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ABSTRACT

This thesis investigates the accuracy of a recently proposed nassive bearings-only
Target Motion Analysis (TMA) procedure. The primary method -of analysis is-to-com-
pare computer generated positions of a Target that is moving with a constant course and-
speed, with the procedurally derived estimated positions.

A computer model was developed which simulated several possible interactions-be-
tween the Target and Own Ship. Estimated parameters of the Target track were com-
puted using the procedure under analysis. These values were compared to the “true”
values generated by the simulation.

An analvsis of the TMA procedure as originally proposed showed that it failed to
accurately estimate the target track parameters. However with some modifications, the
accuracy improved significantly and it is felt that the procedure can accurately estimate
target range (but not necessarily course and speed) for some target geometries.
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I. INTRODUCTION TO THE PASSIVE RANGING PROBLEM

. A. BRIEF HISTORY
The importance of doing Target Motion Analysis (TMA)! by a passive bearings-
R only tracking technique has had the attention of many tacticians over the last 45 years,
mainly because the submarine’s objective is te remain covert (undetected) during the
tracking maneuver. This guarantees the advantage of surprise if an attack is to be per-
formed.
In the early part of WWII, TMA by passive bearings-only methods began to be
used, and the following drawn from Naval Tactical Decision Aids by D. H. Wagner, 1989,
provides a brief history of its development:

During WWII LT. F. C. Linch developed the Linch Plot, which uses a pivotal
relationship among bearings, bearing rate, and Target relative motion. Based on
that, he developed a graphical method that was used until the late 1960’s. It was
abandoned because it was useful only for the short ranges contemplated by Linch
at that time.

During the 1950’s, various human plot methods and nomographs were used for
) TMA. One of the oldest of these was the Strip Plot, later called Geographical Plot.
This method has often been uscd to provide upper and lower bounds on Target
range. based on bounds on speed. An additional much used nomographic device
) has been the Bearing Rate Shide Rule. An early TMA computer was the Position
Keeper, which was a carrvover from WWII, and used as an aid to approach and

attack surface ships.

In 1933, F. N. Spiess published a graphical procedure requiring four bearings and
a maneuver by Own Ship. This method is known as Spiess Plot. It remains in use
in surface ship TMA.

The 19534 command thesis of LT. J. F. Fagan derived a four-bearing TMA sol-
ution, which was a transcendental system of three equations with three unknowns.
To reduce to computability by slide rule, he assumed that Own Ship motion during
the first three bearings was approximately zero which was probably satisfactory for
diesel operations.

In 1957, LT. J. J. Ekelund devised one of the most famous TMA methods, now
called Ekelund Ranging.

Between 1967 and 1969, D. C. Bossard with a group of USN officers, made an
anaiysis of the fundamentals of bearings-only ranging and the effect of Own Ship

. I Determination of Target range. course, and speed




maneuvers on ranging accuracy. Through this work and trials at sea, they observed
that ranging errors could be eliminated by judicious choice of the time for which the
range was estimated. Also, by selecting some particular maneuvers, this bast time
couid be controlled to be in the past, present, or future; then they applied this
method te various forms of bearings-only ranging, especially to Ekelund and Spiess
methods. The general name for these procedures is Time Correction.

In August 1968, a series of exercises was conducted aboard the USS Pargo to
compare the different methods in use at that time. The Passive Ranging Manual
evolved in three volumes from the report of the analysis of these exercises and was
published later as an NWP. This is a basic reference today for TMA.

In the late 1960°s the CHURN method appeared, which uses a large number of
bearing observations and regression methods to do TMA. This method was devel-
oped by General Dynamics; Electric Boat and Librascope.

In 1969, H. W. Headle, J. Di Russo, and E. Messere developed the ivanual
Adaptive TMA Evaluator (MATE). This method begins with an input estimate of
Target course, speed and range, and from there estimated bearings are computed
and compared against observed bearings. Differences between these bearing values
are plotted against time. If these differences are distributed roughly symmetrically
as white noise about zero, while Own Ship changes course or speed, then the trial
solution 1s a good one; otherwise the MATE operator adjusts the input Target pa-
rameters.

In the early 1970’s, the application of Kalman filtering appeared for the:first time
in TMA. It was a done by J. S. Davis of NUSC, based on the Ph. D. thesis of D.
J. Murphy at Northeastern University. Later versions were developed by IBM.

In the mid 1970’s, a new TMA method known as FLIT was devised by ENS. L.
Anderson which has seen considerable effective operational use. Its methodology
remains classified.

In the mid and later 1970’s, ranging and tracking at long range on a sphere were
developed by D. C. Bossard, J. B. Behrla, and L. K. Graves of Daniel H. Wagner,
Associates. This was motivated by over-the-horizon targeting needs.

In the late 1970°s and-during the 1980’s, further developments were-made by using
Kalman filtering and also stochastic differential equations. The Maneuvering Target
Statistical Tracker (MTST)is a method devised from this basis by W. H. Barker of
Daniel H.Wagner, Associates.

From 1985 to 1987 the -Generical Statistical Tracker (GST) was developed at
Daniel H. Wagner, Associates. This is a PC version of MTST.

B. PURVOSE OF THE THESIS
In iate 1988, LCDR P. K. Peppe of the USS La Jolla (SSN 701) proposed a

bearing-only Target Motion Analysis (TMA) procedure (here called the Bearings Ex-
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trapolation Procedure) for use in submarines [Ref. 1]. It is the purpose of this thesis to
test the accuracy of this procedure against a nonrnaneuvering Target.

C. PROBLEM DESCRIPTION

A submarine (Own Ship) is trying to determine the range, course, and speed of a
ship (Target) that is moving with « fixed course and speed. The data collected by Own
Ship consists of passive bearings. Since the bearing data is obtained by a single tracker,
a unique tracking solution may only be obtained by a maneuvering Own Ship [Ref. 2].
A TMA method which uses a two-leg maneuver can fulfill this requirement.

The two-leg TMA procedure used in this study is depicted in Figure 1. Own Ship
begins by receiving bearings to the Target each 20 seconds for 4 minutes. In Figure 1,

1, is the time at which bearing / is received. After time g, the bearings stop and Own

Ship begins a course change. At time #, Own Ship is on the second leg and bearings
resume. Bearings continue on the second leg, the last one being received at time #,.
Estimates of Target course, speed and range will be derived from these 24 observed
bearings.

The central.idea of the Bearings Extrapolation Procedure is that given three bearings
observed at three times on a single leg, all future and past bearings can theoretically be
determined. (This idea was known by Spiess [Ref. 3] and may predate him.) So, refer-
ring to Figure 1, the estimated Target position at time #, can be obtained by crossing the
true bearing (beginning at point z,) with the extrapolated bearing from leg two (begin-
ning at point &’').

The same as-above can be done for all time points that have bearings between ¢, and
1. Then regressing linearly on these estimated Target positions, the Target track pa-
rameters can be determined.

Although this procedure should give exact answers, in practice large errors can be
generated. The reason for these inaccuracies is that bearings to the Target cannot be
measured exactly, so the extrapolated bearings will also be in error.
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Figure 1.  Graphical Representation of the Bearings Extrapolation Procedure.

Exactly how bearings that contain errors are exirapolated, with as much accuracy
as possible, forward-and backward in time is part of what this thesis examines. The most
straightforward method (and the first to be analyzed)-is simply to use linear regression
on the (B, , t) data, where B, is the bearing at time t. Alternate methods include re-
gressing the (B, t) data by using quadratic or arctangent models. Each of these proce-

dures were tried and-accuracies assessed.




The Spiess Graphical Method, Ekelund Ranging, and the CHURN Method are

closely related to the procedure proposed by Peppe, and for that reason they are further
explained in Appendix A

D.

ASSUMPTIONS FOR THE SIMULATION
The computer simulation used in this study uses the following assumptions:

. The Target moves at a constant course and speed throughout the tracking maneu-

Vver.

Differences in depth for the Target and Own Ship are disregarded.

3. Errors in position for Own Ship are disregarded.

Errors in bearings to the Target are independent and identically distributed normal
random variables with mean zero and standard deviation not larger than 1.5°. In
addition, this standard deviation is constant for each simulation experiment.

5. Bearings to the Target are obtained each 20 seconds.

Initial course, speed and range for the Target and initial course and speed for Own
Ship.are as described in Chapter II.
TERMINOLOGY
. Lead-leg. An Own Ship course such that Own Ship speed across the line of sound

is in the same direction as the Target speed across the line of sound at the start of
the leg.

Lag-leg. An Own Ship course such that Own Ship speed across the line of sound
is in the opposite direction to the Target speed across the line of sound at the start
of the leg.

Leg length. The distance along cither leg where bearings are received (does not
include Own Ship turn).

Raw bearing. An unsmoothed bearing to the Target.

Faired bearing. A bearing obtained after smoothing of the raw bearings.
Extrapolated positions. Positions of Own Ship obtained by extending the first leg
forward in time or the second leg backward in time,

Extrapolated bearings. Bearings obtained by extrapolating actual bearings forward
in time for-the first leg or backward in time for the second leg.

Lead-leg estimation. The estimated target track obtained by linear regression of
estimated Target positions. These estimated Target positions are obtained from the
intersection of faired bearings from the lead-leg and extrapolated bearings from the
lag-leg.

Lag-icg estimation. The estimated target track obtained by linear regression of

estimated Target positions. These estimated Target positions are obtained from the
intersection of faired bearings from the lag-leg and extrapolated bearings from the
lead-leg.



10. Lead angle. Angle between the line of sound and the course of Own Ship when-it

is leading the Target.

11. Lag angle. The angle between the line of sound and the course of Own Ship when

it is lagging the Target.

12. Angle on the bow. The angle between the line of sound and the course of the

Target.




II. TESTING THE BEARING EXTRAPOLATION PROCEDURE

X A. INITIAL-CONDITIONS
In order to perform a thorough analysis of the Bearing Extrapolation Procedure,
. 5,184 separate simulation experiments were conducted. Each experiment use¢ one of the

possible combinations of the following parameters:

1. The initial Target positions were all due north from Own Ship (i. e., 000°) at one
of three different initial distances: large (= 60,000 yds), medium (= 30,000 yds),
and short (= 10,000 yds).

Six courses for the Target were used: 030°, 060°, 090°, 120°, 150°, and 175°.
Three speeds for the Target: 25, 15, and 5 knots.

Four courses for Own Ship ia the lead-leg: 060°, 070°, .:80°, and 090°.

Four courses for Own Ship in the lag-leg: 270°, 280°, 290°, and 300°.

Three speeds for Own Ship: 5, 10, and 15 knots.

Bowown

Two maneuvers by Own Ship: lead-lag and lag-lead.

e -

Four bearing error standard deviations: 0°, 0.5°, 1°, and 1.5°.

It is important to mention that because of problem symmetry and the fact that both
lead-lag and lag-lead maneuvers are simulated, there was no need for simulating courses
| for the Target from 180° to 360°.
The randomness in the simulation was introduced only through errors in the re-
ceived bearings.

