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FOREWORD

This report describes the coupled normal mode model to account for the

range-dependence of a shallow ocean environment and for sources of low

frequency sound. The effects of absorption have also been added by the method

of perturbation. This model can also simulate the transmission loss in deeper

environments at the expense of longer computer time (CPU). The author extends

his special thanks to Mr. Scott Hebbert for the informal but instructive

consultations on computational techniques and for providing some of his

plotting routines. Also the encouragement of Mr. John Sherman is greatly

appreciated. This work was funded by the Independent Research Board of the

Naval Surface Warfare Center.
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CHAPTER 1

INTRODUCTION

The normal-mode theory gives the exact solution to the problem of sound

propagation in a range-independent oceanic wave-guide. It is well known,

however, that the ocean has some range dependence due to changes in the depth

of the bottom or changes in the acoustic properties of the environment as

shown in Figure 1. From all the acoustic properties, the sound speed is the

most range-variable one due to the changes in temperature and pressure.

Therefore, a reliable range-dependent method must be created. This

range-dependent method must allow for the effects of bottom interaction,

including shear wave from the solid sediments and the attenuation coefficient

of the compressional and shear wave. The most suitable method for this

purpose is the coupled normal-mode method. This method consists in dividing

the range-dependent environment into range-independent segments, solve for

the eigenvalues and eigenfunctions of these segments using the normal-mode

theory, and couple these modes using the coupled range equation and the

radial boundary conditions.

The coupled normal-mode method was implicitly originated by Allan Pierce

in the late 60's as an adiabatic-mode theory, with eigenray calculations to

estimate the coupling coefficients, to simplify the solution to the

propagation in a range-dependent environment. 14 In this adiabatic mode

theory, he assumes isovelocity media and a weak coupling between the natural

modes of the wedge-like wave guide. He found that compressional waves
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refract into the basement until they get completely attenuated, and his

results agreed well with the results from the Parabolic Equation method.

McDaniel used the coupled eigen-equations to calculate the energy transferred

between normal modes as a result from bottom scattering of the ocean, and has

shown that randomly rough sea bed layering can increase the transmission loss

depending upon the degree of penetration of the acoustic field into the

sediment. 58 Evans modeled the axisymmetric range-dependent medium as N

range-independent segments with a pressure-release false bottom suitably deep

to discretize the continuous spectrum, and isodensity-isovelocity layers to

simplify the solutions of the linear wave equation in each layer. 9 - 1  In

this stepwise coupled-mode method he solves for the eigenvalues and

eigenfunctions of each range-independent segment by taking into account the

absorption of the basement to avoid the reflected energy from the pressure-

release false bottom. 0berall's group has used a similar method for solving

the set of coupled range equations, but assuming layers of linear index of

12-20
refraction squared. This gives a better approximation of the sound

speed profile and the eigenfunctions are Airy functions. However, the

effects of compressional attenuation of all water and sediment layers is not

included in any of the existing models.
• .21 37 .38-54

Many theoretical2 1 -
3 7 and experimental scientists have shown the

importance of attenuation and shear waves in the calculation of the

transmission loss and the study of sound propagation in the ocean. Low

frequency compressional and shear waves are less attenuated in all layers, so

they can penetrate large depths and distances of the ocean. In view of the

current interest in low frequency, active and passive sonar systems, it is

desirable to extend the Normal Mode theory (which is an exact method

2
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throughout, but is most easily applicable to the low frequency case where the

number of modes is small) to the situation of an environment containing range

dependence, absorption in all the layers of the media, and birefringence

effects due to a shear speed differing from compressional speed on the solid

bottom sediments. Assuming high frequencies, the very graphic techniques of

acoustic ray tracing have become the standard tools for transmission studies

in the deep ocean. However, the more exact, but less graphic, normal mode

theory is particularly suited to low frequency propagation in a shallow

ocean. Normal mode calculations at higher frequencies are also possible

whenever computer time and memory are available.

The formalism to be developed will be based on an existing normal mode
12-20

propagation model for a range dependent environment. This model admits

general depth and range dependent sound velocity profiles and an arbitrary

but gradual range dependence of a layered ocean bottom containing sound

velocity gradients. Sound penetration into the bottom is accounted for by

considering not only the modes trapped in the water column but also a

sufficiently large number of radiating modes. The set of radiating modes,

which is in principle continuous, is discretized by a basement layer of large

but finite thickness. For a range-dependent environment, a set of coupled

range equations (one for each mode) is obtained which is solved by

diagonalization procedures. The algorithm includes absorption in the

basement as a first order perturbation to the problem and it ignores the

shear waves created in the solid sediments of the bottom.

It is intended here to upgrade this existing model first by taking into

account the compressional attenuation coefficient of all the layers of the

medium and to provide a detailed derivation of the coupled-mode theory.

3
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Eventually, in a next report, the generation and propagation of shear waves,

with the effects of its absorption, in the bottom sediments will be included

to perform quantitative studies on the effects of absorption and shear waves

in the propagation of sound in the water and bottom of a range-dependent

stratified ocean. It has been shown that the exact treatment of shear waves

in models such as the parabolic equation (PE) approximation is not

possible. 
5 5 5 6

Absorption effects will be accounted for as a first and second order

perturbation to the simpler problem of propagation in a non-absorbing

environment instead of using complex sound speed profiles, leading to complex

eigenvalues and eigenfunctions since this will necessitate a transition from

real to complex Airy functions as the depth function solutions in each
57

layer. Including absorptive effects will not only make it possible to

simulate more realistic ocean environments but it will also lead to a more

satisfactory procedure for discretizing the continuous distribution of

radiating modes. 58

4
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CHAPTER 2

THEORY

2.1 DERIVATION OF THE WAVE EQUATION FOR FLUID LAYERS

The wave equation is a mathematical description of the reaction of the

media due to a disturbance from an external force caused by a source or

sources. The media can well be a gas, liquid, or a solid, and the source may

be electromagnetic or mechanical. In this report, the mechanical (acoustic)

propagation of the disturbance in a fluid media is treated. The fluid media

is the ocean environment modeled as a horizontally stratified acoustic

waveguide were the surface is treated as a pressure-release (resilient)

boundary and the bottom is taken as sediment layers with variable sound

speed, density, and attenuation coefficient. The effects of bottom shear

waves are neglected even though their importance is well understood and

documented in books as the ones in References 59 to 62. Shear wave and its

attenuation coefficient will be included to these calculations in a future

report.

The disturbance created by the acoustic source may be expressed as a

change in the total pressure, relative to the undisturbed pressure, as a

function of the density fluctuation created by this external force. If the

density fluctuation is much smaller than the undisturbed density of the

environment, then the total disturbed pressure may be expanded in the

following Taylor series:

5
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P(p) - P+ - (p-p 2 (p-p .. .

L-0p JppPo 
0  

where the partial derivatives are constants determined for the adiabatic

compression and expansion of the fluid about its equilibrium density p0 the

equilibrium pressure is P, and the instantaneous total density is p.

If the magnitude of the condensation is much smaller than unity, i.e.

S - (p Po)/Po 0  P/Po (2)

then then first two terms in the Taylor expansion are of greatest

contribution and an acoustic pressure caused by the disturbance may be

defined as

P-P(P) -Po p (3)
P
0

where by thermodynamic arguments it is found that in an adiabatic media the

sound speed is given by

2 a P (4)c- I (4)
P0

and the adiabatic bulk modulus is given by
2

B-p0c (5)

therefore, the acoustic pressure is simplified to

p 2p (6)

which is called the equation of state.

An equation for the motion of the particles in the fluid is also

necessary for the proper environmental description. Consider an

infinitesimal cubic volume in the media where the disturbance is taking place

as shown in Figure 2(a) for the one-dimensional derivation in cartesian

coordinates. Equating forces in a continuous medium gives

6
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d dx
F + A [P(x) - P(x+dx)] - -(p A dx L) (7)

*xterna I

where the external force is the disturbance created by the sound source and

can be written in terms of a "force density" with the expression

F - X A dx (8).xtera. 0

and using the definitioni of a derivative

8P . P(x+dx)-P(x) (9)
8x dx

Equation (7) becomes

8P 8 8
X - -- V - ( vp) + -(vp) (10)

a x x ax x at x

which in three dimensions is given by

X- VP- V (.pV) + -(p V) (11)

where the density is a time and space function and the equation is in a

non-lnear form. The total pressure is P and the total instantaneous

particle velocity is V. Dividing the instantaneous density, pressure, and

particle velocity into an undisturbed part and an acoustic part Equation (11)

simplifies to the linear form

VP + P - = X (12)

where the undisturbed density of the medium is p0, the acoustic pressure is

p, and the particle velocity is v.

Since the fluid of interest is continuous throughout the infinitesimal

volume, Figure 2(b) will be helpful in deriving a continuity equation under

the argument that the continuous mass going into the volume, p(x) A V (x) dt,
x

must be the same as the quantity going out, p(x+dx) A V (x+dx) dt. There may
x

be an change in mass inside the volume due to the compressibility of the

fluid, L A dx dt, and there may exist a source of mass inside the volume
at

represented by Q A dx dt. Taking the definition of the derivative in

Equation (9) gives

7
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d -p

-W(PV) A dx dt - T A dx dt + Q A dx dt (13)

which is rewritten in three dimensions as
-. p

V. (pV) + L + Q - 0 (14)

or in a linearized form as

-+ -+ appoV v+at o (15)

where Q-0 for the sources of interest.
6 3

Substituting Equation (6) into Equation (15) for the acoustic density,

taking its partial derivative in time, and dropping the subscript 0 of the

undisturbed density of the medium, gives

a +-. -2 82

p -(V.v) + c p - 0 (16)
at at 2

and taking the divergence of Equation (12) yields

p (i/p Vp)+ L--
+ p -(V-v) - p V-.(X/p) (17)

which subtracted from Equation (16) provides the inhomogeneous wave equation

pV (l/p Vp) + kp - p V.(l/p VU) (18)

where the external force has been written in terms of an external potential

energy, time harmonic behavior has been assumed where k-w/c, and the

undisturbed density of the fluid is taken as space dependent. This equation

can also be written as

V2p + k2p - p- 1( Vp).(Vp) _ V2U _ p-1(Vp).(VU) (19)

which is simplified under the change of variables64

p -4f (20)

and

U P- (21)

to obtain

V 21 + (k 2+K 2) - V2V + K 2v (22)

where

8
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_ V2 3 C(23)

If the density is taken as a linear function of depth, then Equation (23)

simplifies. However, the inhomogeneous equation to solve also has a depth

dependent wavenumber to worry about due to the depth dependence of the sound

speed. The changes in density with depth hardly occurs compared to the

changes in sound speed. It is concluded that, for simplicity, the ocean

environment can be divided into horizontal layers with constant density. It

is understood that the bottom sediments may have layers of large density

gradients. In this case, Equation (22) must be solved. In this report,

however, layers of constant density are assumed. Then Equation (18) becomes

V2p + k2p - V2U (24)

which, in an unbounded medium, has a general homogeneous solution consisting

of an outgoing and an incoming wave, and an inhomogeneous solution caused by

the external force. Since a sound source in a fluid can only produce a

scalar potential (no shear waves), the curl of Equation (12) takes us to the

property that

Vxv - constant - vorticity (25)

the vorticity in the media does not change. Therefore, if initially their

has been no rotational component of the particle velocity then the vorticity

will always be null and this particle velocity can be written in terms of a

velocity potential

v - V (26)

which substituted back in Equation (12) gives

(27)

and assuming harmonic time dependence yields

p - -i'W P (28)

9
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or

i'p.4 WP (29)

Substitution of Equation (28) into Equation (24) provides the inhomogeneous

Helmholtz equation

V2V + k 2  -- VU (30)

which must be solved for the velocity potential. If the medium is bounded,

then the solution must satisfy the appropriate boundary conditions.

