_ 1, V i d.

We now describe the implementation of the logical constraints

mathematically. The first logical constraint is to ensure the total number of ship type i

delivered in year d is E ( 0, lwbndid, ... upbndid ). The upper bound and lower

bound are treated separately.

a. Upper Bound Constraint

Using the binary variables, the upper bound constraint is written

simply as:

UPPERid: j XTidj + XRid + XLid - upbndid, V i d

1
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b. Lower Bound Constraint

Ensuring that the number of type i ships delivered in year d is either

zero or greater than or equal to the lower bound lwbndid is the most involved

constraint in the model. This constraint needs to be stated explicitly only when

lwbndid > 2. (It holds automatically when lwbndid = 1, because the variables are

integer.)

The lower bound constraints involve only typical and resumption

ships, because lead ships are always built in isolation. That is, if a leadship is built,

the lower and upper bound on total ships of its type is one.

The inequalities designed for handling the lower bound constraint are

dependent on knowledge of the constraint's limited scope and on simultaneous

enforcement of other constraints. Assume for a specific i,d:

1) lwbndid > 2

2) .XTidj < 1
I

3) XLid=O or XXTidj +XRid=O

4) XTidj = 0 forj {lwbndid-1, ... , upbndid}

The first assumption is made because otherwise the lower bound

constraint under discussion is moot. The second assumption is justified by

appealing to the GUB constraint. The third assumption appeals to the "leadship-

first" constraint, and the fact that the optimizer will not choose to build a leadship

twice, since they cost more. The fourth constraint is justified simply by model

design: we define XTidj to exist only forj E (lwbndid-1, ... , upbndid}.

11



Under these assumptions, there are eight mutually exclusive and

collectively exhaustive cases, which can be represented in a four-by-two table. The

rows of Table 1 correspond to possible values for the number of typical ships

delivered. The columns correspond to possible values for the resumption ships.

The entries of the table indicate feasibility with respect to the lower bound constraint.

TABLE 1. FEASIBILITY WITH RESPECT TO THE LOWER BOUND CONSTRAINT.

Number of Resumption Ships

Number of Typical Ships XRid = 0 XRid = 1

." XTidj = 0 Feasible Infeasible
I
XiXTid1 = Iwbndid- 1 Infeasible Feasible

Y] XTidj = lwbndid Feasible Feasible

I

Xi XTidj > lwbndid Feasible Feasible
I

Six of the eight cases are feasible and two are infeasible. A set of linear

inequalities that correctly discriminates between the feasible and infeasible cases is:

XTidj < XRid forj = lwbndid - I

XRid 5 YJ XTidj

The first of these inequalities rules out the infeasible case represented in

the second row, first column of Table 1. The second inequality rules out the other

12



infeasible case. The feasible cases do not violate either condition. Based on this

analysis, we include the following constraints in the implementation model:

LOWERlid: XTidj - XRid -- 0, j = lwbndid - 1, V i d with lwbndid > 2

LOWER2id: XRd - ,XTidj - 0, V i d with lwbndid _ 2

c. "Leadship-First" Constraints

The next logical constraint to be developed is one that forces a leadship

to be purchased before any typical (or resumption) ships of its type are bought.

This constraint applies only to new ship types. A zero/one parameter gotsomej

(derived from haveid and gettingid) indicates whether any ships of type i are in

existence or under construction. If gotsomei = 0, then a set of "leadship-first"

constraints for ship type i must be added to the model. Without these constraints,

the optimizer would tend to purchase typical ships without ever buying the more

expensive leadships.

Assuming binary values for the decision variables and satisfaction of

the GUB constraints, the sum

X.XTidj + XRid

will have value one or two if any non-leadships of type i are delivered in year d.

Otherwise, this sum will be zero.

For any given i,d, with gotsomei = 0, the sum

XXLid'

d'<d

will be one if a leadship of type i is delivered prior to year d. If no leadship exists in

year d, this sum will be zero.

13



The required constraint is to prevent a non-leadship from being

delivered prior to a leadship delivery. This can be expressed as

_" XTidj + XRid <- 2 ,XLid'
j d'<d

for all i d with gotsomei =0. In the elastic formulation, the constraint is:

LEADFRSTid: XXTidj + XRid - 2 XXLid' - 0, V i d with gotsomei = 0
j d'<d

In some Navy planning, delivery of typical ships is not scheduled

until two years after the leadship. This affords more time for test and evaluation of

the leadship before opening a production line. The model can easily be modified to

enforce this scheduling constraint by redefining the leadship-first constraint as

XXTidj + XRid - 2 XXLid' - 0
j d'<d-1

d. Production Resumption Constraints

The next logical constraint from the conceptual model to be formulated

mathematically is the requirement to purchase a resumption ship after a production

break. Typical ship delivery of type i is allowed in year d only if type i is delivered

the previous year or a resumption ship is delivered the same year. That is

XXTidj > 1
J

is feasible only if

XRid =1 or XXTid.j + XRid.1 + XLid-1 > 1

A constraint which enforces this relationship is:

PRODBRKid: XXTidj - XRid - X(XTi d-1 j) - XRi d-1 - XLi d-1 < 0, V i d

I 1

14



In order to help keep this constraint from forcing the solver to always

lead off with a resumption unit, some early values of XTid and XRid are fixed using

the value of gettingid, if gettingid > 1. Since new ships will require lagi years to

construct, the first lag/ years cannot have any new ships delivered that are not

already in construction (and thus are included in gettingid). The actual method of

fixing the decision variables is shown in the GAMS input file in the Appendix.