B. DESCRIPTION OF THE SIMULATION

The simulation was written in Fortran 77 [Ref. 4] and executed on an IBM 3033
mainframe. Appendix B has a complete listing of all variables of the simulation pro-
gram. Appendix C is a listing of the simulation program code.

For each combination of initial conditions, the simulation was repeated 100 times
with different seeds for pseudorandom-generation of bearing error. For each of the re-
petitions. the following steps were conducted:

1. Target positions were simulated every 20 seconds for the entire maneuver.

A

2. For the first leg the following data was generated:

a. Own Ship position every 20 seconds.

- b. Bearing to the Target every 20 seconds (normal errors are added).




¢. Own Ship track extended beyond the turn.
3. For the first leg the following data was then computed:
a. Cocflicients for linear and quadratic fits for bearings versus time.

b. Faired bearings and extrapolated bearings using the results from linear or
quadratic fit.

4. Own Ship course was determined for the second leg; based on the required second
leg. lead or lag angle, and the line of sound specified by the extrapolated bearing
at the middle of the maneuver (z,)).

5. Simulations and computations for the second leg were completed in the same
fashion.

6. Estimated positions of the Target in two coordinates (X and Y) were computed by
determining the point of intersection of faired bearings with their corresponding
extrapolated-bearings.

7. Linear and orthogonal regression is conducted on the estimated Target positions
(in X versus Y cuordinates), to determine the Target course.

8. Range to the Target at the end of the maneuver was obtained by computing the
distance between Own Ship’s actual position at the end of the second leg and the
estimated Target position.

9. Finally, Target speed was obtained by computing the distance between the esti-
mated Target position at time #,-and the estimated Target position at the end of the
second leg (z), on the fitted Target track, and then dividing this distance by
l.u - ’0.

The simulation of the bearing errors was done using the Linear Congruential
Mecthod for uniform pseudorandom numbers, combined with the Box and Muller
Mecthod to produce normal variates [Refs. 5,6). These procedures were selected to allow

the simulation to be performed on a personal computer.

C. TESTING THE BEARING EXTRAPOLATION PROCEDURE UNDER IDEAL
CONDITIONS

Here bearings to the Target were considered without error. Also the bearing rates
immediately before the turn (used to extrapolate bearings forward in time) and imme-
diately after the turn (used to extrapolate bearings backward in time) were computed
exactly with no errors introduced. The only source of error in this case was the linear
bearing extrapolation. This case is intended to be an-optimistic bound on the accuracy
of the bearing extrapolation procedure when linear regression is used.

The measure of effectiveness (MOE) for the accuracs of this procedure was tlie
percentage of times that the estimated error was within 10%6 for range, 20° for course,
and 10% for speed from the actual-parameters of the Target track. These results are




presented in Table 1 and Table 2 for lead-lag and lag-lead maneuvers respectively.
Each number in these Tables resulted from the examination of 18 simulation exper-
iments (six Target courses and three Target speeds). For example, when the initial dis-
tance was large, lcad and lag angles 70°, and Own Ship speed 15 kats, then five of the
18 simulations experiments (or 27.8%) resulted in the calculated Target specd being
within 10% of the actual Target speed. Note that without bearing error, the simulation
experiments are deterministic.



Table 1.

ACCURACY IN IDEAL CONDITIONS FOR BEARINGS EXTRAPO-
LATION PROCEDURE (LEAD-LAG MANEUVER)

Percentage of times the absolute error is
Own Ship Lead and Initial dis- smaller than ’10:/6 of actual for range and -
speed lag angle tance speed or 20° of actual for course.
(knts) (*) Range Course Speed
(10%) (20°) (10%)
Large 100 50.0 278
70 Medium 100 50.0 27.8
Short 38.9 50.0 22.2
Large 100 50.0 33.3
15 80 Medium 100 55.6 33.3
Short 50.0 50.0 27.8
Large 100 55.6 27.8
90 Medium 100 55.6 27.8
Short 50.0 66.7 333
Large 100 44.4 444
70 ~ Medium 94.4 38.9 33.3
- Short 55.6 38.9 22.2
Large 100 44.4 33.3
10 80 Medium 94.4 44.4 33.3
- Short 35.6 44.4 27.8
Large 100 55.6 333
90 Medium 94.4 50.0 33.3
Short 61.1 50.0 27.8
Large 83.3 44.4 22.2
70 Medium 722 44.4 27.8
Short 44.4 44.4 27.8
Large 88.9 ~ 1333 27.8
S 80 Medium 77.8 33.3 27.8
~ Short 444 44.4 222
Large 838.9 33.3 27.8
90 Medium 77.8 33.3 22.2
Short 44.4 33.3 16.7




Table 2.

ACCURACY IN IDEAL CONDITIONS FOR BEARINGS EXTRAPO-
LATION PROCEDURE (LAG-LEAD MANEUVER)

Percentage of times the absolute error is
Own Ship Lead and Initial dis- smaller than 10:’/6 of actual for range and
speed lag angle tance speed or 20° of actual for course.
(knts) ) Range Course Speed
(10%) (20°) (10%)
Large 88.9 77.8 27.8
70 Medium 66.7 77.8 27.8
Short 50.0 50.0 333
Large 88.9 94.4 38.9
15 80 Medium 72.2 88.9 50.0
Short 50.0 333 333
Large 94.4 94.4 44.4
90 Medium 72.2 88.9 444
Short 38.9 27.8 27.8 :
Large 83.3 88.9 22
70 Medium 66.7 94.4 222
Short 44.4 50.0 271.8
Large 83.3 94.4 333
10 80 Medium 61.1 88.8 333 |
Short 50.0 44.4 222 |
Large 77.8 94.4 389
90 Medium 61.1 88.9 89 |
Short 50.0 38.9 167 -
Large 72.2 77.8 333
70 Medium 50.0 71.8 27.8
Short 38.9 66.7 27.8
Large 72.2 77.8 333
5 80 Medium 50.0 77.8 278 L
Short 44.4 66.7 27.8
Large 72.2 77.8 389
90 Medium 50.0 77.8 333 ]
Short 44.4 66.7 22}




As can be seen in Table 1 and Table 2, the following results were obiavzed under
ideal conditions:
1. Range estimation is good, but only for medium or large initial distances.
2. Accuracy improves with increases in Qwn Ship speed.
3. Course and speed estimation is less accurate than range estimation.
4. Accuracy improves with increases in lead and lag angle.
5. Lead-lag maneuvers give better range estimates than do lag-lead, but not neces-
sarily better course-and speed estimates.

It is felt that the procedure performed poorly for short initial distances, in part be-
cause the bearing versus time curve is more nonlinear in this case.

D. TESTING WITH BEARING ERRORS

For these experiments, the program was run with bearing errors added to the simu-
Jated bearings. Also the bearing rate for each leg was computed using a linear least
squares technique.

Only lead or lag angles of 90° were considered, since it was -determined in the pre-
vious step that this is the-best course for Own Ship to follow. Accuracy in course and
speed were not considered since the errors for thesc parameters were too large, even.in
ideal conditions. An Own Ship speed of 5 knots was not considered for the same reason.

The MOE for these experiments was the percentage of times (runs) that the esti-
mated range at time £, was within 5%, 10%, and 20% of the actual range. Each number
in Table 3 and Tabie 4 results from 1,300 trials {(six Target courses, three Target speeds
and 100 replications per (course, speed) combination).

12




Table 3. ACCURACY IN REAL CONDITIONS FOR BEARING EXTRAPO-
LATION PROCEDURE (LEAD-LAG MANEUVER)

, Percentage of times the absolute error s
Own Ship St. Dev. Initial dis- | smaller than 5%, 10%, and 20% of ac-
(qufsd) bearrxglg er- tance B tual for range.

5 10% 209,

large 6.2 11.8 25.5

1.5° medium 123 24.4 45.4

short 15.9 30.6 53.7

large 89 18.4 36.6

15 1.0° medium 15:8 37.8 60.3

short 18.7 38.3 60.4

large 16.9 337 61.9

0.5° medium 26.5 52.5 82.2

short 194 39.2 62.8

large ) 42 | 8.8 18.2

1.5° medium 84 | 170 33.9

short 12:6 ~ 244 51.2

large 58 | 123 26.4

10 1.0° medium 10.7 23.5 45.3

short 1514 | 30.2 59.7

large 10.8 22.9 45.8

0.5° medium 190 | 389 68.7

shori 203 38.8 69.4

13




Table 4. ACCURACY IN REAL CONDITIONS FOR BEARING EXTRAPO-
LATION PROCEDURE (LAG-LEAD MANEUVER)

) Percentage of times the absolute error is
Own Ship St. Dev. Initial dis- | Smaller than 5%, 10%, and 20% of ac-
(‘fgfg bearrlglg er- tance tual for range.
5% - 10% 20%
large 4.7 11.3 23.2
1.5° medium 10.3 19.7 36.5
short 6.7 12.3 23.9
large 7.11 15.9 34.3
15 1.0° medium 11.7 242 46.6
short 6.7 12.2 22.2
large 16.2 318 56.1
0.5° medium 17.1 30.9 54.9
short 53 1.6 21.4
large 4.0 14 © 181
1.5° medium 7.3 13.7 269
short 5.7 1LT 21.9
large , 5.4 10.8 234
10 1.0° medium 9.0 17.3 . 35.9
short 5.0 108 23.2
large 1.0~ 222 | 429
0.5° medium 124 251 46.2
short - 38 9.7 23.6

From Table 3 and Table 4, the following results are obtained:
1. The higher the Own Ship speed, the better the accuracy.
2. The best accuracy is cbtained for medium initial distances.
3. The smaller the bearing error, the better the accuracy.

4. A lead-lag mancuver gives better accuracy than lag-lead mancuver.

It is noted that orthogonal regression was also tried on the estimated Target posi-
tions, but with results similar to thosc obtained with linear regression. Subsequent ex-

periments used only lincar regression.
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E. ANALYSIS OF THE RESULTS

It appears that even in the absence of bearing errors, the Bearing Extrapolation
Procedure gives poor estimates of Target course and speed. And when bearing errors
are introduced, the range errors also become unacceptable. It is the purpose cf this
section to determine why these poor-results were obtained.

1. Differences Between Lead-Leg-and Lag-Leg-Estimation

? Figures 2 to 5 show actual and estimated Target positions- for four encounter

geometries with no error in bearing. So the only errors introduced are due to the linear
extrapolation of bearings. It is clear that lag-leg estimation is much more accurate than
the lead-leg-estimation. It is also clear that any attempt to regress estimated Target
positions over both legs can result in large errors.
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2. Explanation of Why Lag-Leg Estimation is Better than Lead-Leg Estimation
To help explain why the lag-leg estimation was better than lead-leg estimation,
scatter plots of bearings versus time for numerous encounter geometries were obtained.
Figures 6, 7, and § are typical. In Figure 6, a lead-lag encounter-is represented, It was
observed that during the lead-leg (first leg), the bearing rate was generally smaller than

that of the lag-leg (second leg). Also, and perhaps more importantly, the change in

‘bearing rate (bearing acceleration) was also-smaller in the lead-leg. When this happens,

it is possible to use lincar regression to extrapolate the lead-leg bearings accurately into
the future. This makes the lag-leg estimation more accurate. It is-clear from Figure 6
that if linear 1egression were used to extrapolate the lag-leg bearings into the past, sig-
nificant errors would result, and these errors would likely cause-the lead-leg estimation
to be less accurate.

