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Executive Summary

ADVANCED MESOSCALE WEATHER FORECASTING TO SUPPORT
TACTICAL OPERATIONS ON THE AIRLAND BAT ILEFIELD

The wide dispersion of combat forces on the modern battlefleld and the complexity of
electro-optical weapon systems have increased the need for forecasted weather
parameters that could be used as input to Tactical Decisions Aids (TDA). The
Integrated Meteorological System (IMETS) will enable the Air Force Staff Weather
Officer, who is assigned to Army Divisions and Corps, to provide weather forecasts and
weather effects information. This innovative research, designed to support IMETS, used
three advanced software technologies (i.e., a traditional neural net, a hybrid neural net,
and image understanding) to provide rapid and accurate tactical weather forecasting
models. CCI believes they are foundation technologies for advanced weather forecasting
and satellite image processing.

A traditional neural net learning algorithm, back-propagation, was used to create an
optimal weather forecasting model (BP-Atlanta) whose performance could be directly
compared to the GOPAD-Atlanta-RIR ~odel developed during Phase I, the LFM/MOS,
and tne National Weather Service Fusecast Office (NWSFO). This investigation also
sought to observe how different back-propagation parameters affected the performance
of the model, and whether the weighting values on the interconnections between the
nodes might be useful for identifying important variables.

The hybrid neural net approach is based upon an algorithm called Goal Oriented
Pattern Detection (GOPAD), which is technically described as a statistical, optimizing,
machine-learning, analogue, forecast model creation, software tool. The output from
GOPAD is a tactical or mesoscale, real-time weather forecasting softwarc program that
executes in seconds on any computer and in any language. During the summer of
1989, a GOPAD forecast model was independently tested bty NOAA during a real-time
severe and significant weather forecasting exercise called SHOOTOUT-89 that took
place around Boulder, Colorado.

An innovative, non-digital, symbolic image 1epresentation scheme, technicaliy described
as a width-encoded medial axis (WEMA), was used to perform image understanding by
perceptual grouping. A software program called Cloud Image Representation,
Recognition, and Understanding Software (CIRRUS-I) was developed to demonstrate
a capability to intelligently track clouds in multi-temporal satellite imagery. The
symbolic representation of segmented, or sliced, cloud regions makes it possible to
manipulate individual cloud regions, to attach knowledge to cloud objects, to use shape
information, to use the relative proximity of one object w0 another, to infer cloud
behavior, to compute the orientation and magnitude of cloud displacements, and to
intelligently deduce the direction of movement of tracked clouds. CIRRUS-I produces
cloud/temperature displacement vectors that covld be passed into a vorticity model to
compute synoptic wind patterns across the continent. These wind patterns could then
be used as input into mesoscale weather forecast models.




3. 5 1
3.5.2
3.5.2.1
3.5.2.2
3.5.2.3
3.5.2.4
3.56.2.5
3.5.2.6
3.5.2.7
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.4.1
3.6.4.2
3.6.5
3.6.5.1
3.6.5.2

4.0
4.1
4.2
4.3

5.0
5.1
5.2
5.2.1
5.2.2
5.3

TABLE OF CONTENTS
Page
RESEARCH OVERVIEW —— - 1
Phase I Background - -1
Phase II Background ————— —— - -——-2
PHASE II RESEARCH OBJECTIVES ————————— == — e e e 3
ARTIFICIAL NEURAL NETS ———— == e e e e e e e e 4
Research Overview— - ———=4
Training and Testing Data Base -4
Ground Truth Data Base— - --5
LFM/MOS and NWSFO Forecasts—~—~— 5
Cptimal Forecast Model Research——-— 6
Objective— - ——6
Research Results— 6
Learnir~ Rate Experiment —————————————————— e — . 7
Hidden Nodes Experiment———— ———= —_———————————— e 8
Passes Experiment - ——— e e e — 10
Momentum Experiment—-------------—-—--———————————c-— 11
Iterations Experiment ——~——~——~—~~———— e 11
Sigmoid Table Experiment -12
Input-Output Layer Connection Experiment —-12
Evaluation and Comparisons Research ~ -12
Overall Goalg———————————————— e e 12
General Approach— - --18
Spreadsheet Calculation of Skill Score—— 14
Cormnparative Performance Evaluationg——————~—=———————=———————— 15
Objectives and Approacheg ~——=——w— e ——— - ———15
Research Resultg~———————o————— e 15
Identification of Important Predictor Variables -—= —_ -——-18
Objective == —— = e e e 18
Research Results~—~——-——————————r e e e e 18
GOAL ORIENTED PATTERN DETECTION —— --20
Background —— - —— - 20
GOPAD Description - - -21
Conclusions——--—————————————————— 22
MESOSCALE WEATHER FORECASTING EXERCISE-SHOOTOUT-89————-— 22
Background —— = — = e e e e e e e e 22
SHOOTOUT-89 Evaluations—— - e 23
NOAA/FSL Comparative Evalvationn————~————=———=———————————- 23
Performance Evaluation ——=———=——————— e e e 23
Conclusims—————=——————————————— - 23
{continued)
il




,______ R

m
o EE T .e

TABLE OF CONTENTS
(concluded)

Section Page
6.0 CLOUD IMAGE REPRESENTATION, RECOGNITION,

AND UNDERSTANDING SOFTW. o e 24
6.1 Background—— ~—= —— - 24
6.2 CIRRUS-I Data Flow————————————————— - 25
6.3 CIRRUS-I Performance———-— -25
6.4 Conclusions——— ——— - - 25
7.0 PHASE II RECOMMENDATIONS ——————~——— 26

APPENDIX A Brier-Based Skill Scores for BP-Atlanta-241
Using Optimal Parameters

APPENDIX B Goal-Oriented Pattern Detection (GOPAD) For
Tactical Mesoscale Weather Forecasting

APPENDIX C A Quantitative Comparison of Forcast Models That
Participated in NOAA/FSL SHOOTOUT-89 Exercise

APPENDIXD Cloud Tracked Winds Derived From Satellite
Imagery Using an Image Understanding Approach

APPENT:'* & CIRRUS-I Processing Steps and Performance




W O 3 O O WD E

bt e et e et ped e
O o W~ O

e
o =

LIST OF TABLES

Page
Architecture and Parameters jor BP-ATLANTA-241 7
Five-Month Skill Scores for Varicus Learning Rates— ——- - -7
Weekly Skill Scores for Various Learning Rates————————————————————- 8
Hidden Nodes Experiment———————=~—————————— e — e — e 9
Weekly Skill Scores for Various Numbers of Hidden Nodes -9
Passes Experiment - - - 10
Weekly Skill Scores for Various Numbers of Passes———————————————=—=- 10
Momentum Experiment —~—————————— e e e e e e e 11
Iterations Experiment——-——————————————————————————— —— - 11
Sigmoid Table Experiment =12
Learning Rate Experiment —— —-—-12
Three-Month Skill Scores Using BP-ATLANTA-241 Parameter Settings—————~ 16
Monthly Skill Scores Using BP-ATLANTA-241 Marameter Settings——-——————- 17
Weekly Skill Scores Using BP-ATLANTA-241 Farameter Settings ————————-- 17
Weekly Skill Scores Using BP-ATLANTA-241 Parameter Settings————————-—- 18
Summary of Weights Along the Interconnections from Each Input
Node to the Output Node for the GOPAD Selected Varlables——————————=~—-— 20
Skill Scores for Severe Weatherin Reglons I, I, and V————~——————~— —- 24
Skill Scores for Severe Weather in Reglon I[V———-—-———————————————- 24

v




B B BN B I B N N R B BN D I e T B B Em -

PHASE II FINAL REPORT
1.0 RESEARCH OVERVIEW

The wide dispersion of combat forces on the modern battlefleld and the complexity of
electro-optical weapon systems have increased the need for forecasted weather
parameters that could be used as input to Tactical Decisions Aids (TDA). The
Integrated Meteorological System (IMETS) will enable the Air Foice Staff Weather
Officer, who is assigned to Army Divisions and Corps, to provide weather forecasts and
weather effects information. CCI's research was designed to support IMETS using two
advanced software technologies (Le., neural nets and symbolic tmage processing) to
provide rapid and accurate tactical weather forecasts. CCI believes these are
foundation technologies for weather forecasting and satellite image processing.

1.1 Phase! Background

In the fall of 1987, the Atmospheric Effects Division, U.S. Army Atmospheric Sciences
Laboratory (ASL), supported as Small Business Innovattve Research (SBIR) a Phase 1
project by Consultant's Choice, Inc. (CCI) to develop analysis and graphics techniques
to display current weather-related information over a limited tactical area, and to
experiment with an innovative proprietary software program, called Goal Oriented
Pattern Detection (GOPAD), for creating weather forecasting models. Two prototype
software demonstrations were developed and delivered to the Government; (1) an MS-
DOS-based, attributed vector map representatiop that could support an object-oriented
programming paradigm, and (2) a Probabitlity of Precipitation {PoP) forecasting model for
Hartsfield International Atrport in Atlanta, Georgia.

The attributed vector map representation was designed to demonstrate a capability to
support an acivanced programming paradigm that would be created in Phase I called
Frame-Based Reasoning for an MS-DOS computer. However, after the Phase II was
awarded, it was determined that the research should focus on symbolic image
processing research that would be more heneflcial to the Governiment.

The GOPAD-Atlanta-RIR probability of precipitation (PoP) model was compared to the
forecasts issued by the National Weather Service Forecasters and LFM/MOS model for
June, July, and August of 1987. It is important to note that the GOPAD model used




data from only three rawinsondes from the 12Z sounding to produce a forecast at
1230Z for the 12-24Z period, whereas the LFM/MOS used the 0Z sounding in order to
issue a forecast at approximately the same time as the GOPAD model. The performance
or skill of all forecasts models was evaluated based upon the Brier scores. The skill
scores for the summer, 1987, were computed as follows: (a) LFM/MOS 16.3%: (b)
NWSFO 20.9%: and (c) GOPAD 27.6%. These preliminary performance results and the
potentlal to further improve GOPAD forecast models by adding new sources of predictor
variables were sufficient to justify further experimentation in Phase I with the GOPAD
appruach, and a more traditional neural net approach, based on the back-propagation
learning algorithm. !

1.2 Phase Il Background

In the fall of 1988, the Atmospheric Effects Division, U.S. Army Atmospheric Sciences
Lahoratory (ASL), supported a Small Business Innovative Research (SBIR) Phase II
project by Consultant’s Choice, Inc. (CCI) to investigate Goal Oriented Pattern Detection
(GOPAD), Artificial Neural Nets (ANS), and a symbolic satellite image processing
technique to support tactical weather forecasting on the AirLand Battlefield. The overall
goals of the research were to develop technologies that could be used to automate the
production of weather forecasting models, to evaluate the peformance of prc.otype
forecasting models, and to demonstrate how an innovative symbolic image
representation scheme could be used to automatically track clouds in multi-temporal

GOES imagery.

CCI's neural net a) proach wae based upon an algorithm called Geal Orisnted Pattern
Detection (GOPAD) and tte back-propagation learning algorithm. GOPAD is
technically described as a statistical, ootimizing, machine-learning, analogue, forecast
model creation, software tool. The output from GOPAD is a tactical or mesoscale, real-
time weather forecasting software program data that executes in seconds on any
computer and in auy language. During the summer of 1989, a GOPAD forecast model
was independently tested by NOAA during a real-titne severe and significant weather

Lo anrs mom b Avvmsntmn aalPad QDVIMNOVIVATIT ON dlend donla cnVmne fm bl T 1 Fne e ce sl TN manoea -
LUAB\ADLUJg C«\bl\.b’& LALTU JLIVLIVU LS00 Wiat VUL PIdlT Ul UIC DUUIUCE dallud LJclivel,

Colorado, area. CCI believes that the GOPAD technology will represent a significant
improvement in the ability to forecast a wide variety of mesoscale weather phenomena.

1I.,ippm.mn, Richard P., An Introduction, 10 Computing with Neural Nets, IEEE ASSP Magazine, April, 1987, pages 4-22.




CCI's symbolic image processing approach was based upon the Digital {image] to
Symbolic Image Trausformation Algorithm (DSTA). This transformation algorithm
operates on a segmented digital image to produce a discrete width-encoded medial axis
(WEMA) In a LISP list format. This type of symbolic representation facilitates image
understanding by perceptual grouping.2 A software program called Cloud Image
Representation, Recognition, and Understanding Software (CIRRUS-I) was
developed to exploit the WEMA by demonstrating a capability to intelligently track
clouds in multi-temporal satellite imagery. CIRRUS-I produces cloud/temperature
displacement vectors that could be passed into a vorticity model to compute synoptic
wind patterns across the continent.

2.0 PHASE II RESEARCH OBJECTIVES
There were five broad research objectives in Phase II.

a. To develop a Probability of Precipitation {(PoP) forecast model, called BP-
Atlanta, for Hartsfield International Airport using the back-propagation
learning algorithm (BP) and the same rawinsonde data bases used to train
and test the GOPAD-Atlanta model.

b. To compare the performance of the BP-Atlanta forecas:s to the performance
of GOPAD-Atlanta, LFM/MOS, and the NWSFO forecasts.

C. To develop a severe and significant mesoscal: weather forecasting model,
called GOPAD-RT89, for an NOAA/FSL sponsored forecasting exercise
called SHOOTOUT-89.

d. To compare and evaluate the performance of the GOPAD-RT89 model to the
other forecast models that participated in SHOOTOUT-89.

e. To demonstrate the capability of a width-encoded medial axis (WEMA) to
track homogenous temperatuse regions (i.¢., clouds) in GOES IR imagery.

2Biederman, Irving, Human Image Underitanding: Recent Research and a Theory, Computer Vision, Graphics, and
Image Processing 32, 1985, pages 329-73.
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3.0 ARTIFICIAL NEURAL NETS

3.1  Researcn Overview

This research was siructured to develop, modify, test, evaluate, and compare the
usefulness of Artificial Neural Nets (ANS) as an approach to developing tactical
weather forecasting models. In Phase I, Goal Oriented Pattern Detection (GOPAD1)
was used to develop a Probability of Precipitation (PoP) forecast model for Hartsfield
International Airport in Atlanta, Georgla. The high skill scores achieved by this hybrid
neural net approach suggested that perhaps a more traditional neural net approach
using the back-propagation {BP) learning algorithm might be able to outperform a
GOPAD1 model. In addition, GOPAD1 (i.e., the BASIC language version) appeared to
have several problems that might limit its usefulness as a tool for creating tactical
weather forecasting models. Although many of these limitations were eventually
mitigated by the evolution of GOPAD1 into GOPAD2, we believed that it would be
prudent to investigate the potential of a traditional neural net approach, since the data
bases were readily available for direct comparisons.

3.2  Training and Testing Data Base

The training data base consisted of rawinsor Je data from three sites: Athens, Georgia;
Waycross, Georgia; and Centerville, Alabama, for a 7-month period (i.e., April to
October} and for a 10-year period (L.e., 1975 to 1984).

The testing datc base consisted of rawinsonde data for a 5-month period (L., May to
September) during 1987. The testing da.a base consisted of the same variables that
were in the training data base.

Both data bases were composed of the twice daily (Le., 0Z and 12Z} rawinsonde
soundings. Each sounding was composed of four variables (i.e., temperature, relative
humidity, and wind direction and speed) for ten levels in the atmosphere (i.e., 900, 800,

700, €00, 500, 400, 300, 200, 1E0, and 100 mb). The wind direction and speed were
converted to u (east-west} and v (north-south) components. All variables were
normaiized to have a mean of zero and a standard deviation of one. Thus, the historical
training data base consisted of 2,130 records or data points (i.e., 213 days/year x 10

years), whereas the testing data base consisted of 153 records. Each record in the
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training and testing data bases had 241 predictor variables (i.e., 4 variables/level x 10
levels/rawinsonde x 3 sites x 2 rawinsondes/sites) plus the day-number).

3.3  Ground Truth Data Base

The ground truth data, obtained from the National Climatic Data Center (NCDC),"
consisted of hourly precipitation data for the National Weather Service Forecast Office
at Hartsfleld International Airport in Atlanta, Georgia. The time variable was shifted to
Greenwich (Z) time and summarized in six-hour totals ending at 6Z, 12Z, 18Z, and 24Z.
All variables were normalized to have a mean of zero and a standard deviation of one.

34  LFM/MOS and NWSFO Forecasis

The forecasts issued by the National Weather Service For:cast Office (NWSFO) at
Hartsfleld International Airport in Atlanta and the Limited Fine Mesh/Model Output
Statistics (LFM/MOS) data were obtained from the hand-written reports maintained by
the NWSFO. This information was obtained for the 3-month period June to August,
1987. This data was used as a benchmark during Phase I and Phase II to compare the
performance of GOPAD and BP forecast models.

It is important to note that the LFM/MOS forecasts used the 0Z sounding for the 12-
24Z forecast period, whereas GOPAD-ATLANTA and BP-ATLANTA models used the 12Z
sounding to produce the 12-24Z forecasts. These times were used because, in an
operational setting, the LFM/MOS 12-24Z forecast based upon the 12Z sounding is not
available until about 15-17Z, whereas the GOPAD-ATLANTA and the BP-ATLANTA
models are available seconds after the 12Z sounding data arrives (i.e., about 1230Z).
Thus, in order for LFM/MOS to provide timely information to a forecaster, it must use
the 0Z sounding, whereas a GOPAD or BP model can be based upon the 12Z sounding.
While this difference may appear to disadvantage LFM/MOS vis-a-vis GOPAD and BP, it
is also tmportant to note the great advantage that LFM/MOS has had in research and
development time compared :o the limited experimentation with GOPAD and BP
models. The poini is itai perfecily maiched, objeciive comparisous are not yet possibie.
However, future rescarch and development will eventually make direct quantitative and
qualitative compariscns possible.
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3.5 imal F Model R h

3.5.1 Objective

The objective of this research was to identify the optimal combination of BP parameters
that would produce a PoP forecast model with the highest possible Brier-based skill
score.® The optimal ANS model that was produced is referred to as BP-ATLANTA-241.

3.5.2 Research Results

This research was performed during December, 1988, and January, 1989. The
approach used to find the optimal parameters was trial and error. The measurement
used to identify the optimal model was the single (Brier) skill score obtained for the
combined months of May, June, July, August, and September, 1987. The training and
testing data bases were the data bases that were prepared for GOPAD during Phase L.
The climatology used to compute skill score for each of the five months was 22%. In
later experiments, the climatology was ccmputed for each month in the training data
base. Consequently, slight differences in skill scores occur between the following tables
in this secticn and the tables in other paragraphs.

The BP architecture and parameter sattings for BP-Atlanta-241 which produced the
highest Brier-based skill score are listed in Table 1. The skill score obtained for these
settings was 20.19%.

3Murphy, A.H., and Daan, H, "Forecast Evaluation”, Probability, Statistics, and Decision Making in the Atmospheric
Sdiences, Westview Press, 1985, pp. 379-437.




TABLE 1
ARCHITECTURE AND PARAMETERS FOR BP-ATLANTA-241

3  Number of input, hidden, and output layers
241 Number of nodes on input layer
30  Number of nodes on the hidden layer
1 Number of nodes on the output layer
10 Number of passes
1 Number of iterations
0.01 Learning rate
0.90 Momentum
Table Source for Sigmoid function
n/a Randcm seed
no Input and output slabs connected

3.5.2.1 Learning Rate Experiment

The purpose of this experiment was to observe the effects of changing the learning rate
parameter while keeping all other network parameters constant. Table 2 shows initial
research using the preprocessed data with fiv- -month skill scores, while Table 3 shows
the weekly skill scores after the training and testing data base 3 were reconstructed.

