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ABSTRACT

The simulation of the prompt gamma-ray pulse effects on
electronics with an electron linear accelerator (LINAC) has been
performed by DREO and other groups. However, the use of a LINAC
normally entails wider pulses than those expected on the
battlefield. This rcport examines the effects of the variation
of pulse width on electronic response using both theoretical and
experimental examples. The conclusions are that pulse-width
fidelity is important for a number of possible scenarios, and
that for complete understanding of electronic performance, a
variable pulse-width simulator is essential.

RESUME

La simulation de l'action des rayons gamma rapides sur les
composantes electroniques & l'aide d'un accelerateur lineaire
(LINAC) a ete realisee par le CRDO et d'autres groupes. Par
contre, l'emploi du LINAC donne normalement des impulsions plus
larges que celles normalement eprouvees sur un champ de bataille.
Ce rapport examine les effets de la variation de la largeur des
impulsions sur les composantes electroniques en se servant
d'exemples theoriques et experimentaux. Les conclusions sont que
la precision de la largeur des impulsions est tres importante
pour un nombre possible de scenarios et que pour une
comprehension complete du rendement des composantes electroniques
un simulateur a impulsions largeur variable est indispensable.

Aooession For

NTIS GRA&I
DTIC TAB 0
Unannounced 0
Justifioatio-

By
Distributi

AvalablitY Codes

I . Avail and/or
iii. Det Special

- I



EXECUTIVE SUMMARY

In order to realistically simulate the effects of the prompt
gamma-ray pulse associated with a nuclear weapon on electronics,
an electron linear accelerator (LINAC) is often used. The pulse
widths available from most LINACs are longer than the typical
battlefield pulse. This report examines the effects of varying
pulse widths on selected electronic devices summarizing some
recent DREO work at a variable pulse-width facility located at
Chalk River Nuclear Laboratories.
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1.0 INTRODUCTION

The concept of using an electron linear accelerator (LINAC)
to simulate the radiation damage in electronics arising from the
prompt gamma-ray component of a nuclear burst (causing subsequent
photocurrent generation) has been demonstrated valid by many
authors (eg 1) and has also been successfully demonstrated by
DREO at the Chalk River Nuclear Laboratories (CRNL) 10 MeV LINAC
(PHELA) facility (2). The LINAC, as one advantage over a flash
X-ray facility, generally offers a variability in pulse widths.
Some arguments have been made (3) that dose-rate (photocurrent)
effects should be to a large extent pulse-width independent.
PHELA was originally capable of 1 As to 6 As pulse widths, and
has recently been modified, under DND contract (4), to change its
pulse width range to span 150 ns to 3 As. Thus the effects of
pulse width, for the same dose rate, could be directly examined.

In view of the fact that recent DREO work has suggested a
pulse width of 20 ns (2 shakes) (5) for an actual weapon burst is
reasonable - knowledge of this pulse width dependence is
essential to the design and subsequent possible purchase of a
DREO-based LINAC dedicated to Transient Radiation Effects on
Electronics (TREE) work.

The work presented here represents a brief examination of the
pulse-width dependence for some of the devices previously tested
by DREO. These results represent only one day's work at PHELA
due to severe time constraints, however some interesting trends
are observed.

2.0 EXPERIMENTAL

2.1 Propagation Delay Time in Bipolar Transitions

One area in which a definite pulse width effect has been
noted is in the propagation delay time in bipolar transistors
caused by the radiation pulse. Following along the lines of the
discussion in Messenger and Ash (6), this propagation delay time
tp is given (see Fig. 1) as

tp = td+ tr+ tsr + tf (1)

where td = delay time to bring device from its on state to 10%
of saturation current

tr = rise time to 90% of saturation
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tsr = time device spends in saturation following pulse
cessation (radiation storage time)

and tf = fall time back to 10% of saturated current.

Of these, tsr has shown some pulse width dependence as (1)

t t in ( K, (l-e - tp/o.3ts) - K2 ) (2)

where t, = electrical storage time

tp pulse width

and K, and K2 are device dependent constants.