Fixing the decision variables in this way also ensures that the calculated expenditures

are correct, and allows the user to input the projected budget, not the projected

budget less the amount required for ships already in construction. Additionally, if a

leadship is being constructed the user will use a parameter leadshipid, in the same

way as gettingid. This allows fixing the variable XLid in the same manner. In order

to improve solution times the planner may fix XLid to one for some particular year d

which is thought to be the year that the leadship will come on line. Then, by

varying the fixed delivery year, several solutions may be obtained.

e. Objective/Penalty Function

The objective/penalty function is a function of all the elastic variables

multiplied by their penalty. The penalty associated with a particular elastic variable

should reflect the ship type and the year associated with the variable. If a constraint

must be violated, the user would rather violate constraints associated with smaller

ships than with very large and expensive ship. In addition, the user would rather

violate constraints as far in the future as possible. With this in mind, the penalties are

discounted for ship type and year. The method for discounting by ship type uses

the concept that the larger ships are also more expensive. The penalty is multiplied

by a ratio of the particular ship's cost to the cost of the most expensive ship. For

yearly discounting, the user inputs a value for the parameter discnt. The penalty

15



discount from one year to the next is (I + discnt). If the user desires the penalties

discounted by 5% per year, discnt will require a value of -0.05. If for some reason

the user would rather the model violate constraints in the nearer years (if they must

be violated) discnt will require a positive value.

In order to allow the total penalty to be calculated, the penalty factors

are scaled to ensure the same units are being added. For example, if the budget

constraint is violated, the associated elastic variables need units of dollars (in order to

add to or subtract from the budget for that year). But, the other elastic variables will

be generally in units of ships. To keep the penalty units the same, the penalty factor

associated with the elastic variable for budget violation is divided by the cost of the

most expensive ship. This will yield a penalty for budget violation with units of

penalty per ship. It should be noted that there is a negative penalty (or reward) for

spending less than the budget. The reward for spending less than the budget by

some amount is of course much smaller than the penalty for overspending the

budget by the same amount. By using this reward system, if two sets of decision

variables have the same penalty (other than the reward), the one which uses the least

money has the lower overall penalty.

A redundant constraint for XLid similar to the GUB constraint for

XTidj is helpful in the integer enumeration. The following constraint ensures that the

total number of leadships constructed for ship type i must be no more than one.

MAXLEADi: YXXLid - 1, V i, with gotsomei = 0
d

The elastic variables are U1, V1, Y2, Z2, E3, ... , ElO,

corresponding to the constraint number, with the penalties upen, vpen, ypen, zpen,
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pen3, , penlO. The implemented formulation (with constraint numbers

reassigned) is:

MIN: PENALTY

ST: 1) 1 [ Y (j XTidj) + XRid" + XLid'] --- netdemid, V i d
d' d j

2) Y [ I (I XTidj)ctidp + XRidcridp + XLidclidp] " budgetp , V p
id j

3) Y I [ Y (j XTidj) + XRid + XLid ] sybndp, V p
i O_d-p<_lagi j

4) ,(j XTidj) + XRid + XLid - upbndid, V i d
I

5) XTidj - XRid 0, j = lwbndid - 1, V i d with lwbndid > 2

6) XRid - X.(XTidj) 0 0, V i d with lwbndid > 2
i

7) .(XTidj) + XRid - 2 (XLid') - 0, V i d with gotsomei =0
I d'_<d

8) .(XTidj)- XRid- .(XTid-1j)- XRi d-1 - XLi d-1 - 0, V i d
J 1

9) _XTidj < 1, V i d

10) XXLid - 1, V i. with gotsomei = 0
d

PENALTY = X(upenidU Iid +vpenidV id +pen4idE4id +pen5idE5id)
id

+ X(pen6idE6id +pen7idE7id +pen8idE8id +pen9idE9id)
id

+ X(penlOiElOi) + X(ypenpY2p - zpenpZ2p + pen3pE3p)
p

D. OUTPUT

The output from the model is displayed in three reports. An example of partial

output reports is displayed below in Figure 1.
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PARAMETER REPORTI SHIPS BUILT VS. SHORTAGE OR EXCESS BY YEAR
YEAR6 YEAR6 YEAR6 YEAR7 YEAR7 YEAR7 YEAR8 YEAR8 YEAR8
BUILT SHORT EXCESS BUILT SHORT EXCESS BUILT SHORT EXCESS

TYPE1 1.00
TYPE2 1.00
TYPE3 1.00
TYPE4 3.00 1.00
TYPE 2.00 1.00 4.00 2.00 2.00
TYPE6 1.00 1.00 1.00
TYPE7 2.00 2.00 3.00

PARAMETER REPORT2 EXPENDITURES VS. BUDGET BY YEAR
YEAR3 YEAR4 YEAR5 YEAR6 YEAR7

EXPENDED 4160.00 4243.00 4329.00 3605.00 2278.00
BUDGET 4160.00 4243.00 4327.00 4413.00 4501.00
OVERRUN 2.00
SAVINGS 808.00 2223.00

PARAMETER REPORT3 CONSTRAINT ELASTICITY VARIABLES
E3 E5 E6 E7 E8

TYPE .YEAR9 0.5
TYPE3.YEAR3 2.0 1.0
TYPE4.YEARI 1.0
TYPE5.YEAR5 0.5
TYPE5.YEAR6 0.5
TYPE6.YEAR9 2.0 1.0

Figure 1. An example of partial output reports from the model.