The conservation of energy is obtained by dotting Equation (12) with the

particle velocity and substituting the continuity equation, Equation (15),

giving the conservation law

t+ V1"0 (31)

where
2

S1 P v 2+ p 2  (32)

2pc

is the acoustic energy density, and

I - p v (33)

is the acoustic energy flux or acoustic intensity. Integrating Equation (31)

throughout a volume in the fluid medium provides the power

nm F dV- - I.ndS (34)
v S

in terms of a closed surface integral around the volume where all the energy

is contained.

To obtain these important measurable quantities, it is necessary to

solve Equation (30) for the velocity potential. To solve this equation by

separation of variables, it has been proven that the sound speed must be

function of one variable. 58 This variable is taken to be the vertical

direction since temperature and the total pressure of the ocean highly

10
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dependence on depth. A simplified version of Wilson's formula for the sound

speed as a function of temperature, salinity, and depth is given by

-32 -2 182
c(z) - 1492.9 + 3(T-0) - 6xlO 3 (T-10) - 4x10- (T-18) + 1.2(S-35) -

102 (T-18)(S-35) + z/61 (35)

where the temperature T is in celsius, the salinity S is in parts per

thousand, and the depth z is in meters. The formula is accurate to 0.1 m/s

for a temperature less than 20
0C and for depths less than 8.0 kilometers.65

Range dependence of the sound speed, density, and position of the boundaries

are taken care of by the coupled normal-mode method in Sections 2.6, 2.7, and

2.8 of this report.

11
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2.2 SOLVING THE WAVE EQUATION

It has been found that, in the liquid layers, the inhomogeneous

Helmholtz equation

[V + k2(r)] W --- V2U (36)

must be solved, where the sound speed is assumed to be a function of depth

only.

In the case of a point source, Equation (36) may be written as

[V2 + k2()] S - - S 6(r r ) (37)
0

where S contains all the constants in the inhomogeneous term and is usually

called the source strength. For simplicity and without loss of

generalization we may set S - 1 corresponding to a unitary source strength,

then in cylindrical coordinates the equation becomes

+ L [r T 2 (rz) 8- 6(r) 6(z - z ) (38)r) + k- +k(z) rz
iZr2  r

where the source is at r - 0, z - z , and the wavenumber is taken to be depth
0

dependent only since the sound speed must be a function of one variable.
5 8

Substituting the Fourier-Bessel transformation,

w(r,z) -Ou(k,z) J0(kr) k dk, (39)

u(k,z) - {42(r,z) J0(kr) r dr, (40)
0

the closure relation,

6(r - r') - r O J0(kr) J0(kr') k dk, (41)

the Bessel equation,

12
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k 2r2 J"(kr) + kr J (kr) + k2 r J (kr) - 0, (42)
0 0 0

and

a r- J(kr) - k J'(kr) + k 2r J"(kr) - -k 2r Jo(kr) (43)

into Equation (38) leads us from a partial differential equation to the

ordinary differential equation
d2 k6k2 (z -z)

k + (z) k u(kz) - Z z (44)dzz 
2 21r44

where k is the eigenvalue and u(k,z) is the eigenfunction of the

inhomogeneous equation. After solving for u(k,z), we can transform back

using Equation (39) to obtain (r,z). The solution of this inhomogeneous

equation can be written as the sum of the homogeneous solution and the

particular or transient solution. The generalized homogeneous solution can

be used as the solution of Equation (38). The solution of Equation (39),

however, is different since the shear speed and compressional speed of a

sediment are usually unequal.

Since the bottom of the oceanic waveguide is not rigid nor resilient,

its energy spectrum will contain discrete modes and a continuous distribution

which represent the energy that radiates to infinity. The constant

wavenumber of the bottom basement represents the dividing point between the

continuous and discrete modes. It is possible, however, to discretize the k
2

spectrum by adding to the problem a false resilient boundary. In this case,

the homogeneous equation to solve becomes

+ k2() - k2 ] u (z) - 0 (45)dz 2  n n

where n - 1,2,...,N is tho mode index. This false bottom must be deep enough

to make the discretized radiative modes very close to each other and better

simulate the continuous spectrum. Also it has to be highly absorptive to

13
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avoid reflections of the modes with the false bottom. Since the Earth is not

flat, a false resilient bottom satisfying the above conditions is an

approximation as good as the assumption of a semi-infinite basement or that

of a rigid false bottom.

From the continuity of pressure in the liquid layers, from Section 2.3,

we shall set the function Y(z) u (z) as the orthonormal eigenfunctions,

f p(z) un(z) u (z) dz - 6 (46)

with the closure relation

N

6(Z - z) - p(z) U (z) U*(ZO), (47)
0 0 L.. n l 0

n-1

and the eigenfunction is given by

N

u(k,z) - T an(k) un(z). (48)

n-i

The inhomogeneous term is taken into account if we substitute the homogeneous

solution in the inhomogeneous equation. The substitution gives

N N

+ k2(z) - k2 J (k) u (z) 0 - u (z) u (z) (49)
dz 2 n n 2r T n n0

n-1 n-i

and substituting the homogeneous equation we get

a (k) (k2 _ k) 2 u (z ) u (z) - 0 (50)

n-i

and to satisfy the equation we must set the terms inside the brackets to zero

leading to

p(z o ) u (z o)

n 2 k2 k2 (51)
n

which substituted into Equation (52) gives

14
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P(Zo) -- U(Zo u U(Z)
0 n nO nu(k,z) - 2 _ k2 k 2 (52)

n-1 n

and this substituted into Equation (44) gives the scalar potential

p(zO) f J,(kr) k dk
w(r,z) - 2r Z u(z) un(Z) k2 _ k2  (53)

n-i n

where the integral of this equation is better solved by contour integration

and we may define it as
(1)(kr) + H12)(kr)

J(r) - 1 0 0  k dk. (54)n 20 k2 _k 2

n

A property of the eigenvalues of the problem is that these have a very

small imaginary part compared to the real part. Also, both parts of the

eigenvalues are positive. This is because we consider only outgoing waves

from the source. To solve the integral we can consider contour integration

in the first quadrant of the complex k-plane. Consider the contour path

displayed in Figure 3, where

H H(1) (kr)
0 ) k dk, i - 1,2,3

k2  k2

C nli

I (r) - (55)
ni Hi (H2) (kr)f k dk, i - 4,5,6

k2  k2

C n
2i

and, by this definition, the integral we want to solve is,

(r) - I [ (r) + In(r)]. (56)

By Jordan's lemma6 3 we have that

In(r) (r) -0 (57)
n2 5S

also the integrals in Equation (55) show that

15
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I n(r) + I(r) - 0 (58)

which means that we may write

n (r) L 2 (r) + 6 r)- 2 IM(r) (59)Ir)- i-1 n  iA i-i

where only I n1(r) and I4 (r) contribute to the sum.

Given that the singularities, k - k , are located in the upper contour
n

we get that

6 H (2 (kr)

I (r) 0 k dk - 0 (60)
J ,4 ,-k2

c n
2

and

3 f H 1 ')(kr)
I c 0 k dk - £ H() (k r) (61)=Ini~ r  k 2  k 2  0 n

C1 n1

by calculus of residues. Substituting Equations (60) and (61) in Equation

(59) and this one into Equation (53) gives

N

qo(r,z) - c p(z) u (z 0 ) u (z) H") (k r) (62)0 n n 0 n

n-1

where the eigenfunctions u (z), and eigenvalues k , satisfy Equation (45).
n n

Note that the soluticn can be written as a separation of variables. Figure 4

shows a qualitative picture of the shape of the modes for several sound speed

profiles.

Now we must solve the characteristic equation for the compressional

waves, Equation (45). We may start by dividing the sound speed profile into

layers where the squared of the index of refraction is a linear function of

depth, or

n 2(z) - a z + b (63)
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where k(z) - w n(z) and Figure 5 gives the geometry to be used for this

investigation. To determine a and b we let the sound speed at the top of the

layer to be c and that of the bottom to be c . Substituting into our lineart b

equation gives

1
2 2 a z + b, (64)2 t

C
t

and

1
+ a z + b, (65)

C
b

which solved for a and b results in

2 2
c - ct b

a (66)
2 2cc
t b

and

2 2
zt (c t C )

b -- - (67)
2 2 2c I c c
b t b

where t - z z is the thickness of the layer. If we define the indices ofb t
2 /2, n2 2 /c 2nO 2n

refraction n 2 1/c , n 2 1/c , and c - (n 2 n )/t , then we have
t t b b t b

k2(z) W2[ n 2 + a (z - Z)] k2+S (z - z (68)

where S - Ak 2/Az, and which substituted into our eigenequation gives

d2 2 k21
d-u(z) + k + S (z - z k u (z) - 0. (69)d2 nt t n n

Define

(z)" sIS1-2/3 [k 2 + S (z - z ) k2] (70)

and square its derivative to obtain
d2 d2_

d 2 /3d (71)

dz 2  d 2

which substituted into the new eigenequation gives

17
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2 - 0. (72)d 2

The solutions of this differential equation are the Bessel functions of order

1/3, or more commonly known as the Airy functions, i.e.

u( ) - a Ai( ) + b Bi( ). (73)
n n n

The behavior of these functions and their derivative is shown in Figure 4.

Now that the general solutions are found, we must match the solutions at each

boundary with the appropriate boundary conditions in order to find the

unknown coefficients and eigenvalues for each mode.

18



NSWC TR 88-166

2.3 DEPTH BOUNDARY CONDITIONS

2.3.1 Boundary Between Fluid Layers

The boundary conditions for the interface between two fluid layers are

obtained when an infinitesimal cylindrical volume is modeled across this

boundary. In this case we have to satisfy two boundary conditions.

2.3.1.1 Continuity of the Normal Particle Velocity. The volume integration

of Equation (15) in this infinitesimal cylinder provides the expression
L fvpndA-Ax

v -- dA t a pdAAx (74)

where making Ax --) 0, the right hand side of the equation vanishes and the

surface integral yields the boundary condition

-+ A -+4 A

v 2 n -v* 1, (75)

- AThis boundary condition is expressed as v n continuous, and in the

A A
case of stratified layers we may write n - z to obtain the boundary

condition,

v -8 - - continuous (76)z az

or using Equation (62) we get

dun

d- _ continuous. (77)

2.3.1.2 Continuity of the Pressure. Assuming that there is no source in

the infinitesimal volume of this cylinder, the volume integration of Equation

(12) gives

p dA -p - v dA Lx (78)
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and letting Ax --) 0 yields the pressure boundary condition

p - p (79)

where substituting Equation (62) into Equation (28) and this one into

Equation (79) gives

p u - continuous. (80)
n

2.3.2 The Resilient Boundary of a Fluid

As a very good approximation, we may consider this boundary as pressure

release for acoustic waves in the liquid layer. Therefore, the only boundary

condition is that the pressure vanishes at this boundary, i.e.

unIt- 0. (81)
0

2.3.3 Down-Layer Matching Algorithm

Now that the boundary conditions are determined, a matching algorithm is

next to by determined. The normaiiz;ticx constant for the eigenfunctions are

given by the expression

J+1 Z

Nju .Idz (82)Z
j-1 j

A

where u is the unnormalized eigenfunction andn~j

u (z)- N u (z) (83)
nj n nj

is the normalized one. For simplicity we will make some further definitions:

Ai - Ai[ .(z.) (84a)

d Ai
Ai'a - A I (84b)±j d . . (z )

ni ni J

aj d-z- 2 - sgn(S I 1/ (84c)
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PF- k (z.) (84d)
.J 33

and

b a (P - k2 )/S (84e)
nj 3 n j

which converts Equation (70) to the form

.(z)-a (z+b .). (85)
na j ni

The layering subscript runs from J-1 at the resilient surface, to j-J+iB at

the upper boundary of the basement as shown in Figure 5.