In the same fashion, Figure 7 shows a plot of bearings versus time for a typical
lag-lead encounter. Here also, the lead-leg (second leg) has a smalier bearing rate and
bearing acceleration. So linear regression can be used to extrapolate accurately the

lead-leg bearings backward in time, again making the lag-leg estimation most accurate.
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Unfortunately, however, there are encounter geometries where neither the lead
nor the lag-legs show small bearing acceleration. For example, Figure 8 shows a case
where the Target is at high speed, short initial distance, and on course 160°. Here both
lead and lag-leg bearings arc nonlinear, making the Bearing Extrapolation Procedure
unusable. Extensive experimentation indicates that when all the following conditions
hold:

Target course = 150 °,
Target speed = 5 knots,
Target range > 40,000 vds;

then the lead-leg bearings (and the lag-leg bearings) are not significantly linear to be
accurately extrapolated, and as a result, lag-leg estimation (as well as lead-leg esti-
mation) is poor.

Finally, it is noted that for very long initial distances (> 40,000 vds), both the
lead and lag-legs have approximately a linear change in the bearings, making both lead
and lag-leg estimations reasonably accurate.
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Figure 6. Bearings in Both Legs for Lead-Lag Maneuver (Target-course = 060°)
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F. CONCLUSIONS

1. Even when bearings were without error, the Bearing Extrapolation Procedure was
unsuccessful in estimating Target course and speed. However, range estimates were
reasonable.

2. When bearing errors were introduced, range estimates also became inaccurate.

3. For most encounter geometries, lag-leg estimation gave more -accurate results than.
did lead-leg estimation. However, for some important cases both lag and lead-leg
estimations performed poorly.
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11I. POSSIBLE IMPROVEMENTS, AND ANALYSIS OF THEIR
ACCURACIES

The lack of accuracy of the proposed procedure, even under ideal conditions, led to
attempts to improve its performance. The following are some suggested minor changes
and two suggested major changes that were found to improve the accuracy of the Bear-

ing Extrapolation Procedure.

A. MINOR CHANGES
1. Increase in Leg Length
In an attempt to improve performance, several different leg lengths were tried.
It was discovered that leg lengths of 8 to 12 minutes gave the best results. Shorter legs
gave too little data and longer legs resulted in nonlinear changes in lead-leg bearings.
Based on these tesis, ten minutes was selected as the leg length for subsequent simu-
lation experiments.
2. Use of a Quadratic Model to Fair the Lag-Leg
Another important change from the original simulation that was tried was to
use a quadratic model to fair the bearings in the lag-leg. This produced better accuracy
in the estimated Target track parameters. It is noted that current-manual TMA methods
(in particular, the Time-Bearing Plot) use linear fairing.
3. Increase in Turn Time
Contrary to Ekelund ranging, if an instantaneous turn.is considered, large errors
in the estimated Target track parameters are generated. This is-because some actual and
corresponding extrapolated bearings are too close to each other (i. e., a small baseline).
The intersection of those bearings often results in a estimated Target position far away
from the true position of the Target.
Based on these considerations, it was determined that the time required for Own
Ship to turn should be increased. After many trials, it was found. that the best turn du-
ration is ten minutes, if leg length is also ten minutes. For longer times, the bearing rate
in the lead-leg does not remain low and constant, reducing the accuracy of the lead-leg

bearing extrapolation.
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B. ELIMINATION OF THE LEAD-LEG-ESTIMATION

As shown in Chapter I, when linear extrapolation of the bearings from the lag-leg
is used, increased errors are generated in the estimation of the Target track parameters.
This occurs because the lag-leg generates a high and variable bearing rate compared to
the lead-leg. A simple solution to the problem is to drop the estimated Target positions
generated by the extrapolation of the lag-leg bearings.

One problem with this idea is that a lead-lag maneuver will then produce more ac-
curate estimates of Target position at the end of the maneuver than will a lag-lead ma-
neuver. This occurs since in the lead-lag case, the estimated Target positions are
obtained for times during the second (i.e., the lag) leg. And in the lag-lead case, the es-
timated Target positions are for times in the first (again, the lag) leg. So touse a lag-lead
maneuver to estimate Target positions at the end of the maneuver requires that these
positions be extrapolated in time using derived estimates of Target course and speed.
This leads to accumulated errors in the final Target position.

To test for the possible improvements that might result when using only lag-leg es-
timation, simulation-experiments were-conducted with-the-following parameters:

1. Speed of Own Ship: §, 10, and 15knots.
Speed of the Target: §, 15, and 25 knots.
Initia! range: large (= 60,000), medium (= 30,000), and short (= 10,000) yds.

Only the lead-lag mancuver is considered.

-

Only the initial lead angle of 90° is cosidered.
Leg length: 4 minutes.
Time between legs: 6 minutes.

Standard deviation bearing error: 0°, 0.5°, 1.0°, and 1.5°.

I S

Bearings for the first leg were faired and extrapolated linearly.

10. Bearings in the second leg were faired linearly.

It is important to note that other values for lead angle were not considered because,
as discussed in Chapter I, it was found that the best results werc obtained for a 90° lead
angle.

A In order to show how the minor changes improve the performance of this major
suggested change (i. e., climination of the lead-leg estimation), the simulation was run
for three different cases:




1. Without Minor Changes

The simulation program was run 100 times for each combination of the above
parameter values, It was determined that for the ideal case(0° bearing errors) the ac-
curacy of the predicted Target parameters was adequate, but with bearing errors intro-
duced, large errors in all three Target parameters were produced. So it was concluded
that simply eliminating the lead-leg estimation was not a sufficient improvement.

2. With Increased Leg Length and Lag-Leg Faired with a-Quadratic Model

Here leg length was increased to ten minutes and the lag-leg was faired with a
quadratic model. The same simulation experiments were run as before, Only the results
for lead-lag maneuvers are presented in Table 5. Lag-lead maneuvers gave uniformly
worse results for reasons discussed above. Additionally, and more surprisingly, the ac-
curacy for the lag-lead maneuver was not as good as the lead-lag, even when estimating
the Target parameters at the end of the first leg. This was a confirmation that, in gen-
eral, the lead-lag maneuver gives better results than do lag-lead [Ref. 7: pp. 3].

Results for estimated Target course and speed were very precise only when the
bearing error was zero and when Own Ship speed was greater than- ten knots. When
errors in bearings were included, the accuracy in estimated Target course and speed was
tremendously reduced. For example, for large initial distance and 15 knots Own Ship

speed the following was obtained:

1. With no bearing error, the error in estimated speed was always less-than 10% and
the error in course was less than 10° in 83% of the different geometries.

2. With a small bearing error (standard deviation = 0.5°),.only 33:4% of the runs had
an error in speed of less than 10% . In 15.1% of the runs, the-error in course was
less than 10°.

One of the conclusions of this study is that the Bearing Extrapolation Procedure, even
as modificd here, does not produce accurate estimates of Target-course-and speed. With
Target range, however, more success was obtained. Tabie 5 shows the percentage of
simulation runs that produced an estimated Target range at the end of the maneuver

within 3%, 10%0, and 20% of the true range.




Table 5. ACCURACY IN  ESTIMATED RANGE WHEN ONLY
LAG-LEG-ESTIMATION IS USED. (LEG LENGTH = 10 MIN).

- Percentage of times the absolute error is
Own Ship | St.Dev. | .0 | smaller than 5%, 10%, and 20% of ac-
(Sfﬁfg bcar;grg er- tance tual for range.

5% 10% 20%

large 21.6 41.7 72.1

1.5° medium 28.3 54.6 82.2

short 10.9 19.7 40.9

large 30.6 57.1 - 84,6

1.0° medium 354 62.9 86.6

15 short 10.7 18.6 40.2

large 49.9 78.8 93.7

0.5° medium 43.8 71.1 88.6

short 10.3 18.9 ) 39.6

} large 72.2 88.9 94.4

0.0° medium 55.6 77.8 889

short 11.1 22.2 : 38.9

large 15.2 30.6 559

1.5° medium 20.2 39.4 707

short 16.4 324 S1.3

large 21.0 41.2 . 70.1

1.0° medium 26.2 9.5 - 76.6

10 short 16.1 32.7 52.6

large 354 62.1 88.7

0.5° medium 354 - 61.3 79.5

short 15.3 Co323 52.5

large 72.2 77.8 ' 94.4

0.0° medium 38.9 72.2 ' 77.8

short 16.7 27.8 50.0

From Table 5 it can be seen that the larger the Own Ship speed , the better is

the estimate of range. This is shown in Figure 9 which is the plot of the accuracy in

estimated range versus standard deviation of bearing errors when the Own Ship speed
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is 10 and 15 knots. This accuracy is the percentage of times that the absolute error is
within 20% of the actual for range at the end of the maneuver.

OWN SHIP SPEED « 13 Knts, OWN SHIP SPEED = 10 Knts.

Figure 9.  Comparison of Accuracy for Different Own Ship Speeds by Using only
the Lag-Leg-Estimation.

Figure 10 shows the comparison of the results of these suggested improvements with the
results obtained in Chapter II for the central idea. It appears that for short initial dis-
tances the accuracy of the procedure decreases, but for large and medium distances, even
with large bearing error (standard deviation = 1.5°), the accuracy increases consider-
ably. Note that the accuracy for short distances was not adequate in either case.
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OWN SHIP SPEED = 13 Knts, FIRST IMPROVEMENT . OWN SHIP SPEED = 1§ Knis. USING CENTRAL IDEA

ACCUMACY 8 RAMGE

Figure 10,  Comparison of the Accuracy Between Results by Using only the Lag-
Leg-Estimation and the Results by Using the Central Idea,

3. With Previous Minor Changes Flus-an Increase in Turn Duration
In addition to the two minor changes made before, here the turn duration-was .

increased to ten minutes and the simulation experiments were repeated. Table 6 shows

the results for this case.




Table 6. ACCURACY IN  ESTIMATED
LAG-LEG-ESTIMATION 1S USED.
TURN TIME = 10 MIN.)

RANGE WHEN ONLY
(LEG LENGTH = 10 MIN.

) Percentage of times the absolute error is
Own Ship St. Dev. Initial dis- | smaller than 5%, 10%, and 20% of ac-
(SESSS bearrlgl:g er- tance tual for range.