TABLE 2
FIVE-MONTH SKILL SCORES FOR VARIOUS LEARNING RATES

Brier-based
Learning Rate Skill Score Time (hr:roin.sec)
005 +17.79% 7.11
019 +20.19% 7.11
.020 + 18.45% 7.11
.025 +14.07% 7.11
.030 +13.24% 7.11
040 +5.20% 7.11
.050 + 4.06% 7.11
075 +2.47% 7.11
.100 - 3.56% 7.11
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TABLE 3
WEEKLY SKILL SCORES FOR VARIOUS LEARNING RATES
LEARNING RATES
Summer

1987 005 .G10 020 025 030 040 050 750 .100
June 7 22.1 18.1 22.5 18.6 15,5 41.2 66.2 74.1 7.6
14 38.7 324 21.5 19.3 22.0 77.6 67.1 66.0 8.3
21 58.9 62,1 60.9 25.6 38.0 14.4 71.5 74.0 73.3
28 32.8 40.2 22.1 174 342 -42.4 €.0 8.7 53.7
July 5 23.4 30.6 19.2 -6.3 -3.8 -22.1 -16.0 -0.5 -7.8
12 -5.7 8.9 13.7 15.3 203 -86.7 -131.0 -107.5 -20.9
19 27.7 28.4 10.6 4.9 4.9 -6.3 -3.8 -3.0 30.0
26 -10.2 -10.2 -5.5 -80 -17.1 15.9 18.3 a3 -3.6
August2 24 -43 -112 -129 272 6568 -845 -653 -11.3
9 120 173 -2.0 -3.2 -85 -21.6 15.3 6.1 1.2
16 164 -108 -305 -10.8 -19.2 78.5 49.5 35.1 -304.4
23 41.0 50.1 51.3 65.4 75.8 83.0 -0.3 -39.0 3.1
30 -140 -75 2.3 62.3 71.2 91.2 -899.5 -217.2 -102.0
Averages: 18.8 19.6 13.4 144 16.1 13.5 -36 -126 -21.4

Combined Skill Scores:
JJ-A 239 26.1 18.6 9.9 12.3 -0.2 9.5 8.5 11.8
M-JJ-A-S19.0 214 19.6 15.3 14.5 6.6 5.5 39 2.0

3.5.2.2 Hidden Nodes Experiment

The purpose of this experiment was to observe the effects of changing the number of

hidden nodes while keeping all other network parameters constant. Table 4 shows
initial research using the preprocessed data with five-month skill scores, while Table 5
shows the weekly skill scores after the training and testing data bases were

reconstructed.
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N TABLE 4
HIDDEN NODES EXPERIMENT
Brier-based
Eidden Nodzss Skill Score Time (hr;min.sec)
10 +12.76% 2.46
20 +12.71% 4.54
30 +20.19% 7.11
40 +18.64% 9.29
50 +14.50% 11.47
&0 +18.44% 14.04
70 +16.52% 16.22
80 +8.87% 18.41
90 +10.37% 20.58
100 +4.84% 23.16
TABLE 5
WEEKLY SKILL SCORES FOR VARIOUS NUMBERS OF HIDDEN NODES
NUMBER OF HIDDEN NODES
Summer-
1987, 10 20 30 40 90 60 70 80 20
June 7 -1.7 18.2 18.1 28.5 14.4 15.7 6.7 17.3 374
14 15.7 29.7 32.4 18.5 34.2 27.3 26.9 38.2 33.1
21 65.8 64.2 62.1 56.6 43.9 54.4 54.6 56.1 57.6
28 51.3 54.5 40.2 44.7 28.8 36.9 39.0 42.4 32.9
July & 29.1 15.6 30.6 22.7 24.2 22.0 47.2 0.2 18.4
i2 -18.3 -19.6 89 -10.7 -226 26.1 6.6 57 -33.3
19 49.5 33.3 28.4 11.6 7.5 5.5 134 15.0 18.8
26 -5.9 27.7 -10.2 18.6 -3.5 19.0 -04 5.1 0.5
2 -3.1 -12.7 -43 -11.9 -313 -348 537 -355 -37.6
Augustg 194 5.7 17.3 25.6 26.8 22.8 9.7 5.1 12.2
16 -88,7 <725 -10.8 12.9 16 -63.7 -83.3 -1279 -28.2
23 -2G.7 309 50.1 19.9 -40.0 40.6 643 -19.8 -35.6
30 -131.2 3. -7.5 19.4 55.5 -0.2 345 -70.4 -864
Averuges: -1.8 15.3 19.6 19.7 10.7 13.2 12.7 -5.233 -0.8
Combined Skill Scores:
J-J-A 203 23.8 26.1 25.5 17.5 23.2 20.3 13.8 15.8
MAJ-J-A-S 14.C 140 214 1.6 15.7 19.6 17.7 10.2 11.7
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3.5.2.3 Passes Experiment

The purpose of this experiment was to observe the effects of changing the number of
passes in a back-propagation algorithm, waile keeping all other network parameters
constant. Table 6 shows Initial research using the preprocessed data with five-month
skill scores, while Table 7 shows the weekly skill scores after the training and testing
data bases were reconstructed.

TABLE 6
PASSES EXPERIMENT
Brier-based
Passes Skill Score Time (hrimin,sec)
5 +19.14 3.35
10 +20.19 7.12
20 +18.28 14.22
30 + 14.98 21.34
40 +7.76 28.48
60 + 1,74 43.08
TABLE 7
WEEKLY SKILL SCORES FOR VARIOUS NUMBERS OF PASSES
NUMBER OF PASSES
ummer-87 5 10 20 30 40 60
June 7 20.1 18.1 30.3 24.9 22.7 17.0
14 32.8 32.4 27.5 29.0 15.0 27.9
21 57.1 62.1 55.9 58.2 56.3 52.7
28 30.8 40.2 26.5 39.8 47.5 40.7
July 5 20.2 30.6 37.7 37.7 33.9 33.8
12 6.1 8.9 12.4 14.7 27.7 23.3
19 22.3 28.4 7.6 9.0 6.7 -4.8
26 -9.6 -10.2 -19.5 -20.6 -24.3 -27.1
August 2 4.3 -4.3 -13.5 -23.9 -34.8 -34.1
9 10.9 17.3 -0.7 -17.7 -14.0 -4.8
16 14.5 -10.8 -11.8 -82.9 -144,7 -195.6
23 53.0 50.1 50.1 19.5 -102.4 -178.3
30 3.8 -7.5 -3.8 -16.3 -70.2 -152.4
Avcrages: 20.5 12.8 18.3 5.5 -13.8 -30.5
Combined Skill Scores:
J-J-A 23.8 26.1 19.8 16.6 10.8 6.3
M-J-~J-A-S 20.3 21.4 19.5 6.2 9.1 3.2
10
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3.5.2.4 Momentum Experiment
Fl The purpose of this exp._ciment was to observe the effects of changin,, the momentum in
a back-propagation algorithm, while keeping all other network parameters constant.
il Table 8 shows initial research using the preprocessed data with five-month skill scores.
t
TABLE 8
MOMENTUM EXPERIMENT
Brier-based
Momemum Skill Score Time (hr;min,sec)
780 +16.98 7.11
800 +17.96 7.11
{350 +19.04 7.11
900 +20.19 7.11
925 +19.79 7.11
950 +19.90 7.11

3.5.2.5 Iterations Experiment

The purpose of this experiment was to observe the effects of changing the number of
iterations in a back-propagation algorithm, while keeping all other network parameters
constant. Table 9 shows initial research using the preprocessed data with five-month

B A M S B A G B o Sa e

skill scores.
TABLE 9
ITERATIONS EXPERIMENT
Brier-based
Iterations Skilil Score Time (hr;min.sec)
1 +20.19 7.11
2 + 14,97 14,97
3 + 9,22 21.05
5 - 8.99 34.58
|
gl
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3.5.2.6 Sigmoid Table Fxperir:..nt

The purpose of this experiment was to observe the effects of obtaining the Sigmoid value
from a table, and obtaining the value by calculation for a back-propagation algorithm,
while keeping all other network parameters constant., Tahle 10 shows initial research

using the preprocessed data with five-month skill scores.

TABLE 10
SIGMOID TABLE EXPERIMENT
Brier-based
) id Valu Skill Score
Table +20.19
Calculated +20.19

3.5.2.7 Input-Output Layer Connuvction Experiment

The purpose of this experiment was to observe the effects of not connecting the input
layer directly o the output layer in a back-propagation algorithm, while keeping all
other network parwneters constant. Table 11 shows initial research using the

preprocessed data with five-month skill scores.

TABLE 11
LEARNING RATE EXPERIMENMNT
Brier-based
Input-Qutput Skill Score
Not Connected +20.19
Connected -29.41

This research sought to validate the previous research work by setting aside the
preprocessed historical data base that was originally created to train the GOPAD-
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ATLANTA-RIR, and reconsiructing a new aata base from the raw soundings provided by
the Naticnai Climatic Data Center.

This research sought to develop a combination of BP forecasts models that could be
compared to the GOPAD -E, -F, and -G models that comprise the GOPAD-ATLANTA-RIR
model developed during Phase I.

This research sought to observe the degradation that would occur when a 12-24 hour
forecast model was created rather than a 0-12 hour forecast model,

This research sought to determine whether the weighting factors on the
interconnections in a BP model could be used to prioritize the relative contribution of
the input variables.

3.6.2 General Approach

This research was performed during April-May 1989, A Hecht-Neilsen Anza Plus
neurocomputer-board in an 80286-based microcomputer was used to perform the

experiments. The training data base used was reconstructed from the original raw
sounding data files.

Once the apparent optimal parameter settings (listed in Table 1) were found, the
number of hidden nodes, the number of passes, and the learning rate parameters were
selectively varied to observe the effect on weekly forecasting skill scores for the test
period. This task was accomplished by setting all parameters to their optimal values,
and then varying the settings for one parameter at a time. The ten-year historical data
base was then processed through the network to create a forecast model.

Once a BP forecast model was created, the 5-month testing data base for 1987 was
processed through this model one day at a tirae to produce the probability of rain for
each day. The probability of rain for each of the 153 days in: the test data base was
then writien ‘o a forecsst file. Each forecast file for each of the 24 models was overlaid
onto a standard LOTUS™ spreadsheet, where the daily, weekly, and monthly Brier-
based skill scores were immediately calculated. The results of these experiments are
shown in Tables 3, 5, and 7.

13
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3.6.3 Spreadsheet Calculation of Skill Score

Attached as Appendix A are samples of 3 of the 24 LOTUS™ gspreadsheets that were
used to calculate skill scores for the various BP models. These spreadsheets

automatically calculated the performance of each experiraental n-odel when the BP
output flle was overlaid.

The Optimal Parameters column shows the optimal settings for BP-Atlanta-241. The
column is the same on all spreadsheets.

The Variable Changed column shows which parameter was changed and its settix:j,

The Day # column is a day count number for each of the 153 days or records in the
testing data base.

The Forecast Qutput column is the PoP for that day.

The Actual Rain column contains either a "1" or a "0" to designate whether it rained or
did not rain on tuat particular day during the 12Z-24Z period.

The ANS column is the squared error between the probability forecast column and the
Actual Rain column.

The Climatology column is the squared error between climatology for each mionth and
the Artual Rain column. The climatology for rain in May was 27.7%; in June, it was
21.0%; in July, it was 24.9%; in August, it was 22.8%; and in September, it was 23.0%.
A single climatology was used for all nionths in Phase I to compute skill scores for the
GOPAD-ATLANTA-RIR model, so the skill scores prepared in Phast II are slightly
different than those reported in the Phase I Final Report.

The Daily, Weekly, and Monthly columns compute the skill scores for the present day
and the past seven days, and for the present day and the past 30 days, respectively.

The Brier-based sxill score wa.s computed according to the following forinula:

SS = 1 - Z(ANS sq error/ climatology sq error)




3.6.4 Comparative Performance Evaluations

3.6.4.1 Objectives and Approaches

The objective of this research was to compare the performance of BP-ATLANTA models
to the National Weather Service Forecast Office (NWSFO), the LFM/MOS, and the
GOPAD-ATLANTA-RIR models created during Phase I. The approach was to create a
series of BP-based forecast models that were similar in structure to the GOPAD-
ATLANTA-RIR model developed in Phase I using a PC/AT with a Hecht-Neilsen
neurocomputer board installed. The performance of these new models would then be
compared to the performance of the GOPAD-ATLANTA-RIR, the NWSFO, and the
LFM/MOS forecasts.

As an additionai objective, CCI sought to verify the performance of the BP-ATLANTA-
241 model by completely reprocessing the original rawinsonde training data base in-
house. Consequently, all the preprocessed historical data files that were used to find
the optimal parameter settings for BP-Atlanta-241 were discarded. In conjunction with
the reconstruction of these data bases, all forecasts were consolidated into LOTUS™
spreadsheets so that all skill score computations would be calculated exactly the same.

3.6.4.2 Research Results

Six BP forecast models were created with the optimal parameter settings used by the
BP-ATLANTA-241 model. These models are designated BP-E241, BP-F241, BP-G241,
BP-E32, BP-F32, and BP-G32. Each of these models was trained on a different
combination of months. The E-model was trained on May~June-July data; F-model was
trained on June-July-August data; and G-model was trained on July-August-September
data. Although neither a D-model nor an H-model was developed, the D, E, and
F-models would be polled to produce a forecast for June; the E, F, and G-models would
be polled for July; and the F, G, and H-models would be polled for August in an
operational environment.

The numbers 241 or 32 in a model's name indicate the number of input variables that

were used in the training mode. The 32 variables were those that GOPAD selected out
of all the 241 variables that were available as candidate predictor variables--a form of
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dimensionality reduction. Thus, it was possible to measure how much information was
contained in the variables that GOPADI1 (i.e., the BASIC language version) had selected.

The skill scores for these models were calculated using the Lotus™ spreadsheets

described earlier so they could be compared to the GOPAD-ATLANTA-RIR, the WSFO,
and LFM/MOS forecast models.

Table 12 summarizes the three-month combined skill scores. This table shows that the

GOPAD1 selection process appears to lose some information as a result of
dimensionality reduction.

TABLE 12
THREE-MONTH SKILL SCORES
USING PP-ATLANTA-241 PARAMETER SETTINGS

BP-241 25.0% 27.0% 22.0% uot computed
BP-32 17.5% 19.7% 15.6% not computed
GOPAD-ATL 22.2% 10.0 18.8% 26.3°
LFM/MOS n/a n/a n/a 16.1%

WSFO n/a n/a n/a 21.7%
BP-241** 2.1% 5.9% 0.79% not computed

*This score represents the result of polling the E, F and G-models, and applying the Reliability Index Rule
(RIRm) as modified. In Phase I, the skill score for the GOPAD-ATLANTA-RIR model used 22% as the
climatology for all ive months. In Phase II, the actual climatologies for each month were computed and
used in the computation of skill scores, Consequently, there {s a slight difference between the skill scores
for GOPAD reported in the Phase [ and Phase II final reports.

**These models used the same OZ sounding that the LFM/MOS model used to make the 12-24Z forecast;
whereas the other BP and GOPAD models used the 12Z sounding to make the 12-24Z forecast.
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Table 13 shows the skill scores for each model for each month.

TABLE 13
MONTHLY SKILL SCORES
USING BP-ATLANTA-241 PARAMETER SETTINGS
Name June July August rinmer
BP-E241 49.3% 6.9% -0.8% 25.0%
BP-F241 46.5% 12.1% 7.6% 27.0%
BP-G24 38.1% 0.5% 10.8% 22.0%
BP-E32 41.0% 10.7% -23.2% 17.5%
BP-F32 35.4% 11.1% - 4.7% 19.7%
BP-G32 24.6% 7.1% 4.4% 15.6%
GOPAD-RIR 43.2% 22.4% -0.6% 26.3%
LFM/MOS 26.0% 12.0% 3.0% 16.1%
WSFO 35.6% 11.3% 9.6% 21.7%

Table 14 shows the weekly skill scores using BP-Atlanta-241 parameter settings. The
rain column shows the number of times it rained during each week.

TABLE 14
WEEKLY SKILL SCORES
USING BP-ATLANTA-241 PARAMETER SETTINGS

Summer-87 WSFQ LFM/MQS GOPAD-E GOQPAD-F GOPAD-G RIR Rain

June 7 -19.0 4.3 7.6 -21.7 15.5 5.4 1
14 2.7 14.3 40.8 25.2 35.4 27.3 2
21 61.3 39.2 64.5 48.4 40.8 5.6 6
28 34.1 18.3 20.6 13.7 47.9 29.3 3

July 5 24.7 24.2 49.0 1.1 36.4 54.9 3
12 -11.3 2.1 16.7 0.7 25.3 34.0 1
19 18.5 1.8 44.5 10.3 39.2 44.5 1
26 28.5 17.0 -24.5 6.8 -22.4 -22.4 2

August 2 6.8 5.4 -19.9 -37.7 -0.7 -7.4 2

9 13.9 11.6 -1.7 13.3 -1.7 -8.3 4
16 -36.5 -24.0 83.6 -50.6 15.1 54.3 0
23 17.0 52.4 64.4 83.6 67.1 75.4 0
30 1.9 -41.7  -204.0 -127.3 -220.4 -47.0 0

Averages  10.97 9.61 109 -2.6 6.0 23.5

J-J-A 21.7 16.1 22.2 10.0 18.8 26.3
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Table 15 shows weekly skill scores using BP-Atlanta-241 Parameter Settings. The rain
column shows the number of times it rained during each week.

TABLE 15
WEEKLY SKILL SCORES
USING BP-ATLANTA-241 PARAMETER SETTINGS
Summer ‘7  E241 F241 G241 E32 F32 G32  Rain
June 7 227 212 10.8 -5.8 3.1 3.2 1
14 31,7 312 275 386  27.1 18.6 2
21 65.7 644  55.1 62.8  53.5 36.7 6
28 460 39.7 413 335 289 17.0 3
July 5 26.8  30.1 -47 241 22.3 20.3 2
12 -16.9 115 248 -4.1 4.3 5.2 1
19 443 289 340  51.1 424 357 1
26 -11.3 9.1  -192 -3.4 3.0  -132 2
August 2 -12.6 -6.4 -5.1 -7.5 2.6 -6.1 2
9 16.2 22.2 1.0 176 246 19.4 4
16 22.0  -11.1 534 -506 -64.1  -28.1 0
23 658 526 723  -465  -l4.1 23.7 0
30 -14 208 397 -1840  -56.0 17.7 0
Averages 23.0 196 254 -5.7 5.1 115
J-J-A 250 270 220 17.5 19.7 15.6
M-J-J-A-S 164 209 224 11.0 16.0 15.8
|

3.6.5 Identification of Important Predictor Variables

3.6.5.1 Objective

The objectives of the research are (1) to create a list of parameters sorted according to
each parameter's relative weighting along the interconnection paths to the output node;
and (2) to identify the 32 GOPAD selected parameters in this sorted list to determine if
weights along the interconnections could be used to find important variables.

3.6.5.2 Research Results
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determine whether the BP learning algorithm could be used to identify the predictor
variables that had the greatest hufluence on the forecast. This effort was thought to be
useful because the most important ANS variables could be compared to those selected
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by the statistical analysis process in GOPAD1. Since statistical analysis is the most
time-consuming GOPAD process, it might be possible for the BP algorithm to perform
dimensionality reduction because it appeared to be much faster than GOPAD1.

The BP-F241 model was used for this research. The weights between each input node
and the output node for all interconnection paths were summed. These weights were
then sorted. The 32 candidate predictor variables that GOPAD selected were identified
in this sorted list to determine if they were bunched near the top, middle, or buttom of
the list, or whether they were scattered evenly throughout. Appendix A shows the
sorted list with all 241 variables, and the 32 variables that GOPAD selected as
containing the most statistical information. This Appendix shows that the GOPAD-
selected variables are scattered fairly evenly throughout this list. Table 16 is an extract
from Appendix A showing just the 32 variables that GOPAD selected. Based on these
results, simply summing the weights along the interconnections does not appear to
provide any insight into which variables are most important.
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Ranking

7

22
25
33
42
50
65
69
77
90
94
98
103
104
107
122
127
129
139
145
155
158
165
186
188
190
191
204
211
221
232
233

TABLE 16

Weighting

2.541121
2.350847
2.340340
2.296635
2.250115
2.207791
2.160017
2.137422
2.088976
2.061980
2.058352
2.039243
2.031388
2.030351
2.024281
1.982341
1.974752
1.961482
1.938703
1.930760
1.887024
1.875487
1.853136
1.769200
1.760480
1.748589
1.745677
1.692686
1.658782
1.596003
1.440968
1.435088

SUMMARY OF WEIGHTS ALONG THE INTERCONNECTIONS
FROM EACH INPUT NODE TO THE OUTPUT NODE
FOR THE GOPAD SELECTED VARIABLES

Input V: 1

CA600U
AAS00D
WA400U
AASOOU
AASOOV
CABOOV
AA300D
AA600U
AA600T
WA700T
AABOOV
DAYCNT
CAS00V
AA100U
CA400U
AA700D
CA800U
WASOOV
AA700U
A400U
AA100T
CA200T
A300T
WA700V
WASOOV
CA700V
CA300U
WA300T
CA600D
CA600T
WAS00U
AA700V

4.0 GOAL ORIENTED PATTERN DETECTION

Previously, CCI had investigated expert systems for creating tactical weather forecast
models. During Phase I and II, standard and non-standard neural net approaches were
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investigated. Through this effort, it was found that a proprietary algorithm, called Goal
Oriented Pattern Detection (GOPAD), developed by Dr. Kenneth Young at the
Institute of Atmospheric Physics, University of Arizona, held the greatest potential to
achieve Army objectives for tactical weather forecasting. During CCI's research, GOPAD
was used to produce two experimental models--GOPAD-Atlanta-RIR and GOPAD-
SHOOTOUT-89. The GOPAD-Atlanta-RIR was a Probability of Precipitation (PoP) model
developed for Hartsfleld International Afrport in Atlanta, Georgia. The GOPAD-
SHOOTOUT-89 model was a severe and significant weather forecast model that was
independently tested by NOAA during a real-time severe and significant weather
forecasting exercise called SHOOTOUT-89 that took place in the Boulder and Denver,
Colorado, area. The forecasting skill of these GOPAD models appears to be very
promising, in spite of the limited number of sources of candidate predictor variables for
the former model, and the limited amount of input data that was available for the latter
model.