The first report, REPORTI, in Figure 1 provides the ship purchasing plan

produced by the model. The columns named "BUILT" give the number of ships to

be purchased for each ship type during a given year. The columns namt I

"SHORT' and "EXCESS" give the number of ships which are short and in excess,

respectively, of the required number of ships snecified by the input data called

needid. With this report the user can either implement the ship purchasing plan

under the column "BUILT" for each year and ship type. The more logical option is

to use that plan as the starting point and consider the other columns (i.e., "SHORT"

and "EXCESS") in order to develop a long range plan that takes other factors not

modeled into consideration. For example, if a class of ships is built and the last ship

in the class is not built due to upper or lower bounds, then the user may want to

order that particular ship with the last order for that ship type, or split the last order.
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The idea is to use the model's output as a tool for developing a long range plan, not

to expect the model to produce the "optimal" plan. The second report shows the use

of money and displays the budget, the amount expended, the amount of budget

overrun, and the amount expended below the budget, for each year. The third

report displays the values given to the constraint elasticity variables not shown in the

first two reports for each time period and year. If the value of some constraint

elasticity variable is not zero, then the solution displayed in the first two reports is

actually not feasible, with respect to the constraint associated with that elasticity

variable. Should the third report show anything other than "all zero", the user

should consider modifying the input values associated with elastic penalties, or

bounds (upbndid, lwbndid, sybndd, and budgetp) and rerunning the model. The

values to be modified will depend on which elastic variable had a value other than

zero. Then, the user should report to their superiors that the stated desires are not

feasible and provide them with values which are feasible. This information can also

be used as a basis for negotiating new resources or mediating between conflicting

desires. The later would normally entail performing sensitivity analysis of the

penalties.

E. LIMITATIONS

In our implementation of the model, we have chosen to leave out several realistic

features in order to make the model readily understandable. Although these features

do represent limitations to the model, they can indeed be included at the expense of

increased model and computational complexity. Below, we list these limitations.

1) Except for the extra cost of a leadship or resumption ship, the model assumes

the cost associated with a purchase is a linear function of the number of ships

purchased. This does not allow quantity discounts, learning-curve effects, or
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economies of scale. This deficiency can be corrected, but additional user input and

model complexity will be required.

2) There is no lower bound on the total number of ships that can be under

construction in a given year.

3) There is no cost associated with shutting down a production line. The cost of

the variable XRid includes the cost of restarting a production line, but the cost of

shutting down is considered negligible. Associated with this limitation is the

assumption that the cost of restarting a production line is not a function of the

number of years the production line has been secured.

4) The model does not handle Ship Life Extension Program (SLEP) ships. To

do so, constraints which force the solver to consider SLEP ships must be added to

the model.

5) The model shown in the Appendix has limits on the magnitude of j set at five

and the number of years over which payments may be made for any ship type to

five years.
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III. COMPUTATIONAL EXPERIENCE

The model is written and tested using the General Algebraic Modeling System,

GAMS [Ref. 6]. GAMS is essentially a model-solver interface. It allows the model

constraints to be written in an index-exploiting, algebraic form similar to the

mathematical form used in scientific communication. This makes it easy to translate

the model from the mathematical form presented in the previous chapter to the

computer input that can be used by the GAMS interface. GAMS then translates the

model into a form required by the solver. The available solvers include ZOOM

[Ref. 7] and MPSX [Ref. 8]; both of which are used in this research. According to

Reference 9 [page 3], GAMS

1. Provides a high-level language for the compact representation of large and
complex models

2. Allows changes to be made in model specifications simply and safely
3. Allows unambiguous statements of algebraic relationships
4. Permits model descriptions that are independent of solution algorithms

Several small scale data sets were used to validate the formulation. Initially, the

solution was not required to be integer, and the linear programming solver MINOS

[Ref. 10] was used. As the model neared completion, a more realistic sized data set

and the ZOOM mixed-integer programming solver were introduced to test the

model's ability to generate integer solutions. However, ZOOM "is intended for

medium-sized problems with no special structure and up to about 200 zero/one

variables." [Ref. 9:p. 225] Since the actual data set requires about four times this

many zero/one variables, ZOOM quickly became inadequate with the large model.

So, for the purpose of comparing different solvers, an intermediate sized data set

was used. This data set allows a maximum of five ships of any one type to be

21



constructed per year (j), considers ten ship types (i), and has a ten year planning

horizon (d). The model was sent to Professor Terry Harrison at Pennsylvania State

University through BITNET, an electronic mail network worldwide. At Penn

State, the MPSX solver was used to solve the same data set. The results are

summarized in Figure 2.

Input data set has: Typical Model has:

10 years (d andp) 335 rows of equations

10 ship types (i) 990 columns of variables

5 ships max per year of each type (/) 268 discrete variables

4891 non-zero elements

Computer Times:

NPS IBM 3033AP: IBM 3090-400:

GAMS: 28.630 sec GAMS: 9.020 sec

Solver (ZOOM): Solver (MPSX):

1000 iter's 155.150 sec 10000 iter's 67.800 sec

50000 iter's 1300.068 sec

Solution quality: 18.9% Gap Solution quality: 14.6% Gap

Figure 2. Computer time comparison for intermediate sized data set.

The ZOOM solver has difficulty handling even this intermediate sized data set,

showing no gain in solution quality from 1000 to 50000 iterations. MPSX, on the

other hand, yields a better solution quality much faster and with fewer iterations.

Several runs were made with the two solvers as the model continued to develop,

with the same results. A larger, more realistic, data set was constructed and solved
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with ZOOM and MPSX (via Anthony Brooke), the results are summarized in

Figure 3. Interestingly, on this larger problem, both solvers found a better quality

solution.

Input data set has: Typical Model has:

15 years (dandp) 1158 rows of equations

20 ship types (i) 2685 columns of variables

5 ships max per year of each type (1) 742 discrete variables

16688 non-zero elements

Computer Times:

NPS IBM 3033AP: IBM 3090-400:

GAMS: 73.520 sec GAMS: 20.140 sec

Solver (ZOOM): Solver (MPSX):

30000 iter's 1458.087 sec 24773 iter's 644.400 sec

Solution quality: 5.4% Gap Solution quality: 0.49% Gap

Figure 3. Computer time comparison for realistic sized data set.