5%, 10% 20%,

large 25.5 47.7 78.3

1.5° medium 30.6 54.3 83.3

short 12.1 217 38.6

large 34.8 62.0 87.8

1.0° medium 37.3 59.9 86.7

15 short 13.3 22.9 38.2

large 44.3 73.5 91.3

0.5° medium 40.7 62.1 87.8

short 14.4 24.2 38.6

large 66.7 389 94.4

0.0° medium 50.0 - 61.1 $8.9

short 16.7 222 38.9

large 18.3 36.2 65.1

1.5° medium 24.6 462 72.0

short 14.7 287 50.3

large 25.9 " 48.2 78.4

1.0° medium 29.6 - 539 75.5

10 short 13.3 7 281 77 506

large 31.8 59.0 85.5

0.5° medium 32.2 58.6 76.9

short 13.2 26.6 - 50.9

large 66.7 718 94.4

0.0° medium 33.3 667 77.8

short 16.7 22.2 44.4

By comparing the results obtained for the accuracy in range in Table 5 (Own
ship turn = 6 minutes) and Table 6 (Own ship turn = 10
small improvements in precision are obtained by using ten minutes for the turn.

.
=¢rsey

211113

utes), it is appcears that

Figure 11 is a graphic representation of this fact.
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OWN SHIP SPEED = 18 Knts. TURN TIME = § Mins OWN SHIP SM'EED = 15 Knts, TURN TME = 10 Mire
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STANOARD DEVATION BEARING ER| STANDARD BENONG

Figure 11.  Comparison of Accuracy for Different Own Ship Turn Times by Using
only the Lag-Leg-Estimation.

a. Effect of Target Courses Greater than 150° when Lag-Leg Estimation and
Minor Changes are Used
It was stated in Chapter II that the bearing rate for the lead-legs does not
remain constant when the Target course is greater than 150° (initial angle on the bow
less than 30°). This is because range during the maneuver decreases to the point where
the lead-leg bearings do not maintain linearity. To determine the effect on the esti-
mation of Target range that this behavior produces, simulations were conducted as be-
fore except that results were obtained for 12 separate Target courses between 030° and
175°. Previous resuits were averaged over Target course, so the effect of a particular
Target course was not observed.
The results of one simulation experiment are depicted in Figure 12 and
presented in Table 7. The parameters used to obtain these results were the following:
1. Initial distance: 30,000 vds.

2. Target couses: 030°, 050°, 070°, 090°, 110°, 130°, 150°, 155°, 160°, 165°, 170°, and
175°.

3. Target speeds: 25, 15, and 5 knots.
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4. Own Ship speed: 15 knots.
5. Standard deviation of bearing error: 1.5°.
6. Leg length: 10 minutes.

7. Turn time: 10 minutes.

TARCET SPEID = 25 XNOTS

] 0800
0L
- b 2,
%
wl
oF Q90e
nl
- 2,
%

Figure 12.  Fraction of Times Absolute Error is within 20% of Actual for Range, for
Different Target Courses and Speeds.
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Tabte 7.  FRACTION OF TIMES ABSOLUTE ERROR IS WITHIN 20% OF
ACTUAL FOR RANGE, FOR DIFFERENT TARGET COURSES AND

SPEEDS.
Target Target course (°)
spees 1030 0s0] 070 ] 090 110 130 150 155] 160 | 165 | 170 | 175
25 0.87] 0.83] 0.72] 0.98] 1.00] 1.00] 0.78] 0.62] 0.00] 0.00] 0.00] 0.00
I5 0.86] 0.95] 0.95 0.97] 0.99] 1.00[ 0.94] 0.62] 0.38] 0.26] 0.13] 0.05
IE 0.94] 0.96] 0.94] 0.97] 0.95] 0.93] 0.93] 0.94] 0.91] 0.97] 0.91] 0.95

From Figure 12 and Table 7. it can be seen that for a Target speed of 5
knots, approximately equal accuracy was obtained for all Target courses. But for Target
speeds of 15 and 25 knots, much less accuracy was obtained when the Target course was
between 130° and 175°. For Target courses less than 150°, there was less observed
change in the estimation of Target range.

C. USE OF AN ARCTANGENT MODEL TO EXTRAPOLATE THE LAG-LEG
BEARINGS

As presented so far, a major problem with the Bearing Extrapolation procedure is
that the lag-leg bearings cannot be linearly extrapolated forward or backward in time
while maintaining accuracy. The solution to this problem suggested in the previous se-
veral sections was simply not to use extrapolated bearings from the lag-leg. The problem
with this approach is that tracking information is lost when these extrapolated bearings
are not used. In this section, an attempt will be made to recover these extrapolated
‘bearings by using an arctangent, rather than linear, extrapolation model.

It is known that without change in Own Ship-course, bearing to a constant course
and speed moving Target is of the form

V,
B,= By +tan”'[ 5= (1= 1)}, (3.0)
cpa

where

B, is the bearing to the Target at CPA2,

2 Closest Point of Approach
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¥, is the relative speed between Target and Own Ship,
R, is the range to the Target at CPA,

1, is the time at which CPA is to occur. [Ref. 8: pp. 2]

Assuming that the extrapolated bearings for the lag-leg follow this arctangent
model, two different attempts were made in order to include these bearings in the sol-

ution of the problem.

1. Fitting the Arctangent Model by Using Least Squares

v An attempt was made to use a least squares technique to find the values of B,,
-R—°, and ¢, in (3.0) which produced the best fit to the observed bearing data. Although
this approach was ultimately unsuccessful, there may be another least squares procedure
that will prove more robust. To help any subsequent researcher, the details of this at-

tempt are presented to illustrate what has already been examined.

Let

Now make-the change of variable
Y, = tan(B, — By),.
or
Y, = o(r — 1)

Then applying least squares, it is necssary to minimize

n

ss=§50y-w+a@?

1=}

A necessary condition is

8sS

~
0o

n
1=} 1=l

and
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n
aSS
——=72) (Y,— ot + aty)x = 0. 3.2
. ‘§=l(, ) (32)

Since o cannot be zero unless relative speed (1) is zero, from (3.2),

> (¥, et + i) = . (3.3)
=1

Dividing (3.3) by n and solving for «,

o= . (3.9)

Now substituting (3.3) in (3.1) gives

n

n n
> v, - aZz’ +aiy) 1=0. (3.5)
=1

1=1 =1

-

Substituting (3.4) in (3.5) and solving for ¢, yields

n n
TZ:Y, - ?212

=1

o= St (3.6)

n
ZtY, - 721

n
1=1 =1

Because the determination of Y, for all ¢, requires knowledge of the value of the
bearing at CPA (B,), an iterative procedure was attempted where the first value for B,

was guessed, then with equations (3.5) and (3.6), o and , were computed. Then by using

By =7711- Z{B, — tan”"[a(r — )]},
1=}




a new value for B, was obtained. This iteration was continued in an attempt to converge
on the true B, Unfortunately for even small errors in bearings, (standard deviation =
0.5°). the procedure would not reliably converge.
2. Estimation of the Parameters for the Arctangent Model by Solving a System of
Linear Equations
It is known that with three different bearings to a Target that is moving with a
constant course and speed, the unknown parameters of the equation

B, = By + tan”"[o(r — 15)]

can be determined. [Ref. 7: pp. 2]
Now let B,, B, and B, be the bearings obtained at times 1, r,, and 1, respec-
tively. Then it can be written

B, = By + tan™'[o(t; — 15)],
By = By + tan™'[a(t, — )],
B; = B, + tan™'[o(t; — 1)].
An attempt will be made to solve for B;, ¢, and 4. Substracting,
B, ~ By =tan™ '[a(1, — 16)] — tan™" [a(ty — £o)],
By — By = tan™"[u(t; — 1)] — tan™"'[a(ty — 15)],
By — B, = tan™[o(t3 — 15)] — tan™ [a(ty — 15)]-

Now taking the tangent of both sides and knowing the trigonometric identity for the
tangent of the difference of two angles, the following can be obtained:

(1, — 1t
tan(B, — B,) = 20( 2= 1) )
LA (= 10)(1) — 1)
an(B, — B;) = ———2 =)

I+ 06— 1)ty ~ 1)

ulty; = 1)

tan(By — B,) =— .
Bo= B L4 (13 = o)1, ~ &)
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From these follows that

B, ~-B

(= 000 = ) an(By = B) = (g = 1) =R 67
B.—~ B -

(1 = o)ty — 1g) tan(Bs — By) =+ (13— 1) i“-“—‘z—’ (3.8)
B.— B

(s — o)ty — 1) tan(B; — By =-$f(z3—t2>—‘a—“‘—j;—2’—. (39)

Dividing (3.7) by (3.8), (3.7) by (3.9), and (3.8) by (3.9), allows the solution for 1, «, and
B(]u

o 1, tan(B; — By) tan(By — B)[(ta = 55)(13 = 1) — (55— 1;)(ta = 1)) + (53 — 12)2
0 (1, — 13) tan(B, — B))[(t — 1y) tan(B; — By) — (13 — 1) tan(B; — By)]
tan(B, — B,) tan(B; — B,) + 13(t, — 1,)* tan(B; — By) tan(B; — B,)
= (1 — ny) tan(B; — By)[(13 — 1;) tan(B, — By) — (1, — 1)) tan(B; — By)]

?

(fz - f3) tan(Bz - B|) tan(B3 - Bl)
(r — )13 — 1y) tan(By — By) + (1 — )6 — 1) tan(B; — By) ’

o=

By = By — tan™"[ef1; — 1)].

A subroutine to compute these values was written and the simulation of the

problem was done with the following conditions:

1. Speed of Own Ship: 5, 10, and 135 Knts.
Speed of the Target: §, 15, and 25 knts.
Initial range: 10,000, 30,000, and 60,000 yds.
Initial angle in the bow for Own Ship: 90°.
Legs length: 10 minutes.
Time between legs: 6 minutes.
Standard deviation bearing error: 0°, 0.5°, 1.0°, and 1.5°.

Only lead-lag maneuver is considered.

I IR R T S S

Bearings for the first leg were faired and extrapolated linearly.
10. Bearings in the second leg were faired by using a quadratic model.

I1. The extrapolation of the bearings for the second leg was done by using the for-
mulas obtained above and by using faired bearings from that leg. This was-done
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because the use of raw bearings produced too much error in the estimation of the
parameters of the Target.

Results are presented in Table 8. It is emphasized that these results are only
for lead-lag maneuvers.

Table 8.

ACCURACY

IN ESTIMATED RANGE BY USING THE
ARCTANGENT EXTRAPOLATION MODEL FOR THE LAG-LEG
(LEAD-LAG MANEUVER).