4.2  GOPAD Description

GOPAD is technically described as a statistical, optimizing, machine-learning, analogue,
forecast model creation, software tool. GOPAD extends the multi-discriminant analysis
(MDA} methods developed by Miller (1962), and the analogue forecasting method of
Kruizinga and Murphy (1983). GOPAD uses a k-nearest neighbor search. GOPAD
produces data that can be used to construct a mesoscale, real-time weather forecasting
software program that executes in seconds.

In general, the GOPAD model development tool (1) creates optimal machine-derived
indices from highly correlated variables; (2) identifies the optimal statistical
relationships between all candidate predictor variables and indices using a very large,
historical weather data set (i.e., 100 to 30,000 variables/indices per data point and 100
to 40,000 data points); and (3) optimizes the n-space scaling and neighborhood size to
provide information that can be used to prepare a non-linear forecast model. GOPAD
models are able to reveal the underlying physical relationships upon which the model is
based in the form of exemplars--thus enabling a meteorologist to examine a model's
forecast.

Appendix B is a paper that was presented at the 1989 EOSAEL/TWI Conference that
describes how GOPAD operates, the types of tactical mesoscale forecast models that
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could be developed, a method for defining forecast models, and how the GOPAD
development process is used to create new forecast models.

4.3  Conclugions

The full potental of the GOPAD development system to create mesoscale models that
can provide accurate forecasting information to the Staff Weather Officer on the
battlefield has not yet been determined. To date, GOPAD has been used to produce
forecast models with very few sources of candidate predictor variables (i.e., rawinsonde
and mesonet) and, in tie SHOOTOUT-89 exercise, with a severely limited and
inaccurate historical data base. The true potential of GOPAD cannot be fully
documented until (a) all available sources of predictor variables are used, (b) an
adequate historical training data base is provided, and (3} accurate records are
available for the event to be predicted. These requirements also point out the Achilles
heal for any neural net approach. However, when compared to the knowledge
engineering problem for an expert systems approach to tactical weather forecasting, a
machine learning approach still appears to offer the greatest long term cost-benefit to
the Army.

5.0, MESOSCALE WEATHER FORECASTING EXERCISE--SHOOTOUT-89

5.1 B un

At the conclusion of Phase I research, GOPAD1 (i.e., the BASIC languare version)
appeared to he a promising approach for automating the construction of mesoscale
weather forccasting models for a tactical environment. However, GOPAD1 had several
problems that appeared to limit its usefulness for more complex problems that would
require many sources of predictor variables and larger data bases. Consequently,
research with a more traditional neural net (i.e., the back-propagation learning
algorithm) was undertaken for comparison p.atposes.

Between Phase I and Phase II, the GOPAD1 program was upgraded to a VAX FORTRAN
version called GOPAD2. This new version appeared to cvercome many of the problems
perceived in GOPAD1. Since GOPAD2 appeared to have much more potential than
GOPAD1, a decision was made to use GOPAD2 to construct a model that would
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participate in the Forecast System Laboratory/NOAA-sponsored exercise called
SHOOTOUT-89. The SHOOTOUT-89 mode]j is referred to as GOPAD-RT89,

5.2  SHOOTOUT-89 Evaluations

5.2.1 NOAA/FSL Comparative Evaluation

A massively co-authored paper is being prepared by NOAA/FSL that evaluates all six
models that participated in the SHOOTQUT-89 exercise and will be submitted for
publication in the Bulletin of Americar. Meteorological Society (BAMS) in 1990.

5.2.2 Performance Evaluation

Appendix C is a paper that quantitaifvely compares the performance of all models that
participated in SHOOTOUT-89 in more detail.

5.3  Conclusions

There are many different ways to quantitatively and qualitatively compare the
performance of the system that participated in the SHOOTOUT-89 exercise. We choose
to summarize and caveat the quantitative performance in Table 17 and Table 18,

First, Table 17 shows the (Brier) skill scores ior ‘< ~vere weather based upon the
forecasts In which there was no statistically significant difference between reporting of
severe weather between 1985/87 and 1989 (i.e., Reglons II, I, and IV). This table
eliminates the effect from seriously uiider-reporting significant weather in ail regions,
and from serfously under-reporting severe weather in region I. GOPAD and ALPS are
most helped by this caveat.
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TABLE 17
SKILL SCORES FOR SEVERE WEATHER
IN REGIONS II, IlI, AND IV

GOPAD1 +2.1%
GOPAD2 + 1.9%
ALPS -0.7%
Willard -11.9%
KASSPr -17.0%
CONVEX -24.0%
OCI -32.3%

Second, Table 18 shows the skill scores only for region IV which was the only region
that had an adequate number of events upon which to train a GOPAD model. This
tables mitigates the fact that there was not a large historical data base available to
develop a GOPAD model. GOPAD is helped most by this caveat.

TABLE 18
SKILL SCORES FOR SEVERE WEATHER
IN REGION IV
GOPAD1 +13.8%
GOPAD2 +13.2%
ALPS + 1.8%
KASSPr -0.2%
OCI -3.1%
Willard -12.6%
CONVEX -40.9%

6.0 CLOUD IMAGE REPRESENTATION, RECOGNITION, AND U//IDERSTANDING
SOFTWARE

6.1 Background
Cloud Image Representation, Recognition, and Understanding Software (CIRRUS-I)

autonomously tracks individual homogeneous temperature regions in GOES Infrared
(IR} imagery, and intelligently derives cloud displacement vectors from the leading edges




of tracked cloud-objects. The CIRRUS-I vector file could be used as input to a vorticity
modeling program to produce synoptic wind or stream flow flelds over North America.
The synoptic wind patterns would then be used as an important source of candidate
predictor variables for a neural net or GOPAD.

6.2 IRRUIS-I Data Flow

Appendix D is a paper that was presented at the 1989 EOSAEL/TWI Conference. This
paper describes how the CIRRUS algorithm operates.

6.3 CIRRUS-] Performance
Appendix E is a series of photographs that show examples of how CIRRUS-I performs.
6.4  Conclusions -

CIRRUS-I was developed to provide yet another source of candidate predictor variables
that would be processed by GOPAD to produce a more accurate forecast model. The
ultimate test of the usefulness of CIRRUS-I for mesoscale forecasting is the quality of
systematic information contained in its candidate predictor variables that can
contribute to the forecast relative to the information available from other sources.
Therefore, the best way to determine the value of the CIRRUS-I and the vorticity
modeling program is to produce a multi-year historical synoptic wind flow data base,
and measure the statistical contribution of CIRRUS-I as a source of predictor variables
relative to the candidate predictor variables from other sources (e.g., rawinsonde,
mesonet, NGM, barotropic, etc.).

CIRRUS-I lays the foundation for automating many tedious visual analysis tasks that
are performed by a human, where shape, relative proximity of individual objects to each
other, a priort knowledge, and inferencing are important for object recognition and
image interpretation. In the weather domain, for example, CIRRUS-I could be extended
t

Pore ) + o £, dovman i pory | o~ 3
¢ recognize features in GCES satcllitc imagery such as fronts, troughs, ridges, and

areas of high and low pressure, and to speculate about the future state and location of
these features.
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For other applications, CIRRUS-I demonstrates the usefulness of a very innovative, non-
digital, irnage representation scheme that makes it possible to develop software
programs that can use the visual cues that a human uses to recognize objects. This
approach to image processing mitigates many classical image understanding problems.

7.0 PHASE II RECCMMENDATIONS

Artificial Intelligence techniques investigated during Phase I and II can be used to provide a new
level of automated computer support to the Staff Weather Officer. In order to properly
evaluate the capability of these technologies to support the SWO, a human forecaster
who 1is using GOPAD models and/or CIRRUS should be directly compared to a second
forecaster who is using the next best technology that might be available in a tactical
envircnment. If it can be shown that the performance of the former forecaster is
statistically higher than the latter, then the value of a system should be apparent.
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Appendix A

BRIER-BASED SKILL SCORES FOR BP-ATLANTA~241
USING OPTIMAL PARAMETERS

Optimal Variable
Parameters Changed Architectural Options
2 # Slabs
30 # Hidden Nodes
10 # Passes
1 # Iterations
0.01 Learning Rate
0.9 Momentum
Table Sigmoid Source
0.1 Random Seed
241 # Input parameters
no Input slab connected to output

Overall Performance:

June-July-Aug Skill = 26.1%
May-June-July-Aug-Sept Skill = 21.4%
Squared-Errors Skill Scores
Forecast Actual
Day# Output Rain ANS Climatology Daily Weekly Monthly Date
1 0.201184 1 0.638 0.522 -22.2% May 1
2 0.499511 0 0.250 0.077 -224.2%
3 0.305489 0 0.093 0.077 -21.3%
4 0.345105 1 0.429 0.522 17.9%
5 0.062103 0 0.004 0.077 35.0%
6 0.209793 0 0.044 0.077 42.8%
7 0.242564 0 0.059 0.077 23.5% -6.1%
8 0.231266 0 0.053 0.077 30.5% 5.3%
9 0.080213 0 0.006 0.077 91.6% 30.0%
10 0.203865 0 0.042 0.077 46.0% 35.2%
11 0.528777 1 0.222 0.522 57.5% 56.3%
12 0.494628 0 0.245 0.077 ~-217.9% 31.8%
13 0.460046 0 0.212 0.077 -175.0% 14.8%
14 0.736211 1 0.070 0.522 86.7% 40.6%
15 0.650689 0 0.423 0.077 -450.2% 14.7%
16 0.540196 0 0.292 0.077 -279.2% -5.3%
17 0.5348C5 0 0.286 0.077 -271.8% -22.4%
18 0.677047 0 0.458 0.077 -495.7% -101.8%
19 0.745583 1 0.065 0.522 87.6% -26.4%
20 0.316369 0 0.100 0.077 -30.1% -18.5%
21 0.548915 1 0.203 0.522 61.0% -27.9%
22 0.109134 0 0.012 0.077 84.5% 0.9%
23 0.067608 0 0.005 0.077 94.1% 21.0%
A-1




0.458348
0.054701
0.038394
0.025107
0.050988
0.103930
0.043365
0.077169
0.125600
0.025589
0.175114
0.167490
0.035914
0.012747
0.031232
0.020138
0.075721
0.028571
0.227640
0.322525
0.587706
0.340923
0.348644
0.605566
0.€617858
0.372276
0.590070
0.606731
0.496337
0.500000
0.321672
0.205455
0.564338
0.473900
0.084266
0.013363
0.019568
0.401452
0.516107
0.538740
0.598312
0.431104
0.385837
0.324235
0.518790
0.246714
0.124851
0.099996
0.082845
0.185061
0.134094
0.200400
0.049912
0.010091

COFHPOOOODOOCOHFORFHFOHROOOOHPOFRORREPEPOMRRHEMEORPROHFROOOOOOOHFOOOOOCOOOOO

0.210
0.003
0.001
0.001
0.003
0.011
0.002
0.006
0.016
0.001
0.680
0.028
0.001
0.000
0.001
0.000
0.006
0.001
0.597
0.104
0.170
0.116
0.424
0.156
0.146
0.139
0.168
0.155
0.254
0.250
0.460
0.042
0.190
0.277
0.007
0.000
0.000
0.161
0.234
0.290
0.161
0.324
0.149
0.457
0.269
0.061
0.016
0.010
0.007
0.034
0.018
0.639
0.002
0.000

0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.044
0.044
0.626
0.044
0.044
0.044
0.044
0.044
0.044
0.044
0.626
0.044
0.626
0.044
0.626
0.626
0.626
0.044
0.626
0.626
0.626
0.044
0.626
0.044
0.626
0.626
0.044
0.044
0.044
0.044
0.563
0.062
0.563
0.563
0.062
0.563
0.062
0.062
0.062
n.0e2
0.062
0.062
0.062
0.563
0.062
0.062

Ve =

26.3%
58.2%
45.7%
55.8%
56.5%
56.7%
57.2%
95.1%
92.3%
91.9%
29.7%
24.7%
23.1%
20.5%
18.1%
19.8%
19.2%
87.7%
31.7%
20.2%
40.2%
32.4%
30.9%
40.5%
46.8%
52.4%
59.0%
59.5%
62.1%
60.6%
51.2%
44.3%
52.8%
49.4%
43.8%
40.2%
52.4%
53.9%
56.3%
32.0%
37.3%
37.8%
30.6%
26.6%
22.8%
11.8%
25.9%
10.6%
-3.3%

8.9%

4.8%
16.2%
22.4%
24.1%

12.1%
16.5%
21.3%
18.3%
18.5%
18.0%
18.3%
19.0%
19.6%
19.0%
19.3%
12.9%
15.4%
25.4%
16.6%
25.5%
35.1%
43.1%
48.0%
47.2%
50.7%
50.7%
47.0%
44,8%
46.8%
48.1%
48.2%
48.0%
47.8%
47.7%
45.6%
46.4%
43.1%
44.7%
44.4%
46.7%
45.1%
42.6%
42.0%

42.0%
42 .,0%
42.1%
41.9%
44.5%
42.1%
40.4%

41.7%

May 31
June 1

June 30
July 1




78 0.065186 0 0.004 0.062 93.2% 24.7% 42.8%
79 0.050237 0 0.003 0.062 95.9% 25.2% 40.7%
80 0.066873 0 0.004 0.062 92.8% 28.4%  38.2%
81 0.034068 0 0.001 0.062 98.1% 30.1% 40.2%
82 0.082919 0 0.007 0.062 89.0% 95.0% 37.7%
83 0.056340 0 0.003 0.062 94.9% 94.8% 34.7%
84 0.093677 0 0.009 0.062 85.9% 92.8% 32.7%
85 0.074432 0 0.006 0.062 91.1% 92.5% 36.9%
86 0.070176 1 0.865 0.563 -53.5% 4.5% 29.5%
87 0.166810 1 0.694 0.563 -23.2% -10.2%  25.2%
88 0.073164 0 0.005 0.062 91.4% -10.5% 21.2%
89 0.240061 0 0.058 0.062 7.4% -14.0% 17.1%
90 0.095517 0 0.008 0.062 85.3% -14.4% 17.3%
91 0.505859 0 0.256 0.062 -311.1% -31.6% 12.9%
92 0.276299 1 0.524 0.563 7.0% -24.3% 11.7% July 31
93 0.213049 0 0.045 0.052 13.0% -11.5% 13.8% Aug 1
94 0.209307 1 0.625 70.595 -5.0% -4.3% 7.8%
95 0.344002 1 0.430 0.595 27.7% 2.3%  13.1%
96 0.338295 1 0.438 0.595 26.5% 7.9% 9.3%
97 0.403096 0 0.162 0.052 -211.5% 1.4% 4.4%
98 0.419172 1 0.337 0.595 43.3% 16.0% 9.2%
99 0.171615 0 0.029 0.052 43.5% 18.5% 8.6%
100 0.208662 1 0.626 0.595 -5.2% 14.0% 10.6%
101 0.275129 0 0.076 0.052 -45.1% 17.3% 10.2%
102 0.081739 0 0.007 0.052 87.2% 16.0% 10.2%
103 0.145600 0 0.021 0.052 59.4% 13.3% 9.9%
104 0.172868 0 0.030 0.052 42.7%  22.4% 9.4%
105 0.103839 0 0.011 0.052 79.3% 11.9% 9.7%
106 0.062674 0 0.004 0.052 92.5% 14.7% 9.7%
107 0.326808 0 0.107 0.052 -104.7% 30.2% 10.9%
108 0.474874 0 0.226 0.052 -332.3% -10.8% 7.1%
109 0.242026 0 0.059 0.052 -12.3% -25.1% 5.9%
110 0.299719 0 0.090 0.052 -72.2% -43.9% 4.4%
111 0.122418 0 0.015 0.052 71.3% -39.8% 4.0%
112 0.049819 0 0.002 0.052 95.2% -37.5% 3.9%
113 0.029958 0 0.001 0.052 98.3% -36.7% 3.7%
114 0.023531 0 0.001 0.052 98.9% -7.6% 3.7%
115 0.122103 0 0.015 0.052 71.4% 50.1% 3.3%
116 0.141637 0 0.020 0.052 61.5% 60.6% 2.9%
117 0.279434 0 0.078 0.052 ~-49.7% 03.9% 1.6%
118 0.108471 0 0.012 0.052 77.4% 64.7% 8.0%
119 0.116060 0 0.013 0.052 74.2% 61.7% 12.2%
120 0.241310 0 0.058 0.052 -11.6% 46.0% 11.0%
121 0.447218 0 0.200 0.052 -283.4% -8.6% 7.9%
122 0.104385 0 0.011 0.052 79.1% -7.5% 7.7%
123 0.548190 0 0.301 0.052 -476.1% -84.3% 6.6% Aug 31
124 0.397470 0 0.158 0.053 -196.1% ~105.5% 4.1% Sept 1
128 0.304484 0 0.003 0.083 =73.7% -126.8% 3.0%
126  0.109419 0 0.012 0.053 77.6% ~125.7% 5.3%
127 0.106783 0 0.011 0.053 78.6% -112.3% 2.4%
128 0.341143 1 0.434 0.591 26.6% -12.1% 2.4%
129 0.511472 1 0.239 0.591 59.6% 13.9% 14.2%
130 0.424650 0 0.180 0.053 -237.9%  22.2% 4.8%
131 0.119716 0 0.014 0.053 73.1%  32.2% 5.3%




B
|

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

0.280616
0.317637
0.717210
0.637933
0.294620
0.077867
0.065246
0.388849
0.347979
0.077378
0.660391
0.147309
0.042324
0.194062
0.068787
0.070240
0.008985
0.009869
0.128415
0.169818
0.283186
0.110087

COOOOOCOOOOOOHFHROOOODOOOOO

0.079
0.101
0.514
0.407
0.087
0.006
0.004
0.151
0.121
0.006
0.115
0.022
0.002
0.038
0.005
0.005
0.1200
0.000
0.016
0.029
0.080
0.012

0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.591
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053

~-47,6%
-89.1%
~864.0%
-662.7%
-62.7%
88.6%
92.0%
~183.4%
-126.9%
88.8%
80.5%
59.3%
96.6%
29.4%
91.1%
90.8%
99.8%
99.8%
69.1%
46.0%
~-50.3%
77.3%

33.1%
27.0%
-7.7%
~68.3%
=270.1%
-223.5%
-220.8%
-240.2%
-245.6%
-109.5%
46.2%
53.3%
53.8%
50.1%
66.2%
78.9%
79.6%
81.0%
82.4%
75.1%
63.8%
61.8%

6.5%
5.7%
-12.7%
~-26.6%
-28.6%
-28.4%
~28.4%
-29,9%
-26.1%
~24.1%
~4.7%
-4.8%
-4.8%
-5.8%
~5.9%
~-5.6%
~4.9%
-2.6%
-2.7%
-3.1%
-3.7%
2.0%

Sept 30




BRIER-BASED SKILL SCORES FOR BP-ATLANTA-241

USING LEARNING RATE = .005

Optimal Variable
Parameters Changed Architectural Options
2 # Slabs
30 # Hidden Nodes
10 # Passes
1 # Iterations
0.01 .005 Learning Rate
0.9 Momentum
Table Sigmoid Source
0.1 Random Seed
241 # Input parameters
no

Input slab connected to output

Overall Performance:

June-July-Aug Skill = 23.9%
May-June~-Jul/-Aug-Sept Skill = 19.0%
J
Squared-Errors Skill Scores
Forecast Actual ======sss==ss====== =S=====
Day# Output Rain ANS Climatology Daily Weekly Monthly Date
1 19% 1 0.657 0.522 -25.8% May 1

2 46% 0 0.213 0.077 -176.5%

3 28% 0 0.077 0.077 0.5%

4 31% 1 0.477 0.522 8.6%

5 10% 0 0.011 0.077 86.1%

6 19% 0 0.035 0.077 54.6%
7 22% 0 0.050 0.077 35.1% -6.3%
8 29% 0 0.085 0.077 -10.9% 3.7%
9 10% 0 0.009 0.077 87.7% 24.4%
10 19% 0 0.036 0.077 52.7% 28.4%
11 42% 1 0.333 0.522 36.2% 43.1%
12 52% \ 0.267 0.077 -246.5% 17.1%
13 44% 0 0.192 0.077 -149.4% 1.1%
14 67% 1 0.108 0.522 79.4% 27.9%
15 57% 0 0.321 0.077 -317.0% 11.4%
16 54% 0 0.292 0.077 -279.2% ~8.3%
17 50% 0 0.251 0.077 -225.8% -23.3%
18 58% 0 0.334 0.077 -333.4% -79.2%
19 71% 1 0.081 0.522 84.4% -10.4%
20 41% 0 0.166 0.077 -115.1% -8.6%
21 57% 1 0.183 0.522 64.9% -13.9%
22 17% 0 0.028 0.077 63.2% 6.6%
23 15% 0 0.02z2 0.077 71.2% 25.5%
24 47% 0 0.226 0.077 ~-193.1% 27.3%

A-5




COOCHOOOWOOOOKHOHHFHFOFRFROOOORPKHFORRORRPRORHHEHORROFROOOODOOOROOOOOOOOO

0.018
0.008
0.005
0.012
0.035
0.004
0.035
0.036
0.005
0.560
0.081
0.006
0.000
0.002
0.002
0.011
0.004
0.373
0.105
0.196
0.211
0.478
0.170
0.175
0.237
0.186
0.138
0.177
0.294
0.471
0.012
0.272
0.293
0.035
0.002
0.002
0.219
0.240
0.321
0.217
0.310
0.150
0.520
0.247
0.101
0.04¢
0.040

n N A
VelUa4

0.019
0.013
0.634
0.007
0.000
0.004

49.
33.
50.
40.
39.
43.
78.
73.
71.
32.
23.
23.
21.
22.
26.
25.
64.
55.
44.
52.
38.
32.
41.
46.
40.
48.
50.
58.
57.
47,
42.