In terms of solution quality, MPSX dominates ZOOM. However, ZOOM does

give an integer solution, which is a far better starting point for developing the long

range shipbuilding schedule than the typical "don't build anything" starting point.

Additionally, in ZOOM's favor, a good solution is generally produced early on in

the iteration count (e.g., From Figure 3, the same solution is given after 20000

iterations as is given at 30000 iterations). However, it seems unable to search

through this large a problem tree and find an improving solution. ZOOM will run

on personal computers (taking much longer than the above times), so it -an be used

23



more easily with the model's actual classified data. MPSX, on the other hand,

generally provides a better solution in much less computer time, but requires a

mainframe computer.

Another solver option, which is currently being developed for use with

GAMS, is the X-System [Ref. 4] which has solved similar problems of a much

larger scale in relatively small computer times. Reference 11 develops a very similar

model for Army helicopters with 4000 constraints, 21000 variables, 300 binary

variables, and 100000 non-zero coefficients which is solved in about a minute when

using the X-System (on an IBM 3033AP).

The final option is to discard GAMS as a front end and write an independent

solver specific to this model. This would indeed reduce the required computer time,

but would do so at great development cost and at the expense of the GAMS

flexibility and ease of use. Since the model vill probably require solving many

times with varied input data sets and several "what if" scenarios, and even with

additional constraints, the GAMS front end is too valuable to discard. It is possible,

of course, to write a front end to the model specific solver, which is as user friendly

as GAMS.

Of particular value throughout this research was the GAMS "dollar operator".

The dollar operator is "... used for exception handling in equations." [Ref. 9:p. 92]

"A dollar operator within an equation is an implied if-else operation .... " [Ref. 9:

p. 94] The dollar operator proved essential in keeping the number of variables and

constraints down to a manageable figure. Fir example, consider the large data set

whose features are shown in Figure 3. Without the dollar operator to restrict the

variables and constraints there are 2151 constraints, 4551 variables, 2100 of them

discrete. This is twice as many constraints and twice as many variables, so the
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problem size is four times what it is with the dollar operator. Obviously this feature

of GAMS is essential to the model.

A key element of the model is the penalty factors. Setting these penalties

correctly is very important. In this study, the penalty factors were set iteratively by

solving the linear programming relaxation of the model. This allowed the results to

be returned quickly, and did not use up precious computer time. To start with, all

penalty factors were set to one, and the general penalty factor for violating logical

constraints (epen) set to ten. Then the individual factors were raised and the general

penalty lov%.red to achieve the lowest penalty (with one being the lowest factor used)

with a solution which did not violate the logical constraints. The ship balance

constraint (DEMAND) was allowed to be violated, and the budget allowed to be

under spent, but the other constraints were not allowed to be violated. Examining

the marginal value of the elastic variables and constraints was also helpful. The

adjustment of penalties continued until the linear program produced a near integer

solution at which point the model was transferred to an integer program solver.

Since the units are not the same for each constraint, the penalties were scaled so that

approximately equivalent units are added in the penalty/objective function. This

technique proved to be useful in producing integer solutions, and at setting the

penalties.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

During the course of this study, GAMS has proven to be a valuable tool in the

model development. GAMS is both user friendly and quite flexible. It is this

flexibility feature that allows for "what if" type analysis. Moreover, one can also

develop a "front end" program to interact with GAMS and thus further enhance the

user friendliness of the overall model.

As for the integer solvers, two solvers: MPSX and ZOOM were available

during the study. Based on a realistically sized data set, MPSX clearly dominates

ZOOM. However, ZOOM is available on a 386 based personal computer and

MPSX is only available on large mainframe computers. Another solver, the X-

System, was not interfaced with GAMS; however, based on reports of its

performance on a similar problem, it could conceivably outperform both MPSX

and ZOOM.

In Chapter III, it is demonstrated that the model developed in this study does

produce the desired result, i.e., an initial plan which analyst/planner can analyze and

improve upon. It is cautioned that the model should not be treated as a "black-box"

because solutions are "optimal" relative to the data provided by users. In planning,

these data are generally rough estimates of actual values, hence the plans produced

by the model should be treated at best as a guideline for producing a more sensible

plan.
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B. RECOMMENDATIONS FOR FURTHER IMPROVEMENT

To further enhance the realism and perhaps the usefulness of the model, the

following features can be included in the model.

1. Incorporate Average Ship Age

The helicopter model developed in Reference 11 incorporates average ship

age. Not only are new helicopters brought on-line, but that model also determines

the retiring times of the current stock of helicopters.

2. Include Shutdown Costs

This model, as presented, does not consider the cost of shutting down the

production line, in order to keep the level of complexity compatible with available

solvers. A new variable representing the cost of shutting down the production line

can be introduced.

3. Use Economies of Scale in Production Costs

As pointed out in the model assumptions, economies of scale when

purchasing ships is not allowed. Cost in this model is a linear function of the

number of ships purchased of a given type. Since economies of scale exist, their

introduction into the cost function could enhance the model.

4. Develop a User-Friendly Front End for the X-System

As stated earlier, the X-System is an alternative solver which is not yet

available with GAMS. By developing a front end to the X-System, one would be

able to evaluate the advantages of the X-System over the other solvers.