From the resilient boundary condition at the surface of the ocean,

Equation (81), we get

Un (z ) -a Ai + b Bi -0 (86)
ni 1 nl 11 n2. 11

and if we write

a T Bi, b -- T Ai (87)nl 01 n Dln11D(87)

then the solution to the first layer is

UnI (z) - T D[Bi Ai( ) - Ai 1Bi() n] (88)

where we can arbitrarily set T D- sgn(S ) to ensure a positive slope of the

eigenfunction at the top layer of the media.

The value of the derivative of this function at the surface simplifies

to

u (z ) -T [Bi Ai' - Ai Bi' ] (89)nl D 11 1i 11 11

where the term inside the brackets is the Wronskian relation
56

W - Ai( ) Bi" ( ) Bi( ) Ai" ( ) - I/ir (90)

then

-1u' (z) - -T . (91)
ni (z1 D
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Going back to Equation (73) for the boundary at z2 we get

A
Bi2 n 1 i 1 (92a)

u1(z2) -a anAi2 +b Bi

un2(z 2 a n2 Ai22 n2 22 (92b)

Zdu -z a (a iAil2 + b Bi ) (92c)dz 2Z- 1 n 121 2

du
n2 - a (a Ail + b Bi' )

dz Z-Z 2 2 n2 22 n2 22

and using the liquid boundary conditions we obtain

P(a Ai +b Bi ) - p2(a Ai + b Bi ) (93a)1l ani i12 ni 12 2n2 22 n2 22 )

and

a (a Ai' + b Bi' ) - a (a Ai' + b Bi'2) (93b)
1 n1 12 n1 12 2 n2 22 n2 22)

or

RD2 u n a Ai + b 2 Bi 22 (94a)

and

Tu' (z) - a Ai' + b Bi' (94b)
D2 nl 2 n2 22 n2 22

where R Dj- p j/p J , and T Dj- aj /a , where j-2,3,...,J.

In matrix form we write,

RU (Z2) Ai22 Bi22 n2
02 ni2 -2 22(95)J j

Tu' (z ) IAi' Bi' b[D2 ni 2 Ai22 22 - n2-

and solving for an2 and bn2 we have
F * A

a R Bi' u (z)-T Bi u'(z
n2 D2 22 ni 2 D2 22 ni (96)
b T Ai u' (z2) R Ai' u (z2)i
n2- D2 22 ni 2 D2 22 UI 2]

or in general

a R B i' u ( T Bi u' (z
^n Di 33 
* 1 (97)

bT Ai u' (z ) R Ai' u (z )Lnj- Dj ii nj-I J D3 jj nj-1

where the values of the eigenfunction and its derivative at the bottom of any

22



NSWC TR 88-166

layer have to be determined before the coefficients of the next layer are

sought. This solution is good for "normal-range" values of .

In the case of large positive values of we can substitute a andni nj

b into the general solution and its derivative to obtain the matrix

equation

n ( Z )  1 1 1 2 D j n -l1
- Ai (98)

ui 21) 22j t Dj nj-1 u,
where

C ( ) - Bi' Ai( ) - Ai' Bi( ) (99a)
Ii nj 33 ni 33 nj

C .( ) - Ai Bi( ) - Bi .Ai( ) (99b)12 l3n 33 nj 33 fni

C ( ) - Bi' Ai'( ) - Ai' Bi'( ) (99c)
21 nj 33 nj ji nj

C ( ) - Ai Bi'( ) - Bi Ai'( .) (99d)22 nla jj n13 33 nl

and the Airy functions nearly cancel each other for large n.

Now that a recurrence relationship has been found for calculating the

eigenfunction at the layer j after calculating it at the layer j-l, we are

left with the boundary conditions at the basement. This basement will be

taken as a layer with constant acoustic parameters since we will make it

deeper than the region of interest. This layer is created for the only

purpose of discretizing the continuous wavenumber spectrum. However, the

eigenfunction at this layer is exponential in shape when the mode is trapped

and oscillatory when the mode is a radiating one, hence we must divide the

solutions into two cases.

2.3.3.1 Trapped modes (k >k B). The eigenfunction at the basement is given

by

^ "7 z -Y z

u (z) - a e + b e (100)
nB nB
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where y 2-k2-k 2. We use the boundary condition at z-z (resilient) to get
nn B

-7z

b - - a ne nF (101)
niB nE

which substituted into Equation (100) gives

A -7 nz
u nB(z) - 2a nBe Fsinh -yn(z -z). (102)

2.3.3.2 Radiating modes (kn<kB). In this case, the eigenfunction becomes
A

u (z) - a cos(n z) + b sin(q z) (103)
n n n nB n

where 72-k 2-k 2. With the boundary condition at z-z we get
n B n F

bnB - - a cot( z F (104)nB nF

which substituted into Equation (103) yields

A a
un(Z) - n sin qn (z -z). (105)

nB sin(n~z) r

Now we may rewrite Equations (102) and (105) as

sinh y n(z F-z), k >k (trapped)A n n B

u nB(Z) - a nB (106)
n sin n (z F-Z), kn<kB (radiating)

Now we use the boundary conditions at the top of the basement to match

Equations (93) with Equations (106). From the continuity of pressure we get

A sinh (z z F-Z) k >k
Pu (z B n F n B (107)

B sin n (z -z ) k <k
n Bn B

and from the continuity of the normal particle velocity we obtain
^ Y7 cosh 7n(z F-ZB) k >k

a u' (z B (108)aJ n.J B { COSh n(F:B)~ k <k
J ni nB 7 cos 97 (z F-z B, k <kB

and dividing the two equations we get the characteristic equation
A -y coth(-y D), kn>k

a u, (z) n n n B

V(k) + 3J B p (109)
.i nJ (z) B cot(? D), k <knJ Bn n n B

where D - z - z
F B
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To avoid singularities in searching for the eigenfunctions and

eigenvalues lets rewrite Equation (109) for the trapped modes as

_f A PB

W (k) - nu (zB) +-u (Z) tanh(-y D) (110)
T a nJ B p nJ(B BJ pJn

and for the radiating modes as

1n A P B ^
W (k) - -- u (z ) Cos(V D) + - u' (z ) sin(i? D) (111)
R aJ nJ B n pj nJ B n

which is still the function of interest since we are only interested in

finding the zeroes of the characteristic equation. If the trail wavenumber

equals an eigenvalue, the characteristic equation for that mode becomes null.

To search for these eigenvalues, the locally convergent Newton's method is

used to converge to the zero of the characteristic equation.66

From Equation (107) we get

pi ̂ ) csch 7 (z- z B )  k >k

a -- u (z (112)
anB pB B Cscn(ZF- ZB), k <k

ri F n B

therefore we obtain for the eigenfunction at the basement the expression

I sinh 7n (z F-z)

A * sinh(y D) nk B
U nB(z) -PJ/PB unJ(ZB sin (z F-Z) (113)

) sin n D n B

To eliminate any upward-reflected waves that could have been taken care

of by a complex wave-number we rewrite the eigenfunctions as

- exp [-yn(zF-Z)]

2 sinh(Dn n > B
(z xf~ (Z .Z)]  (114)

2 sin n D n B

where the up-going waves have been explicitly erased from the equations. If

we define
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Nn p ^
r n  2p B U ni(z B (115)

the normalized eigenfunction of the trapped mode becomes

r
u (z) i exp(y (z -z)] (116)

nfl sinh-y D) n Fn

and the radiating mode has a real and an imaginary part given by

r
Re(u ) n sin[y (z - Z)] (117)

nfl sin(,q D) nF
n

and

r
Im(u ) - cos[Tn(z z)]. (118)

nfl sin(n D) C -n ZF-
n

Since this model of an oceanic waveguide contains no absorption

whatsoever, it is easy to visualize, from Equations (113) and (117), that the

radiating mode contains half of its energy propagating downwards and the

other half is propagating upwards. The imaginary part in Equation (118)

represents the absorptive effect from the basement when we artificially

erased the up-going wave from the solution. However, absorption is present

in all layers of the media and we will include it in Section 2.4.

2.3.4 Up-Layer Matching Algorithm

When the sound speed is strongly upward-refracting over many of the

deeper waveguide layers, it was found that better numerical stability was

afforded by stopping the downward-propagated solution at some layer D and

propagate the solution upward from the basement to layer U-D+l with the final

Wronskian relation coded to match solutions at the D/U layer interface z

rather than at zB

At the resilient "false" bottom the eigenfunction is automatically set

to the small value u nB(Z) - 10 for the radiating modes since it is an
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exponential function. For propagating the solution upwards, the boundary

conditions at zB give:

Pju nJ(Z)- PBUnB(Z ) (119a)

and
A

a u' (z) -Y u (z) (l19b)
J n~J B n nfL B

where is undefined in the isospeed basement and it is possible to write

u (z ) U' (z ) (120)
n.J B n.J B

and after the substitution of Equation (73), the boundary conditions become
A

a Ai +b Bi - R U nB(z) (121a)anj AjB n.J ifi UJ n

and
A

a Ai' + b Bi' -T u' (z) (121b)
nJ JB nJ JB UJ nB B

where

R u- p +IpJ , j - D, ... ,J (122a)

T u" n +/a J / .,J-l (122b)

and

T =-y y/a• (122c)

Solving the two equations for a and bn , as done before, in matrix

form yields

A A 1
a R B i; unB(z) - T Bi u'B(zB)-B n"B U JB n (123)

b T Ai U' (Z ) - R Ai' UnB(ZB)
L JB nBB UJ JB

and generalizing this solution we have

A A 1
Bi' u (z )- T Bi u (z )

b nj [ Ai uIj (z j - R jA ' u nj (z j (14
jj+1 ny4l j+1 Uj jj+l nj+1 1

which is the recurrence relation for upward calculations. In the case of a

very large positive value of the argument of the Airy function the matrix to

solve is
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U .z) E u (z )
A : UrJ J+1 J+1 (125)U.(z) E1 Et Tj Un (zj+

n2Uj nj+ j +

where

E ((n) - Bil Ai( ) - Ai' Bi( ) (126a)
11 n, jj+1 n jj+1 j

E 12(nj Ai ii+iBi( ) - Bi ji+ Ai(- ) (126b)

E ( .) -Bi' Ai'( AV' Bi'( ) (126c)
21 nj jj+1 nj jj+1 nj

E ( .) - Ai Bi'(C ) - Bi Ai'( .) (126d)22 nj jj+1 nj jj~l n1

and to match the up- and down-layer solutions at z the two remaining

boundary conditions are applied at j-U:
^ A

UnD (z)-R UD u(nu(z) (127a)

u (z) -T u (Z) (127b)
nfl U UD nU U

which are combined to obtain

SR U (z )u' (z )
u (Z)u' (z) U AnU U nD U (128)
nD U nD( U L T u' (z ) U (Z )

UDnU U nfl U

or equating them to the equation

A A A A

R u (z ) u' (z )-T U (Z ) uI (z )(129)
UD nu U nfD U UD nD( U nu U

which is satisfied only if the trail value is an eigenvalue of the acoustic

waveguide. Therefore, the up-layer Wronskian or characteristic equation is

defined as
A A A *

S(k) - R u (z ) U' (Zu) " T u (z ) u, (z ) (130)
LD nU U nfl U LD nfl U nU U

which is zero under the condition just mentioned.
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2.4 ABSORPTION AS A PERTURBATION

Now we will consider the complex eigenequation,

d2
- a(z) + [k2(z) - 2] U (Z) - 0 (131)
dz2 n n n

where we redefine the wave-number as k(z) - k(z) + tec(z), c is used here to

keep track of the effects of every term in the resulting approximate complex

eigenequation and it will be set to unity at the end of the calculations,

a(z) is the attenuation coefficient in nepers/meter, and k(z) - w/c(z). The

complex wavenumber in Equation (131) makes the eigenvalues and eigenfunctions

complex. If a(z) << k(z), then we can use the perturbation method to obtain

a more accurate transmission loss. In this case we will write

(Z) u (0) + 1 u ( 1) + 2 u (132)
n nl n n

and

k2 (0) + (1) 2 (2) (133)
n n n n

which substituted in the complex eigenequation gives,

L k ()+tckz~~z-e2 Ct2 ()A(0)_fk (1) _f2 A()u0 +f (1) +f2u()=

[dz2 n n n n n ]

(134)

which is an approximation to the complex eigenequation Equation (131) due to

the expansions Equations (132), (133).