Messenger and Ash imply no direct pulse width dependence in
the remaining three terms of equation 1.

In order to examine these trends, two bipolar transistor
types were exposed to varying pulse widths, for the same dose
rate (4 z 3 X 109 Rads (Si)/s). They were 2N4401 (t, = 225 ns)
and TIP122 (t, = 8.5 gs) (where the electrical storage times are
from the manufacturers). Examples of their measured responses to
LINAC pulses appear in Figs. 2 and 3 respectively. To expedite
data analysis, a Tektronics 230 oscilloscope output of device
response was fed to a PC (in LOTUS format) enabling accurate
analysis simply by numerical interpolation of the LOTUS files.
The results of these analyses appear in Table 1.

Immediately obvious is the previously observed (2)
proportionality between radiation storage time and electrical
storage time. Explicitly the ratios are in somewhat reasonable
agreement at:

It srI2N4 01 1.04 X 10-1 (3)
(tsr) TlP122

and {tsL2N401 2.65 X 10-2 (4)
(ts) TIP122

As shown in table 1, for both transistors studied here, all
parameters proved to be pulse-width independent - within
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experimental error. (Note that td and tr are not evaluated for the
TIP122 transistor due to the fact that this device proved
sensitive to the (6 gs) RF pulse associated with the electron
pulse. However, in view of the very fast rise time at the actual
pulse arrival, it is felt that td and tr are both insignificant in
comparison to tr). For these two cases then, LINAC testing at
virtually any pulse width should yield reliable results when
extrapolated to the battlefield timeframe.

Table 1

Bipolar Transistor Response To Pulse Width

Variation (Dose Rate - 3 X 109 Rads(Si)/s)

(a) 2N4401 (t5 = 225 ns)

LINAC Pulse Width
(ns) td tr tsr tf tp

(FWHM) (ns) (ns) (ns) (ns) (ns)
1600±100 <10 50±5 950±100 390±50 1400±110
540±50 <10 50±5 1054±100 300±50 1414±110
283±20 <10 50±5 1132±100 360±50 1552±110
137±10 <10 50±5 1083±100 470±50 1553±110
78±5 <10 50±5 1064±100 380±50 1504±110

(b) TIP122 (t5 = 8.5 ns)

LINAC Pulse Width
(ns) td tr tsr tf tp

(FWHM) (ns) (ns) (us) (us) (as)
1600±100 - - 9.6±U.1 4.3±0.1 13.9±0.1
350±30 - - 9.5±0.1 4.4±0.1 13.9±0.1
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2.2 Saturation Times in OP AMPS

A 741C operational amplifier was powered and biased, with
gain of 100, and exposed to various pulse widths (dose rate
- 7 X 108 Rads (Si)/s). The measurement circuit used here was the
same as reported in previous DREO work (2). Typical responses
are shown in Fig. 4. Note the alternate negative and positive
saturations typical of op-amp dose-rate performance. The time
the device spends at the negative and positive rails as a
function of pulse width appears in Table 2.

Table 2
741C OP-AMP Parameters as Function of Pulse Width

LINAC Pulse Time At Time At
Width Negative Rail Positive Rail
(ns) (As) (as)

(±10%) (±. lus) (±.l"s)

2500 5.1 10.5
1500 5.0 10.0
650 4.3 10.0
500 4.3 9.4
430 4.4 9.3
200 4.1 9.0
112 3.7 5.0
84 3.4 4.5

There is a large pulse width-dependent effect in this
particular op-amp. The response of the op-amp may be considered
to be dominated by (bipolar) transistors being driven into
saturation and subsequent on-board amplification. Thus there
would seem to be definite evidence for a radiation storage time
dependence on pulse width for the transistors used in this op-
amp. Extrapolation down to the two shake pulse width would give
positive and negative saturation times of less than 1 gs. (see
Fig. (5)). So when designing/building circuitry capable of
withstanding the op-amp radiation-induced voltage swings produced
by gs wide pulses, protection against the actual (20 ns) induced
swings will be achieved but will result in much unnecessary over-
design (and accompanying cost). The op-amp is an example of a
device which must be tested in the expected battlefield
timeframe.
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2.3 Charge Trapping Effects in GaAs

Charge trapping is the withholding of normal charge motion in
a material for any number of physical reasons. In the case of
GaAs MESFETS, electron charge trapping near the FET channel
region has been observed by numerous authors (eg 2,7,8).