5. Provide Graphical Displays of Solutions

Although displaying solutions to the model numerically is adequate for

current usage, a graphical display is more preferable to the user.
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APPENDIX : GAMS INPUT FILE

$OFFUPPER OFFSYMLIST OFFUELLIST OFFUELXREF OFFSYMXREF
* Long-Range Shipbuilding Scheduling Model

* By LT Joe Faircloth, USN, 8 August 89 (userid 1651p)

* Based on model by Prof. Richard E. Rosenthal, 6 Sep 88

OPTION LIMROW = 0, LIMCOL = 0, SOLPRINT = OFF;
OPTION ITERLIM = 30000, WORK= 15000, RESLIM = 5000;
OPTION OPTCR = 0.00, OPTCA = 1.0;

*** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

*** The next area contains data which must be filled ***

*** in by the user, or a call to a data file with it. *
* The following items must be filled included:

Sets: I, T
Tables: HAVE, GETTING, LEADSHIP, NEED,

COST1, COST2, COST3, UPBND, LWBND
*** Scalars: INITBUD, GROWTH, UFAC, VFAC, YFAC

DISCNT, EPEN, P3, P4, P5, P6,
P7, P8, P9, Pl0

Parameters: UPBOUND
*** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

*$INCLUDE GAMS DATASET A
* NOTE this dataset covers only 5 years, 5 ship types, max of 5 ships
* delivered per year. This dataset is for demonstration purposes only.

SETS
I ship types / TYPE1, TYPE2, TYPE3, TYPE4, TYPE5 /
D delivery years / YEAR1 * YEAR5 /
J amount of typical units to buy / 1*5 /
TIME time relative to year of delivery used for cost input only

/ YR-MINUS-0, YR-MINUS-I, YR-MINUS-2, YR-MINUS-3, YR-MINUS-4 /;

TABLE HAVE(I,D) number of each type we have from current inventory
YEAR1 YEAR2 YEAR3 YEAR4 YEAR5

TYPE1 3 3 3 2 1
TYPE2 2 2 2 1 1
TYPE3 4 4 4 4 3
TYPE4 4 4 3 3 3
TYPE5 0 0 0 0 0

TABLE GETTING(I,D) units coming online that are in construction now
* will come online after yearO but before lag(i)+yearl

YEAR1 YEAR2 YEAR3 YEAR4 YEAR5
TYPE1 1 2
TYPE2 3
TYPE3 1
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TABLE LEADSHIP(I,D) leadships coming on line that have been started
* before yearl and will come on line after yearO

YEAR1 YEAR2 YEAR3 YEAR4 YEAR5
TYPE5 1

TABLE NEED(I,D) number of each type we want in each year
YEAR1 YEAR2 YEAR3 YEAR4 YEAR5

TYPE1 6 6 6 6 6
TYPE2 5 5 5 5 5
TYPE3 8 8 8 8 8
TYPE4 9 9 9 9 9
TYPE5 0 0 0 1 1

TABLE COSTl(I,TIME) typical ship cost data in appropriate year

* relative to the delivery year

YR-MINUS-0 YR-MINUS-l YR-MINUS-2 YR-MINUS-3 YR-MINUS-4
TYPE1 10 100
TYPE2 20 200
TYPE3 30 300
TYPE4 40 100 400
TYPE5 50 500

TABLE COST2(I,TIME) cost data for first unit after production break
* including cost of restarting production line and
* the cost of the typical unit

YR-MINUS-0 YR-MINUS-1 YR-MINUS-2 YR-MINUS-3 YR-MINUS-4
TYPE1 10 110
TYPE2 20 220
TYPE3 30 330
TYPE4 40 150 400
TYPE5 50 550

TABLE COST3(I,TIME) leadship cost data
YR-MINUS-0 YR-MINUS-l YR-MINUS-2 YR-MINUS-3 YR-MINUS-4

TYPE5 100 800

TABLE UPBND(I,D) upper bound on the number of each type produced
* per year if any are to be produced

YEAR1 * YEAR15

TYPE1 2
TYPE2 5
TYPE3 1
TYPE4 4
TYPE5 2

TABLE LWBND(I,D) lower bound on the number of each type produced

* per year IF ANY are to be produced

YEAR1 * YEAR15
TYPE1 2
TYPE2 3
TYPE3 1
TYPE4 3
TYPE5 1
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PARAMETER UPBOUND(D) upper bound on the total ships under construction
* in year d

UPBOUND(D) = 10;

SCALARS INITBUD first year budget / 2000/
GROWTH budget growth rate as percent / 0.02/

* Set penalty factors for constraint violations

SCALARS
DISCNT time weighting factor for penalties /-0.05/
UFAC ship shortage factor per ship /2/
VFAC ship excess factor per ship /2/
YFAC budget overrun factor per cost of largest ship /10/
EPEN general constraint violation penalty /10/
P3 penalty for violating overall construction bound /i/
P4 penalty for violating upper bound per ship /I/
P5 penalty for violating lower bound /i/
P6 penalty for making only one ship if LT lwbnd /i/
P7 penalty for not producing leadship first /i/
P8 penalty for not making a resumption unit if reqd /2/
P9 penalty for violating GUB bound on XT /i/
Plo penalty for violating GUB bound on XL /I/;

*** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

*** End of area containing data which must be filled *
* in by the user. The next area has aborts to
***~ ensure the data has been entered correctly.
*** *** *** *** *** *** *** *** *** *** *** *** *** *****

ABORT $(SUM((I,D)$(HAVE(I,D) LT 0),l) GT 0)
"***=>Data entry error in table HAVE, entries may not be negative",

HAVE;

ABORT $(SUM((I,D)$(GETTING(I,D) LT 0),l) GT 0)
"***=>Data entry error in table GETTING, entries may not be negative",

GETTING;

ABORT$(SUM((I,D)$((LEADSHIP(I,D) LT 0) OR (LEADSHIP(I,D) GT 1)),l) GT 0)

"***=>Data entry error in table LEADSHIP, entries may only be zero or

one",
LEADSHIP;

ABORT $(SUM((I,D)$(NEED(I,D) LT 0),l) GT 0)
"***=>Data entry error in table NEED, entries may not be negative",

NEED;

ABORT $(SUM((I,D)$(NEED(I,D) LT (HAVE(I,D)+GETTING(I,D))),l) EQ CARD(I)
*CARD(D)) "***=>NEED is satisfied by HAVE+GETTING, for every I,D",
to There is no need to run the program, it is already optimal",
HAVE, GETTING,NEED;