E
1%
.9%
1%

3%
9%
2%
8%
5%
0%
2%
1%
8%
6%
4%
7%
3%
1%
0%
2%
9%
1%
0%
9%
7%
%
7%
9%
3%
6%
4%
9%
2%
8%
5%

.8%
5%
.0%
.8%
.0%
1%

1%
1%
.5%
.4%
4%
.9%

.8%
.4%

~

2%
4%

9.6%
13.7%
17.7%
17.1%
17.0%
16.5%
16.7%
17.1%
18.4%
17.7%
17.8%
18.8%
21.8%
30.3%
20.7%
26.1%
35.5%
42.4%
43.6%
42.9%
47.9%
48.8%
44.7%
42.7%
45.3%
45.9%
46.1%
45.5%
45.4%
45.6%
42.8%
43.7%
40.4%
41.8%
41.8%
42.6%
41.2%
38.9%
38.0%
37.7%
37.4%
37.5%
37.5%
37.5%
35.5%
33.6%
36.0%
37.3%

May 31
June 1

June 30
July 1




:

122
123

125
126
127
128
129
130
131
132

24%

0.006 0.062
0.013 0.062
0.006 0.062
0.018 0.062
0.016 0.062
0.029 0.062
0.025 0.062
0.806 0.563
0.685 0.563
0.008 0.062
0.072 0.062
0.010 0.062
0.159 0.062
0.581 0.563
0.060 0.052
0.535 0.595
0.442 0.595
0.514 0.595
0.140 0.052
0.369 0.595
0.064 0.052
0.649 0.595
0.05% 0.052
0.011 0.052
0.038 0.052
0.039 0.052
0.023 0.052
0.013 0.052
0.057 0.052
0.128 0.052
0.059 0.052
0.072 0.052
0.057 0.052
0.010 0.052
0.002 0.052
0.003 0.052
0.012 0.052
0.021 0.052
0.060 0.052
0.025 0.052
0.041 0.052
0.059 0.052
0.166 0.052
0.045 0.052
0.278 0.052
0.216 0.053

0.084 0.053
0.025 0.083
0.030 0.053
0.434 0.591
0.361 0.591
0.143 0.053
0.017 0.053

0.057 0.053

OCOOH+HHFHFOODOOOOOOOOCOOOOCOOTVDOOOCOOOOOOHORPRORRIEPOROOOORREOODOOOOO

10.1% 2.4%
25.7% 6.7%
13.6% 8.9%
-168.3% 3.4%

27.7% 8.6%
24.9% 15.5%
56.4% 3.2%
75.7% 8.9%

~13.5% 2.2%
-37.5% -7.2%
-9.8% -12.1%
80.0% ~-8.7%
95.5% -5.9%
95.0% 9.1%

e WS - e

35.0%
32.3%
35.5%
32.8%
28.9%
24.7%
29.4%
23.1%
18.9%
15.7%
11.0%
11.8%
9.2%
7.4%
10.2%
5.8%
11.6%
7.5%
2.5%
7.1%
6.8%
8.2%
8.7%
9.2%
9.1%
8.6%

8.2%
10.0

July 31
Aug 1

Aug 31
Sept 1




133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

29%
68%
61%
30%
11%

38%
40%
10%
62%
22%

18%
11%
7%
2%
2%
7%
17%
24%
20%

COCOOOO0OOO0COOHODOODODOOOOO

0.082
0.464
0.372
0.092
0.012
0.008
0.143
0.161
0.011
0.142
0.047
0.004
0.033
0.012
0.006
0.000
0.001
0.028
0.030
0.060
0.039

0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.591
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053
0.053

-53.9%
~768.8%
-596.2%

-71.8%

77.5%
84.7%
-167.1%
-201.7%
79.6%
76.0%
12.7%
93.0%
37.2%
77.8%
89.6%
99.3%
98.8%
47.8%
43.2%
-11.6%
26.3%

26.6%
-3.3%
-57.5%
-228.3%
-193.1%
~190.6%
=213.7%
-234.8%
-113.6%
37.7%
42.6%
43.5%
40.7%
55.1%
72.1%
73.3%
72.6%
77.6%
70.5%
63.6%
56.2%

5.5%
~-10.9%
-23.0%
~24.8%
-24.4%
-24.1%
-27.2%
-28.3%
-26.5%

-8.0%
~7.6%
=7.4%
-8.3%
~8.5%
-8.3%
~7.6%
-5.8%
-5.9%
-5.5%
-5.5%
-1.6%

Sept 30




BRIER-BASED SKILL SCORES FOR BP-ATLANTA-241
USING NUMBER OF PASSES = 20

Optimal Variable
Parameters Changed Architectural Options
2 # Slabs
30 # Hidden Nodes
10 20 # Passes
1 # Iterations
0.01 Learning Rate
0.9 Momentum
Table Sigmoid Source
0.1 Random Seed
241 # Input parameters
no Input slab connected to output

Overall Performance:

Forecast Actual

June-July-Aug
May-June-July-Aug-Sept Skill

Squared-Errors

Skill

19.8%
19.5%

Skill Scores

Day# Output Rain ANS Climatology Daily Weekly Monthly Date
1 0.185356 1 0.664 0.522 -27.1% May 1
2 0.548190 0 0.301 0.077 -290.5%

3 0.299924 0 0.090 0.077 -16.9%

4 0.410637 1 0.347 0.522 33.5%

5 0.020944 0 0.000 0.077 99.4%

6 0.125600 0 0.016 0.077 79.5%

7 0.255900 0 0.065 0.077 14.9% -3.8%
8 0.091058 0 0.008 0.077 89.2% 15.9%
9 0.052037 0 0.003 0.077 96.5% 46.1%
10 0.200088 0 0.040 0.077 48.0% 51.2%
11 0.637932 1 0.131 0.522 74.9% 73.2%
12 0.426560 0 0.182 0.077 -136.5% 54.7%
13 0.343781 0 0.118 0.077 -53.6% 44,3%
14 0.617397 1 0.146 0.52Z 72.0% 56.0%
15 0.561455 0 0.315 0.077 ~309.7% 34.5%
16 0.487551 0 0.238 0.077 -208.9% 18.1%
17 0.319970 0 0.102 0.077 -33.0% 13.7%
18 0.6355357 0 0.430 0.077 -459.2% -55.7%
19 0.683208 1 0.100 0.522 80.8% -1.5%
20 0.056236 0 0.003 0.077 95.9% 6.5%
21 0.471466 1 0.279 0.522 46.5% -2.8%
22 0.027480 0 0.001 0.077 99.0% 19.2%
23 0.020274 0 0.000 0.077 99.5% 35.8%
24 0.497070 0 0.247 0.077 -221.1% 25.7%




0.020824
0.005905
0.007232
0.020884
0.036459
0.012206
0.013299
0.050424
0.017934
0.217836
0.058131
0.016308
0.001824
0.012883
0.009312
0.037856
0.011008
0.180106
0.453019
0.633183
0.228328
0.199619
0.587470
0.736400
0.177668
0.649801
0.594080
0.310903
0.420361
0.212395
0.154184
0.588416
0.280813
0.019700
0.003090
0.007815
0.338076
0.488527

3 0.484623

0.722527
0.437342
0.423457
0.332201
0.555435
0.155590
0.074298
0.045777
0.037047
0.181118
0.095181
0.078925
0.021125
0.005992
0.084795

OCOOPRPCOOOCOOOHOMHPOFFROOOORPRPORORRPRHOMRPEPPOFFOHFOOOOOOOHOODOOOOOOO

0.000
0.000
0.000
0.000
0.001
0.000
0.000
0.003
0.000
0.612
0.003
0.000
0.000
0.0006
0.000
0.001
0.000
0.672
0.205
0.135
0.052
0.641
0.170
0.069
0.032
0.123
0.165
0.475
6.177
0.620
0.024
0.169
0.517
0.000
0.000
0.000
0.114
0.262
0.235
0.077
0.317
0.179
0.446
0.309
0.024
0.006
0.002
0.001
0.033
0.009
0.848
0.000
0.000
0.007

0.077
0.077
0.077
0.077
0.077
0.077
0.077
0.044
0.044
0.626
0.044
0.044
0.044
0.044
0.044
0.044
0.044
0.626
0.044
0.626
0.044
0.626
0.626
0.626
0.044
0.626
0.626
0.626
0.044
0.626
0.044
0.626
0.626
0.044
0.044
0.044
0.044
0.563
0.062
0.563
0.563
0.062
0.563
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.563
0.062
0.062
0.062
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99.4%
100.0%
99.9%
99.4%
98.3%
99.8%
99.8%
94.2%
99.3%
2.2%
92.3%
99.4%
100.0%
99.6%
99.8%
96.7%
99.7%
=-7.4%
-370.3%
78.5%
~19.5%
-2.4%
72.8%
88.9%
27.7%
80.4%
73.7%
24.1%
-304.9%
0.9%
45.5%
72.9%
17.4%
99.1%
100.0%
99.9%
~-161.9%
53.6%
~277.3%
86.3%
43.8%
-188.1%
20.8%
-395.6%
61.1%
91.1%
96.6%
97.8%
47.3%
85.4%
=-50.6%
99.3%
99.9%
88.4%

55.8%
46.0%
46.3%
53.7%
53.6%
53.7%
99.5%
99.1%
98.9%
39.6%
37.3%
35.2%
32.8%
30.3%
30.6%
30.5%
98.2%
24.0%

0.9%
31.0%
27.5%
16.8%
28.8%
39.5%
50.5%
62.0%
61.1%
55.9%
62.4%
48.4%
38.7%
45.5%
33.2%
24.7%
26.5%
35.1%
43.9%
46.6%
20.9%
49.5%
46.7%
37.7%
32.7%
25.2%
18.2%
30.0%
10.8%
-3.2%
12.4%
12.0%

1.4%

4.0%

4.5%

4.0%

24.2%
30.8%
36.9%
33.4%
34.0%
33.5%
33.3%
34.3%
34.0%
33.5%
33.9%
23.5%
22.4%
30.5%
25.3%
27.0%
35.2%
41.5%
47.6%
48.2%
50.0%
47.9%
45.1%
40.8%
43.6%
45.3%
42.8%
42.5%
42.3%
42.1%
40.5%
41.3%
38.6%
41.2%
41.1%
42.2%
40.7%
37.7%
37.6%
37.7%
37.8%
37.9%
37.7%
41.0%
37.6%
35.3%
36.0%
39.0%

May 31
June 1

June 30
July 1



124
125

1L
Lo

127
128
129
130
131
132

0.023757
0.015573
0.007800
0.032191
0.018404
0.045310
0.029367
0.031828
0.118895
0.037116
0.138694
0.032405
0.581778
0.280813
0.153549
0.130174
0.187578
0.356670
0.464658
0.311740
0.061480
0.134775
0.202285
0.033399
0.075448
0.083890
0.045310
0.026455
0.226099
0.583678
0.269517
0.308815
0.026205
0.010997
0.013808
0.009831
0.114467
0.165727
0.386763
0.076367
0.069163
0.143067
0.404036
0.092114
0.4931¢€4
0.418696
0.17781v

N NCcLeane
VeVUVVILWU

0.056340
0.282591
0.518546
0.328960
0.112697
0.371820

COOFRHFHOOOOOOOOOO0OO0O0OO0COO0COO0OOOOOOOOCOOOHORORRMRMHFOHOOOORMHOOOOOOO

0.001
0.000
0.600
0.001
0.000
0.002
0.001
0.937
0.776
0.001
0.019
0.001
0.338
0.517
0.024
0.757
0.660
0.414
0.216
0.474
0.004
0.749
0.041
0.001
0.006
0.007
0.002
0.001
0.051
0.341
0.073
0.095
0.001
0.000
0.000
0.000
0.013
0.027
0.150
0.005
0.005
0.020
0.163
0.00¢
0.243
0.175
0.032

N nnaA
VeWVUu=

0.003
0.515
0.232
¢.108
0.013
0.138

0.
0.
0.
0.
0.
0.
0.
0.
0.

0

0

0

n

Ve

0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.
0.
0.
0.

0.

062
062
062
062
062
062
062
563
563
062
062
062
062
563
052
595
595
595
052

.595
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

052
595
352
052
052
052
052
052
052
052
052
052
052
052
052
052
052
052
052
052
052
052
052
052
052
o -
055

ne"
VRV RV

053
591
591
053
053
053

A-11

99.1%
99.6%
99.9%
98.3%
99.5%
96.7%
98.6%
-66.4%
~-37.8%
97.8%
69.1%
98.3%
-443.7%
8.2%
54.8%
-27.1%
~10.9%
30.5%
-313.9%
20.4%
92.8%
-25.7%
21.6%
97.9%
89.1%
86.5%
96.1%
98.7%
2.0%
-553.1%
-39.2%
-82.8%
98.7%
99.8%
99.6%
99.8%
74.9%
47.3%
-186.7%
90.5%
90.8%
60.8%
=-212.9%
83.7%
~366.2%
-228.5%
40.7%

nA no.
JLeOD

94.1%
13.0%
60.8%
~102.8%
76.2%
-159.1%

4.1%
7.6%
8.5%
37.8%
97.8%
97.4%
98.8%
-0.6%
~19.5%
~19.6%
-20.9%
-20.9%
-44.3%
-33.6%
-17.5%
-13.5%
~-16.2%
-7.3%
-16.3%
-0.4%
-0.4%
-6.2%
-0.7%
4.9%
-2.6%
11.8%
10.9%
11.3%
70.2%
-11.8%
-31.4%
~-56.0%
-54.2%
-53.7%
-53.06%
~39.6%
50.1%
62.5%
47.6%
46.5%
45.2%
39.6%
-5.0%
-3.8%
-62.9%
-65.4%
-76.1%

2c A0
T iV erD

-70.1%
-7.9%
16.9%
26.2%
37.5%
30.1%

36.9%
33.3%
33.8%
30.3%
26.9%
27.9%
31.0%
25.0%
19.5%
14.7%
15.0%
15.3%
9.4%
8.6%
10.3%
2.5%
4.0%
-0.7%
-7.5%
-3.3%
~4.7%
-2.9%
-3.3%
~-3.4%
-3.6%
-3.9%
-3.5%
~-3.6%
0.8%
~4.9%
-6.3%
-8.0%
-8.1%
-8.3%
-8.5%
-8.7%
-9.1%
-9.7%
~-12.4%
-5.8%
-1.1%
-1.7%
-4.8%
-5.2%
-3.5%
-7.7%
-7.9%

S o
T edD

~-0.6%
-3.8%
10.4%
6.7%
6.5%
10.2%

July 31
Aug 1

Aug 31
Sept 1




133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

0.314050
0.791821
0.688259
0.221350
0.110183
0.035310
0.353762
0.335677
0.039158
0.769080
0.090654
0.040313
0.176387
0.032805
0.035577
0.001396
0.000851
0.049634
0.184179
0.210766
0.027350

OCO0COOCOOOTDOOOHOODOODODOOO

0.099
0.627
0.474
0.049
0.012
0.001
0.125
0.113
0.002
0.053
0.008
0.002
0.031
0.001
0.001
0.000
0.000
0.002
0.034
0.044
0.001

0.
.
0.
0.
0.
0.
0.