Combining the 0 terms of this equation gives the 0th order solution to

the problem, or

d (0) + [ko2 (z) (0) (0)--u + k() ] u - 0 (135)

dz2 n n n

which is the unperturbed eigenequation that has been solved for the purely

(0) 2 (0)
real eigenvalues A ° n k and eigenfunctions u - u . This unperturbed

n n2
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eigenequation corresponds to Equation (45).

1
Combining the terms with e , which corresponds to the first order

perturbation terms, gives

d- u + [2ik(z)(z) (1)] u (0) + [k 2 (z) - A (0) u - 0 (136)

dz 2 n n n n n

where the unperturbed eigenfunctions are normalized by Equation (46), which

in the new notation becomes
Z b
P(z) u(0) (Z) U (0)(z) dz - 6(17u dz - 6(137)

Of n M

where z is the depth of the resilient bottom of the basement.b
(0)

Multiplying Equation (136) by pu and integrating yieldsn

fb d 2b bS (0) n (0 u(1)I (0)(0) (0) ()

0 pu n dz + pu n 2 ik(z)a(z)-A 
1 ]u n dz + fPu [k2(z)-A n u 1 dz-O

(138)

where using -he orthonormality condition of the unperturbed eigenfunctions in

the second term of this equation, integrating by parts twice the first term,

and using the boundary conditions at every interface to cancel out the

surface contributions gives
z b  d2 (0) z z
{~ u b b

pu dz + 2t pu( 0)k(z)a(z)u ()dz + u( 0  - ]u (1) (1)
0 z2 n n n n n

o dz 2  
0'o

(139)

and with the help of Equation (135) the first and second integrals cancel out

giving us the expression

A( ) - 2L fp k(z) a(z) Iu(0)1 2dz (140)
n n

0

which is the first order perturbation term for the eigenvalue and its values

are purely imaginary.

Now we write the perturbed part of the eigenfunction under the basis of

the unperturbed part since this is an orthonormal basis, i.e.
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()- A u 0  (141)
Un rXu

M

and substitute in Equation (136) to obtain

d 2 u 
( 0

)

A dz + (2 (z-A( )u + [2ck(z)a(z)-A (1)]u ( ) - 0 (142)rM dz 2  n n n

then multiply by pu and integrate as done before. Integration by parts

twice cancels a few terms, and the orthonormality condition yields
z

A 2 p k(z)(z) u(0 )u(0)dz (143)
n1 A (0) A(0) n .

n 1

which is in terms of the unperturbed eigenfunctions and eigenvalues, is

directly proportional to the absorption coefficient, and it is a purely

imaginary term.

In the cases of trapped modes, where the imaginary part of the

eigenvalues is extremely small, we can rely on the rapid convergence of the

perturbation method and forget about a second order perturbation term. When

radiating modes are taken into account, we must make sure that the imaginary

part of the eigenvalue is much smaller than the real part. We may stop the

eigenvalue search when the real part of the eigenvalue is about 50 times

larger than the imaginary part, since the higher modes will not propagate

very far. Hamilton has estimated that the shear attenuation coefficient is

about 200 times higher than the compressional attenuation coefficient, and

the shear speed is from 2 to 30 times smaller than the compressional

speed.'2 ''' 7  However, Werby and Tango found that the shear to

compressional attenuation coefficient is only of the order of two. 4 9 Also,

Beebe and Holland found this ratio to be of the order of six. Even though

there is some disagreement about the attenuation coefficients, it is

suspected, from the ratios given here, that the imaginary part of the shear

wavenumber may not be as small as the compressional one is. In this case, it
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is feasible to attempt to solve the complex eigenequation without the first

order perturbation method or try to get a second order perturbation term and

find out how large these effects really are.

The approach here is to continue with the second order perturbation

which is needed mostly by the trapped modes when shear waves are included and

by the radiating modes. The 2 terms of Equation (136) into a second order

equation gives

d 2  (2)+ 2 (0) u(2) +  (0) u(1) 2 (2)] (0)
d u + [k 2(z)-A Iu + [2!k(z)a(z)-A u [a 2(z)+A ]u

dz
2 

n n n n n n n

(144)

which multiplied by pu(0) and integrated as done with the first order
n

eigenvalue leads us to the equation
z z
b b fb 0 (1)

A 2 pk(z)a(z)u u dz - Aj()fu(O u( )dz .n 0o
n n n Ojn n O"n

0 0 0

(145)

where substituting Equation (141) and the orthonormality condition of the

unperturbed eigenfunctions gives
2 b b

A(2){ 2 Z A pk(z)a(z)u() u(0)dz pa 2 (z) Iu( 0) 2dz (146)
n m 0m 0

or with Equation (143) we get the simpler form
z

b

A(2 )_ A 2 (,(0) A(0) a2 )I ( 1dz(147)

M 0

2
which is purely real and a much smaller term since it is proportional to a

If we write

u ( 2 )
_ B u (0) (1 8u~ 2 

- Z u~0 ~(148)

then Equation (144) becomes
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E d 0)fl 2 0)(0) fl()(0)_ 2- (2) (0)
B -d u B [k -.X"'u. + A [k-A ]u =[a - ]u
m dz 2 m 122 rim n M n n

(149)

which multiplied by pu(0) and integrated using integration by parts and the

orthonormality condition reduces the equation to

(A(0)_ (0)) B - A(1) A AA ,ln (150)
I n nI n nL n

M

which makes B purely real and directly proportional to a .

We have already assumed layers of constant density in order to simplify

the elastic wave equation. Therefore, we may define an element of a G-matrix

as

J+1 z

G - 2 k (z) a (z) u z0 (z) u( 0 ) (z) dz - G (151a)
rm zL. nj Mj fM

j-1 3

and that of an H-vector as
z

H f T2 ( Z ) Iu ( 0 ) 12dz. (151b)
z

j.1 j

Note that all elements of the G-matrix are purely imaginary and symmetric,

while those of the H-vector are purely real. These integrals must be

evaluated in order to calculate the perturbed parts of the eigenvalues and

eigenfunctions.

Now the first order perturbation term of the eigenvalue, Equation (140),

becomes

A( 1) -  G (152)
n rM

which tells us that the diagonal components of the G-matrix are the

first-order perturbation term of the eigenvalues. The second order term,

Equation (145), simplifies to
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G2
A(2) \' G - H (153)

n __ A(0) A(0) n
10n n 1

which substituted into

2 (0) (1) (2) (154)
k , A + Al + A(14

n n n n

gives the perturbed eigenvalues of the problem. Since A() is the only
n

contributor to the imaginary part of the eigenvalue, we may define

2 (0) + (2) (155)
n n n

as the real part of the eigenvalue. Then to obtain k from Equation (154) wen

expand its square root as follows:

A(I) 1/2 A

n 2 n 2 + 2_n) (156)

2~ (1
n n

where we have assumed that N2 >> A (1) Now the imaginary part of the
n n

eigenvalue will be defined as

1=n (157)
n

which is the same expression in page 20 of Reference 24 or in Equation (474)

of Reference 14 where only first order perturbation has been used. By the

same token, the real part is given from Equation (155)

X(2)
R (0)+ n (158)

n n 2 YA-(0)

n

(2) (0)
where it is assumed that A 2 A and the same power expansion has beenn n

used. Equation (157) is a crude approximations made by many, however, and

they are avoided by taking the complex square root of Equation (154).

As the first order correction of the eigenfunction, Equation (143)

simply becomes

34



NSWC TR 88-166

G
An1 nol (159)

n1 (0) A(0)'
n 1

and for the second order correction, Equation (150), we get

- G G i-. G G

B - + -nm ml , nol (160)
n1 (0) (o) 2 (0 ) () (0) (0)

n I mrn n m n 1

which substituted into the equation

a(Z)-u(0 )+ E [An1+ B n]u 0 (161)
n ni] I

lon

gives a better estimate of the eigenfunction. These perturbation terms are

expected to shift the eigenvalues into the first quadrant of the complex plan

as displayed in Figure 6 where the maximum value of the real part of the

eigenvalues is calculated using the minimum speed in the sound speed profile.

It is left to properly evaluate of the G-matrix and the H-vector in

Equations (151). Instead of numerically integrating these equations, it is

possible to make use of some properties of the functions contained in the

integrands.

In every layer we may write c(z)-c +(z-z_. )g where the subscript T

stands for the value at the top of the layer. Now the real part of the

wavenumber may be expanded assuming speed gradients smaller than unity as

follows,

k (z)-w/c (z)- __I_ + z
j c Tj gj zT Tj - Tj

z 1 z (162)
C Tj- gzTj CT-gjzTj

and if we define c - cTg z K T W/C oj ' and M- K g /c , inen we haveadiwedfnc0j TIa T j 3 Ta j Oj

k (z) - K -M z (163)

which is linear with depth if the sound speed gradient is smaller than unity.

The attenuation coefficient in Equations (151) is greatly dependent on
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the frequency of the source as shown by Urick 6 3 in the equation

0.1 f2  40 f
0 . + + 2.75xi0- f2  (164)

1 + f2 4100 + f2

where this absorption coefficient is in decibels per kiloyards and the

frequency is in kilohertz. The dependence upon depth is given by the

expression

a - a (l-l.93xlO 3z) (165)0

where a is the attenuation coefficient at the surface of the ocean. This0

depth dependence is so small that we will take it to be constant along every

layer. In this case we may take the attenuation coefficient outside the

integrals and leave it inside the summation across the layers.

The eigenfunctions at all the layers, with the exception of the

basement, are given by a linear combination of Airy functions as given in

Equation (73). To perform the integrations in Equations (151a and b) with

this property of the Airy functions we will use Gordon's formulas given as

follows, 57,67-68

f A[a(z+b)] B[a(z+b)] dz - (z+b)AB - A'B'/a (166a)

JzA[a(z+b)]B[a(z+b)]dz-AB(z 2-zb-2b 2)/3 + (A'B+AB')/6a2 + (2b-z)A'B'/3a

(166b)

A'B AB'
f A[a(z+b )] B[a(z+b 2)] dz - (166c)

a2(b - b )

_________ [ 2 1 A_______ AB(b 1+b 2+2z)
{zA[a(z+b1)]B[a(z+b )]dz- 2AB' + A'B2AB2 3 2

a (bb b) ab (b 2 a (b 1b) (b-b )

(166d)

where

A[a(z+b )]-a Ai[a(z+b )]+b Bi[a(z+b )] (166e)

and
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B[a(z+b2 )]-a2Ai[a(z+b 2 )]+b Bi[a(z+b ] (166f)

represent any linear combination of Airy functions as our eigenfunctions are.