ABORT $(SUM((I,TIME)$(COSTI(I,TIME) LT 0),l) GT 0)
"***=>Data entry error in table COST1, all costs must be non-negative",

COSTI;
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ABORT $(SUM((I,TIME)$(COST2(I,TIME) LT 0),l) GT 0)
"***=>Data entry error in table COST2, all costs must be non-neaative",

COST2;

ABORT $(SUM((I,TIME)$(COST3(I,TIME) LT 0),l) GT 0)
"***=>Data entry error in table COST3, all costs must be non-negative",

COST3;

ABORT $(SUM((I,D)$(UPBND(I,D) LT 0),l) GT 0)
"***=>Data entry error in table UPBND, entries may not be negative",

UPBND;

ABORT $(SUM((I,D)$(LWBND(I,D) LT 0),l) GT 0)
"***=>Data entry error in table LWBND, entries may not be negative",

LWBND;

ABORT $(SUM((I,D)$(UPBND(I,D) LT LWBND(I,D)),l) GT 0)
"***=>Data entry error in table LWBND or UPBND, LWBND must be less",
it than or equal to UPBND, for all i,d.",LWBND,UPBND;

ABORT $(INITBUD LE 0)
"***=>Data entry error for INITBUD, entry must be positive",

INITBUD;

ABORT $((UFAC LT 0) OR (VFAC LT 0) OR (YFAC LT 0))
"***=>Data entry error in UFAC,VFAC,or YFAC, values may not be
negative",
UFAC, VFAC, YFAC;

ABORT $((UFAC + VFAC + YFAC) EQ 0)
"***=>All penalties are zero, program is optimal as is.",

UFAC, VFAC, and YFAC must not all be zero.", UFAC,VFAC,YFAC;

*** *** *** *** *** *** *** *** *** *** *** *** *** *****

End of ABORTS checking user data= in7ut.
The next areacalculates additional data
not required to be input by the user.

*** *** *** *** *** *** *** *** *** *** *** *** *** *****

* D is used for year of delivery and P is used for year of payment

ALIAS (D,P);

PARAMETER CT(I,D,P), CR(I,D,P), CL(I,D,P);
CT(I,D,P)$(ORD(D) - ORD(P) EQ 0) = COSTl(I,"yr-minus-0");
CT(I,D,P)$(ORD(D) - ORD(P) EQ 1) = COSTl(I,"yr-minus-l";
CT(I,D,P)$(ORD(D) - ORD(P) EQ 2) = COSTl(I,"yr-minus-2"V;
CT(I,D,P)$(ORD(D) - ORD(P) EQ 3) = COSTl(I,"yr-minus-3");
CT(I,D,P)$(ORD(D) - ORD(P) EQ 4) = COSTl(I,"yr-minus-4",)

CR(I,D,P)$(ORD(D) - ORD(P) EQ 0) = COST2(I,"yr-minus-0");
CR(I,D,P)$(ORD(D) - ORD(P) EQ 1) = COST2(I,"yr-minus-l");
CR(I,D,P)$(ORD(D) - ORD(P) EQ 2) = COST2(I,"yr-minus-2");
CR(I,D,P)$(ORD(D) - ORD(P) EQ 3) = COST2(I,"yr-minus-3");
CR(I,D,P)$(ORD(D) - ORD(P) EQ 4) = COST2(I,"yr-minus-4"),
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CL(I,D,P)$(ORD(D) - ORD(P) EQ 0) = COST3(I,"lyr-minus-0"l);
CL(I,D,P)S(ORD(D) - ORD(P) EQ 1) = COST3(I,"yr-minus-1");
CL(I,D,P)$(ORD(D) - ORD(P) EQ 2) = COST3(I,"lyr-minus-2 1) ;
CL(I,D,P)$(ORD(D) - ORD(P) EQ 3) = COST3(I,"yr-minus-3");
CL(I,D,P)$(ORD(D) - ORD(P) EQ 4) =COST3(I,"yr-minus-4");

PARAMETER LAG (I);
LAG(I)$(COST1(I,"yr-minus-4") GT 0) = 4;
LAG(I)$(COSTl(I,"yr-minus-3"1) GT 0 AND LAG(I) EQ 0) = 3;
LAG(I)$(COSTl(I,"yr-minus-2") GT 0 AND LAG(I) EQ 0) = 2;
LAG(I)$(COSTl(I,"yr-minus-1") GT 0 AND LAG(I EQ 0) = 1:
LAG(I)$(COST1(I,"yr-minus-0") GT 0 AND LAG(I) EQ 0) = 0;

PARAMETER BUDGET(P) money available in year P to purchase ships;
BUDGET(P)$(ORD(P) EQ 1) =INITBUD;
LOOP (P,BUDGET(P+1) = FLOOR( (l+GROWTH)*BUDGET(P)));

PARAMETER DISCOUNT(D) discount factor for time weighting penalties;
DISCOUNT(D) = POWER(l+DISCN'T,ORD(D)-l);

" Calculate the penalty values for each unit of excess, shortage,
" and budget overrun for each type and year. Calculate all elastic
" constraint penalties. All penalties are discounted by year and
" relative to ship type cost.
" so that the right hand sides of the dual equations will be integers.
PARAMETERS

BIGC,PRIORITY(I),UPEN(I,D),VPEN(I,D),YPEN(D),ZPEN(D),PEN3(D),
PEN4(I,D),PEN5(I,D),PEN6(I,D),PEN7(I,D),PEN8(I,D),PEN9(I,D),PENlO(I);