0
0

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

053
053
053
053
053
053
053
n53
453
591
053
053
053
053
053
053
053
053
053
053
053

A-12

-84.8%
=1075.0%
-787.7%
8.2%
77.2%
87.7%
-134.5%
-111.2%
97.1%
91.0%
84.6%
97.0%
41.7%
98.0%
97.6%
100.0%
100.0%
95.4%
36.4%
16.8%
98.6%

23.6%
~19.4%
-85.4%

-303.6%
-277.9%
-274.8%
-271.3%
-275.0%
-107.6%

61.0%

65.5%

66.7%

63.4%

77.0%

89.2%

89.4%

88.4%

89.9%

81.3%

77.7%

77.8%

8.2%
~14.5%
-31.4%
~-32.8%
-33.1%
~33.1%
=-35.7%
=27.4%
-24.8%

-3.2%
-3.4%
-3.4%
-4.3%
-4.3%
-3.9%
-3.0%

1.6%

1.7%

0.8%

0.1%

5.1%

Sept 30




NWSFO POP FORECAST SKILL SCORE
0-12 HRS POP FORECASTER FOR HARTSFIELD INTERNATIONAL AIRPORT

June-July-August Skill Score = 22.2%

Forecast Actual

Squared-Errors

Skill Scores

Day# Qutput Rain ANS Climatology Daily Weekly Monthly Date
32 30% 0 0.090 0.044 -106.2% June 1
33 30% 0 0.090 0.044 -106.2%

34 20% 1 0.640 0.626 -2.3%

35 50% 0 0.250 0.044 -472.9%

36 0% 0 0.000 0.044 100.0%

37 0% 0 0.000 0.044 100.0%

38 0% 0 0.000 0.044 100.0% ~-20.5%

39 0% 0 0.000 0.044 100.0% -10.4%

40 0% 0 0.000 0.044 100.0% -0.3%

41 20% 0 0.040 0.044 8.3% 5.1%

42 10% 1 0.810 0.626 -29.4% 4.2%

43 40% 0 0.160 0.044 -266.6% -13.8%

44 60% 1 0.160 0.626 74.4% 20.4%

45 50% 0 0.250 0.044 -472.9% 3.4%

46 50% 1 0.250 0.626 60.1% 18.6%

47 70% 1 0.090 0.626 85.6% 33.2%

48 60% 1 0.160 0.626 74.4% 41.,6%

49 60% 0 0.360 N.044 -724.9% 45.7%

50 50% 1 0.250 0.626 60.1% 52.7%

51 60% 1 0.160 0.626 74.4% 52.7%

52 60% 1 0.160 0.626 74.4% 62.4%

53 50% 0 0.250 0.044 -472.9% 55.5%

54 30% 1 0.490 0.626 21.7% 43.1%

55 30% 0 0.090 0.044 -106.2% 33.2%

56 50% 1 0.250 0.626 60.1% 48.7%

57 50% 1 0.250 0.626 60.1% 48.7%

58 0% 0 0.000 0.044 100.0% 43.4%

59 0% 0 0.000 0.044 100.0% 35.2%

60 0% 0 0.000 0.044 100.0% 47.4%

61 10% 0 0.010 0.044 77.1% 59.2% 36.6% June 30

62 50% 1 0.250 0.563 55.6% 61.8% 37.8% July 1

63 70% 0 0.490 0.062 -687.1% 29.9% 32.7%

64 60% 1 0.160 0.563 71.6% 33.3% 35.7%

65 40% 1 0.360 0.563 36.1% 32.6% 36.3%

66 50% 0 0.250 0.062 -301.6% 20.1% 36.7%

87 20% 1 0.640 0.563 -12.6% 10.8% 36.1%

68 40% 0 0.160 0.062 -157.0% 5.3% 34.6%

69 20% 0 0.040 0.062 35.7% -8.3% 34.3%

70 20% 0 0.040 0.062 35.7% 14.9% 34.0%

71 20% 0 0.040 0.062 35.7% -6.4% 33.7%

72 20% 0 0.040 0.062 35.7% -29.2% 33.5%

73 20% 0 0.040 0.062 35.7% -6.8% 33.6%
A-13




117
118
119
120
121
122
123
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0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

QOO OCO

.090
.640
.003
.000
.000
.000
.000
.000
.000
.000
.003
.040
.640
.360
.090
.160
.090
.040
.640
.090
.250
.360
.360
.250
.360
.160
. 640
.090
.090
.090
.160
.040
.040
.003
.040
.040
.160
.040
.000
.000
.000
.040
.003
.040
.040
.040
.160
.040
.010
.250

0.062
0.563
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
J.062
0.062
0.563
0.563
0.062
0.062
0.062
0.062
0.563
0.052
0.595
0.595
0.595
0.052
0.595
0.052
0.595
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052

A-14

-44.6%
-13.6%
96.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
100.0%
96.0%
35.7%
-13.6%
36.1%
-44.,.6%
-157.0%
-44.6%
35.7%
-13.6%
-72.5%
58.0%
39.5%
39.5%
-379.2%
39.5%
-206.7%
-7.5%
-72.5%
-72.5%
-72.5%
-206.7%
23.3%
23.3%
95.2%
23.3%
23.3%
~206.7%
23.3%
99.2%
99.2%
99.2%
23.3%
95.2%
23.3%
23.3%
23.3%
-206.7%
23.3%
80.8%
~379.2%

-3.3%
0.7%
4.7%
9.0%

13.3%

17.5%

21.8%

31.4%

99.4%

100.0%

99.4%

90.2%

27.1%

27.5%

21.2%

10.1%
3.8%
1.2%

~4.2%

-3.0%
6.8%

18.2%

27.6%

20.9%

24.2%

27.9%

22.8%

12.5%
2.2%

=-15.7%

-9.5%

-39.8%
-26.6%
-40.3%
-26.7%
-13.0%
-32.1%

0.7%

11.6%

22.4%

23.0%

23.0%

33.3%

66.1%

66.1%

55.3%

11.6%
0.7%
8.9%

-58.8%

37.2%
35.7%
33.5%
36.3%
35.1%
31.8%
28.9%
33.7%
31.9%
28.6%
24.5%
28.2%
25.0%
26.8%
22.6%
16.2%
14.8%
14.4%
11.1%

S.9%
10.4%
19.7%
17.0%
11.9%
17.3%
18.3%
17.6%
16.7%
15.8%
14.9%
13.0%
12.9%
13.5%
16.7%
15.9%
15.1%
12.3%
11.5%
11.4%
11.2%
11.1%
10.3%
10.1%

9.9%
12.5%

9.9%

8.3%
10.6%
12.0%

7.6%

July 31
Aug 1

Aug 31




June-July-August Skill Score -

Forecast Actual

LFM/MOS POP FORECAST SKILL SCORE

16.6%

Squared-Errors

0-12 HRS POP FORECASTER FOR HARTSFIELD INTERNATIONAL AIRPORT

Skill Scores

Qutput Eain ANS Climatolecgy Daily Weekly Monthly Date
20% 0 0.040 0.044 8.3% June 1
30% 0 0.090 0.044 -106.2%

20% 1 0.640 0.626 -2.3%

30% 0 0.090 0.044 -106.2%

0% 0 0.000 0.044 100.0%

0% 0 0.000 0.044 100.0%

0% 0 0.000 0.044 100.0% 3.1%

0% 0 0.000 0.044 100.0% 7.6%

0% 0 0.000 0.044 100.0% 17.8%

2% 0 0.000 0.044 99.1% 70.4%
20% 1 0.640 0.626 -2.3% 27.9%

30% 0 0.090 0.044 -106.2% 17.7

60% 1 0.160 0.626 74.4% 39.4%

60% 0 0.360 0.044 -724,9% 14,9%
30% 1 0.490 0.626 21.7% 15.2%

60% 1 0.160 0.626 74.4% 27.9%
40% 1 0.360 0.626 42.5% 29.7%
50% 0 0.250 0.044 -472.9% 29.0%
50% 1 0.250 0.626 60.1% 36.9%
50% 1 0.250 0.626 60.1% 34.1%
30% 1 0.490 0.626 21.7% 40.8%
50% 0 0.250 0.044 -472.9% 37.5%
20% 1 0.640 0.626 -2.3% 22.6%
20% 0 0.040 0.044 8.3% 17.6%
40% 1 0.360 0.626 42.5% 29.1%
40% 1 0.360 0.626 42.5% 25.7%

0% 0 0.000 0.044 100.0% 18.8%

0% 0 0.000 0.044 100.0% 19.6%

0% 0 0.000 0.044 100.0% 31.8%
20% 0 0.040 0.044 8.3% 45.6% 27.1% June 30
40% 1 0.360 0.563 36.1% 43.7% 27.6% July 1
60% 0 0.360 0.062 -478.3% 21.5% 24.1%
50% 1 0.250 0.563 55.6% 25.9% 26.1%
40% 1 0.360 0.563 36.1% 27.2% 27.2%
40% 0 0.160 0.062 -157.0% 19.5% 27.9%
20% 1 0.640 0.563 -13.6% 10.4% 26.2%
20% 0 0.040 0.062 35.7% 11.1% 25.9%
20% 0 0.040 0.062 35.7% 1.6% 25.7%
20% 0 0.040 0.062 35.7% 21.1% 25.4%
20% 0 0.040 0.062 35.7% 8.2% 25.1%
20% 0 0.040 0.062 35.7% -6.8% 24.9%
20% 0 0.040 0.062 35.7% 6.1% 24.6%
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0.040
0.810
0.010
0.010
0.010
0.003
0.000
0.000
0.000
0.000
0.040
0.040
0.640
0.490
0.040
0.040
0.040
0.040
0.640
0.090
0.490
0.360
0.490
0.250
0.360
0.090
0.640
0.090
0.040
0.090
0.160
0.040
0.010
0.040
0.040
0.040
0.040
0.040
0.000
0.000
0.000
0.040
0.040
0.090
0.040
0.040
0.090
Q.090
0.090
0.250

0.062
0.563
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.062
0.563
0.563
0.062
0.062
0.062
0.062
0.563
0.052
0.595
0.595
0.595
0.052
0.595
0.052
0.595
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
v.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052

35.7%
-43.8%
83.9%
83.9%
83.9%
96.0%
100.0%
100.0%
99.4%
100.0%
35.7%
35.7%
-13.6%
13.0%
35.7%
35.7%
35.7%
35.7%
-13.6%
~72.5%
17.7%
39.5%
17.7%
=-379.2%
39.5%
-72.5%
-7.5%
-72.5%
23.3%
-72.5%
~-206.7%
23.3%
80.8%
23.3%
23.3%
23.3%
23.3%
23.3%
99.2%
99.2%
99.2%
23.3%
23.3%
-72.5%
23.3%
23.3%
-72.5%
-72.5%
-72.5%
-379.2%

35.7%
-12.1%
-8.9%
=5.7%
-2.5%
1.5%
5.8%
10.1%
92.4%
94.7%
87.9%
81.0%
23.1%
15.8%
13.0%
10.3%
7.5%
7.5%
0.5%
3.3%
5.5%
14.7%
14.9%
6.2%
12.1%
16.1%
13.0%
10.2%
1.7%
~7.5%
-1.3%
-26.6%
~17.8%
-28.7%
-15.0%
-15.0%
~-1.3%
31.5%
42.4%
45.0%
55.9%
55.9%
55.9%
42.2%
42.2%
31.3%
6.8%
-17.8%
-21.4%
-89.0%

26.5%
23.1%
20.1%
23.9%
24.5%
21.3%
20.2%
23.6%
21.1%
18.2%
18.0%
21.7%
20.9%
20.3%
18.1%
15.5%
15.1%
14.6%
11.3%
10.6%
9.0%
16.4%
13.1%
7.6%
12.0%
13.7%
11.6%
10.7%
10.6%
9.7%
7.7%
7.6%
7.9%
12.8%
12.2%
11.5%
10.9%
10.1%
10.0%
9.8%
9.7%
8.8%
8.7%
7.7%
10.0%
9.8%
8.6%
7.4%
6.2%
1.7%

July 31
Aug 1

Aug 31




GOPAD

GOPAD 22

GOPAD 25

GOPAD 33

GOPAD 42

Weighting

2.911733
2.711369
2.668178
2.602760
2.555386
2.543929
2.541121
2.530459
2.525478
2.504251
2.498630
2.441557
2.406791
2.405581
2.391812
2.378694
2.374402
2.366579
2.364362
2.364124
2.359408
2.350847
2.344415
2.343939
2.340340
2.328331
2.326402
2.316905
2,312125
2.310261
2.306701
2.297834
2.296635
2.296424
2.295634
2.278786
2.268543
2.264325
2.255943
2.254840
2.254013
2.250115
2.246739
2.245973
2.242491
2.239413
2.235012

A-17

SUM OF WEIGHTS ALONG TEE INTERCONNECTIONS
FROM EACH INPUT NODE TO THE OUTPUT NODE

Input Variable

CP500V
AP700U
CAl150V
CA800T
P800U

WP400V
CA600U
AA300V
AP700V
CP150V
CP700D
CA200D
AA600D
AP500T
CA100D
CA800D
AP300D
CA700T
AP300U
WP100V
CAl150T
AAS00D
CpP200U
AP200D
WA400U
WAGO00V
WP200U
AA200T
WP900U
WAQS00T
WP300D
WAG600T
AABQO0U
Cp200D
CP200T
WP800U
AP150D
CP700U
WP500V
CA500U
WP600U
AAS00V
WA6000
AP8OQU
AP600D
WA200V
WP700V
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GOPAD 50

GOPAD 65

GOPAD 69

GOPAD 77

GOPAD 90
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GOPAD 94
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2.226358
2.213338
2.207781
2.207051
2.204367
2.197721
2.193971
2.192145
2.186021
2.184488
2.181702
2.178080
2.175112
2.173228
2.169908
2.163131
2.162275
2.160017
2.159704
2.145610
2.142212
2.137422
2.124437
2.122836
2.107995
2.107691
2.104243
2.099675
2.089873
2.088976
2.086111
2.081774
2.081373
2.078511
2.07268

2.070478
2.07C300
2.069681
2.069205
2.066138
2.066046
2.065295
2.061990
2.061002
2.060100
2.060040
2.058352
2.049728
2.048078
2.042189
2.039243
2.039145
2.039141
2.034025

A-18

CP700T
CpP600D
CA800V
CP600T
AP150V
WAS00V
WA600D
WP300T
CPe00V
WAS00D
AP400V
AA400D
WA800D
CP700V
CP900D
WwP800D
WA400V
AA300D
AA500D
AP90OV
WP800V
AA600U
AP800V
CP150D
AP300T
CpP150U0
AP600V
ARn400V
WA500U
AA600T
WP700U
CP100V
CA100U
CA400D
CA150D
AA300U
WA300U
AP300V
CpP900T
AA200U
AAG00V
WP150V
WA700T
CpP900U
AP600T
WA7000
AAB00V
WP400D
Cp800D
WP300V
DAYCNT
WPS00T
WA100U
Wwp800T




GOPAD
GOPAD

GOPAD

GOPAD

GOPAD

GOPAD

GOPAD

GOPAD

GOPAD

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

2.032360
2.031388
2.030351
2.029932
2.026695
2.024281
2.023258
2.021585
2.019581
2.014587
2.913900
2.012967
2.008278
2.007701
2.00€664
2.005505
2.002861
2.002381
2.000854
1.999283
1.982341
1.982100
1.981929
1.979996
1.974905
1.974752
1.966168
1.961482
1.959604
1.959304
1.956458
1.955483
1.9548286
1.841446
1.541157
1.940861
1.940551
1.938703
1.938683
1.934963
1.934620
1.931488
1.931081
1.930760
1.929377
1.916327
1.912604
1.911037
1.910569
1.910101
1.909751
1.903888
1.887930
1.887024

A-19

AA1OQV
CA90QV
AA100U
WP400T
WA400D
CAa400u
AF400D
AP600U
CP400D
WA400T
wp700T
AP500V
AAS00T
AP100U
AA400T
CP800T
CA300T
WAB800U
WA200T
WP300U
AA700D
AP900U
AAB800T
CP300T
WALl50V
CA800U
Ca200U
WA800V
AP200U
AP500U
WP100T
AA150D
CP200V
AA900U
WPO00V
WAS500T
WP150U
AA700U
WA1500
caloov
CA500T
APSOOT
WA100D
AA400U
CA200V
AP150T
CP100U
CP150T
CAl100T
CP500T
AP100D
AP700D
AP500D
AA100T
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GOPAD

GOPAD

GOPAD
GOPAD

GOPAD
GOPAD

GOPAD

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
1838
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

1.878347
1.87595¢4
1.875487
1.874961
1.869607
1.860836
1.859771
1.857536
1.853144
1.853136
1.851860
1.848877
1.846307
1.844337
1.840719
1.839105
1.836656
1.834760
1.833024
1.832038
1.824288
1.823195
1.823091
1.821531
1.820413
1.807886
1.803082
1.785021
1.783709
1.783413
1.769200
1.761752
1.760480
1.755016
1.748589
1.745677
1.741396
1.736056
1.729476
1.723241
1.722183
1.720485
1.714073
1.777.676
1.708119
1.704934
1.692764
1.692764
1.692686
1.691195
1.689967
1.683903
1.674008
1.673079

A-20

CP600U
CP500U
CA200T
AP100V
AP200V
WA100T
Cp309U
AP800D
WA200U
AA300T
CAl150U
WA150D
CA30CD
WP200D
AP100T
WAB00T
Cp800QV
CP400T
WP150D
WP500T
WP600D
AAS00V
AA150T
CA700D
WA300D
CP500D
CA400T
AP700T
WP500U
AA150V
WA700V
WP600V
WA900V
WP200T
CAT00V
CA300U
CP400U
WP100D
AA800D
Cr400Vv
AA200D
AA150U0
WA200D
We200V
CAS00D
WA300V
CAS00T
WAl00V
WA300T
WP150T
AR200V
WA700D
CP300V
AP900D




GOPAD

GOPAD

GOPAD
GOPAD

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

1.665392
1.658782
1.343406
1.637009
1.636141
1.629690
1.627893
1.627503
1.615998
1.614467
1.611934
1.596003
1.573736
1.57115¢
1.569651
1.568914
1.541798
1.534481
1.499521
1.498209
1.479125
1.459406
1.440968
1.435088
1.434691
1.393521
1.368853
1.329901
1.281635
1.236936
1.174124
1.129619

A-21

CP300D
CA600D
AA500U
WP400U
AA70Q0T
WA150T
AP150U
CA500D
WA500D
CA900U
AP200T
CA600T
AP400U
CP10JT
AR900T
WP9O00D
WP700D
CA700U
WP500D
CA400V
CA500V
CP900V
WAQS00U
ART00V
CP100D
CA600V
AP90OOT
AA100D
WwP600T
WP100U
CA300V
AP400T
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ABSTRACT

The wid~ dispersion of Army forces on the modern battlefield and the
complexity of current weapons systems have increased the need for forecasted
weather data that could be used as input to Tactical Decision Aids. The
Integrated Meteorological System (IMETS) will enable the Staff Weather
Officer (SWO) to support Division and Corp staffs who are primarily engaged
in planning. These staffs and other operational units need a diverse set of
weather parameters on-demand for specific locations and specific time
frames. Research and development work investigated the potential of a
software program called Goal Oriented Pattern Detection (GOPAD) to
produce tactical weather forecasting models. This paper describes: (1) how
GOPAD operates, (2) the types of tactical mesoscale forecast models that
could be developed, (3) a method for defining forecast models, and (4) the
GOPAD development process used to create new forecast models.

1. THE ROLE OF AUTOMATED WEATHER
FORECASTING ON THE BATTLEFIELD

The wide dispersion of Army forces on the modern battlefield and the complexity of
current weapons systems have increased the need for forecasted weather data that could be
used as input to Tactical Decision Aids (TDA) that perform weather effects analysis.
Weather conditions affect various types of military units in different ways, depending upon
the type of unit, the mission, the enemy situation, and the terrain. Since weather varies with
time and locality, weather forecasting and effects analysis must be constantly reappraised to
retain its usefulness as combat intelligence. The complexity of this analysis process, the
premium placed on timeliness, and the availability of tactical computers requires that the
forecasting, analysis, and display techniques be automated. Consequently, research and
development is ongoing to devise new ways of automating mesoscale weather parameter
forecasting in the battiefieid environment.

We believe that weather parameter forecasting is one of the fundamental functional
requirements for the Integrated Meteorological System (IMETS) because IMETS will support
Division and Corps staffs who are primarily engaged in planning. These staffs need a diverse
set of forecasted weather parameters on-demand for specific locations and times frames. The
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incorporation of automated weather forecasting models in IMETS is therefore crucial to the
Staff Weather Officer's (SWO) ability to provide forecasted weather parameters for input to a
myriad of Tactical Decision Aids (TDA).

The Required Operational Capability! (ROC) states that IMETS will provide the
commander with weather forecasts in the operational area. These ducuments reflect the
critical importance of automated weather parameter forecasting to IMETS. Clearly, IMETS
must enable the SWO to supervise, control, understand, and subsequently brief the current
and projected weather to the commander. But IMETS must also enable the SWO to provide
forecasts for a diverse set of weather parameters that will be used as input to many TDAs.
The SWO cannot be expected to manually produce individual forecasts for all the weather
parameters required by all Corps/division/Brigade staffs and operational units, as needed, for
specific locations and time frames.

In addition, the SWO and his staff may not be very familiar with local conditions for
the area of interest. Consequently, the forecasting performance of humans in a tactical
situation might be highly variable when positive skill and consistent performance are crucial.
Thus, automated weather forecast models are essential to a SWO-based forecasting process
and should be considered as yet another type of decision aid. For example, the SWO would
use automated forecast models just as the National Weather Service forecasters use the
Limited Fine Mesh/Model QOutput Statistics (LFM/MOS) models.

. Assuming that there is a critical need for a highly automated process which is under
the control of the SWO, then the next question is how do we produce these weather forecast
models? Should these models be based upon statistical modeling techniques, expert system,
neural nets, chaos theory, satellite-based image understanding, cr some appropriate
combination? What are the expected time and resource costs to produce these weather
forecast models using any approach verses the pecential performance of each approach? The
answers to these types of questions is one of the goals of our research.

2. OVERVIEW OF GOPAD

CCl is investigating the potential of a neural net approach to produce tactical
weather forecast models. This neural net research is based upon a proprietary algorithm,
called Goal Oriented Pattern Detection (GOPAD), developed by Dr. Kenneth Young at
the Institute of Atmospheric Physics, University of Arizona. GOPAD has been used to
produce two research models-GOPAD-Atlanta-RIR and GOPAD RT-89. The GOPAD-
Atlanta-RIR was = Probability of Precipitation ‘PoP) model developed for Hartsfield
International Airport in Atlanta, Georgia. The GOPAD RT-89 was a severe and significant
weather forecast model develop for the SHOOTQUT-89 exercise sponsored by NOAA/FSL in
Boulder, Colorado.