. Percentage of times the absolute error isﬂ
Own Ship | St.Dev. | ;..1qic | smaller than 5%, 10%, and 20% of ac-
(ngfs(; bearrlg;g er- tance tual for range.
5% 10% 209,
large 20.4 40.4 70.6
1.5° medium 26.0 50.9 71.8
short 11.5 25.2 46.9
large 29.6 54.8 83.5
1.0° medium 31.1 59.2 83.8
15 short 11.0 25.2 47.1
large 45.9 75.5 93.4
0.5° medium 37.8 60.8 87.2
short 17.2 31.8 52.1
large 66.7 88.9 94.4
0.0° medium 35.6 66.7 88.9
short .1 27.8 50.0
large 16.4 30.9 58.6
1.5° medium 23.0 43.8 77.1
short 19.6 34.4 59.4
large 22.9 43.0 72.5
1.0° medium - 29.8 53.9 83.9
10 shor; 1?.5 34.4 60.8
large 34.9 60.3 87.2
0.5° medium 32.9 59.1 78.2
short 13.2 29.1 56.1
large 72.2 71.8 94.4
0.0° medivm 389 72.2 71.8
short 11.1 27.8 55.6




Comparing these results with those on Table 3 on page 13, it is clear that this
procedure performs better than the original (unimproved) Bearing Extrapolation Proce-
dure. However, the results are about the same as those in Table 8, indicating that sim-
ply not using the lag-leg extrapolated bearings is just about as effective as trying to
extrapolate them with the arctangent model.
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IV. CONCLUSIONS AND RECOMMENDATIONS
1. CONCLUSIONS

. The proposed procedure does not allow estimation, with adequate accuracy, of the

Target track parameters when linear bearing extrapolation is used for both legs
(central idea). Linear bearing extrapolation is only valid for lead-legs where low
and constant bearing rate is obtained. For lag-legs the bearing rate is generally
higher and more variable.

. Adequate accuracy for course and speed is not obtained using any of the examined

procedures unless bearing error is zero (ideal conditions).

. Adequate accuracy in estimated range for large and medium initial distances can

be obtained if:

a. Quadratic faired bearings from the lag-leg are used in combination with linear
extrapolated bearings from the lead leg.

o

Lead-lag maneuver is performed.

Lead angle close to 90° is used.

e o

Leg length is larger than seven minutes and less than twelve minutes.

1

Own ship turn time is larger than six minutes and less than ten minutes.

™

Angle on the bow is not smaller than 30°. If it is, then Target speed is not
greater than 5 knots.

. Adequate accuracy in range for short initial distances is obtained only when the

Target is not closing the Own Ship.

2, RECOMMENDATIONS

. If this procedure is implemented. use only extrapolated bearings from the lead leg

(low and constant bearing rate) and faired bearings for the lag-leg (high and vari-
able bearing rate).

. Further research should be done to obtain a model that allows use of the extrapo-

lated bearings obtained from the lag-leg.
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APPENDIX A. DISCUSSION OF SELECTED SOLUTION METHODS

A. SPIESS RANGING

Spiess theory establishes that the problem of obtaining satisfactory solutions for a
bearings-only approach against targets moving with a constant course and speed, can
be solved by using four bearings and at least one change of course or speed by Owa
Ship. With this in mind, several graphical methods capable of giving quick reliable so0l-
utions were developed. [Ref. 3]

From the Passive Ranging Manual, Volume 111, the basic graphical method for
Spiess ranging is explained as follows:

Given three bearings to the Target, observed at times ¢, &, , and f; together
with a fourth time, #, the locus, L, of all possible Target positions at time, 2, for all
possible Target tracks which satisfy the three bearings at f, f, and £, and which
maintain a constant course and speed. is a straight line. The actual position of the

Target at time, 7, is determined by the-intersection of L with the observed bearing
at time, 1, (provided SSK changes course and speed).

This locus, L, can be determined by picking out two arbitrary Target tracks
which satisfy the three-bearing conditions, and plotting the position of the Target
on these tracks at time 7, Then L is the line through these two plotted positions.
This is the basis of the Spiess four-bearing TMA. The bearing lines at #,, #,, and 1,
are used to find the locus of Target positions at 1, The intersection of this locus
with the bearing line at , determines one -point on the track. Another point is de-
ter:nined by using the bearing lines at 1,, 1, and 1, to find the locus of Target posi-
tions at 4. The intersection of this locus with the bearing line at 7, determines
another point on the track. The track is then the line joining the two constructed
Target positions.

Because bearings are not precise enough to-apply this method, faired bearings are

usually used.

B. EKELUND RANGING

The basic Ekelund solution for a constant course and speed moving Target is based
on a two leg maneuver by Own Ship. During these legs, Own Ship records actual Target
bearings. The rate of change of the bearings-is computed for each leg by applying linear
lcast squares techniques. This method assumes that during the turn the distance that
Own Ship moves and the change of angle in the bow can be disregarded; i.e., assumes
an instantaneous turn. Given this assumption, the range to the Target can be computed.
Using Figure 13, derivation of range is as follows:
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«— target track

————own ship track &——leg two j

Figure 13. Geometry for Ekelund Ranging Method.

. The velocity of the Target.across the line of sound for Own Ship’s first leg is
) od ,
) Van = Vyy sin 6, = R, —o—[‘- = R,B, (4.1)

and for leg 2

0,

Van=Vasinby=R,—== R;B, (4.2)

Own ship’s velocity across the line of sound for leg 1 can be expressed as

26,

Veor = Vorsiny = Ry —=- = R,B, (4.3)
and for leg 2
) 60, .
- VGOZ = ch,sm ¢2 = R2 _é-l- = RZBOZ (A.4)

where
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B, = Bearing rate of Target in leg i.
R, = Range to the Target at the turn.
R, = Range to the Target aiter the turn.

/
Va

Velocity of Own Ship in leg i.

V., = Velocity of the Target in leg i.

Assuming Target velocity remains constant during Own Ship maneuvering; i.e.,
V,=V,=V, and that the angle in the bow also remains approximately constant; i.e.,
6,=6,=0, and that the range to the Target does not appreciably changes; i.e.,
R, = R, = R,, then equations (A.1), (A.2), (A.3), and (A.4) can be written as

V,sin 0, = R, By, (4.5)
V,sin 6 = R.Bp, (4.6)
V,y sin ¢, = R,B,, | (4.7)
V,,sin ¢ = R,B,,. (4.8)

and by subtracting (A.7) from (A.5) and (A.8) from (A.6)
V,sin 0 — V,, sin @, = R(B, — B,) = R, By,
V,sin 0 — V,, sin ¢, = R(By — Byy) = R,B,.
Subtracting these last two equations vields

_ Vo sing; — Vo sing,

R e
) B, - B,

’

where, B, = bearing rate of Target relative to Own Ship in lég i.
The problems in accuracy with this method are:

1. It assumes that Own Ship can perform the two legs maneuver with an instantane-
ous turn [Ref. 9: pp. 1-3].

2. The Ckelund Range LCquation is dependent on the ratio of the bearing rates devel-
oped on the two legs of the ranging maneuver which are small and not very precise
values [Ref. 9: pp. 1-3].
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3. In-practice, measuring the bearing rate involves a bearing smoothing process which
takes placc-over a portion of each leg and results in bearing rates at times signif-
icantly different from the time of the turn [Ref. 9: pp. 3-2].

C. CHURN METHOD
The basic concept of CHURN TMA is similar to that of the strip plot and includes
in its solution the Spiess TMA for the particular case where there are only four bearing

lines computed (Ref. 9: pp. 7-1, 7-3). Figure 14, depicts the regular CHURN TMA
method.

estimated
target track

Bi = bearing
ot time |

own ship track

t7

Figure 14. Geometry for CHURN Method.

Own Ship performs a two leg maneuver during which it measures bearings to a
Target that is moving with constant course and speed. The CHURN method takes those
bearings and fits a Target track to them using the perpendicular distance between a given
bearing line and the corresponding Target position on the fitted track as a measure of
the goodness of fit. Applying the concept of least squares, the best Target track is that
which then minimizes the sum of squares of these distances.[Ref. 9: pp. 7-2 ]
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APPENDIX B. VARIABLES OF THE SIMULATION PROGRAM

. A.B.C.D.E.F. Entries of the 4-! matrix for quadratic regression in the first leg.

These values were computed by using APL [Ref. 10]. Then they were introduced
as initial data.

AQ.A1.A2. Coefficients for the quadratic model in the first leg.

3. A01.LA11,A22. Coeflicients for the quadratic model in the second leg.

B22. Temporary variable used to compute the estimated position of the target on
the estimated target track at the begining of the maneuver.

5. BEERR. Bearing error.

BEEXTR(IN). Vector of extrapolated bearings.

7. BFF. Temporary variable used to compute the estimated position of the target on

10.
11.
12.
. BO. Bearing to the target at CPA.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
. DIEZ1. 'limes that absolute value of the speed error is less than 10%.
26.
27.

the estimated target track at the end of the maneuver.

. BE(IN). Vector of bearings to-the target.

BEIIN. Y intercept for the linear model of bearings versus time in the first leg.
BEI({IN). Temporary vector of bearings to the target.
BE2IN. Y intercept for the linear model of bearings versus time in the second leg.

BMEAN. Mean of the bearing to thegarget. Same variable is used for-both legs.

CC. Counter used in the computation of the precision of the procedure.
CINCO. Times that absolute value of the range error is less than 5%.
CINCOI1. Times that absolute value of the speed error is less than 5%.
CINCO?2. Times that absolute value of the course error is less than 5°.
COFL(2). Vector of own ship-courses for the first leg.-

COSL. Own ship course-for the second leg.

C5. Percentage of times-that-error in estimated target course is less than 5°.
C10. Percentage of times that error in estimated target course is less than 10°.

C20. Percentage of times that error in estimated target course is less than 20°.

-

EGPI. Piexpressed-in degrees.

DIEZ. Times that absolute value of the range error is less than 10%.

DIEZ2. Times that absolute value of the course error is less than 10°.

DSEED. Seed for the pseudorandom generation of normal bearing errors.




28. ECTLR. Estimated target course obtained by linear regression on the target fixes.
29. ERANTL. Estimated range to the target at the end of the maneuver.

30. ESLOPE. Temporary variable corresponding to the target course.

31. ESPTL. Estimated speed of the target.

32. EXT(IN). Vector of estimated target positions in the X axis.

33. EYINT. Y intercept of the estimated target course.

34. EXT(IN). Vector of estimated target positions in the Y axis.

35. FBE(IN). Vector of faired target bearings.

36. IN. Time to complete the maneuver in 1/3 of minutes.

37. INFO(IN). Flag used to signal when Estimated X position of the target is equal
to the X position of the own ship.

38. IX(3). Vector of initial target distances from own ship in the X axis.
39. IY(3). Vector of initial target distances from own ship in the Y axis.

40. LLL. Counter to determine the amount of fixes used in the regression to determine
target track.

41. PER. Percentage error in range computed from the estimated and the simulated
range to the target at the end of the maneuver.

42. PER1. Percentage error in speed computed from the estimated and the simulated
target speed.

43. PER2. Amount of error in course computed from the estimated and the simulated
target course.
44, PI. Pi in radians.

45. R.S.T.U.V.W. Entries of the 4! matrix for quadratic regression in the second leg.
These values were computed by using APL [Ref. 10]. Then they introduced as ini-
tial data.

46. RANGEF. Simulated range to the target at the end of the man=uver.

47. RCBFL]. Rate of change of bearing during the first leg. This value is computed
assuming the linear model for the bearings versus time.

48. RCBSL1. Rate of change of bearing during the Second leg. This value is computed
assuming the linear model for the bearings versus time.