BIGC = SMAX(I,SUM(TIME,COSTl(I,TIME)));
PRIORITY(I)= SUM(TIME,COSTl(I,TIME)) / BIGC;
UPEN(I,D) = UFAC * DISCOUNT(D) * PPJOPJTY(I);
VPEN(I,D) = VEAC * DISCOUNT(D) * PRTORITY(I);
YPEN(D) = YFAC * DISGOIJNT(D)/BIGC;
ZPEN(D) = YPEN(D)/l0;
PEN3(D) = EPEN*P3*DISCOUNT(D);
PEN4(I,D) = EPEN*P4*DISCOJNT(D) *PRIORITY (I);
PEN5(I,D) = EPEN*P5*DISCOUNT(D) *PRIORITY (I);
PEN6 (I,D) = EPEN*P6*DISCOUNT(D) *PRIORITY (I):
PEN7 (I,D) = EPEN*P7*DISCOUNT(D)*PRIORITY(I);
PEN8(I,D) = EPEN*P8*DISCOUNT(D) *PRIORITY (I);
PEN9(I,D) = EPEN*P9*DISCOUNT(D)*PRIORITY (I);
PENlO (I) = EPEN*PlO*PPJORITY(I);

PARAMETER GOTSOME(I equals 1 if you do not need to make a lead ship;
GOTSOME(I) =0 + l$(SUM(D,HAVE(I,D)+GETTING(I,D)+LEADSHIP(I,D)) GT 0);

PARAMETER NETDEM(I,D) totl numiber of i ships that must be del'd by yr d;
NETDEM(I,D) = NEED(I,D) - HAVE(I,D);

All data is now calculated. The next area
defines the variables and the constraints.
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VARIABLES
XT(I,D,J) order j of type i to be delivered in year d
XR(I,D) first one after a break in production costs more
XL(I,D) first one of type i to come on line costs more
Ul(I,D) shortage of type i in year d
Vl(I,D) excess of type i in year d
Y2(P) amount expenditure is over budget in year p
Z2(P) amount expenditure is under budget in year p
E3(D) elasticity variable for equation construct
E4(I,D) elasticity variable for equation upper
E5(I,D) elasticity variable for equation lowerl
E6(I,D) elasticity variable for equation lower2
E7(I,D) elasticity variable for equation leadfrst
E8(I,D) elasticity variable for equation prodbrk
E9(I,D) elasticity variable for equation gub
ElO(I) elasticity variable for equation maxlead
PENTOT total penalties;

BINARY VARIABLES XT, XR, XL;

POSITIVE VARIABLES Ul,Vl,Y2, Z2,E3,E4,E5,E6,E7,E8,E9,ElO;

*set x variables to getting(i,t) for those that occur prior to
*yearl+lag(i). This may prevent making a prod break type when not needed
*and will allow the correct budget amount tc be used.

XT.FX(I,D,J)$(((GETTING(I,D-I) GE 1) OR (LEADSHIP(I,D-I) EQ 1))
AND (ORD(J) EQ GETTING(I,D))) = 1;

XR.FX(I,D)$(((GETTING(I,D-I) EQ 0) AND (LEADSHIP(I,D-) EQ 0))
AND (GETTING(I,D) GE 1)) = 1;

XT.FX(I,D,J)$(((GETTING(I,D-I) EQ 0) AND (LEADSHIP(I,D-I) EQ 0))
AND ((GETTING(I,D) GE 2) AND (ORD(J) EQ GETTING(I,D) - 1))) = 1;

XL.FX(I,D)$(LEADSHIP(I,D) EQ 1) = 1;

*** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Define dynamic sets of variables for use
with dollar operators in the constraints

*** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

SETS POSI(I,D), POS2(J,I,D), POS3(I), POS4(I,D), POS5(I,D,J), POS6(D,P),
POS7(I,D), POS8(I,D,P), POS9(I,D), POSI0(I,D), POSII(I,D,P),
POS12(I,D,J), POS13(I,D), POS14(I,D), POSI5(J,I,D);

POSI(I,D) =YES$(ORD(D) GT LAG(I));
POS2(J,I,D) =YES$((ORD(J) GE LWBND(I,D)-l) AND (ORD(J) LE UPBND(I,D)));
POS3(I) =YES$(GOTSOME(I) EQ 0);
POS4(I,D) =YES$((GOTSOME(I) EQ 0) AND (ORD(D) GT LAG(I)));
POS5(I,D,J) =YES$(ORD(J) EQ LWBND(I,D)-l);
POS6(D,P) =YES$(ORD(P) LE ORD(D));
POS7(I,D) =YES$((ORD(D) GT LAG(I)) AND (LWBNTD(I,D) GE 2));
POS8(I,D,P) =YES$((ORD(P) LT ORD(D)) AND (ORD(P) GT LAG(I)));
POS9(I,D) =YES$((ORD(D) GT LAG(I)) OR (GETTING(I,D) GT 0));
POSI0(I,D) =YES$(((GOTSOME(I) EQ 0) AND (ORD(D) GT LAG(I)))

OR (LEADSHIP(I,D) EQ 1));
POSII(I,D,P)=YES$((ORD(D)-ORD(P) GE 0) AND (ORD(D)-ORD(P) LE LAG(I))

AND ((GETTING(I,D) GT 0) OR (ORD(D) GT LAG(I))));
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POSl2(I,D,J)=YES$(((ORD(J) GE LWBND(I,D)-l) AND (ORD(J) LE UPBND(I,D)))
AND ((ORD(D) GT LAG(I)) OR (GETTING(I,D) GT 0)));

POSl3(I,D) =YES$((ORD(D)-l GT LAG(I)) OR (GETTING(I,D-l) GT 0));
POSl4(I,D) =YES$(((GOTSOME(I) EQ 0) AND (ORD(D)-l GT LAG(I)))

OR (LEADSHIP(I,D-l) EQ 1));
POSl5(J,I,D)=YES$(((ORD(J) GE LWBND(I,D)-l) AND (ORD(J) LE UPBND(I,D)))