In general, GOPAD first identifies ilie optim ! statistical relationships between the
variables and indices from an arbitrarily large, correlated weather data set, and then
develops a non-linear forecast model. This model development process is also able to reveal

wle + N = +1 As Akl thn Lames 8
the under Ly AAAg ph_y sical rclaacnsmps setween the preaictor variables in the form of

exemplars. GOPAD extends the multi-discriminant analysis MDA) methods developed by
Miller (1962) and the analogue forecasting method of Kruizinga and Murphy (1983). The

11 etter, Department of the Army, ATSI-CD-AS, Subject: Revised Integrated
Meteorological System (IMETS) Required Operational Capability (ROC), dated July 31, 1989.
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GOPAD approach is a k-nearest neighbor search which is similar to Leon Cooper's Reduced

Coulomb Energy (RCE) algorithm. |
The GOPAD model development software is actually a set of three separate programs |

called FUZAN, FUZPICK, and FUZUP. The first two programs are the statistical front-end |

to the third, which is a neural net type of program. |

The first program (FUZAN) analyzes all the candidate predictor variables one at a
time to determine their individual potential contribution of information to the forecast model
to be developed. Once this is completed, it creates linear combinations of the variables that
are considered by the developer to be highly correlated (e.g., all temperature variables, etc.).
FUZAN systematically creates increasingly complex indices from all the specified variables
until the Chi-square value cannot be increased by a more complex index. The creation of
indices from highly correlated variables serves to improve the signal-to-noise ratio and
sharpen the overall forecast ability of the model.

In the GOPAD RT-89 model there were approximately 1400 candidate rawinsonde
and mesonet predictor variables for three years--1983, 1985, and 1987. FUZAN used these
variables to automatically create about 120 candidate predictor indices. FUZAN then
analyzed all 1520 candidate variables and indices to choose a subset of 400-500 variables and
indices for further processing by the second program.

The second program called FUZPICK selects the optimal combination of variables
and indices that contain virtually all the predictive information in the original data set. In
the GOPAD RT-89 six sub-models, there were 3 to 6 variables/indices that were ultimately
selected. All together there are about 40 individual predictor variables that are required to
run the GOPAD RT-89 model (indices may combine up to 10 individual predictor variables).

The third program called FUZUP optimizes the n-space scaling and the neighborhood
size to maximize a measure of forecast performance (e.g., Brier-based skill score). One major
advantage of this process is that it allows direct access to all the other forecast parameters
that were not used in training the model. This enables a GOPAD forecast model to display a
wide variety of forecast parameters derived from the data variables.

The forecast model is based on the output of FUZUP which includes the historical
data base of the predictor variables chosen by FUZPICK. Forecasts are made using analogs
selected from the historical data set. The number of analogs is the neighbor size as optimized
by FUZUP. The forecast model can also be used to generate exemplars to illustrate the
patterns leading to a particular forecast.

There are three versions of the GOPAD software-~-GOPAD I, GOPAD II, and GOPAD
III. GOPAD I operates on an IBM-compatible 8386 type computer. GOPAD I was used to
produce the GOPAD-Atlanta Probability of Precipitation model. GOPAD II operates on a
VAX 3200. GOPAD II was used to produce the GOPAD RT-89 severe/significant weather
forecasting model. GOPAD III (presently in development) operates on a VAX 3200 which is a
host for Interstate Electronics’ Quen supermini-computer rated at 150 Megaflops. GOPAD

TIT im bhan lndnnd 3 Rash 3 s
111 is the latest version. Each subscquent version of GOPAD is able to process more sources

of raw weather parameters and larger data bases.
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3. TACTICAL MESOSCALE FORECAST MODELS

The GOPAD development software can be used to automate the creation of a wide
variety of tactical forecast models. Four of the most difficult tactical mesoscale forecasting
problems are (1) fog as it is related to visibility and ceiling; (2) precipitation amounts and
type; (3) severe weather such as tornadoes, hail, lightning, and wind gusts; and (4) cloud
distributions, types, and coverage. The following paragraphs describe the type of information
that a GOPAD model for each of these forecasting problems could provide.

A GOPAD based fog model would forecast formation and dissipation times, and
graphically display visibility and ceiling. The operator would be able to specify the
probability that visibility or ceilings would be below a specified value on a time axis. The
operator would be able to produce maps showing regions of visibility or ceiling using a zoom
capability. The user would be ahle to display a wide variety of exemplar conditions to help
explain, confirm, modify, or reject a computer-generated forecast. Fog models might use
terrain information, the output from a model of wind flow over complex terrain, local
rawinsonde data, low-level cloud information from a satellite, and output from a synoptic
scale forecast model. Ground truth would be derived from hourly surface observations from a
variety of locations.

A GOPAD based precipitation model would display isopleths of expected amounts
and types (e.g., rain, snow, freezing rain, etc.). The user would be able to selectively display
the probability of precipitation greater than a specified amount in a specified period. A user
would be able to display the expected total cumulative amount of precipitation expected
within a specified period. The user would be able to predict rain intensities as a function of
time and within a specified confidence interval. The user would be able to display a wide
variety of exemplar conditions to help explain, confirm, modify, or reject a computer-
generated forecast. These models might use the output from a synoptic scale numerical
model, local rawinsonde data, and satellite-derived cloud track winds, total ozone
measurements, precipitable water, etc. Ground truth would be obtained from archived
records.

A GOPAD based severe/significant weather model would forecast the
probabilities of occurrence of severe weather events such as tornadoes, hail, lightning, and
high winds as a function of time. However, spatial resolution of severe weather phenomena
greater than one hour in advance on a scale of ten kilometers or less is unlikely. The user
would be able to display a wide variety of exemplar conditions to help explain, confirm,
modify, or reject a computer-generated forecast. These models might use the output from a
synoptic scale numerical model, local rawinsonde data, conventional and Doppler radar data,
wind profiler data, surface meso-net data, mesoscale models, and satellite-derived cloud track
winds, total ozone measurements, precipitable water, etc. Ground truth data would be
obtained from conventional surface observations, meso-net data, and severe weather studies
like the real-time exercises conducted every two years by NOAA/ERL in northeast Colorado.

A GOPAD based cloud model would forecast a three-dimensional distribution of
clouds over time. Volumes will have an assigned "expected fraction of cloud" and an
indication of basic cloud type (e.g., camuloform or stratiferm). The display would use this
fraction to randomly distribute clouds within each vlume. Typical cloud sizes would be
estimated from the forecasted cloud type and clima‘vtogy. 3aphisticated display techniques
would enable the user to specify an arbitrary point and direction of sigh!, and display a cloud-
free line-of-sight view. The capability would also be applied to non-visible wavelengths such
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as infrared. Consequently, forecast models would also be developed to predict parameters
like temperature and water vapor profiles that affect non-visual wavelength visibilities. The
user would be able to display a wide variety of exemplar conditions to help explain, confirm,
modify, or reject a computer-generated forecast. These modeis might use the output from a
synoptic scale numerical model, satellite-derived cloud track winds, cloud types, heights, and
amounts derived from satellites, and local rawinsonde data. Ground truth would be obtained
from surface observations and satellites.

4. WEATHER FORECAST MODEL DEFINITION

In order to completely describe a forecast model at least four components should
be specified: (1) the meteorological event to be forecasted; (2) the sources of historical input
variables and ground truth; (3) the lead time and forecast period; (4) the size of the forecast,
region. Each of these four components are described in the following paragraphs.

4.1 THE EVENT TO BE FORECASTED

PRECIPITATION

(a) PoP by type (rain, snow, freezing rain)

(b) estimate of precipitation amount with confidence limits

(c) probability of precipitation (PoP) greater than specified amount

TEMPERATURE
(a) expected temperature with confidence limits
(b) probability of temperature above or below specified value

WINDS
(a) expected wind direction, speed, and gusts with confidence limits
(b) probability of winds above or below specified speed

CLoUD COVER, CEILING, AND VISIBILITY

(a) expected cloud cover, ceiling, and visibility with confidence limits
(b) probability of an event above or below specified values

(c) expected cloud types and coverage with confidence limits

SEVERE WEATHER

(a) probabilities of funnel cloud or tornado

(b) probabilities of hail larger than specified sizes

(¢) probability of wind gusts greater than specified speed

(d) probability of cloud-to-ground lightning within specified grids

Although there are many environmental events that can be predicted, the GOPAD
model development process requires a fairly accurate training set (i.e., a historical data base)
in order to develop a model to forecast the desired event. We have found that as a minimum
these data bases should include about 100 data points for climate forecasters or about 500
data poinis for shorier term forecasters.

Another important criteria for determining how well an event can be forecasted is
that there must be a minimum number of occurre.ces of that event in the historical data
base. For example, a rare event (e.g., a tornado) m. y occur with a frequency of 0.1%. A data
set containing 500 data points would contain n~"y 5 tornado events. We find that at least 10
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or more occurrences are required to accurately forecast a rare event. If the historical data set
does not contain a sufficient number of occurrences of an event, then more data and/or
"multiplexing” may be required.

In order to achieve the optimal level of performance given a limited number of ground
truth events in the training set, we experimented with two techniques to mitigate this
problem which we refer to as the “rare event" problem. First, a new technique, called
multiplexing (plexing), was developed to enable different sets of ground truth events to be
used in the creation of a model thereby increasing the number of occurrences of the event in
the training set. The concept of multiplexing was tested on a very small scale using
geographically similar contiguous regions during SHOOTOUT-89. GOPAD RT-89 used
multiplexing to extend a historical training set that contained only three years of ground
truth data for forecasting severe storm parameters and two years of ground truth data for
forecasting significant storm parameters. GOPAD RT-89 is composed of six submodels. One
submodel is single-plexed, four are two-plexed, and one is three-plexed. By comparison, a
site-specific scenario model might require as many as 20-plexes. Methods for selecting the
optimal number of plexes for a given problem have been addressed only in a preliminary
manner. It is also fair to note that greater plexing will be more computationally expensive.

Second, a self-adapting forecast model that learns as it is being used was also
developed for SHOOTOUT-89 to evaluate the potential of this technique for mitigating the
lack of ground truth data. We are presently evaluating the skill of our self-adapting model
compared to an identical but static model to estimate the potential learning curve.

4.2. SOURCES OF PREDICTOR VARIABLES

Mesonet or other surface data
Rawinsonde data

Satellite derived cloud track winds
Other satellite derived variables
Barotropic mode! output Topographic or terrain data
Nested CGrid Model (NGM) output Worldwide monthly average
Mesoscale primitive equation temperatures

model output Worldwide monthly average sea
level pressures

mOQwp
~EQE

&~

This list shows many, but not all, of the possible sources of predictor variables that
could be used to construct a model. The selection of the variables to use depends upon many
factors. One of the major cost factors in developing a model is the number of new historical
data bases that must be developed for a particular site or region. Often these historical data
bases can be formed one time for very large regions (e.g., several states in size) and,
subsequently, be used to produce a variety of models in the same region or in different areas
of the same region. After the data bases are developed and organized for processing, GOPAD
model construction is primarily man-out-of-the-loop.

Generally, the best models will be produced when the widest possible variety of input
variables are used to develop a forecast model. This variety should include variables that
may never have been thought to be impertant enough to consider in 2 medel. The number of
individual candidate variables that can be included in a GOPAD model could number from
100 to 8,000 or more. It also makes no difference whether these variables are highly
correlated or not. The GOPAD model development process creates a near optimal model for a
given data set, no matter how much redundancy is present in the training set. Normally, the
redundant variables are automatically combined by GOPAD to form optimal machine-derived
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indices which usually contain much more predictive information than any of the individual
candidate variables from which they were derived. We find that these indices are often so
complex that they cannot be easily explained. Nevertheless, the indices that are selected
have extremely high Chi-square values (e.g., over 100) indicating very high predictive power.

The only limitation pertaining to these input variables is that they should be
continuous, rather than binary or discrete, with few possible values. For example, discrete
variables with relatively few values (i.e., less than 10) do not facilitate optimization of the
separation between these multi-dimensional data points. In the weather domain, the raw
variables are generally continuous variables, so this limitation is usually not important.

Finally, the size of the training set should be as large as possible. For example,
these data base should contain 1,000 or more data points. Consequently, the size of these
data bases are usually on the order of 10-500 megabytes in size. For example, the NGM
historical data base for just the past four years is about 5-7 gigabytes in size, but only about
500 MB of candidate predictor variables will be extracted for processing.

4.3. FORECAST LEAD TIMES AND VALID PERIODS
FORECAST TYPES LEAD TIMES MINIMUM VALID PERIODS

Immediate-range Oto 4 hours 1 hour
Short-range 6 to 24 hours 3 hours
Mid-range 24 to 96 hours 12 hours
Long-range 4to 9 days 1 day
Extended-range 10 to 30 days 5 days
Short-climate 1to 3 months 10 days
Mid-climate 3to 9 months 30 days
Long-climate 9 to 24 months 3 months

The lead time is the amount of lag between the time that the forecast model
produces a forecast and the time that the valid period begins. The valid period is the
timeframe within which the forecast is valid. For example, an Immediate-range forecast
model may produce a forecast at 12Z which is valid for 15Z-16Z. In this example, the lead
time is three hours and the valid period is one hour. The valid period may be equal to or
longer than the temporal resolution of the ground truth data used to train the model. Valid
periods shorter than those listed are not recommended, but valid periods may be longer than
those listed.

A forecast model with a short valid period could be very important to the battlefield
planning process. If a series of hourly forecast models were run at the same time and if their
forecasts were graphically displayed on the same time line, then one could see the temporal
evolution of the weather event being forecasted. We refer to this type of combined forecast
model as a scenario model. A scenario model wiil make it possible for one to see breaks or
windows in the weather. In addition, a scenario model would support the tactical planning
and decision-making process at Division and Corps by making forecast information readily
available for any combination of lead time and valid period that might be required by a
myriad of the Tactical Decision Aids (TDA).

Copyright @ 1989 by Consultant's Choice, Inc.
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4.4. SIZE OF FORECAST REGION

FIXED POINT MODELS
(a) Single-Site Model--one model forecasts for one site.
(b) Multi-Site Model--one model forecasts for several sites.

REGIONAL MODELS

(a) Low-Res Single Region Model--one model provides a forecast to cover a single
geographical region.

(b) Multi-Region Model--one model forecasts in several regions that may be
meteorologically very similar and/or relatively close geographically.

FULL RESOLUTION MODELS

(a) Hi-Res Single Region Model--one model forecasts for any/all specified points
within the given geographical region.

(b) Generic Model--one model forecasts for any/all specified points in a variety of
meteorologically or geographically similar regions.

Fixed point forecast models are trained on the ground truth information that is
specific to one or more sites. A probability of precipitation (PoP) model trained on the
amount of rain received in one rain gauge is a good example of a single-site model. A
multi-site model would be trained on the data from several locations and therefore could be
used to make predictions for any of those sites. In either case, a point model generally will
provide useful forecasts only for the specific locations where it was trained.

A low-res single region model will make predictions for a region rather than for
one or more sites within a region. The resolution of the ground truth data is the region as a
whole. Consequently, the output of a regional model only indicates the probabilities that a
specific event will occur within the region but will not localize the event within the region.

A multi-region model is a concept designed to reduce the cost of creating many
regional models when these areas are meteorologically similar and relatively close
geographically. This concept suggests that when models are required for large regions, it is
possible to multiplex the ground truth data from several smaller portions of the larger region
to create a multi-region model. For example, the ground truth data base for a mesoscale
weather forecasting model, developed for four regions around Boulder, Colorado, contained a
record of whether or not severe/significant weather had occurred anywhere within the region.

The hi-res single region model combines the advantage of the point and regional
models to provide point forecasts for any or all of the points in the region, whether or not
there is ground truth data available for the desired region. In order to make this model
useful, non-meteorological information (e.g., terrain elevation data, direction of slope,
vegetation type, surface roughness, lat-long, distance to ocean, etc.) must be used in addition
to the meteorological data.

The hi-res generic model takes the high resolution model one step farther. A
generic model, in concept, would be portable to geographic locations where insufficient
historical data was available to construct a model. This concept suggests that it might be
possible to create a model using the historical data from a variety of geographically-different,
but meteorologically-similar locations. Thus, a regicn-specific model for an overseas area
might be initially developed for a similar region in the United States for example, and once

Copyright © 1989 by Consultant’s Choice, Inc.
8800 Roswell Road, Atlanta, GA 30350

B-8




constructed it would be used in the overseas location. Such a model would be designed to
self-adapt using real-time data and post-forecast ground truth information. Eventually it
would transform itself into a site-specific forecast model with a greater level of skill than
when it was first placed into service. A generic model could enclose a region of almost any
size (e.g., the State of Georgia, or Georgia and Alabama) and it would also be trained with
meteorological data and non-meteorological data. It is appropriate to note that the

development of a generic model will require exploration and the develcpment of new
production techniques.

Finally, all of these high resolution regional models would isopleth their forecasts
(e.g., expected amount of precipitation) over the region. A zoom capability would enable
regions of interest to be isoplethed at any desired resolution. Similar isopleth maps could be
constructed, for example, for the minimum expected amounts of precipitation with any user-
specified confidence limit. In this way, isopleths maps could alse show the probability that
precipitation would exceed any user-specified amount. The list of possibilities is extensive.

5. GOPAD MODEL DEVELOPMENT PROCESS

This section describes how the GOPAD development software would be used to
develop a new weather forecast model for cloud cover, ceiling, and visibility for an
overseas country where the developer has no prior knowledge about the weather patterns and
where he must create all new historical data bases. As these time estimates will show, the
majority of the man-hours required is in formatting, correcting, and organizing the historical
data bases. The development procedure would be organized into three ordered phases. Upon
completion of each phase, an operational model would be available that could be fielded.

5.1 DEVELOP A SINGLE-SITE, SCENARIO MODEL

In Phase I, the objective would be to develop, test, and deliver a single-site, 12-month,
scenario model for City, Country (e.g., some city in a Latin American country). The model
developed in Phase I would use either one, two, or three sources of predictor variables,
Obviously, a model that uses more variable sources will take more time, but its accuracy
would also be greater. So a trade-off decision must be made by selecting from the available
sources of predictor variables that may be used to develop the Phase I model. Although we
would fully expect the performance of this simple model to surpass climatology, we cannot
know how much of an increase is possible.

If only one source of predictor variables could be used, then rawinsonde data from
five to ten stations in and around the country would be used. It would take shout 10 weeks to
develop this model.

If two sources of predictor variables could be used, then rawinsonde and barotropic
model data would be used. The historical barotropic data base would be constructed from
scratch for a 10-year period. Obviously, this option will produce a better forecast model, but
it will take an additional effort to create the barotropic data base. Nevertheless, the
production of this data base for a country neads to be done only once, but it ¢can be used many
times. It would take about 28 weeks to develop this model from scratch, This option
probably offers the best trade-off between cost and development time versus the potential for
increased performance.

Copyright © 1989 by Consultant's Choice, Inc.
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If three sources of predictor variables could be used, then this model would be
developed using satellite-based imagery to derive cloud-tracked winds, barotropic, and
rawinsonde data as predictor variables. In addition to the rawinsonde data and the
development of the barotropic historical data base, this option would include ire development
of a cloud-tracked winds historical data base using GOES imagery, CIRRUS J, and a vorticity
model to derive synoptic scale wind patterns. It would take about 45 weeks to develop this
model from scratch.

5.2 DEVELOP MULTI-SITE, MULTI-SOURCE, SCENARIO MODEL

In Phase II, a multi-site, multi-source, scenario model would be developed for up to
ten specified sites in a country in three-hour increments out to 24 hours. This model would
use the predictor variable data sets produced in the Phase I (i.e., rawinsonde only;
rawinsonde and barotropic only; or rawinsonde, barotropic, and synoptic scale wind flow).
The multiplexing concept would be used to create this model. Although the selection of these
10 sites may be somewhat arbitrary, each site selected must have about 10 years' worth of
historical ground truth information available. It would take about 5 weeks to develop this
model.