49. RS. Percentage of times that error in estimated range to the target is less than 5%.

50. R10. Percentage of times that error in estimated range to the target is less than
10%0.

51. R20. Percentage of times that error in estimated range to the target is less than
20%.

52. SCT(6). Vector of simulated target courses.

53. SD. Standard deviation of bearing errors.
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54. SLOPE(IN). Vector of faired bearings to the target expressed as slopes in the X-Y
plane.

55. SLOPEX(IN). Vector of extrapolated bearings to the target expressed as slopes
in X-Y plane.

56. SMALL. Constant that defines equality between simulated Own ship position and
estimated target position.

57. SMALLB. Constant used to determine when the faired or extrapolated target
bearing correspond to a value of 90° or 270°,

38. SO(3). Vector of simulated own ship speeds.

59. SST(3). Vector of simulated target speeds.

60. SUMB. Summation of the bearing values.

61. SUMB2. Summation of the square of the bearing values.

62. SUMT. Summation of time.

63. SUMTB. Summation of the products of bearing and time.

64. SUMT?2. Summation of the squares of the time.

65. SUMT2B. Summation of the products of square of time and bearing.
66. SUMX. Summation of the estimated target positions in the X axis.

67. SUMXY. Summation of the product of estimated target positions in the X axis
and the estimated target position in the Y axis.

68. SUMX2. Summation of the square of the estimated target positions in the X axis.
09. SUMY. Summation of the estimated target positions in the Y axis.

70. SUMY2. Summation of the square of the estimated target positions_in the Y axis.
71. SXT(IN). Vector of simulated target positions in the X axis.

72. SYT(IN). Vector of simulated target positions in the Y axis.

73. §5. Percentage of times that error in estimated target speed is less than 5%.

74. §$10. Percentage of times that error in estimated target speed is less than 10%.
75. §20. Percentage of times that error in estima.ed target speed is less than 20%.
76. TEL(2). Vector of leg lengths.

77. TEMP. Temporary vari,ablc.

78. TMEAN. Mean of the time.

79. TO. Time when CPA occurs.

80. TWO. 2 expressed as double precision constant.

81. VARERB. Variance of bearing error.

82. VEINTE. Times that absolute value of the range error is less than 20%.
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83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
. YO(IN). Vector of own ship positions in the Y axis.

. YOEXTR(IN). Vector of extrapolated own ship positions.

VEINTI. Times that absolute value of the speed error is less than 20%.
VEINT2. Times that absolute value of the course error is less than 20°.
VD. Ratio between relative speed of target and own ship and range at CPA.
XO(N). Vector of own ship positions in the X axis.

XOEXTR(IN). Vector of extrapolated own ship positions in the X axis.

XMEAN. Mean of target positions (fixes) in the X axis.

XFF. Estimated target position at the end of the maneuver in the X axis.
X22. Estimated target position at the begining of the maneuver in the X axis.
YFF. Estimated target position at the end of the maneuver in the Y axis.
YMEAN. Mean of target positions (fixes) in the Y axis.

. Y22. Estimated target position at the beggining of the maneuver in the Y axis.
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APPENDIX C. SIMULATION PROGRAM CODE

PROGRAM SIMTMA
dedededededededsdeveradedede oo vede e Ve dedede T deste S e ek e de e de e e Ve de e e e e e de e e e de e e e Ve e e e e e e e e e ek

% %

¥ THIS PROGRAM SIMULATES A PASSIVE BEARINGS-ONLY TARGET MOTION ANALYSIS*
* PROCEDURE WHICH IS PERFORMED BY A SUBMARINE (OWN SHIP) AGAINST A ¥ -
* TARGET WHICH IS MOVING WITH CONSTANT COURSE AND SPEED. *
* THE OWN SHIP PERFORMS A TWO LEG MANEUVER, EACH OF THEM WITH CONSTANT
E
k£

%

COURSE AND SPEED. ¥

3 e v Y % e % % %
% ¥*
* WRITTEN BY CMR. CARRERO CUBEROS, BERNABE *
* VENEZUELAN NAVY e
¥ %
e dedederievededededevevededdeve vt e e vev e e e dede e e dede e e de dede de e dede el dededede dededededededede e dede dedededede e dode

PARAMETER(IN =

INTEGER TEL(2), INFO(IN), LLL, CC, CINCO, DIEZ, VEINTE,
&CINCO1, DIEZ1, VEINTI, CINCO2, DIEZ2, VEINT2

DOUBLE PRECISION IX(3), IY(3), DSEED, COFL(2), COSL, SCT(6), SD,
&SST(3), VARERB, BEERR, EXTCIN), EYT(IN), SO(3), SXT(IN), SYT(IN),
&XOCIN), YO(IN). BE(IN), SLOPE(IN), BEEXTR(IN), XOEXTR(IN),
&YOEXTR(IN), SLOPEX(IN), PI, SMALL, DEGPI, TWO, TEMP, SUMX, SUMX2,
&SUMY2, SUMY, SUMXY, XMEAN, YMEAN, ESLOPE, SMALLB, EYINT, ECTLR,
&B22, BFF, X22, Y22, XFF, YFF, ESPETL, ERANTL, RANGEF, SUMT, SUMB,
&SUNT2, SUMB2, SUMTE, TMEAN, BMEAN, RCBFL1, RCBSL1, BE1(IN), BELIN,
SBE2IN, FBE(IN), AO, Al, A2, SUMT2B, A, B, C, D, E, F, AOL, All,
&A21, R, S, T, U, V. W, B0, TO, VD, PER, PER1, PER2, RS, R10, R20,
&S5, S10, S20, C5, C10, €20 .

DATA PI/3.1415926535898D0/, SMALL/0.1D0/, DEGPI/180.D0/, TW0/2.DO/,
&SCT/153.D0, 158.D0,163.D0,167.D0,171.D0,175.D0/, TEL/39,30/,

&50/30000. DO, 20000, DO, 10000. DO/, SST/50000. DO, 30000. DO, 10000. DO/,
&COFL/088. D0, 272. D0/, SMALLB/.00001D0/, A/118.4785317D0/,
&B/-3.77185762D0/, C/.02947719689D0/, D/. 120585869200/,
&E/-.0009459915779D0/, F/.000007448752582D0/, R/.3438423645D0/,
&S/-. 0450738916D0/, T/.001231527094D0/, U/.007603190052D0/,
&V/-.00023091133D0/, W/.000007448752582D0/,
&IY/60000 D0, 30000. DO, 10000. DO/, IX/0.D0,0.D0,0.D0/

PRINT, ENTER VARIANGE OF BEARING ERROR (SQUARE DEGREES) AND'

PRINT*,'INITIAL SEED (7 DIGIT INTEGER) ‘TO BEGIN THE SIMULATION'

READ* , VARERB , DSEED

% TRANSFORMATION OF DATA THAT INVOLVES DEGREES TO RADIANS
= SQRT(VARERB)
SD = SD*PI/DEGPI
DO SO I=1,2
COFL(I) = COFL(I)*PI/DEGPI
50  CONTINUE .
DO 100 I = 1,6
SCT(I) = SCT(I)*PI/DEGPI
100  CONTINUE
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% SELECTION OF TWO DIFFERENT LENGTH LEG
DO 2000 I = 1,2

“ SELECTION FROM THREE DIFFERENT INITIAL DISTANCES BETWEEN T4RGET AND
% OWN SHIP
DO 1999 MMMM = 1,3

% SELECTION FROM THREE DIFFERENT SPEEDS FOR OWN SHIP
DO 1100 L = 1,3

* SELECTION FROM LEAD-LAG AND LAG-LEAD MANEUVER AND INITIALIZATION
DO 950 M = 1,1

cC=0
CINCO = 0
DIEZ = 0
VEINTE
CINCO1
DIEZ1 =

% SELECTION FROM SIX DIFFERENT TARGET COURSES
DO 900 J = 1,6

* SELECTION FROM THREE TARGET SPEEDS
DO 850 K = 1,3

N * REPETITION OF THE SIMULATION 100 TIMES WITH DIFFERENT SEED
DO 793 JIJ = 1,100

. * INITIALIZATION AND SIMULATION OF TARGET POSITION EVERY 20 SECONDS
DO 150 II = 1,2*TEL(I)
SXT(II) = 0.D0
SYT(II) =

SLOPE(II)

SLOPEX(II)
XOEXTR(II)
YOEXTR(II)
BEEXTR(II)
INFO(II) = 0.DO

TEMP = (DBLE(II))/180 DO

o
A
=
S

SXT(II) = IX(MMMM) + COS(SCT(J)-PI/TWO)*SST(K)*TEMP
SYT(II) = IY(MMMM) - SIN(SCT(J)-PI/TWO)*SST(K)*TEMP
150 CONTINUE
% INITIALIZATION OF REGRESSION TO COMPUTE RATE OF CHANGE OF BEARING IN
* FIRST LEG.
SUNMT = 0.D0
- SUMT2 = 0.D0
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SUMB2 = 0.D0O

SUMB = 0.DO0

SUMTB = 0.D0

SUMT2B = 0.DO

DO 750 N = 1,TEL(I)-9

* SIMULATION OF POSITION OF OWN SHIP EVERY 20 SECONDS IN THE FIRST LEG.
TEMP = (DBLE(N))/180.D0
XO(N) = COS(COFL(M) - PI/TWO)*SO(L)*TEMP
YO(N) = SIN(PI/TWO - COFL(}M))¥*SO(L)*TEMP

* SIMULATION OF THE BEARINGS TO THE TARGET IN THE FIRST LEG.
CALL NORRN(DSEED,BEERR)
IF(ABS(SYT(N) - YO(N)) .GE. SMALL)THEN
IF(ABS(XO(N) - SXT(N)) .GE. SMALL)THEN
IF(YO(N) .LT. SYT(N))THEN
IF(XO(N) .LT. SXT(N))THEN
BE(N) = ATAN((SXT(N) - XO(N))/(SYT(N) - YO(N)))
ELSE
TEMP = ATAN((SXT(N) - XO(N))/(SYT(N) - YO(N)))
BE(N) = TWO*PI -+ TEMP
END IF
ELSE
TF(XO(N) .LT. SXT(N))THEN
TEMP = ATAN((SXT(N) - XO(N))/(SYT(N) - YO(N)))
BE(N) = PI + TEMP
ELSE
TEMP = ATAN((SXT(N) - XO(N))/(SYT(N) - YO(N)))
BE(N) = PI + TEMP
END IF
END IF
BE(N) = BE(N) + BEERR*SD
IF(BE(N) .GE. TWO*PI)BE(N) = BE(N) - TWO*PI
ELSE
IF(SYT(N) .GT. YO(N))THEN
BE(N) = 0.DO
ELSE
BE(N) = PI
END IF
INFO(N) = 99
END IF
ELSE
IF(SXT(N) .GT. XO(N))THEN
BE(N) = PI/TWO
ELSE
BE(N) = 3.DO%PI/TWO
END IF
END IF

* COMPUTATION OF COEFFICIENTS FOR QUADRATIC AND LINEAR LEAST SQUARES
% FITS FOR THE BEARINGS IN THE FIRST LEG.
SUMT = SUMT + DBLE(N)
SUMT2 = SUMT2 + (DBLE(N))*¥*2
IF(BE(N) .GT. 3.D0*PI/TWO)THEN
BE1(N) = BE(N) - TWO*PI
ELSE
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750