For the case of a LiNAC pulse irradiating a GaAs device,
electron hole pairs are created by the pulse, however the
electrons may be trapped at an energy level ET below the
conduction band. These electrons may then decay from this level
with a characteristic time constant depending upon, among other
factors, trap depth and temperature as d scussed later in this
section.

2.3.1 Pulse Width Dependence of Charge Trapping

This immediate discussion centres on the pulse width
dependence of charge trapping. Although the total number of
electrons which are trapped at any level for a given irradiation
is directly proportional to incident radiation fluence, the
timeframe over which the radiation is given is also a key factor
in the determination of this parameter. The radiation pulse
width will determine which traps (corresponding to a particular
time constant) will he preferentially filled - and subsequently
emptied. Thus the radiation pulse width will determine whether
or not a specific charge trapping reaction may be experimentally
observed.

The mathematical and pictorial analysis below should clarify
this, however as a rough rule of thumb in order to observe a trap
with a characteristic tire constant r, the radiation pulse width
must be at maximum of the order of T. This explains why charge
trapping effects are impossible to observe with steady state
radiation as no trap depths coriesponding to very long time
constants are possible (due to very large ET exceeding the
conduction band gap).

MacLean, in his excellent review article on MOS devices (9),
has referred to short-pulse charge trapping as an apparent dose
rate effect. We consider this terminology to be somewhat
misleading as dose rate effects usually refer to photocurrent
generation, which is not a factor in the charge trapping
mechanisms. Rather the terminology "pulse-width dependent
ionization effects" is proposed as a more accurate description.
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In order to mathematically simulate the charge trapping and
decay mechanisms we use a simple mathematical approach. Since
the traps are observed to have a characteristic time constant,
then the trapping and de-trapping may be expressed by simple
exponential functions - analogous to neutron capture and
radiative decay - for a constant steady-state fluence.

N(t) a0 (E) a (Z) (1 - e tI ); t < tw (5)

N (t) a N (tw) e-t/'; t > tw  (6)

where N(t) = number of electrons in trap at energy ET
p(E) = energy fluence of incident radiation
a(E) = energy-dependent trapping cross section
T = characteristic time constant of the trap
tw. = radiation pulse width

N (t) = number of traps filled at t=t.

Of course photocurrents will also be generated due to the
high dose rates. For high electron mobility devices such as
GaAs, one need not consider the diffusion component of
photocurrent, but only the drift component (i.e. neglect
radiation storage time). Then the photocurrent component will
mirror the radiation pulse P(t) giving the total transistor
response R(t) as,

R(t) = N(t) + C P(t) t < t, (7)

R(t) N(t) t > tw (8)

where C = proportionality constant

Now, consider the case where more than one trap is filled,
each having its own characteristic time constant Tr then

R(t) a C P(t) + p (E) a (E) ZE (l-exp (-t/r1 ); t < t, (9)

R(t) cx N (tw) Ej exp (-t/r1 ); t > t, (10)

To simplify the above expressions, consider the cases of
three traps with time constants of 10 ns, 1 ps and 100 gs (one
should note that the cited literature has observed trapping time
constants from a few ns to 70 s). As an "idealized" response we
first consider C vanishingly small, and thus the first term in
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eq'n 9 to be insignificant when compared to the second. For
simplicity we also set 0 = a = 1. The total idealized response
for pulse widths of 10 ns, 0.5 As and 10 As is given in Fig. 6.
Note the vast difference in recovery time for the three cases,
dictating which trap levels may be observed.