5.3 DEVELOP A HIGH RESOLUTION, MULTI-SOURCE, SCENARIO MODEL

In Phase III, a high-resolution, scenario model would be developed to produce
forecasts anywhere in a country. This model would be constructed using all the historical
data bases created in Phases I and II, and at least one new historical data base of non-
meteorological variables (e.g., terrain elevation, direction and amount of slope, etc.). The
multiplexing concept would be used to create this model. Once this model has been
completed. other forecast models (e.g., precipitation, temperature, etc.) would be able to use
many of tae same historical data bases that were developed for the first time. Therefore, the
costs of additional models would be significantly less. It would take about 18 weeks to
develop this model.

6. SUMMARY

The Army and other services need a high technology initiative in mesoscale weather
forecasting for high-, medium-, and low-intensity combat situations. Rapid weather
forecasting is critical to the planning cycle. Forecasting, which is a difficult task in peace-
time, will be even more difficuit on the battlefield. The number of weather parameters
required for a new generation of Tactical Decision Aids and automated systems has placed
increased importance on the requirement for the Army to develop a highly automated,
tactical weather forecasting system. New technologies and hardware are now available that
may make this possible. Therefore, bold research is needed to develop a technical foundation
to achieve this goal.
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1.0 ABSTRACT

During the summer of 1989, the Forecast Systems Laboratory, NOAA, sponsored an
evaluation of Artificial Intelligence systems that forecast convective storms taking place
within a 110-mile radius of Boulder, Colorado. This exercise was called SHOOTOUT-89
and was designed to be an exploratory study of the effectiveness of a variety of Al
systems in the weather forecasting process. Data gathered during the forecast phase of
the exercise was used to evaluate the performance of the participating systems. The
systems participating included: (1) Knowledge Augmented Severe Storms Predictor
(KASSPr); (2) Goal Oriented Pattern Detection (GOPAD); (3) NOAA/NESDIS CONVEX; (4)
Additive Linear Prediction System (ALPS); (5} WILLARD; and (6) Objective Convective
Index (OCI). The goal of SHOOTOUT-89 is to provide Al system designers with feedback
so they can design future systems that will support the overall weather forecasting
process. This paper summarizes the results and discusses some of the lessons learned
from this exercise.

2.0 INTRODUCTION

During the summer of 1989, the Forecast Systems Laboratory (FSL) of the National
Oceanic and Atmospheric Administration (NOAA) conducted an exercise that was
designed to evaluate Artificial Intelligence (Al) systems that forecast significant and
severe weather over four regions in the northeastern Colorado plains. This exercise,
called SHOOTOUT-89, took place in Boulder, Colorado. Previous real-time (RT)
exercises were conducted during the summers of 1983, 1985, and 1987, in northeast
Colorado by the Program for Regional Observations and Forecasting Services (PROFS).
PROFS operates an extensive network of sensors, maintains historical data bases, and
faciiitates advanced research studies in mesoscale forecasting.

The SHOOTOUT-89 was an exploratory, quantita.ive, and qualitative comparison of Al
systems that forecast severe weather. Although each system required different
predictor variables, all systems received real-time data at approximately the same time,
and were required to produce a forecast for the 11:00 A.M. weather briefing. Thus, the
unique format for the SHOOTOUT exercises made it possible to directly compare and
contrast the performance of Al-based forecasting systems in a laboratory sctting. Data
gathered during the exercise will be used to evaluate the tasks, rules, and regulations of
the study, as well as to evaluate the participating systems. System evaluation included
testing the robustness of the systems in an operational situation, comparing the
effectiveness of different Al approaches, determining the need for expert human input,
evaluating the sensittvity of a system given different operators, soliciting user
comments, and stimulating collaboration among researchers. In this paper, we focus
on the effectiveness of the systems that participated.
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3.0  PARTICIPATING SYSTEMS

There were six Al systems that participated in the SHOOTOUT-89 exercise. A few of the
systems required no more than a few keystrokes to initiate the forecast model. Other
systems required extensive interaction with a human expert, and some systems
interrogated the meteorologist. A brief review of these systems follows:

1) KASSPr (Knowledge Augmented Severe Storm Predictor) was eveloped by the
Atmospheric Environment Service of Canada, Department of the Environment,
in cooperation with Digita! Equipment Corporation. KASSPr is a traditional
expert system written in OPS-5. Rule firing is controlled by the forward-
chaining OPS-5 production system. The knowledge base was derived from Joln
Bullas, an expert in severe weather forecasting, and Bruno deLorenzis (1988),
the developer, from Atmospheric Environment Service of Canada.

KASSPr requires both NGM numerical model output, and extensive input from
the meteorologist running the system. The meteorologist identifies and draws
the forecasted positions of numerous meteorological features, such as troughs
and ridges, on the computer screen {deLorenzis, 1988), Once this task has been
completed, the system generates forecasts without further interaction.

2) GOPAD (Goal Oriented Pattern Detection) was developed by Dr. Kenneth Young
with the help of Paul Lampru of Consultant's Choice, Inc. GOPAD is a
combination of a front-end program which uses multiple discriminant analysis
(MDA) to screen a large number of potential predictor variables and to create
indices, which are linear combinations of these variables. The forecast model is
then developed using a non-linear k-nearest neighbor approach, based on the
predictor variables selected by MDA. The forecast model was developed using
PROFS mesonet data for 1200Z through 1555Z, and 1200Z rawinsonde data
from Denver and seven surrounding stations.

GOPAD is designed to run autonomously. During the exercise, the necessary
mesonet and rawinsonde information was provided in a file created by the
PROFS computer system, and the forecast program was initiated by the human
operator. In addition to the standard probability forecasts required, GOPAD
forecasts the probability of tornados and/or funnel clouds, the probability
distributions of expected maximum hallstonie sizes, and the probability
distributions of expected peak wind gusts.

Two versions of GOPAD were run. The "learning version" received verification
data for the previous day which, along with the forecast parameters for that day,
were added to its historical data base. The "static" version recetved no updated
verification data and so did not alter the historical data base from which it made
forecasts.

3) CONVEX was developed by John Weaver, NOAA/NESDIS, who provided the
severe storm forecasting experience, and by R. Phillips from NOAA/NESDIS, who
was the knowledge engineer {Weaver and Phillips, 1987; Weaver and Phiilips,
1989). CONVEX relles heavily on a sounding analysis package which
determines the instability of the host airmass and its likelihood of initiating
convection over the front range. It also requires the operator to predict the
surface temperatures and dew points for each forecast region, which form the
basis for the sounding analysis psckage.
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4)

5)

6)

In addition to the Denver morning sounding and surface mesonet data, CONVEX
requires reasonably knowledgeable responses from a meteorologist to several
questions regarding synoptic scale conditions.

ALPS (Adaptive Linear Prediction System) was developed by Tom Stewart of the
State University of New York at Albany, and Cynthia Lusk of the University of
Colorado at Boulder. ALPS is a linear model developed using the methods of
judgment analysis from the fleld of cognitive science. The foundation for this
theory is the belief that linear models are robust prediction systems that are
more consistent than human judgment in certain situations. This theory
suggests that simple algebraic models can capture the skill in the judgments of
an expert in tasks that involve a high degree of uncertainty, intercorrelated
variables, and monotonic relationships between variables and the observed
event.

Meteorological expertise was required only in the selection of variables,
estimating their relative weights, and calibra‘ing the output. The six key
variables used by ALPS are positive buoyancy, wind shear, surface temperature,
humidity, wind direction, and wind speed. Some of the values are read
automatically from the PROFS mesonet data, while others are determined by the
operator from the Denver morning sounding.

WILLARD was developed originally by Steve Zubrick at Radian Corporation.
WILLARD is an expert system where rules were developed using an induction
algorithm in Rulemaster (Zubrick and Riese, 1985). WILLARD was originally
designed and developed to forecast the potential of severe thunderstorms in the
central United States. The system's forecasts are designed to be similar to the
Convective Outlooks issued three times a day by the National Severe Storm
Forecast Center.

WILLARD is an expert system that iS composed of a hierarchy of about 30
modules at least containing one decision rule. For SHOOTOUT-89, additional
rules were added to WILLARD, based on the expertise of forecasters and the
Denver NWS Forecast Office. WILLARD might ask the operator up to forty
questions before making a forecast. These questions pertain to current synoptic
and mesoscale features, as well as numerical forecast guidance. Relatively few
questions might be asked if the situation is not romising for severe weather.

OCI (Objective Convective Index) was developed by Robert Shaw with
considerable input from Thomas Corona, Denice Walker, and many participants
of the PROFS Real-Time 1987 experiment (RT-87). A long list of potential
predictor variables was developed, using many Boulder-area meteorologists as
experts. OCI uses proven severe weather forecasting principles to answer the
question, "What are the chances of severe weather this afternoon in the PROFS
mesonet region?”

Many Boulder-area meteorologists were consulted to identify a comprehensive
list of potential predictor variables. However, the amount of archtved data and
number of potential predictor variables were too large for effective regression
equations to be generated. Consequently, predictors were subjectively weighted
to build a linear model. Heuristic rules were added to identify relationships
among the variables that might inhibit convection. Both observed data and
NGM forecast model data were included for each of rhe four basic weather
elements: temperature, pressure, moisture, and wind. Since the OCI is based




on universal convective forecasting principles, it can be modified for any climate.
OCI iequires the operator to input surface observations, Denver sounding data,
and NGM forecast model data for Denver and Cheyenne. Forecasis are
produced without further interaction.

4.0 EXERCISE PERIOD AND REGION

SHOOTOUT-89 ran from May 17 through August 16, 1989. On each day of the
exercise, all systems were to generate forecasts of the mutually exclusive and
exhaustive probabilities of occurrence of each of three weather categories, in each of
four designated zones in northeast Colorado. The choice of the forecast zones was
based on work by Weaver et al., (1987). The four forecast regions are shown on the
map in Figure 1.
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Figure 1. Forecast Regions for SHOOTOUT-89. (Roberts et al., 1989)
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5.0. DEFINITION OF WEATHER CATEGORIES

The weather categories are listed as follows:

Category O:  Nonsignificant (Nil) weather is the absence of category 1 or
category 2 weather.

Category 1:  Significant weather is the absence of category 2 weather, with the
occurrence of any of the following: (a) hail at least 0.25 inches but
less than 0.75 inches diameter, (b) surface winds between 35 and
49 kts, (c) a rainfall rate of 2 inches/hour or more, based on 5-
minute measurements, and/or (d) a funnel cloud.

Category 2:  Sever¢ weather is the occurrence of any of the following: (a) hail
with a diameter of at least 0.75 inches, (b) wind gusts of 50 kts or
greater, and/or (¢) a tornado.

6.0 FORECAST LEAD TIME AND VALID PERIOD

Forecasts were required by 11:15 AM. (1715Z) to be valid from 1:00 P.M. (1900Z) to
8:00 P.M. (0200Z). Due to the amount of manual input required, forecasts for OCI were
run in the early aftermnoon, based on data available that morning. Not all forecast
models produced forecasts for all four regions for all operational days of the exercise.
WILLARD generated only a single forecast for the entire region. This forecast was
assumed to be the same for each region. OCI did not generate forecasts for Region I.

Most of the data required by the systems was available by 10:15 A.M. Forecasts for all
systems except OCI were completed by 11:15 AM. (17157} and presented at the FSL

dally weather briefing at 11:25 AM. Not all the forecast models were operational on the
first day of the exercise.

7.0 NUMBER JF OPERATIONAL DAYS

The starting dates and number of days each system was operated are shown i+ Table 1.
Forecasts were not met when a program crashed (programming problems), or when
required input data was not available. OCI did not produce forecasts for Region I.
Since GOPAD and ALPS are totally objective systems, they were rerun for the days that
were missed during the exercise.
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TABLE 1
NUMBER OF DAYS EACH SYSTEM WAS OPERATIONAL
Starting Date #Days Operational

KASSPr 17 May 1989 60 days
GOPAD learning 17 May 1989 53 days
GOPAD static 24 May 1989 50 days
CONVEX 19 May 1989 57 days
ALPS 7 Jun 1989 48 days
OCI 30 May 1989 45 days

WILLARD 30 May 1989 54 days

* The number of operational days for Regjons II, Il and IV,

After the exercise was completed, the objective systems were allowed to generate offline
forecasts for the days they were not operational. The purpose was to obtain the largest
number of common days in which forecasts were available for comparative evaluations.
As a result of this effort, there were 48 common days for Region I, and 45 common days
for Regions II, IIT and IV.

8.0 VERIFICATION DATA

8.1 Verifl n During SH -

The collection of verification data is a crucial aspect of SHOOTOUT-89. A full-time
Verification Coordinator (VC) was responsible for gathering and documenting the
verification data for the exercise. These data are also used by the Denver WSFO in its
own forecast verification studies. The VC was stationed at the Denver WSFO, where
real-time radar data was readily available. When radar or other data suggested possible
significant or severe weather, the VC called cooperative observers in the affected
regions. The VC also received reports that were phoned in to the Denver WSFO, and
made follow-up phone calls on the day following a possible weather event.

The following sources provided verification data: (1) a volunteer spotter network, and a
paid cooperative observer network sponsored by the NWS; (2) police and fire stations,
county emergency preparedness staffs, and highway road crews; (3) a network of
amateur radio operators; (4) weather service offices in Colorado Springs and Cheyenne,
in additon to the Denver WSFO; (5) automated mesonet stations (PROFS) that provide
information on wind gusts and rainfall rates; (6) daily weather observations recorded by
a network of approximately 30 specially recruited weather observers with observations
mailed in monthly; and (7) volunteer chase teams consisting of research meteorologists
who maintain contact with the VC by cellular phones, or who report after the fact. In
spite of this extensive list of possible observers, it was nonetheless very difficult to
obtain verification data with sufficient accuracy to make absolute measures of skill or
performance highly reliable.




8.2  Stationarity of Historical Validation Data

Table 2 contrasts the frequencies of severe and significant/severe weather events
observed in 1989 with those observed in previous years for each of the four forecast
regions. With the exception of Region I, the observed frequencies of gsevere weather for
1989 were similar to the frequencies observed for three previous exercises. Table 2 also
suggests that significant weather was greatly over-reported in 1989, or at least
significantly different than during 1985 and 1987. Note that we did not have access to
significant weather information collected in 1983. The observed frequencies in 1989 are
probably more reflective of the true climatology for each region. The probability that the
observed frequencies for 1989 occurred by chance, given the averages for 1985 and
1987, is less than 0.1%; that is, this is not a chance occurrence. Obviously, the
methods of reporting significant weather events dramatically changed in 1989 as
compared to previous years.

TABLE 2
OBSERVED FREQUENCY OF EVENTS BY REGION
Severe Weather Frequency
I I m v
Observed (1989) 8.3% 4,4% 13.3% 17.8%
Observed (1983,1985,1987) 2.9% 5.5% 8.8% 18.4%

Significant or Severe Weather Frequency

I 1§ m v
Observed (1989) 45.8% 37.8% 33.3%  55.6%
Observed (1985,1987) 9.4% 14.9% 15.8% 29.2%

Serlous over-reporting, {or under-reporting), of significant weather adversely affects the
performance of all the models, but it especially impacts GOPAD and ALPS, since the
historical data sets for RT-83, RT-85, and RT-87 were essential to the development of
these models. Although this situation might occur when tactical forecast models are
developed for one region and used in another region, or whenever one year is abnormal
from all other years, it should not vary so much that it is statistically significant. Thus,
the possibility that past exercises serlously under-reported significant weather is a
critical issue in properly comparing the performance of all the models that participated
in the SHOOTOUT-89 exercise. In order to investigate this issue in depth, a Markov
chain simulation was performed to compare the reporting of significant and severe
weather events in 1985 and 1987 to 1989.

8.3 Markov Chain Simulation

The fraction of significant weather events reported during the RT-89 experiment, shown
in Table 3, is markedly higher tha the fraction reported during the RT-85 and RT-87




experiments as shown in Table 4. The fraction of Nil weather events was likewise much

lower in 1989. However, the fraction of severe weather events appears to be quite
similar.

TABLE 3
1989 REPORTED NIL, SIGNIFICANT, AND SEVERE WEATHER
Nil Sig Sev
I 35 (56%) 23 (37%) 4 (6%) 62
I 39 (63%) 20 {32%) 3 (5%) 62
m 42 (68%) 13 (21%) 7 (11%) 62
v 31 (50%) 20 (32%) 11 (18%) 62
Sum 147 (59%) 76 {S1%) 25 (10%) 248
TABLE 4

1985 AND 1987 REPORTED NIL, SIGNIFICANT, AND SEVERE WEATHER

Nil Sig Sev
I 183 (91%) 15 ( 79%) 4 (2% 202
I 172 (85%) 18 ( 3%) 12 (6%) 202
m 170 (84%) 14 ( 79%) 18 (9%) 202
v 143 (71%) 23 (11%) 36 (18%) 202
Sum 668 (83%) 70 (9%) 70 (9%) 808

Note:  Frequencies may vary from those in Table 2 because only 1985 and 1987
severe events are included in this Table.

This sftuation raises a question: Is the larger fraction of significant weather reports
during 1989 within expected statistical fluctuations? In order tc answer this question,
Markov chain simulations were conducted for each of the four regions. These
simulations assumed that the probabilities of significant or severe weather are
influenced by the occurrence or non-occurrence of significant or severe weather on the

T S4esméd + Eloarnd ] AL~ T .4
preceding day only. This situation represeants a first-order Markov chain.

The Null hypothesis assumed the true population of significant and severe weather
events was that observed in the RT-85 and RT-87 experiments. The transitior: matrices
used for the Markov chain simulations are shown in Table 5. In region IV, for example,
the transition probability for a severe weather occurrsnce to occur on the next day,
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given a significant weather event, is 0.250. The transition probabilities were assumed

to be stationary; that is, they do not change throughout the experiments (from May
through August).

TABLE 5

MARKOV CHAIN TRANSITION PROBABILITIES

Region 1 Region I

Nil Sig Sev Nil Sig Sev
Nil 922 .061 017 Nil .860  .087 .052
Sig .733 200 067 Sig .765 .176 .059
Sev 1.000 .000 .000 Sev 833  .000 167

Region III Region IV

Nil Sig Sev Nil Sig Sev
Nil .851 .065 .083 Nil 710 .099 191
Sig .786 .143 071 Sig 583  .167 250
Sev 778 .056 .167 Sev 722 .139 .139

The RT-89 experiment was conducted on 62 days within a 92-day span from May 17
through August 16. Thus, a simulated sequence of 92 days was conducted and then
analyzed by removing the 30 days on which the RT-89 experiment was not conducted.
Each sequence was initiated using the stationary probabilities for Nil, Significant, and
Severe weather. The number of Nil, Significant, and Severe weather days was
determined for each of 10,000 trials. Cumulative distributions of the fraction of trials
that yielded "n" or fewer Nil, Significant, and Severe days were prepared.

These cumulative distributions were developed for each of the four regions. The
probabilities that the fractions of Nil, Significant, and Severe weather events reported
for 1989 could have occurred by chance (P-values), given the transition probabilities
based on the 1985 and 1987 experiments, are readily derived from these cumulative
distributions.

For example, Table 6 shows the cumulative distribution of the fraction of trials that
ylelded "n" or fewer Nil, Significant, and Severe weather events for Reglon IV based on
the Markov chain simvlations. During 1989, there were 31 Nil weather events reported
for Region IV. Using the cumulative distribution shown in Table 6, the probability of
having 31 or fewer Nil weather events is 0.12%. Similarly, the probability of having 20
or more significant weather events is less than 0.01%, and the probability of having 11
or fewer severe weather events is 49%. Thus, we conclude that there is no difference in
the frequency of severe weather events reported for Region IV, but the frequency of
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significant weather events is significantly higher and the frequency of Nil weather events
is significantly lower in 1989.