*

o
-

BE1(N) = BE(N)

END IF

SUMB = SUMB + BE1(N)

SUMB2 = SUMBZ + BEI(N)#*%*2

SUMTB = SUMTB + (DBLE(N))*BE1(N)

SUMT2B = SUMT2B + (DBLE(N)¥*¥*2)*BE1(N)
CONTINUE
TMEAN = SUMT/DBLE(TEL(I)-9)
BMEAN = SUMB/DBLE(TEL(I)-9)
RCBFL1 = (SUMIB - SUMT**BMEAN)/(SUMT2 - SUMT*TMEAN)
BE1IN = BMEAN - RCBFLI1*TMEAN

A0l = R*¥SUMB + S*SUMTB + T*SUMT2B
All = S*SUMB + U*SUMTB + V*SUMT2B
A21 = T*SUMB + V*SUMTB + W*SUMT2B

COMPUTATION OF THE OWN SHIP POSITION AT THE FICTITIOUS TURN

TEMP = DBLE(TEL(I))/180.D0
XO(TEL(I)) = COS(COFL(M) - PI/TWO)*SO(L)*TEMP
YO(TEL(I)) = SIN(PI/TWO - COFL(M))¥*SO(L)*TEMP

COMPUTATION OF FAIR BEARINGS DURING THE FIRST LEG USING THE RESULTS

“* FROM LINEAR OR QUADRATIC FIT. THIS DEPEND IF THE MANEUVER IS LEAD-LAG

o

755

OR LAG-LEAD.

DO 755 N = 1,TEL(I)-9
IF (M .EQ. 1)THEN
FBE(N) = RCBFL1*DBLE(N) + BE1IN
ELSE
FBE(N) = AO1 + A11%*DBLE(N) + A21%(DBLE(N)*¥*2)
END IF
IF(FBE(N) .LT. 0.DO)FBE(N) = TWO*PI + FBE(N)
IF((ABS(FBE(N) - PI/TWO) .LT. SMALLB) .OR.
(ABS(FBE(N) - 3.DO*PI/TWO) .LT. SMALLB))THEN
SLOPE(N) = 0.DO
ELSE
SLOPE(N) = 1.DO/TAN(FBE(N))
END IF
CONTINUE

* IN CASE OF LAG-LEAD MANEUVER (M=2), CALL SUBROUTINE TANGENT TO COMPUTE

X %

3

THE COEFFICIENTS THAT RELATES THE BEARINGS TO THE ARCTANGENT MODEL. IN
 CASE OF LEAD-LAG MANEUVER USE THE LINEAR MODEL ALREADY COMPUTED. WITH
THIS INFORMATION, COMPUTE THE EXTRAPOLATED BEARINGS FROM THE FIRST LEG

IF(M .EQ. 2)CALL TNGENT(FBE,IN,M,B0,TO,VD)
DO 760 N = TEL(I)+10,2*TEL(I)
IF(M .EQ. 1)THEN
BEEXTR(N) = RCBFLI1*DBLE(N) + BE1IN
ELSE
BEEXTR(N) = BO + ATAN(VD*(DBLE(N) - T0))
END IF
IF(BEEXTR(N) .LT. 0.DO)YBEEXTR(N)=TWO*PI+BEEXTR(N)
IF((ABS¢BEEXTR(N) - PI/iw0) .LT. SMALLB) .OR.
(ABS(BEEXTR(N) - 3.DO*PI/TWO) .LT. SMALLB))THEN
SLOPEX(N) = 0.D0
ELSE
SLOPEX(N) = 1.DO/TAN(BEEXTR(N))

49




760

END IF
CONTINUE

* SIMULATION OF EXTRAPOLATED POSITIONS OF OWN SHIP OUT OF THE FIRST LEG.

765

DO 765 N = TEL(I)+10, 2*TEL(I)
TEMP = (DBLE(N))/180.D0

XOEXTR(N) = COS(COFL(M) - PI/TWO)*SO(L)*TEMP
YOEXTR(N) = SIN(PI/TWG - COFIL(M))*SO(L)*TEMP
CONTINUE

* SIMULATION OF FAIR BEARING TO THE TARGET AT THE TURN, BY USING THE

% LINEAR MODEL.

&
&

FBE(TEL(I)) = RCBFL1*DBLE(TEL(I)) + BE1lIN

IF(FBE(TEL(I)) .LT. 0.DO)FBE(TEL(I)) = TWO*PI +
FBE(TEL(I))

IF(FBE(TEL(I)) .GE. TWO*PI)FBE(TEL(I)) = FBE(TEL(I)) -
TWO*PI

* DETERMINATION OF OWN SHIP COURSE FOR THE SECOND LEG ACCORDING WITH THE
* LINE OF SIGHT TO THE TARGET AT THE TURN.

IF (M .EQ. 1)THEN
COSL = FBE(TEL(I)) - PI*(.48888889D0)
ELSE
COSL = FBE(TEL(I)) + PI%(.48888839D0)
END IF
IF(COSL .LT. 0 DO)COSL = TWO*PI + COSL
IF(COSL .GT. TWO*PI)COSL = COSL =~ TWO*PI

% INITIALIZATION OF REGRESSION TO COMPUTE RATE OF CHANGE OF BEARING IN
* SECOND LEG.

SUMT = 0.D0

SUMT2B =
Do 778 N

===} oo

EL(I)+10,2*TEL(I)

* SIMULATION OF POSITION OF OWN SHIP EACH 20 SECONDS IN THE SECOND LEG.

TEMP = (DBLE(N) - DBLE(TEL(I)))/180.D0O
XO(N) = XO(TEL(I)) + SO(L)*TEMP*COS(COSL-PI/TWO)
YO(N) = YO(TEL(I)) - SO(L)*TEMP*SIN(COSL-PI/TWO)

* SIMULATION OF THE BEARINGS TO THE TARGET IN THE SECOND LEG.

CALL NORRN(DSEED,BEERR)
IF(ABS(SYT(N) - YO(N)) .GE. SMALL)THEN
IF(ABS(SXT(N) - XO(N)) .GE. SMALL)THEN
IF(YO(N) .LT. SYT(N))THEN
IF(X0(N) .LT. SXT(N))THEN
BE(N) = ATAN((SXT(N) - XO(N))/(SYT(N) - YO(N)))
ELSE
TEMP = ATAN((SXT(N) - XO(N))/(SYT(N) - YO(N)))
BE(N) = TWO*PI + TEMP
END IF
ELSE
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IF(XO(N) .LT. SXT(N))THEN
TEMP = ATAN((SXT(N) - XO(N))/(SYT(N) =~ YO(N)))
BE(N) = PI + TEMP
ELSE
TEMP = ATAN((SXT(N) - XO(N))/(SYT(N) - YO(N)))
BE(N) = PI + TEMP
END IF
END IF
BE(N) = BE(N) + BEERR*SD
IF(BE(N) .LT. 0.DO)BE(N) = TWO*PI + BE(N)
IF(BE(N) .GE. TWO*PI)BE(N) = BE(N) - TWO*PI
ELSE
IF(SYT(N) .GT. YO(N))THEN
BE(N) = 0.D0
ELSE
BE(N) = PI
END IF
INFO(N) = 99
END IF
ELSE
IF(SXT(N) .GT. XO(N))THEN
BE(N) = PI/TWO
ELSE
BE(N) = 3.D0*PI/TWO
END IF
END IF

* COMPUTATION OF COEFICIENTS FOR LINEAR AND -QUADRATIC FITS FOR THE
% BEARINGS IN THE SECOND LEG

778

SUMT = SUMT + DBLE(N)
SUMT2 = SUMT2 + (DBLE(N))*%*2
IF(M .EQ. 1)THEN
IF(BE(N) .GT. .65D0*PI)THEN
BE1(N) = BE(N) - TWO*PI

ELSE
BE1(N) = BE(N)
END IF
ELSE
BE1(N) = BE(N)
END IF

SUMB = SUMB + BE1(N)
SUMB2 = SUMB2 + BE1(N)#**2
SUMTB = SUMTB + (DBLE(N))*BE1(N)
SUMT2B = SUMT2B + (DBLE(-N)*%2)*BE1(N)
CONTINUE o
TMEAN = SUMT/DBLE(TEL(I)-9)
BMEAN = SUMB/DBLE(TEL(I)-9)
RCBSL1 = (SUMTB - SUMT*BMEAN)/(SUMT2 - SUMT*TMEAN)
BE2IN = BMEAN - RCBSLI*TMEAN
A0 = A*SUMB + B*SUMTB + C*SUMT2B
Al = B*SUMB + D*SUMTB + E*SUMT2B
A2 = C*SUMB + E¥SUMTB + F#SUMT2B

% COMPUTATION OF FAIR BEARINGS DURING THE SECOND LEG USING LINEAR
g % OR QUADRATIC FIT. THIS DEPEND ON THE TYPE OF MANEUVER.




DO 779 N = TEL(I)+10,2*TEL(I)
IF(M .EQ. 1)THEN
FBE(N) = A0 + AI*DBLE(N) + A2¥%(DBLE(N)¥*¥2)
ELSE
FBE(N) = RCBSL1*DBLE(N) + BE2IN
END IF
IF(FBE(N) .LT. 0.DO)FBE(N) = TWO*PI + FBE(N)
IF((ABS(FBE(N) - PI/TWO) .LT. SMALLB) .OR.

& (ARS(FBE(N) - 3.DO*PI/TWO) .LT. SMALLB))THEN
SLOPE(N) = 0.D0
ELSE
SLOPE(N) = 1.D0/TAN(FBE(N))
END IF
779 CONTINUE

a2,

* IN CASE OF LEAD-LAG MANEUVER (M=1), CALL SUBROUTINE TANGENT TO COMPUTE
THE COEFFICIENTS THAT RELATES THE BEARINGS TO THE ARCTANGENT MODEL. IN
CASE OF LAG-LEAD MANEUVER USE THE LINEAR MODEL ALREADY COMPUTED. WITH
THIS INFORMATION, COMPUTE THE EXTRAPOLATED BEARINGS FROM THE SECOND LEG

IF(M .EQ. 1)CALL TNGENT(FBE,IN,M,B0,T0,VD)

DO 781 N = 1,TEL(I)-9

IF(M .EQ. 1)THEN
BEEXTR(N) = BO + ATAN(VD*(DBLE(N) - T0))

% % %

ELSE
BEEXTR(N) = RCBSL1*DBLE(N) + BE2IN
END IF
¥ WRITE(1,'(F9.6,1X,I3)" )BEEXTR(N),N

IF(BEEXTR(N) .LT. 0.DO)BEEXTR(N)=TWO*PI+BEEXTR(N)
JF((ABS(BEEXTR(N) - PI/TWO) .LT. SMALLB) .OR.