Now we have modified Equation (151a) to the form

J z
J 1(0) (0)()

-G p.a (K -Mz) u(° [a (z+b .)) u [a.(z+4 )]dz + G( )
Jj j nj nj Mj Mj r

j' 3

(167)

where C ) is the contribution from the isospeed basement to be calculated

nm

later on in this section. This equation may be rewritten as

3

G- 2 P a ( K 3 - M ) + G(B) (168a)
nm i Tj nmj . n=n.j n

j-I

where

z
j+1 10 

0
u u°[a(z+4 )] u ([a.(z+-b .)]dz (168b)

3nm nj j nj Mj 3 mj
3

and

z

3 j _ u °.>[a (z+b )] u M>[a (z+ )]dz (168c)znm un3  j mej z+ mi 16

are the integrals to be solved analytically.

The diagonal elements of the 3-matrix are solved substituting Equation

(166a) into Equation (168b) giving

3.- (z+jb )u2 (z) - u' 2(z)/a j+1 (169a)n j n j j ]z

where the superscript (0) has been dropped for simplicity. Equation (166b)

is used to evaluate the n-m elements of the 3-matrix giving

i (z 2 _z -2t2 )u2 (z) + u (z)u' (z)/a2 + (2b -z)u'2(z)/a J+1
rj "3 nj nj nf nj n j nj nj jz

(169b)

The off-diagonal elements of the 3-matrix is calculated using Equation (166c)

and is simplified to the form
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-!L n j+1 ~ (l69c)F nmj z j l

where I -a ( 0 b ) and Z -u>.(z) u .(z) - u .(z) u' (z). Finally,
nznj3 . rj Mj rimi rj Ma n~j

Equation (166d) is used to calculate the off-diagonal elements of the

3-matrix to give
z. i-2 2u'.u'. + (zR +2a 1_) - a (b +b +2z)u u J+1

nmi rLj I 3= j -ii j (i.j n j n mij I

(169d)

where t and E become null for n-m and Equations (169a) and (169b) must be

used.

The normalized basement eigenfunction portion is represented by
Ssinh y (z -z)

sinh7 )I k >k (trapped modes)
() inh(-y D) B

u (z) - P /P U (z) (z (170)
3B B riJ B sin n7 (zz)

sin( D) kn < kB (radiating modes)

22_2 22_2where D-z -z is the thickness of the basement, 7 -k -k, and v7-k -kF B nn B nB ni

For the trapped modes we substitute in the equation
z

F

G M-2p a w u (0)(z) u ()(z) dz (171)
rm B B C I nB mB

Bz
B

the first expression in Equation (170) to yield

ia P w [u (z )]
G (B )

- B J B [ coth(-y D) - D csch2 (- D)] (172a)nnPBC n n n

for n-m and it becomes

2 ' a (A (0) (Z )u(0) (
2~asu()u (zB)

u)nJ B ) B [BB coth(-y D) -y coth(-y D)] (172b)
riB) 222 m m ru( ° i

SP c (_y -M 
B B m ni

when nom. Both equations simplify to

2 P~a (0) U(0)(B)2ip ~u (z ) U (z )G(B) J nJ B M
PCB(n+TM)  (173)

when -y D, and 7 D are much greater than unity.
n M

For the radiating modes we must separate the solution to the cases where
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n-m and where noum. In the first case, Equations (170) and (171) yield

G(B)_ j B [u ( ]2D csc2  - cot(nD) n-m (174a)
nn pCB nJ B I n n In

which corresponds to Equation (172a) for the trapped modes, and for the

second case we get

c) 2 a pWu (0) (z ) u 0 (z)
3 B nJ B M( B1[ coc(YI D) - q cot(v7 D) (174b)

nmn(' 2_' 2 M aM n n

which is compatible to Equation (172b) for the trapped modes.

But this is not all. We will also have trapped-radiating mode

combination. In the case where mode n is trapped and mode m is radiating our

equations yield
2 (0) u(0)G(B) -  2Jao (z u (z)

G (B)_- i B iB (J B)y[ cnoth(y D) - 1 cot(17 D)]
ra

(  n 

(175)

which is like a combination of Equation (172b) and Equation (174b). Since

the G-matrix is symmetric, we do not have to evaluate the integral where n is

a radiating mode and m is a trapped one.

Finally, we also have to evaluate H , given by

3 z
J+ 2(B1

H n aB+ (176)
z3"1 j

which by the use of Equation (166a) we get

H2 3 + H(B) (177)Hn- , ij nni n

j-1

where 3 is given in Equation (169a) and it is easy to find that
z

H() 2 u (z) dz - (c /)a G B  (178)
n B B B nn"

B
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2.5 THE NORMALIZATION FACTOR

The unperturbed eigenfunction must satisfy the orthonormality condition

in Equation (46). They automatically satisfy the orthogonality condition

when searching for the zeroes of the characteristic equation because this is

an implicit property of the eigenequation, Equation (45). However, the

eigenfunctions are not automatically normalized because a function which is

any constant multiplied by Equation (73) also satisfies Equation (45).

Hence, we must solve Equation (82) for the only constant that will normalize

the elgenfunctions in Equation (83). This orthonormal eigenfunction will be

the unperturbed function that satisfies Equation (135). Since the

eigenfunction at the isospeed basement is different from that of the other

layers, we will divide Equation (82) into the basement and "Airy" layers

contribution

N-2 8+x (179)
n n n

where
J z

+1j+ 1

Pi f la nj Ai( 'j) + b n Bi( nj dz  (180)

j-1 j

is the contribution of all the "Airy" layers, or layers other than the

basement, and with the help of Gordon's formula Equation (166a) we obtain

3z

- pJ(z+ ) 2 + a-1 u J+1 (181)J[n i nj i n I z
i-i j

where a and b are defined in Equation (84). The coefficient 8 is the
j nj n

basement contribution

F^

z

Bn- B SI flEB(Z)L1 (182)
B

40



NSWC TR 88-166

and after substituting Equation (170) for the eigenfunction and integrating

we get

2 ^2 ( 1 coth(7 D) -D csch 2(7 D), k >k
pB - p u  zn J 

( - (183)

n 2pB  D csc2 (q D) - n cot(n D), k <k
n n n n B

which gives us the complete solution for the normalization coefficient in

Equation (179).

A question that may have come to the reader's mind is that of the

orthonormalization of the perturbed eigenfunction. We have ensured the

orthonormalization of the unperturbed eigenfunction. However, when using the

perturbation method, do we automatically have orthonormal perturbed

eigenfunctions? Direct substitution of Equation (161) into Equation (46)

gives

p u u dz - B + B + ( A + B B + A B + A B ), nmn m mn n. l in im in im im in

lpn ,m

(184)

and for the "renormalization coefficient" we get

At-2 - + JA [ 1~2 + B 1 (185)

mon

which proves that the perturbed eigenfunctions are not orthonormal unless the

perturbation coefficients in Equations (159) and (160) are zero. However, we

2
have shown that A and B are of the order of a and a , respectively, whichni. nJ.

means that the perturbed eigenfunctions are very close to orthonormal. The

reason for this behavior of the perturbed eigenfunctions is that the

perturbation method is just an approximation to the problem of solving the

complex eigenequation with complex solutions and boundary conditions.

However, we have found that this correction to the normalization factor
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affects the seventh significant digit of the perturbed eigenfunctions and we

may simply assume the perturbed eigenfunctions to be orthonormal. The

renormalization factor, Equation (185), will be calculated for this report

though, but there is no simple way to make the perturbed eigenfunctions
6g

purely orthogonal. The Schmidt orthogonalization procedure is extremely

time consuming for the small correction to be made. Equation (184) will

simply be used to find out how much error is introduced in the calculation

when the perturbation method is used instead of solving the complex

eigenequation directly.
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2.6 MODE-COUPLING FOR RANGE DEPENDENCE

Now that the depth part of the solution has been found, it is next to

treat the range part of the solution. Consider the inhomogeneous Helmholtz

equation,

[V2 + k 2(r,z)] (r,z) - 1 6(r) 6(z-z ) (186)2 r 0

where the solution will be written in the almost-separated form

N

cp(r,z) - T * (r) u (r,z) (187)

n-1

which embodies the "adiabatic range-variation" method. The unknown is 1P (r)
n

th

and the function u (r,z) is the n range-independent eigenfunction at the

range segment where r is contained. If u (r,z) are taken as the "basis"
n

eigenfunctions that satisfy the equation

a2
_ u (r,z) + [k (r,z) - k (r)] u (r,z) - 0 (188)aZ 2 n n n

where
Z

p(z) u (r,z) u (r,z) dz - 6 (189)
0'

then the inhomogeneous Helmholtz equation becomes

(V2 + k ) + 2 Vu + 4' V 2 u 6(r) 6(z-z )r n n un + r 
n  

r rn n r un  21rr 0

n-1

(190)

where

2 2 1

v2  8 + (191)r ar2 r r

Multiply both sides by p(z) u (O,z) and integrate to obtain the range
M

equation
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d2 + - + k2(r) r)- - - 6(r) p(z0) u (O,z0) - 2 - M' (r)r2  r dr n 21r n E r nm

- Ek (r)M" (r)

M m nm
m

(192)

where

M' (r) - fF p(z) u (rz) u (r, z) dz (193a)nm M Tr n
0"

and

M" (r) - p(z) u[(r,z) - + 1 u (rz) dz (193b)
nm 0' f Mr 

2  r ar In

or

M" (r) - 1 M' (r) + V (r) (193c)
n m r nm

where

V (r) F p(z) u8(r,z) a-un(r,z) dz (193d)
0 8r2

are the coupling coefficients of the inhomogeneous equation and these are

null when the eigenfunctions have no range dependence. Note that Equation

(192) is a set of N equations for * (r) coupled in all the depth
n

eigenfunctions. This is the equation to be solved by the coupled normal-mode

method. To simplify this equation it is desirable to eliminate the first

derivative by introducing a new function defined by

-1/2

T (r) - r f (r) (194)
n n

which transforms Equation (192) to the form

+ 1 + k (r) f (r) - 6(r) p(z0) u (Oz) 2 M' (r) m
4r2 nJ n 12 n 0 n Tr

nm M
L.

(195)

or all N coupled equations can be written in the matrix form
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+ 2 - + K4(r) F(r) - U(r) - 2 M'(r) F'(r) - V(r) F(r) (196)

where

f (r)

F(r) - f 2(r) (197)

f N(r)

and its derivative is the derivative of every element in the matrix. Also we

I,..ve

k2(r) 0 ... 0

0 k2 (r) ... 0
2 2
K (r) - (198)

o 0 ... k2 (r)
N -

and

u (Oz )
U2 (O,z 0

U(r) - (r) p( 2 (199)
2irr/ 2 (rz) •

*

u N(0,z )

which helps in the simplification of the range equation.

The method consists in dividing the range-dependent environment into

range-independent segments where the first segment is the only one with a

source and the last one is semi-infinite as qualitatively shown in Figure 7.

The coupling will occur in the other segments and the radial boundary

conditions are easily satisfied as long as the slope of the bottom is small.