AND ((ORD(D)-l GT LAG(I)) OR (GETTING(I,D-l) GT 0)));

Begin listing the constraints

EQUATIONS
DEMAND(I,D) maintain inventory balance
FISCAI4P) observe budget limits
CONSTRUCT(D) prevents making more than the ship yard can make
UPPER(I,D) total type i made in period t is less than max
LOWER1(I,D) with next eqn prevents making less than lwbnd(i t)
LOWER2(I,D) with previous eqn prevents making less than lwbnd(i t)
LEADFRST(I,D) ensures you make a first one before others if needed
IRODBRK(I,D) ensures next type i after a prod break is prod break type
GUB(I,D) ensures only one of the x binary types is made GUB
MAXLEAD (I) gub bound on lead ships
OBJDEF;

DEMAND(I,D)$POS1(I,D)
SUM(P$POS6(D,P) ,SUM(J$POSl2(I,P,J),

" XL(IP)$POSlO(I,P)
+ XR(I,P)$POS9(I,P))

~=E= NETDEM(I,D) - Ul(I,D) + Vl(I,D);

FISCAL(P)..r
SUM((I,D), SUM(J$P0S12(I,D,J),

+XL(I, D,)*ORlO(I, ) CL(I, D,P)
+XR(I,D)$POS9(I,D)*C(I,D,P)

=E= BUDGET(P) + Y2(P) - Z2(P);

CONSTRUCT (P).
St.M(I, SIUM(D$POSll(I,D,P),
SUM(J$POS2(J,I,D), ORD(J)*XT(I,D,J))
+ XR(I,D) + XL(I,D)$POSl0(I,D))) =L= UPBOUND(P) + E3(P);

UPPER (I, D) $POS1 (I,D) .
SUM(J$POS2(J,I,D), XT(I,D,J)*ORD(J)) + XR(I,D)
+ XL(I,D)$POSlO(I,D) =L= UPBND(I,D) + E4CI,D);

LOWERl(,I,D)$P0S7(I,D) .
SUM(J$POS5(I,D,J),XT(I,D,J)) - XR(I,D) =L= 0 + E5(I,D);

LOWER2(I,D)SPOS7(I,D) .
XR(I,D) - SUM(J$POS2(J,I,D), XT(I,D,J)) =L= 0 + E6(I,D);

34



LEADFRST(I,D)$POS4(I,D)
SUM(J$POS2(J,I,D), XT(I,D,J)) + XR(I,D)
- SUM(P$POS8(I,D,P), XL(I,P)*2)
=L=- 0 + E7(I,D);

PRODBRK(I,D)$POSl(I,D)
SUM(J$POS2 (J, I,D),
XT(I,D,J)i) - XR(I,D) -XR(I,D-l)$POS13(I,D)

- XL(I,D-l)$POSl4U!,D)
- SUM(J$P0515(J,I,D), XT(ID-lJ)) =L= 0 + E8(I,D);

GUB(I,D)$POSl(I,D) .
SUM(J$POS2(J,I,D), XT(I,D,J)) =L= 1 + E9(ID);

MAXLEAD (I) $P053 (I) .
SUMv(D$POSl(I,D) , XL(I,D)) =L= 1 + ElO(I);

OBJDEF .
SUM((I,D)$POSl(ID), UPEN(ID)*Ul(I,D) + VPEN(I,D)*Vl(I,D))

" SUN(P, YPEN(P)*Y2(P) - ZPEN(P)*Z2(P)) + SUM(D, PEN3(D)*E3(D))
+ SUM((ID)$POSl(I,D), XRPEN*XR(I,D) + E4(ID)*PEN4(I,D)
" E5(I,D)*PEN5(I,D) + E6(I,D)*PEN6(ID) + E9(I,D)*PEN9(I,D)
+ E7(I,D)*PEN7(I,D) + E8(I,D)*PEN8(I,D))
" SUM(I$POS3(I),ElO(I)*PEN10(I)) =E= PENTOT;

**All variables and constraints are now defined. Next**
Ssend the model to the solver, then display the
Ssolution from the solver.

MODEL SHIPS /ALL/;
SOLVE SHIPS USING MIP MINIMIZING PENTTOT;

PARAMETER REPORTl(I,D,*) ships built vs. shortage or excess by year;
REPORTl(ID,"BUILT") =SUM(J,XT.L(I,D,J)*ORD(J)) +XR.L(I,D) +XL.L(I,D);
REPORT1 (I, D, "SHORT") = Ul. L(I, D) ;
REPORTl(I,D,"EXCESS"')= Vl.L(I,D);

OPTION REPORTl:2:l:2;
DISPLAY REPORTl;

PARAMETER REPORT2(*,P) expenditures vs. budget by year;
REPORT2("EXPENDED",P) = BUDGET(P) - Z2(P) + Y2(P);
REPORT2 ("BUDGET", P) = BUDGET(P);
REPORT2("OVERRUN",P) = Y2.L(P);
REPORT2("SAVINGS',P) = Z2.L(P);

OPTION REPOR112:2;
DISPLAY REPOR7T2;
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PARAMETER REPORT3 constraint elasticity variables;
REPORT3(I,D,"E3")$(ORD(I) EQ 1) =E3.L(D);
REPORT3(I,D,-E4") = E4.L(I,D);
REPORT3 (I, D,"IE5"1) = E5.L(I,D);
REPORT3(I,D,"E6") = E6.L(I,D);
REPORT3 (1, D, -E 7 1) = E7.L(I,D);
REPORT3(I,D,"E8") = E8.L(I,D);
REPORT3(I,D,"E9") = E9.L(I,D);
REPORT3(I,D,"ElO")$(ORD(D) EQ 1) ElO.L(I);

OPTION REPORT3:l:2:l;
DISPLAY REPORT3;
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