Now, for a more realistic case, we allow the transistor to be
driven into saturation very quickly by the pulse and held there
until pulse cessation. Stating this another way, since there are
many more states in the conduction band than traps, then
photocurrent generation will always dominate, obscuring trapping
and allowing only (post pulse) de-trapping to be observed. This
modification, for square wave pulses, results in the possible
responses in Fig. 7 (Here the saturation levels have been
shifted to allow easier observation of the effects). Note the
sharp drop-off immediately after the pulse followed by
exponential decay. Fig. 8 (from (2)) shows this behaviour
experimentally, i.e. the device mimics the pulse until the value
of Nctw, is reached, when charge de-trapping occurs.

Fig. 9 show the response of the TOS710 MESFET to a 2 As wide
LINAC pulse, as discussed later. Clearly contributions from
charge de-trapping and the very fast GaAs photocurrent generation
are observed.

Thus to predict the behaviour of GaAs devices on the
battlefield, it is imperative that an accurate pulse width be
employed in any simulator. However, to completely understand the
nature and origin of trapping in GaAs, a variety of pulse widths
is necessary. A variable pulse width LINAC is essential then, to
understand all possible reactions.

2.3.2 Temperature Dependence of Charge Trapping

The PHELA experiments conducted for this work also involved
an analysis of the temperature dependence of trapped charge decay
in two GaAs MESFETS - the NEC 270 and TOS710. The temperature
was controlled both during and after the radiation pulse by the
use of a TATS 400 (10) control system. A thermostat was placed
near the device to achieve accurate readout. In order to
minimize the number of interfering traps and stay within time
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constraints, only one pulse width was used. This was the longest
possible (-2gs) at the closest possible distance (20cm) to the
beam exit window in order to maximize total dose and guarantee
maximum possible trapping.

Consider, for simplicity, only one single trap (or one
dominant trap) corresponding to one single energy level at depth
ET below the conduction band. Then one may write the post-
irradiation emission probability, p, from the ET trap (at any
temperature T) as

p = a Vth N, exp [ - ET/kT] (11)

where a = capture cross section

k = Boltzman's constant

Vth = thermal velocity of electrons

and N, = effective density of electron states in the
conduction band

The associated emission lifetime from ET is simply

T = /p = [a vth N] -1 exp (ET/kT) (12)

If the constants in square brackets were completely
temperature independent then a semi-log plot of i vs I/T would
yield ET. However, only the trapping cross-section satisfies this
criterion. The others may be evaluated from (6)

Vth = [3kT/m]1 /2 and N, = 2/h3 (27rm kT) 3/2  (13)

where m = electron mass

h = Planck's constant

Substituting into eq'n 12 then the result is

T2 r = (1/aA) exp [ET/kT] (14)
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where A = temperature independent constant - 54.6 k'm/h 3

Thus plotting (semi-log) T2 T vs l/T will give the trapping
depth ET from the slope, and a from the intercept.

This analysis was used on the data from the PHELA work. The
temperature dependence of the emission lifetime is clearly
evident in Fig. 10 for the NEC 270 device. Fig. (11) shows the
T 2T plots for the two devices. From the slopes, the evaluated
trap depths are ET = (0.3 ± .02) eV for the NEC 270 device and ET
= (0.09 ± .02) eV for the TOS710 device. Bellem (8) has done
extensive investigations on charge trapping in GaAs CCD devices,
and has reported trap levels at 0.36 eV (labelled E3 or EL5) and
0.1 eV (labelled El), in good agreement with the values reported
here.

The associated cross section analysis would yield extremely
low values of - 10-19 cm2 for both devices.

The room temperature de-trapping time constants for the two

devices were 330 As for the NEC 270 and 105 As for the TOS710.

3.0 CONCLUSIONS

The use of accurate pulse widths to simulate the prompt
component of a nuclear weapon burst has proven to be of great
importance for a number of devices. It is suggested that any
DREO - based machine have the capabilities to span a wide range
of pulse widths, with a 20 ns wide pulse being of prime
importance. A span of 10 ns to 10 As would be extremely useful,
provided the same dose rate is available for all widths.
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