Under these assumptions we can simplify the coupled range equation for every

segment and find its solutions.
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2.6.1 Range Segment Number 1

In this segment we assume range independence and note that this is the

only segment containing the omnidirectional source. Under these conditions

Equation (196) decouples to form

+ - + K2(r)] F" (r) - U(r) (200)
4r

2

which has the homogeneous solution

f(1)(r) - r1/2  [(1) (1) 0 + (1) (2) (k0\r (201)
n [ 0  nr n 0  n

where k0 - k (r ), and the alphas and betas are coefficients to be determined
n n 0

via the radial boundary conditions. The inhomogeneous term U(r) will be

taken into account later on when matching the field to the source. For

simplicity, this solution can be rewritten as

f 1)(r) - (r) H (r)) a"') (202)

nn n

where

nnL ) (203)
n

and

"H (r) - r 1
/ 2 H 0)(kor) , j-l,2. (204)

n 0 n

2.6.2 Range Segment Number M+l

In this segment we also assume range independence, but there also is no

source. This makes Equation (196) uncoupled and homogeneous. Also, due to

its semi-infinite property, we will only accept the radiation solution to the

equation
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2+ -- + K2(rH) F (r) - 0 (205)
dr 4r 2

which is

f(M1) (r)- r/2 a("+ H1) (k'r) (206)
n n 0 r.

where kM - k (rM)" For simplicity we can write these functions as elements
n n M

of the matrix equation

FCM1) (r) - A H(r) (207)

where

H (r) - r'/2 H ()(kMr). (208)
n 0 n

2.6.3 Range Segments Number 2 S i s M

These segments are range dependent as a whole and the coupling terms are

kept. However, the source term is zero and to simplify the equation we

assume these segments to be at a range much larger than a wavelength. Under

these assumptions the range equation for these segments become

d2+ (r) ]F()(r) + 2 M'(r) F' i)(r) + V(r) F" (r) - 0 (209)

where r - (r + r )/2 and the matrices are constant values averaged to be
i i-i j

determined at the boundary between every range segment. A series of

transformations is next performed in order to repeatedly diagonalize matrices

and regroup terms until the modes are uncoupled.

To solve Equation (209) we define S as the range-independent matrix1

that diagonalizes M'(r ) to have diagonal elements An as follows,

A .0

A - S MIS (210)

N
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where S S' -0 is a useful property satisfied by this transformation matrix.
11

If we multiply the left hand side of the range equation by S
-1 then this1

equation becomes

d- +3X2 + J r(r) + 2 x r'(r) - 0 (211)
dr

2

2 -1 2 - -1 -1 -1 (i)
where X< - S K (r )S V, - S V S A S 1S, and r(r) - S 1 F (r).

Now we will define

c (r) - exp(-A r) (212)
n n

as the elements of the diagonal matrix 0(r), where ao - 0 is satisfied, and

also define

r(r) - a(r) -y(r) (213)

which substituted in the equation gives

2 (214)
r - + X + ] a -y + 2 A (a -y' + c'-y) 0 (214)ar 2

and now multiply by a-I to the left to obtain

[ 2 + T ] 7(r) - 0 (215)
dr2

where

T - a 1 ( X2+ V ) a A 2  (216)

- 1 S (K 2+V)S a A 2
1 1

and

7(r) - IS-1 F (r) (217)1

have simplified the equation considerably, but they are still coupled because

T is not diagonal. They are finally uncoupled by finding the matrix S2 that

diagonalizes T to have elements A with the transformationn

A-S T S - (218)
2 2 S0... A

N

where S S - is satisfied. Multiplying the left hand side of Equation (215)
22
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by S1 takes us to the final form
2

+ A P(r) - 0 (219)

dr

which has the solutions

a1cos(q r) + 0 sin(q r)

Sa 2cos(q r) + 2sin(q 2r)
2(r) - S ( 2 (220)

a Ncos(q Nr) + N sin(q r)

1/2
where q - A , and a , 6 are the unknown to be determined by the

n n ni n

application of the boundary conditions and all superscript (i) indicating the

range segment of evaluation has been momentarily dropped for clarity. Taking

all the transformations that connect F(r) to P(r) it is easy to find that

F(r) - [S a(r) S ] (r) - T F(r) (221)1 2

or back to the original form we get

N

f (r) - 1 [ a( cos(q (r) + P sin(q )r) (222)
n T rnm M m M m M

and

F~(r) T 'U 7'(r) (223)

where n - 1,2,..., N is the mode index, i - 2,3,...,M is the segment index, V

is not a diagonal matrix, and the unknown coefficients are in P'(r). Now

that the radial functions have been found, it is next to match them to

satisfy the radial boundary conditions.
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2.7 THE RADIAL BOUNDARY CONDITIONS

The radial boundary conditions are the same in principle to those for

the depth functions. The only difference is in the coordinate used to

satisfy for the continuity of pressure and normal particle velocity. Since

the range segments are small and a linear fit is used to connect the nth

eigenfunction radially, then it is assumed that the eigenfunction and its

radial derivative are radially continuous. Substituting Equations (194),

(187), and (28) into Equation (79) gives

f(i) (r) - f (i+1)(r (224)

n 1 n 1

for the continuity of pressure in the radial direction at the interface r i

The next boundary condition is given by taking the radial derivative of

the velocity potential

N dif au
aep 7 'n u ___
a- - L -r u + ar (225)

n-i

where the last three functions in the parenthesis are already continuous and

the first function is the one to be satisfied by writing

df ( i  
df(1+1

d r dr n (226)

where i - 1,2,...,M.

Apply the boundary conditions at r to get
M

A H(r M) - %M PM(r M) (227a)

and

A H'(r ) - lJF M, (r M) (227b)

where

H' (r) r kMr- I / 2H (1) (kr) -3/2H (1) (k rM) (228)
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and

PM, (r ) -am q sin(q r ) + n qn cos(q r )" (229)
n mn n n n n n M

To further simplify the calculations, let's define a hyper-space vector as

W
1

i 2 (230)

N

and

-[cos(qjr.) sin(qjr.)1(2)

which has the inverse form

[CJ(r)]-1= cos(q r.) -sin(q r )/q(232)

n I sin(q r) cos(qjr )/qj

and the hyper-space matrix

C(r) 0 .. 0

C (r 0 (r) (233)

C j(r.)N I

with an inverse given by the inverse of the individual diagonal elements in

this matrix. Finally it is helpful to define

-n r. Hn(r m) I n-l,2,....N (234)

Ln M

and the hyper-space vector

51
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then the matching of the radial functions at rM becomes,

N

a cos(q ( M ) + M sin(q rM) - [ JIA ] H (r) (236)
n n M- n n U() a M

r-1

and

N

-a q sin(q rM) + ( q( cos(q rM) - ( AM)- ] H'(r

M-I

(237)

or in hyper-space matrix form, both equations combine into the equation

N

cCM) (r (M) () [A ] (238)
n M nM

rM-

or

O(M) C( M) - (M) -1
a W[C (rM) [U I A (239)

which is a recurrence relation between the last semi-infinite segment and the

last finite segment coefficients to be determined.

For the intermediate boundaries, i-2,3,...,M-l, the functions and their

derivatives are matched to obtain

pi) (r) - [U(i)I U ( i + )  (i+1)<r ) (240)

and

p i),(r) - [U (i)] -  U ( i+ 1) p(i+), (r). (241)
i I.

th

Combining the n row of each and gathering both sets of equations leads to

N
( ) ' (i - 11 i 1 (i 1)

C (r.) a i) [Ui) I -1 C~ i (r )a (242)
n 2 rn 1

M1

and shifting to hyper-space gives

0(i) Ci) i C)W -1 (i+1) C(i+i) *(i+l)
a [C (r)] [ ) , i-2,3 .. M-I

1 2.

(243)

which is the recurrence relation for the unknown coefficients at the finite

range segments.
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After applying the boundary conditions of the remaining interface and

writing both sets into one matrix equation we get

(- UiC (r (2) (2) (2) (244)

M.,1

where
1H (r) 2Hn(r )

n 1 1 I (245)

and in hyper-space notation it is found the third recurrence relation

a( R_ U C 2(r) a (246)

where

3-1 0 ... 0

0 X_-1
1 1

X -1 2 (247)

0 ... -
N

(1) f(1 )
is the matrix that uncoupled the source segment coefficients, a and ,

nn

(2) (2) (M+1)thus providing them in terms of a and P , or ultimately, a After

multiple substitution of the calculated hyper-space equation we get a

relationship between the unknown coefficients in the source segment and the

unknown coefficient in the semi-infinite segment given by,

M-1 { 
} [U+ i [CM(r)] [Um ] 1A

(248)

where the parenthesis at the superscript have been momentarily eliminated to

write the equation in one line. This relationship can be greatly simplified

to the form

S1)XA (249)

where
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Mr

X - IC U( )C()(r_) [C(-)(r ')]' [U(" (250)

The n th hyper-row is given by

xm A MH, (251)
M

(M+1)

where A - and back out froa the matrix notation the coefficients for
a a

the first range segment are given by

n1)- A( X" H + H' ) (252)

and

(1) A ( X  X1 H + X" H') (253)

where

X [m T= (254)
nr X 2 1  X 2 2

2
nm rnm

and r has been dropped.M

It is now time to take into consideration the behavior of the source at

r-O. This is the last matching to be performed to obtain the necessary

number of equations to evaluate all the unknowns in a closed form. In this

first segment it was found that the homogeneous solution to the inhomogeneous

and uncoupled equation is

(r) - a() H ()(k r) + (1)H 2)(kor) (255)
n n 0 n n 0 n

and in the limit as k r --+ 0 we find that
n

H () (k 0 r) - H(2) (kOr) -- 2t ln(k0r) (256)
0 n 0 n if n

which gives

if(r) --- (a (1) (1)) n(kr). (257)
n Ir n n n

An asymptotic solution can also be calculated by integrating the uncoupled,

inhomogeneous equation over a small cylinder containing the source, and
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taking the limit as the radius goes to zero. The procedure gives

a d r 2+ d r dip(z 0 ) u (0, z) r d___n dr + f dr + &k(r) T (r) dr - fd
f drr r n 2w 0 6r

(258)

where the second term is integrated by parts to yield

d- a a P(z ) u (Oz°)
+ + r + k (r)) * (r) dr - -(r dr

T r f(r) 2w r

(259)

and in the limit as a -4 0 only the slope at r-O and the integral over the

delta function remains providing the expression

di' (r) p(z 0) u (O'z )

dr 2wr (260)

or
4(r 1 *a

z( r )  p (z) u (Oz ) ln(k r) (261)
2r 0 n 0 n

which can now be equated to the other asymptotic solution providing
(!) (1) *

a - - L/4 p(z0) u (0,z) - V (262)
S n 0 n Vn

which is the relationship between a and 0() . Substitution of the
n

calculated coefficients into this equation gives

V- [(X1 -X 2 1) H + (X 1 2 - X22 ) H'] A. Z B A (263)
n'- nm nm M r M Mr~m

or in matrix form

V- B A (264)

and after inverting the matrix B (if it is not singular) the first unknowns

are obtained with the equation

A- B V. (265)

After this matrix is calculated, it follows to calculate the unknowns of

the source segment with Equations (252) and (262). The coefficients of the

other segments are calculated using Equations (239) and (243). Finally, the
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range functions are obtained with Equations (201), (206), and (222) where the

Hankel functions are calculated with the complex eigenvalues obtained in

Section 2.4.

Note that this coupling method is in a closed form that requires no

iteration that may slow-down the computation time. It is left to evaluate

the coupling coefficients which is done in the next section.
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2.8 REDUCING THE COUPLING INTEGRALS

The coupling integrals are given in Equations (193) where the

eigenfunctions satisfy Equations (188) and (189). Under the assumptions of

an environment that slowly varies with range, it is possible to use Gordon's

formulas in Equations (166) to solve the coupling integrals.