& (ABS(BEEXTR(N) - 3.DO*PI/TWO) .LT. SMALLB))THEN
SLOPEX(N) = 0.D0
ELSE
SLOPEX(N) = 1.DO/TAN(BEEXTR(N))
END IF
781 CONTINUE

* SIMULATION OF EXTRAPOLATED OWN SHIP POSITIONS OUT OF THE SECOND LEG.
DO 782 N = 1,TEL(I)-9
TEMP = (DBLE(TEL(I)) - DBLE(N))/180.D0
XOEXTR(N) = XO(TEL(I)) - COS(COSL - PI/TWO)*

& SO(L)*TEMP
YOEXTR(N) = YO(TEL(I)) + SIN(COSL - PI/TWO)*
& SO(L)*TEMP
782 CONTINUE

% INITIALIZATION OF VARIABLES USED IN THE LINEAR REGRESSION TC COMPUTE
* COURSE OF THE TARGET.

SUMX = 0.D0

SUMX2 = 0.D0
SuMY2 = 0.D0
SUMY = 0.DO

SUMXY = 0.D0
LLL =0

* COMPUTATION OF EXPECTED POSITION (X,Y) OF THE TARGET.
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DO 783 N = 1,2*%TEL(I)

% ELIMINATION OF 18 CENTRAL ESTIMATED POSITIONS OF THE TARGET TO ALLOW
* THE MANEUVER OF THE OWN SHIP IN ORDER TO CHANGE COURSE FROM FIRST LEG
* TO SECOND LEG (SIX MINUTES)

IF((N .GT. TEL(I)-9) .AND. (N .LE. (TEL(I)+9)))

* & GO TO 783
IF(INFO(N) .EQ. 99)THEN
. EXT(N) = XO(N)
EYT(N) = SLOPEX(N)*(XO(N) - XOEXTR(N)) + YOEXTR(N)
ELSE :
EXT(N) = XOEXTR(N)
NgY}%N) = SLOPE(N)*(XOEXTR(N) - XO(N)) + YO(N)
E

* COMPUTATION OF VALUES OF THE VARIABLES NEEDED TO DO LINEAR REGRESSION
* ON THE TARGET FIXES TO DETERMINE ESTIMATED COURSE
LLL = LLL + 1
SUMX = SUMX + EXT(N)
SUMX2 = SUMX2 + (EXT(N))#*¥2
SUMY = SUMY + EYT(N)
SUMY2 = SUMY2 + (EYT(N))*¥*2
SUMXY = SUMXY + EXT(N)*EYT(N)
783 CONTINUE
XMEAN = SUMX/LLL
YMEAN = SUMY/LLL

% ESTIMATED SLOPE (ESLOPE) AND Y INTERCEPT (EYINT) OF TARGET TRACK
ESLOPE = (SUMKY - SUMX*YMEAN)/(SUMX2 - SUMX*XMEAN)
EYINT = YMEAN - ESLOPE*XMEAN

. * ESTIMATION OF COURSE,SPEED AND RANGE OF THE TARGET
ECTLR = (PI/TWO - ATAN(ESLOPE))*DEGPI/PI

B22 = EYT(1) ~ EYINT - ESLOPE*EXT(1)

BFF = EYT(2*TEL(I)) - EYINT - ESLOPE*EXT(2*TEL(I))
Y22 = EYT(1) - B22/(1 + ESLOPE**2)

YFF = EYT(2*TEL(I)) - BFF/(1 + ESLOPE*¥*2)

X22 = (Y22 - EYINT)/ESLOPE

XFF = (YFF - EYINT)/ESLOPE
ESPETL = SQRT((XFF - X22)%#2+(YFF =~ Y22)%¥*2)/

& DBLE(2*TEL(I)-1)
ERANTL = SQRT((XFF - XO(2*TEL(I)))%**2 +
& (YFF ~ YO(2*TEL(I)))¥*2)
RANGEF = SQRT((SXT(2*TEL(I)) - XO(2*TEL(I)))*¥2 +
& (SYT(2*TEL(I)) =~ YO(2*TEL(I)))*¥*2)

% INITIAL COMPUTATIONS TO DETERMINE THE PRECISION OF THE PROCEDURE
CC =CC + 1

) * PRECISION FOR ESTIMATED TARGET RANGE
© PER = ((ERANTL - RANGEF)¥*100.D0)/RANGEF
IF(ABS(PER) .LE. 20.DO)THEN
VEINTE = VEINTE + 1
IF(ABS(PER) .LE. 10.DO)THEN
- DIEZ = DIEZ + 1
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IF(ABS(PER) .LE. 5.DO0)THEN
CINCO = CINCO + 1
END IF
END IF

* PRECISION FOR ESTIMATED TARGET SPEED
PER1 = ((ESPETL*180D0 ~- SST(K))*100.D0)/SST(K)
IF(ABS(PER1) .LE. 20.DO)THEN
VEINT1 = VEINT1 + 1
IF(ABS(PER1) .LE. 10.DO)THEN
DIEZ1 = DIEZ1 + 1
IF(ABS(PER1) .LE. 5.DO)THEN
CINCO1 = CINCOl + 1
END IF
END IF
ELSE
END IF

% PRECISION FOR ESTIMATED TARGET COURSE
PER2 = ECTLR - SCT(J)*DEGPI/PI
IF(ABS(PER2) .LE. 20.DO)THEN
VEINT2 = VEINT2 + 1
IF(ABS(PER2) .LE. 10.DO)THEN
DiEZ2 = DIEZ2 + 1
IF(ABS(PER2) .LE. 5.DO)THEN
CINCO2 = CINCO2 + 1
END IF .
‘END IF
ELSE
END IF

* QUTPUT INDICATING SIMULATED AND ESTIMATED TARGET TRACK PARAMETERS
WRITE(1,'(13,2X,F9.1,1X,F12.1,2X,2F5.1,1X,2F11. 1)

& ' YM,RANGEF ,ERANTL, SCT(J)*DEGPI/PI,ECTLR,SST(K),
& ESPETL*180.D0

793 CONTINUE

795 CONTINUE

850 CONTINUE

900 CONTINUE

% FINAL COMPUTATIONS TO DETERMINE THE PRECISION OF THE PROCEDURE.
R5 = (DBLE(CINCO)/DBLE(CC))*100
R10 = (DBLE(DIEZ)/DBLE(CC))*100
R20 = (DBLE(VEINTE)/DBLE(CC))*100
S5 = (DBLE(CINCO1)/DBLE(CC))*100
510 = (DBLE(DIEZ1)/DBLE(CC))*100
$20 = (DBLE(VEINT1)/DBLE(CC))*100
C5 = (DBLE(CINCO2)/DBLE(CC))*100
C10 = (DBLE(DIEZ2)/DBLE(CC))*100
C20 = (DBLE(VEINT2)/DBLE(CC))*100

% QUTPUT THAT SHOWS THE PRECISION OF THE PROCEDURE
WRITE(1,'(I1,1X,F7.1,1%X,F3.1,1X,F8.1,2X,9F5. 1) ")
& M, SO(L), (SD/PI)*DEGPI, IY(MMMM), RS, R10, R20,
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& s5, Ssi0, s20, G5, C1l0, C20

950 CONTINUE
1100 CONTINUE
1999 CONTINUE
2000 CONTINUE

STOP

END
Feokdeveevbseveseserer stk e s vedl e e e ek b sk ekt ak ekl ab b e sk e e e e e
* THIS SUBROUTINE GENERATES ONE NORMAL (0,1) NUMBER BY USING THE BOX *
% MULLER METHOD. THIS NUMBER IS USED BY THE MAIN PROGRAM TO CREATE *
* THE ERRORS IN THE BEARINGS WHICH ARE ASSUMED NORMAL (0,VARERB) %
Sededeseee e e e e e e e e e e e e e e Ve e e e e e v e sk e dese bl dedle b e e e vede el veak vk e b

SUBROUTINE NORRN(DSEED,BEERR)

DOUBLE PRECISION U(2), D31M1, DSEED, TWO, PI, BEERR

DATA D31M1 /2147483647.D0/, TWO/2.D0/, PI/3.141592654D0/

% LINEAR CONGRUENTIAL METHOD TO OBTAIN A UNIFORM(0,1)
DO 5 I =1,2
DSEED =,DMOD(16807.D0*DSEED,D31M1)
U(I) = DSEED/D31M1
5 CONTINUE

* BOX AND MULLER METHOD TO OBTAIN A NORMAL(O,1)
BEERR = (SQRT( =~ TWO*LOG(U(1))))*COS(TWO*PI*U(2))
RETURN
END
SeTe YT e e e e e e e Y s ek e e Y ek e e e e Tk s e e s e e e e e s e e ek ek e e e des el dedle
* SUBROUTINE TO COMPUTE THE PARAMETERS OF THE ARCTANGENT MODEL (BO, o
% TO, AND VD) BY USING FAIRED BEARINGS FROM THE QUADRATIC MODEL. v
% NOTE: THIS CASE IS USEFUL ONLY FOR TEN MINUTE LEGS. *
L e L Y Y B Y B Y T R T R Y T Y T e S A e R T b i e T L T S s
SUBROUTINE TNGENT(FBE,IN,M,B0,T0,VD)
PARAMETER(PI = 3.141592654D0)
DOUBLE PRECISION BO, TO, VD, XY, YZ, ZA, T1, T2, T3, FBE(IN),
&DE, EF, FG, GH, SUMTO, SUMVD, SUMBO
INTEGER AB, BC, CD, M, IN, COUNT, JK, KJ

SUMTO = 0.D0
SUMVD = 0.DO
SUMBO = 0. DO
COUNT = 0
IF(M .EQ. 1)THEN
JK = 49
KJ = 78
ELSE
JK = 1
KJ = 30
END IF
DO 6 III = JK,(KJ-14)
AB = III
BC = III + 7
CD = III + 14
Ti = DBLE(AB
T2 = DBLE(BC)
T3 = DBLE(CD)
DE = T2 - T3
EF = T3 - Tl
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FG = T3 - T2
GH=T2 - Tl
XY = TAN(FBE(BC) - FBE(AB))
YZ = TAN(FBE(CD) - FBE(AB))
ZA = TAN(FBE(CD) - FBE(BC))
TO = (XY*YZ¥T1%(FG¥*2) - ZA*XY*T2¥(EF**2) + ZA*YZ*T3*(GH**2))/

& (DE*XY*(ZA*EF - YZ*FG) - GH*ZA*(XY*EF - YZ*GH))
VD = (XY*YZ*DE)/(XY*EF*(T2 - TO) + YZ*GH*(TO ~ T3))
BO = FBE(AB) - ATAN(VD*(T1 - TO))
IF(BO .GT. 2.DO*PI)BO = BO - 2.DO*PI
IF(BO .GT. 3.D0*PI/2.D0)BO = BO - 2.DO*PI
SUMTO = SUMTO + TO
SUMVD = SUMVD + VD
SUMBO = SUMBO + BO
COUNT = COUNT + 1

CONTINUE

TO = SUMTO/DBLE(COUNT)

VD = SUMVD/DBLE(COUNT)

BO = SUMBO/DBLE(COUNT)

RETURN

END
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