The range-dependent environment is divided into range-independent

segments as shown in Figure 7. The eigenvalues and eigenfunctions have been

calculated for the middle of the segments at r . A method of evaluation isi
zF* 8

to multiply Equation (188) by the operator 0  dz p(z) u (r,z) - to yield

the expression

u F-(udz + j P -2 dz +
k2(rz) dz -oI uu 8r uo

o u -u.dz +0 k2 (r) -a dz (266)

where nom. Since the eigenvalue is independent of depth, the first integral

in the right hand side of this equation vanishes due to the orthogonality

condition. Integrating by parts twice the first integral in the left hand

side of Equation (266) gives

J+1 *

r _ [_ "n j j+__- - 2 (r,z)iu dz I

iP J~umi arL .* +J ar ap 2 + k dZ~u8znJ ZF 8k2] z k2(r*)U

- F PU * --2dz + k (r) Fpu dz
0o a n 0 f 7 (267)

where no approximation has been made yet. The complex eigenfunctions and

eigenvalues are used in Equation 195) to find the complex f (r). The
n

coupling matrices are supposed to be complex also, but under the condition of

57



NSWC TR 88-166

a slowly varying range dependence the real part of the coupling integrals is

very small compared to the other terms in Equation (196) and the imaginary

part is even smaller because the imaginary part of the eigenfunctions and

eigenvalues is much smaller than the real part. Assuming that the imaginary

part of the eigenfunction is much smaller than the real part, Equation (188)

may be substituted in the integral at the left hand side of Equation (267) to

get the approximate expression

M' (r) - (Mv (r) + Ms (r))/(k 2(r) - k 2(r)), n,'m (268)
rim rim rm ni i

where the volume contribution is given by

3+1 ak

MV (r) - I +u dz (269a)

j-1 j

and the surface contribution is

J+1 au au au z

M rn(r) T P m - z (269b)

j-1 j

where all imaginary parts are neglected and the stratified medium of

isodensity layers is used.

Since the range-independent wavenumber squared has been written in the

form

2 2 {k(z )-k 2 (z) -

k2(z) - k2(z ) + , j+1 (z - z) (270)

then, by linear interpolation, we obtain

k 2(rz)

ar A z + 8 (271a)

where
( 2 . 2 i) 2 _ 2

(k 2 -k 2)-(k 2 k 2
A - j+1,i , (i j+1,i-1 ji-1 (271b)
ji (Az) (Ar)

i

IM (k 2  k2  )/(Ar) A z, (271c)
3i ,i-1 j
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(Ar) - r - r (271d)± J i-li

(Az)- z - z , (271e)j j+1 j

and

k2 a k2(r,z ). (271f)
n,m j m n

Now the volume contribution is given by,
J+1

(r) pj fzj+lu (r z) ujr ,z) [A z + IB. ] dz (272)

j-1 i

or
J

M' (r p j(A ji +ji ji (273)

where D and 5 are Airy integrals of the same form as the ones innmji nmji

Equations (168). Since the imaginary part of the eigenfunctions have been

neglected, there is no sense in using the second order perturbation term for

the evaluation of these integrals. Also, the summation will go up to j-J

because it has been assumed a range-independent isovelocity basement. This

assumption makes ak 2+ /r - 0 and it poses no restriction since we can

stratify the bottom to the depth of interest, and consider from there on the

so called basement layer of large thickness. With the help of Gordon's

formulas we obtain D . - 3 from Equation (169d), and § - . from
flnj2. nrJ nmj i nmj

Equation (169c) where nom and the subscript i only indicates the range

segment into consideration.

The pressure and normal particle velocity boundary conditions are useful

in reducing the surface contribution to the form
au Z (

M5 (r ) " - r -7j (274)

and under the assumption of an environment that slowly varies with range this

contribution is negligible compared to the volume contribution. Rutherford

and Hawker 70 proved that, in an environment with range variable boundaries
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and interfaces, neglicting the surface contribution results in the violation

of the conservation of energy in the radial direction. However, the acoustic

properties in the model in Figure 7 are the only range-dependent parameters

in the problem and energy conservation is not violated.

In the case where n-m, Equation (193a) may be written as

J+1

M' (r) T 2 (r, z) dz (275)

j-1 .

where the imaginary part of the eigenfunction has been neglected as done for

the num case. Since the orthonormality condition gives

a b b au22

rf u dz - -n dz + u dz- (276)
a a a

then Equation (275) becomes

J+1

M4' (r) - t ,z) dz(r) j+l (277)
nn2 n L ' dr

which is another negligible contribution compared to the off-diagonal

elements of the coupling matrix when the environment has a weak range

dependence.

In conclusion, this coupling matrix is given by

M V (r)
nmi

M' (r) k (rni - (r£ (278)
nm

0 m-n

where only the term with the greatest contribution has been kept. Note from

Equation (269a) and (278) that M' - -M' or that the M' (r) matrix is
nm mn

antisymmetric. Since the eigenfunctions are considered real, then the

elements of M" (r) are real too. Therefore, the matrix is antihermitian and

it becomes Hermitian when it is divided by i. This way it is easier and

faster to diagonalize the matrix and after the diagonalization of the
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Hermitian matrix, the diagonal elements must be multiplied by i to obtain the

eigenvalues of M'(r).

It is next to solve the coupling matrix V(r) with elements given by the

integral in Equation (193d). The solution is obtained with the help of the

expression

u (r, z) - M' (r) u (r,z) (279)
8r n np P

ppdn

which is proved by direct substitution in Equation (193a) and the use of the

orthonormality condition in Equation (189). Substitution of this same

expression into Equation (193d), taking the radial derivative of both terms

in the summation of Equation (279), and substituting Equations (189) and

(193a) gives

-(r) M' (r) + M' (r) M' (r), mon (280)

rnrnm. np PM

pin , m

which is completely in terms of the previously calculated coupling matrix in

Equation (278). The radial derivative of the coupling element can be

simplified by acknowledging that the eigenvalues vary faster with range than

the volume contribution of the coupling matrix. Then, at every range segment

we obtain

dk 2 dk 2

M' (r) rn - m-r
V (r.) =lO n M -dr r i + M' (r r), m"~n (281)
ri k2 (r)-k 2 (r . )  T nP I PM

M 2 n 1 p n m

where

dk 2  k2(r) 2k(r

d _ (Lr) P (282)

always under the condition of an environment that slowly varies with range.

If n-m, the coupling term M' (r) vanishes and the radial derivative in
nn

Equation (280) is null. Since M'(r) is an antihermitian matrix, Equation
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(281) becomes
N

V nn(r) [M n(r)]2 (283)

p-i

where the squared of M'(r) must be very small, but the summation of these

numbers makes V(r) of considerable contribution.

The most suitable calculation of these coupling matrices has been a

source of a large amount of papers. An accurate calculation of the coupling

matrices takes a finely spaced sampling of the eigenfunctions and the range

segments, since radial derivatives and depth integrations are required. In

order to take less computer memory and time, it is appropriate to assume an

environment that slowly changes with range. Another way to attack the

problem is to calculate the coupling matrix in Equation (193a) direct!,

The range-dependent environment is divided into range-independent

segments as shown in Figure 7. The eigenvalues and eigenfunctions have been

calculated for the middle of the segments at r and, for simplicity, the

range between boundaries is the same. If the environment slowly varies with

range, then Equation (193a) at the range R becomes

zF  u u(r i+i z)+u M(r z). Un (r i  z)-u (r ,z)
M" (R)=f Fp(z)[ u r z ( ,i n r dz (284)nm2 r -

0 2+1 i

where the definition (AR) W r 1 -r and the orthonormality condition further

reduces the equation to the form

J+1 Z

M' (R) ) P + uI * u - u u dz (285)
n d , mi ni+1 Mi+l n.1

where the second subscript of the complex eigenfunctions stands for the range

segmentation index in the argument of the eigenfunctions in Equation (284).

This equation already gives a property of the M'-matrix when the complex

conjugate is taken. The property is that
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M - M (286)
mn nm

and only half of the off-diagonal elements have to be calculated. Setting

m-n in Equation (286) also proves that the diagonal components of the matrix

are purely imaginary. Since the imaginary part of the eigenvalues and

eigenfunctions are much smaller than the real part, the assumption of

Equation (277) being negligible is valid. Also note that this new result for

M'(r) is still antihermitian and can be divided by i to diagonalize the

resulting Hermitian matrix.

Compare the coupling matrix as calculated in Equation (285) with the one

in Equations (268) and (269). Equation (285) requires the integration over

complex eigenfunctions at different range segments, while the other method

only needs to be integrated over unperturbed eigenfunctions at the same range

segment. The approximate solution in Equation (278) is therefore called the

adiabatic approximation of M'(r), since the elimination of the imaginary part

of the coupling coefficients implicitly assumes that no energy in the form of

heat is allowed to be transferred from one range segment to another. The

integration in Equation (285) does take into account the transfer of heat

from 'ne segment to another when integrating over modes of two contiguous

range segments and the imaginary part of the coupling matrix is a clear
th

indication of the energy lost in the i segment due to this unadiabatic

process. The point is to integrate Equation (285) as analytically as

possible, since numerical integration is lengthy and extremely unreliable

when the rapid oscillation of the higher radiating modes are taken into

account.

The complex eigenfunctions in Equation (285) are the solutions of

Equation (131). For Airy layers, the solution is Equation (73) where the
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coefficients and the argument of the Airy functions are complex. The

argument is given by Equations (85) and (84) which are now complex since the

proper representation of the attenuation coefficient is by a complex sound

speed. Since the sound speed may vary from range segment to another, the

coefficient a in Gordon's formula, Equation (166c), is different for both

functions A[a 1(z+b )] and B[a 2(z+b 2)]. Therefore, another analytical formula

is needed to solve Equation (285) when the eigenfunctions are a linear

combination of complex Airy functions where the complex version of a in
a

Equation (84c) is now given by

Ak 1/3a - -'- (287)

and b is the same form as in Equation (84e) but complex. After calculatingni

the complex coupling matrix M' (r), V(r) is calculated with Equations (281),

(282), and (283).

If the sound speed profile does not vary much with range, an approximate

formula to use is
** *AB- B

A (a (z+b B(a (z+b )] dz A' B-A B' (288)
a a (b - b )1 2

which must be used twice to evaluate Equation (285).

Note that the adiabatic approach requires less computations and computer

memory, also, in most circumstances, the oceanic acoustic properties and

boundaries slowly vary with range and the adiabatic approximation seems to be

the most reasonable approach. The imaginary part of the eigenvalues and

eigenfunctions are not used to evaluate the coupling coefficients, but they

are used to obtain the range functions in Equations (201), (206), and (222).

After the range functions are computed, the particle velocity is given

by Equations (187) and (194). The transmission loss for the receiver at any

depth and range larger than six wavelengths is calculated in the next section.
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2.9 TRANSMISSION LOSS CALCULATION

When the signal-to-noise ratio at a sonar system is greater than a

calculated detection threshold, it is concluded that a target is present. An

accurate calculation of this detection threshold is needed for avoiding

unnecessary false alarms. For passive sonar systems, where the sonar simply

listens to the target, the detection threshold is given by the formula,

DT - SL + DI -TL - NL (289)

where SL is the projector's source level, DI is the receiver's directivity

index, TL is the media transmission lozs, NL is the ambient noise level, and

DT is the detection threshold for the sonar.

For an active sonar, where a sonar system or a sonobuoy listens to

echoes bouncing back from the target, the calculation of the noise-limited

detection threshold is given by

DT - SL + DI TL - TL + TS - NL (290)
1 2

where TL is the transmission loss from the source to the target, TL is the1 2

transmission loss from target to the receiver, and TS is called the target

strength. The noise level is replaced by the reverberation level for the

reverberation-limited detection threshold.

In both cases, an accurate calculation of the transmission loss is of

paramount importance. The transmission loss is defined as

TL 10 1og I(r'z)] (291)
0

where I is the time-averaged reference intensity at 1 meter from the source,0

and the magnitude of Equation (33) provides

1(r,z) - I p v (292)
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where the pressure, p, is given by Equation (28) and the scalar potential by

Equation (62). Therefore, we may decompose the time-dependent pressure field

into its modal contributions,

p(r,z,t) - p(r,z,t) (293)
n

where the modal contribution for a range-independent environment is
CO * H(1) &ot

p (r,zt) - - p(z ) p(z) u (z ) u (z) H (k r) e (294)
n 4 0 n 0 n 0

and direct substitution of the pressure into the transmission loss equation

is known as the "coherent" loss since we are taking into account the phase

factor of every mode. The transmission loss requires the time average of the

intensity, and for short pulses in active sonars the ratio of energy flux

density from Equation (32) must be used in Equation (291). The ratio of

intensities can be used if the pulse is long enough to include the most

significant multipath modes. In shallow waters, the delay between the

multipath eigenrays is very small allowing a correct calculation of the

transmission loss using Equation (291) with shorter pulses.

If the pulses are extremely short, then every multipath mode must be

taken into account individually and the simple effects of spherical spreading

and absorption are taken into account by the approximation

TL - 20 log(R) + aR (295)

where R is the distance travelled by the eigenray which may be calculated

using the eigenray method in Reference 71 in meters, and a is the attenuation

coefficient in Equation (164) where the units must be converted from

kiloyards to meters. However, the constructive interference of the longer

pulses yields a higher signal-to-noise ratio making them more useful in

active sonar systems. For these longer pulses and for longer distances Marsh

and Schulkin 7 2 have shown experimentally that the spreading becomes
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cylindrical, the number 20 in Equation (295) becomes 10, and other correction

factors dependent on the sea state and bottom properties must be added to

Equation (295).

When the detailed interference effects are not of interest, they may be

averaged out to yield smooth transmission loss curves. This is done by

summing the individual modal energies, rather than their pressures, and the

result is called "incoherent" loss. In this case, we must time-average the

sum of the squares of the modal pressures. For incoherent loss, we replace

Equation (291) with

TL 10 log 32 ]
2

where we may take the average of the sum to be the same as the sum of the

average and using the asymptotic form of the Hankel function in Equation

(294) we get

P(r,z,t )  * e(k nr-t-/4) (297)
(8k r)l/2 p(z) p(z)u(z)u(z)(

n

hence

[Re(p6 2) [ p(z 0) p(z) u* (z0) un(z)]2 (298)

and the incoherent transmission loss for a range-independent environment is

simply

TL(rz) - -10 log[21pr (z) n [ k (299)
n

n

where the phases of the summed modes are immaterial when taking the magnitude

squared of the eigenfunctions.

For the range-dependent environment we have calculated the velocity

potential in Equation (187), therefore a transmission loss in terms of the
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velocity potential most be found. The pressure is given in terms of the

velocity potential in Equation (28) and the transmission loss in terms of the

pressure is given by

TL(r,z) - -20 logr p(rz) (300)
Lp0 (0'z 0)J

where p0 is the acoustic pressure at the distance of one meter from the

source and the calculation becomes incoherent when the pressure is replaced

by the rms pressure. Using Equation (28), the rms pressure becomes

p(r,z) - 1/42 w p(r,z) $(rz) (301)

and the same applies to the rms pressure at one meter from the source with

the exception that the velocity potential may be given by

- 2= A/(4rr) (302)

since spherical spreading may be assumed near the source. Assuming a unitary

source strength and at a distance of one meter Equation (302) becomes 02I/4w

ard the rms pressure at one meter is
W P(O'z0)

P0 - 41 (303)

wl-ich substituted, with Equation (301), into Equation (300) gives

TL(r,z) - -20 log 4 n p(r,z) I( (304)
0

w'.ere the complex absolute value of the velocity potential in Equation (187)

w-ist be taken. Note that the summation in Equation (299) is taken when the

v'locity potential is calculated.

The effects -f ab-orption are incorporated in Equation (304) by the use

of the perturbed eigenvalues, Equation (154), and eigenfunctions, Equation

(161), when the attenuation coefficient a(z) in nepers/meter as a function of

depth is given. Absorption coefficient is mostly given in dB/meter and we

must convert these units. Outgoing spherical pressure waves in an isospeed
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media are attenuated as

p(r,t) - p0e W(rctQr (305)

and the intensity from Equation (292) is proportional to the squared of the

time-averaged pressure, therefore, the absorption contribution of the

transmission loss in Equation (291) becomes

e(r) - - 20 log(e " r ) (306)

and when the reference is taken as one meter we get

- [20 log(e)] a (307)

or

a 0.1151 c (308)

where c is in dB/meter.

Another way to describe the absorption of the media is by expressing the

loss in decibels per unit wavelength. This value is obtained by multiplying

e by the average sound speed of the media and dividing the result by the

frequency of the source.

The perturbation method in Section 2.6 may also be applied to the shear

wave's attenuation coefficient. The effects of shear waves from the bottom

will be included in the mode coupling method in a latter report. Other

approximations made are the range segmentation of the range-dependent

environment as shown in Figure 7. But this should not be a great limitation

since it is possible to increase the number of segments until the calculated

transmission loss curves reach a state where it stays unmodified regardless

of the extra segmentation. The same occurs with the depth layering of the

sound velocity profile into constant speed gradients. The false resilient

bottom added to the model for the discretization of the continuous spectrum

can vary in depth until the transmission loss curves at the region of
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interest remain steady with increasing zF* The directivity of the source and

receiver are not a problem to be added to the transmission loss calculation

since they are included in the source level and directivity index of the

sonar equations, respectively. Also, the frequency spectrum from a source

may be modeled as a discrete number of monochromatic signals very close

together and with different amplitudes. This, as well as the shear waves and

three dimensional effects, remain to be included in the model.
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CHAPTER 3

RESULTS

A simple environment will be considered in order to minimize the

complexity of the problem and to better study the effects of range dependence

of the ocean floor and the effects of its attenuation. This environment,
1'.-15

also studied by J.Miller, is an upslope shallow ocean similar to the one

displayed in Figure 7. The water has a constant sound speed of 1500.0 m/s

with a density of 1000.0 kg/m3 and it is 200.0 meters deep from the location

of the source to a range of 5.0 km. This depth decreases to 60.0 meters at a

range of 10.0 km and it remains flat from there on. The bottom is one thick

sediment with a resilient boundary at 1200.0 meters, a sound speed of 1704.5

m/s, a density of 1150.0 kg/m
3
, and an attenuation coefficient of 8 .4xlO

-4

nepers/m. Let's assume that the source is a six-blade propeller from a 112.0

meters deep submarine moving at a speed of 25 knots. Therefore, as a rule of

thumb, the propeller is generating a quasi-monochromatic continuous acoustic

wave with a frequency of 25.0 hertz. The range dependent environment will be

divided into eight segments and the bottom's slope remains constant

throughout the range dependent region of the environment.

The resulting transmission loss as a function of range and depth is

given in the three-dimensional plot of Figure 8 where the range is in

kilometers and the depth is in meters. A total of 18 modes have been used

for this transmission loss calculation. At the position of the source, three

trapped modes have been found. Note that just below the source, sound is
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reflected back from the resilient false bottom regardless of the high

attenuation coefficient given. However, the effects of these standing waves

are negligible at the range dependent region of the environment, where the

interesting phenomena occurs. Only three trapped modes exist at the range

independent segment where the source is located. The source has been set to

112.0 meters deep to be located at the node of the second eigenfunction in

order to excite only the first and third mode. As the bottom of the ocean

decreases, the third mode gets cut-off from the water and becomes a radiating

mode that propagates into the bottom sediment. This explains the low

transmission loss region under the bottom of the range dependent segments of

this environment. The first mode stays in the water column. Also note that

there is some energy in the second mode, since the node is not exactly at

112.0 meters deep. This mode is cut-off at a range of about 9.5 kilometers

from the source. The grid in this plot is divided into squares of 20.0

meters in depth and 200.0 meters in range.

If the depth of the source is set to a depth of 190.0 meters, then a

second region of low transmission loss is created, as shown in Figure 9,

which is caused by the convertion of the second eigenfunction to a radiating

mode. Note the refracted wave created bounces back from the false bottom,

but it is damped rapidly before it reaches the water column. The lower

transmission loss of the refracted wave is caused by the addition of the

second mode and the fact that the source is only ten meters away from the

ocean floor.

If the source were located at the other side of the wedge, i.e., at 30.0

meters depth in the 60.0 meters deep semi-infinite range segment, then

down-slope sound propagation occurs as shown in Figure 10. However, the
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source is exciting the only mode available in this section of the ocean. As

the sound propagates towards the deeper waveguide, only the fundamental mode

is excited and the transmission loss plot displays no interesting feature.

Since this behavior is expected, this result is a good indication that the

model is performing correctly.

So far, only isovelocity layers have been used. In order to test the

performance of the transmission loss calculations with layers of constant

gradients in the wavenumber squared, we will include in the up-slope

environment a sediment layer with zB - 300.0 meters deep, as shown in

Figure 7. This layer has a constant sound speed gradient of 0.64 s"I with

the sound speed at zB equal to the one in the basement layer. Also the

density and attenuation coefficient of this layer is equal to the one of the

basement. The source is set back to 112.0 meters deep in order to excite the

fundamental and third mode only. The resulting transmission loss surface is

given in Figure 11, where only the portion over 800.0 meters deep is

displayed to better observe the propagation phenomena at the sediment layer.

Comparing Figure 11 to Figure 8, note that part of the energy from the third

mode is propagating though the sediment and refracts back into the water

column, hence the decrease in the transmission loss in the 60.0 meters deep

water column. Also, due to the interaction with the sediment, some of the

energy of the third mode is being used to excite the second trapped mode

which becomes a radiating mode as it propagates away from the source. The

second mode is not excited by the source, but by the range-dependent

waveguide itself. This phenomena of energy interchange between the modes can

only occur when the model allows the coupling between the modes. This is a

clear indication of the high performance of this coupled normal mode model
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when low frequency sound transmission loss in a range-dependent environment

is needed.
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CHAPTER 4

CONCLUSIONS

The coupled normal-mode model has been developed with the effects of the

attenuation coefficient in all the layers of the ocean as a first and second

order perturbation to the unperturbed eigenequation. It has been found that

the first order perturbation term is purely imaginary and the second order

perturbation term is purely real (which represents a correction to the

unperturbed eigenvalue and eigenfunction). This second order perturbation

term is absolutely neccesary when the attenuation coefficients are relatively

high. This is the case when shear waves from the bottom sediments are

included. For cases where the bottom elasticity has a very high compressional

and shear attenuation coefficient, higher order perturbation terms are

expected to be neccesary. In such cases, the perturbation approximation is no

longer feasible and a method for searching the eigenvalues in the complex

k-plane is rieccesary. The theory of normal modes with the effects of the

bottom's elastic properties and a method of searching for the complex

eigenvalues is underway and will be presented in future publications. Also,

the effects of three-dimensional sound propagation using an extended version

of the coupled normal-mode model will be modeled.
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*dx4
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