TABLE 6
CUMULATIVE DISTRIBUTIONS FROM MARKOV CHAIN SIMULATIONS
FOR REGION IV

n Nil Sig Sev n Nil

0 0.00% 0.02% 0.00% 31 0.12%

1 0.00 0.51 0.00 32 0.23

2 0.00 2.57 0.02 33 0.50

3 0.00 7.24 0.05 34 1.17

4 0.00 15.68 0.37 35 2.05

5 0.00 27.55 1.23 36 3.84

6 0.00 42,73 3.31 37 6.50

7 0.00 57.67 7.39 38 10.07

8 0.00 71.63 14,18 39 15.37

9 0.00 82.24 23.39 40 22.57
10 0.00 89.83 36.09 41 31.66
11 0.00 94.58 49.06 42 42.19
12 0.00 97.53 62.32 43 52.65
13 0.00 98.86 74.23 44 62.81
14 0.00 99.59 83.37 45 72.37
15 0.00 99.84 89.90 46 81.07
16 0.00 99.94 94.22 47 87.75
17 0.00 99.97 97.20 48 92.62
18 0.00 99.99 98.67 49 95.90
19 0.00 99.99 99.40 50 t 18
20 0.00 100.00 99.80 51 L. X4
21 0.00 99.94 52 99.65
22 0.00 99.99 53 99.84
23 0.00 99.99 54 99.94
24 0.00 100.00 55 99.99
25 0.00 56 99.99
26 0.00 57 100.00
27 0.00 58 100.00
28 0.01 59 100.00
29 0.01 60 100.00
30 0.03 61 100.00

The P-values representing the probabilities that the numbers of Nil, Significant, and
Severe weather events reported in 1989 are within the expected range of natural
variability based on the 1985 and 1987 experiments, as shown in Table 7. The pattern
discussed above for Region IV is quite similar for the other three regions. Region I does
show an increased frequency of severe weather events in addition to the increased
frequency of significant weather events.
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TABLE 7
P-VALUES LIKELIHOOD RANGE
Nil Sig Sev
I <0.01% <0.01% 3.3%
I <0.01% <0.01% 50%
I 0.20% 0.03% 33%
v 0.12% <0.01% 50%

8.4 Conclusions

Therefore, it may be concluded that the obuerved frequency of severe weather events for
1989 is within the range of natural variability given by the 1985 and 1987 observations,
whereas the frequency of significant weather events for 1989 is certainly not within the
expected range. This situation suggests that the verification procedures used in RT-89
were significantly different than those used in RT-85 and RT-87 in detecting the
occurrence of significant weather. Note that the increase in significant weather events
is balanced by a decrease in the Nil weather events with virtually no effect on the severe

weather events. This would not be expected if the changes were due to natural
variability.

The primary difference between the RT-85/RT-87 exercises and the RT-89 exercise
appears to be the method of validating severe and significant weather events. For
example, the RT-85/RT-87 exercises used chase teams to verify severe weather events
while none were used during RT-89. These chase teams confined their efforts to
Regions 11, III, and IV and did not pursue storms in Region I. During RT-89, the
validation coordinator actively used radar information to identify where severe and
significant weather might be occurring. Aggressive telephone calls were then initiated
to sheriff's departments, fire departments, highway crews, and other agencies located in
areas where the radar showed activity.

These differences suggest that the RT-89 verification methods were:

(@) equivalent to using chase teams to determine the incidence of severe
weather in Regions II, III, and IV;

(b) superior to the chase teams in determining the incidence of severe weather
in Region I;

(c) superior to the chase teams in determining the incidence of significant
weather in all regions.

9.0. PERFORMANCE COMPARISONS

All forecasts models that participated in the SHOOTOUT-89 exercise produced three
forecasts--the probability of Nil weather, significant weather, and severe weather--for
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each day for each region, except OCI which did not forecast for Region 1. Evaluations
were done for Nil versus Non-Nil, and severe versus non-severe weather.

The GOPAD forecast models used in RT-89 were developed on the basis of reports of
significant and severe weather reports obtained in RT-83, RT-85, and RT-87. There
were virtually no reports of significant weather available for RT-83. The incidence of
significant weather reports for RT-85 and RT-87 were substantially lower than in RT-89.
Thus, one may expect that the skill scores for GOPAD based on the significant weather
forecasts will be much lower than if the "training" data had shown a similar frequency
of significant weather events. Likewise, the skill scores for severe weather in Region I
should be adversely affected as well.

9.1 Skill Scores

The individual forecasts for each system, for each region, and for each of the common
days for which all systems produced forecasts, are presented in Attachments 1 to 9.
The event outcome for each day is coded as follows: EO means Nil weather; E1 means
significant weather; and E2 means severe weather. The Brier scores and the Brier-
based skill scores are also given for each region and each system.

9.1.1 Regional Climatological Brier Scores

The Brier score is a cumulative form where the probability that the event wﬂl occur is P,
If the event occurs, then the contribution to the Brier score i3 1 - (l-P) If the event
does not occur, thea the contribution to the Brier score is 1-P2. The climatological
Brier score is determined in the same maruner using the long-term frequency as the
forecast probability {1983, 1985, and 1987 for severe weather; 1985 and 1987 for
significant weather). The long-term frequencies on which the climatological Brier scores
are based are listed in Table 8.

TABLE 8
LONG-TERM FREQUENCIES USED FOR
CLIMATOLOGICAL BRIER SCORE CALCULATIONS

L A II v

Non-Nil 9.41% 14.85% 15.84% 25.21%
Severe 3.68% 5.52% 8.82% 1£.38%

9.1.2 Brier-Based Skill Scores

A Brier-basec <kill score is calculated from the observed Brier score for the actual
forecasts and ¢ ¢ climatological Brier score. Attachments 1 to 4 show the calculation of
Brier scores for severe weather., Attachments 1 to 8 show the Brier scores for severe
and non-Nil weather. For example, Attachment 4, severe weather forecasts for Region
IV, shuws the Brier score for GOPAD1 to be 39.332. Using the long-term frequencies
for those same forecasts, the climatological Brier score is 38.421. The maximum
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possible Brier score is 45 (i.e., no error in any of the forecasts). Thus, the Brier based
skill score is calculated as follows:

SS = (39.332 - 38.421) / (45 - 38.421) = +13.9%.

This formulation of the Brier score makes it easy to combine the scores from each of the
four regions to determine the overall forecast skill. Attachment 9 shows the Brier
scores for (1) severe weather, (2) non-Nil, and {(3) combined forecasts. For example, the
Brier scores for GOPAD1 in each of the four regions are 44.019, 43.C12, 39.164, and
39.332, totaling 165.527. The corresponding climatological Brier scores are 44.229
43.084, 39.703, and 38.421, totaling 165.443. The corresponding perfect score is 48 +

45 + 45 + 45, totaling 183. Thus, the severe weather skill score for the four regions
combined is calculated as follows:

SS = (165.527 - 165.443) / (183-165.443) = + 0.5%

The analysis of severe weather forecasts appears to be a better indicator of the
forecasting skill than an analysis that is based upon non-Nil weather forecasts. This
opinion is based upon the fact that there appears to be a significant difference in the
observed frequency of significant weather in 1985 and 1987 compared to 1989. It is
difficult to re_oncile this difference when no similar difference appears in severe
weather.

9.1.3 Conclusions

There are many different ways to compare the performance of the system that
participated in the SHOOTOUT-89 exercise. We choose to rank the models in two ways.

First, Table 9 shows the (Brier) skill scores for severe weather based upon the forecasts
in which there was no statistically significant difference between reporting of severe
weather between 1985/87 and 1989 (i.e., Regions II, I, and IV}, This table eliminates
the effect from seriously over-reporting significant weather in all regions and from over-
reporting severe weather in Region I. GOPAD and ALPS should be helped by this caveat
since they were trained on the 1985 and 1987 data.

TABLE 9
SKILL SCORES FOR SEVERE WEATHER
IN REGIONS 11, III, AND IV

GOPAD1 +2.1%
GOPAD2 + 1.9%
ALPS -0.7%
WILLARD -11.9%
KASSPr -17.0%
CONVEX -24.0%
OCI -32.3%

Second, Table 10 shows the skill scores only for Region IV, which was the only region
that had an adequate rumber of events upon which to train a GOPAD model. This
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table mitigates the lack of a large historical data base that is needed in order to develop

a GOPAD or ALPS model.
TABLE 10
SKILL SCORES FOR SEVERE WEATHER
IN REGION IV
GOPAD1 +13.8%
GOPAD2 +13.2%
ALPS + 1.8%
KASSPr -0.2%
GCl -3.1%
WILLARD -12.6%
CONVEX -40.9%
9.2 lativ haracteristi

A good forecas: system should be able to 'detect” or correctly forecast the event without
giving too many "false alarms." Consider the following tables for GOPAD1 forecasts of
severe weather for Region IV. Consider that forecast probabilities above the threshold
(18% and 40%, respectively) represent a forecast for severe weather, whereas forecast
probabilities below the threshold are forecasts that severe weather will not occur.

TABLE i1
SEVERE WEATHER FORECASTSG FOR REGION IV
(GOPAD1)
Pr Pr Pr Pr

<=18% >18% Sum <=40% >40% Sum

EO/E1 27 10 37 EO/EI 35 2 37

E2 3 5 8 E2 6 2 8

Sum 30 15 45 Sum 41 4 45

Consider the first table with a threshold of 18%. GOPADI forecast severe weather on
15 occasions with severe weather occurring 5 times. Note chat five of the eight severe
v-eather occurrences were “detected,” or the probabilitr of detedting severe weacher
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(POD} is 5/8 or 0.625. There were ten forecasts for severe weather which were not

followed by severe weather, i.e., false alarms. The false alarm rate (FAR) is 10/37, or
0.270.

One may improve (decrease) the FAR by increasing the probability threshold. If this
threshold is increased to 40% (Table 10), the FAR drops to 2/37, or 0.054. The
probability of detecting severe weather events also decreases (i.e., the forecast will miss
more occurrences of severe weather). Now the POD is 2/8, or 0.250.

The relative operating characteristic (ROC)} combines the FAR and POD into a single
diagram over the entire range of thresholds. A forecast system with positive skill will
consistently show a larger POD than a FAR. The ROC plot will lie above the diagonal
between (0,0) and (1,1). The further above the diagonal the ROC plot lies, the better the
discrimination between severe and non-severe weather. Note that this measures the
discrimination ability of the forecast model and it is not affected by bias.

The ROC plots shown in Figures 4 and 5 show a much smaller spread among the
different forecast systems than do the ROC plots in Figures 2 and 3. Clearly, this
difference is a result of using a larger number of forecasts to determine the ROC plot.
The significant + severe weather (Figure 4) ROC plots suggest CONVEX, KASSPr, and
GOPAD exhibit the greatest skill, whereas WILLARD and ALPS demonstrate the least
skill, with substantial portions of their ROC plots lying below the diagonal These
findings are not inconsistent with the conclusions given by the Brier score analysis.

The forecast systems did better forecasting severe weather, according to Figure 5. Here,
only WILLARD shows a portion of its ROC plot below the diagonal. GOPAD exhibits
relatively smooth ROC plots, suggesting it produces useful forecasts over its entire
range. The OCI forecast system does a much better job in the upper right region of its
ROC plot, suggesting it does a better job identifying those days on which severe weather
will occur (lower left) somewhat better than it identifies days on which severe weather
will not occur.

9.3  Measure of Forecast Sharpness

A sharp forecast model tends to issue, for example, either rain or no-rain forecasts.
Obviously, the ideal forecast model would be very sharp (i.e., totally categorical) and
perfectly accurate. However, such a perfect model is far beyond current technology.

Since the state of the art in weather forecasting is far less than perfect, a non-
categorical or probabilistic model is the best means for providing information on-
demand to a myriad of Tactical Decision Aids (TDA). If a TDA is designed to use a
categorical type of forecast, then that TDA should receive the probabilistic forecast and
convert it to a categorical forecast, based upon a criteria tailored for its individual
tolerance for false alarms, and/or probability of detecting the event. Each TDA may be
expected to have its own tolerance level, and thus its own interpretation of the
probabilistic forecast.

The distribuiio. of forecast probabiiities for each of the models is presented in Tables
12, 13, and 14. The models are arranged, in increasing order of sharpness, from ALPS,
which produces forecasts that deviate little from climatology, to KASSPr, which
produces nearly categorical forecasts. Forecasts that are overly sharp may be expected
to show decreases in skill.
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GOPAD, ALPS, and OCI were capable of producing virtually any probability between 0
and 100%; KASSPr, CONVEX, and WILLARD were rule-based systems that provided for
a relatively limited number of options for probability forecasts. To a certain extent, the
three models with the greatest sharpness, CONVEX, KASSPr, and WILLARD, were
designed to be categorical in nature because they were intended to assist human
forecasters in issuing severe weather watches. Tables 12 and 13 list the systems in
increasing order cf sharpness.

TABLE 12
DISTRIBUTION OF SEVERE FORECASTS
ALL REGIONS COMBINED

Forecasted Probability of Severe Weather
Sharp-
Model 0-9% 10-19%  20-39%  40-69% 70-100% Total ness
ALPS 76% 24% 192 0.22
GOPAD 73% 15% 8% 3% 212 0.30
OoCI 56% 11% 18% 11% 4% 129 043
WILLARD 80% 15% 6% 216 0.80
CONVEX 80% 13% 2% 5% 228 0.83
KASSPr 93% 1% 1% 1% 4% 240 0.95

TABLE 13
DISTRIBUTION OF NON-NIL FORECASTS
ALL REGIONS COMBINED

Forecasted Probability of Non-Nil Weather
Sharp-
Model 0-S% 10-19%  20-39%  40-69% 70-100% Total ness
ALPS . 54% 34% 11% 192 0.19
GOPAD 41% 33% 18% 7% 1% 212 0.22
OCI 21% 27% 21% 21% 10% 129 031
WILLARD 50% 29% 17% % 216 0.56
CONVEX 40% 19% 20% 3% 18% 228 0.64
KASSPr 84% 1% 5% 10% 240 0.93
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9.4 Examination of Bias

Another desirable characteristic for a weather forecasting model is that the model
should produce forecasts whose average for a season is very close to the observed
frequency of the event being forecasted (i.e., an unbiased model). Bias is defined as the
average event forecast probability divided by the observed event frequency. A bias less
than one indicates under-forecasting (i.e., forecasted probabilities are too low); whereas
a forecast greater than one indicates over-forecasting.

Tables 14 and 15 show the forecast bias for each region and the overall bias for each
forecast model. The models in Tables 14 and 15 are listed in order from least overall
bias to greatest overall bias. Since GOPAD was trained and optimized on the observed
frequencies for the past three exercises, GOPAD should have very little bias, unless
ground truth reporting methods are altered. OCI was the only system that consistantly
over-predicted severe weather. All the other systems tended to under-predict both non-
Nil and severe weather.

Bias in a model's forecast may be expected to decrease the skill scores. If the forecast is
determined, the model's forecasting skill can be improved by correcting for the bias.
The model with the greatest bias tend also to be the models exhibiting the least skill
{Le., KASSPr and WILLARD).

TABLE 14
SEVERE WEATHER FORECAST BIASES
Overall
I I Jis v Bias

GOPAD2 .52 1.04 .64 1.02 0.812
GOPAD1 .48 1.04 .63 1.01 0.798
0ocCl1 X 3.06 1.40 1.20 (1.509)*
CONVEX .40 .70 .75 43 0.569
ALPS .04 .88 .47 .75 0.544
KASSPr .86 1.06 .06 12 0.339
WILLARD 40 .65 22 .16 0.273

*OClI is ranked by 1/1.509 since there is an inverse relation between under-forecasting and
over-forecasting.
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TABLE 15
NON-NIL FORECAST BIASES
Qverall
I I 114 v Bias

CONVEX 45 .78 1.09 .53 0.668
0oCI b4 .59 .95 .66 0.714*
GOPAD2 .28 .29 47 .47 0.382
GOPAD1 27 .29 47 .46 0.372
NILLARD .30 34 .39 .23 0.304
KASSPr .38 34 .29 17 0.284
ALPS .02 22 31 .36 0.229

*CCl is ranked by comparison to biases for the other systems based on Reglons II, HII, and IV
(non-show).

10.0 CONCLUSIONS

Accurate verification of severe and significant weather events plays a very important
role in evaluating the performance of those forecast models. Verification of weather
events for a region rather than a single point depends upon a network of diligent and
cooperative observers. The verification data received for RT-89 reflects a substantial
change in verification, especially in recognizing significant weather. This change may
be a result of a more active procedure for gathering verification data.

The valid periods and res‘ons for the SHOOTOUT-89 exercise did not match those used
for operational forer~~ters by the Denver WSFO, so direct comparisons of performance
to the forecasts i1.. ed by operational meteorologists were not possible. One
recommendation for future improvement in the format for the SHOOTOUT exercises is
that a human forecaster should be used as a benchmark so that it might be possible to
estimate the potential these Al-based systems offer for improving human forecasting
skill.

Another desirable characteristic is that a tactical forecast model should forecast each
eveat individually (e.g., hail size, high winds, funnel cloud/tornado) rather than
forecasting a weather phenomenon (e.g., convection-induced severe or significant
weather) that is a combination cf events. Clearly, the Attack Helicopter Battalion is
interested in forecasts of high winds, whether they are convection induced or non-
convection induced.

In addition, probability forecasts should also include a confidence level to measure the
degree of certainty in the forecast and, thereby, enable a TDA to provide even more
tailored information. Although none of the models had this feature, it i3 an important
feature that should be required in tactical forecast models.

The rich variety of forecast models has provided a source of information that makes it
possible to better understand the nature of our forecast modeling approach. We have
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provided the reader with a general overview of how the SHOOTOUT-89 exercise was
conducted.

The very fact that six Al-systems were brought together in one location to make the
same forecasts on the same day in an operational setting, and that each system
produced forecasts for a majority of the operational days, is sufficient to deem the RT-
89 experiment a success. The nature of SHOOTOUT-89 made it possible for different
developers to discuss their approaches in a very cooperative spirit. The SHOOTOUT
exercises are important to advancing the state of the art in mesoscale event forecasting.
The exceptional effort provided by NOAA/FSL, the chief meteorologist, Woody Roberts,
and Bill Moninger are major factors in this success.
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ABSTRACT

A LISP program called Cloud Image Representation, Recognition, and
Understanding Software (CIRRUS I) autonomously tracks individual
homogeneous temperature regions and intelligently derives displacement
vectors for the leading edges of cloud-objects from GOES IR imagery. CIRRUS
I processes use Al methods and rules--but it is not an expert system. Essential
to this processing is the transformation of the digital image into a "symbolic”
representation defined as a width-encoded medial axis. The symbolic image
representation scheme makes it possible to apply image understanding by
perceptual grouping concepts. The output from CIRRUS I is called the Cloud-
Tracked Forward-Displacement Vector File (CT-FD-VF). This vector file could
be used as input to a vorticity modeling program that would produce the
synoptic wind or stream flow fields over North America. CIRRUS I lays the
foundation for automating many tedious visual analysis tasks that are
performed by a human where shape and relative proximity information are
important to object recognition. For example, CIRRUS I could be extended to
recognize weather related features such as fronts, troughs, ridges, areas of
high and low pressure, and to speculate about the future state and location of
these features.

1. CIRRUS I DATA FLOW OVERVIEW

A daty flow overview for CIRRUS I, shown in fig. 1, depicts a satellite receiver collecting
multi-temporal GOES IR images at one hour intervals. These digital images (DT+1 and
DT+2) are cut, filtered, and sliced into eight binary images--or temperature levels of which
only five are actually processed. We refer to the grayscale shapes as cloud-regions. Each of
the five levels is differenced to produce a third set of images (DT1-0). Then, each image set is
transformed into "symbolic" image sets, referred to as ST+1, ST+0, and ST1-0. A symbolic-
cloud-region corresponds to a width-encoded medial axis (WEMA) of segmented regions
in an image. The WEMA is composed of data that is organized into LISP lists for the
individual cloud-regions. Once these GOES images are in this particular type of symbolic
representation, the symbolic-cloud-regions in ST+1 and ST+0 are initialized as cloud-opjects.

Once initialization is complated, intelligent cloud-object tracking is performed. This process
treats all the cloud-objects in the ST+0 image set as target-clouds which must be found or

Copyright © 1989 by Consultant’s Choice, Inc.
8800 Roswell Road, Atlanta, GA 30350
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FIGURE 1. CIRRUS I overview.

matched in the ST+1 image set. The cloud-objects in the ST+1 image set are potential
candidate-clouds that may or may not correspond to one or more target-clouds. The
tracking process first identifies a finite set of candidate-clouds for each target-cloud. Then the
tracking process proceeds to reduce the number of candidate-clouds until it selects one or more
matched-clouds for each target-cloud, thus completing the tracking process. A target-cloud
that has been tracked to one or more matched-clouds is now referred to as a tracked-cloud.

Once the tracking process is completed, cloud-region displacement vectors are computed from
the differenced image set ST1-0. The difference calculation is performed on binary images
DT+1 and DT+0 to produce an image array with values +1, 0, and -1. The +1 represents the
non-overlapping leading edges of clouds-regions. The 0 represents the overlapping areas. The
-1 represents the non-overlapping trailing edges of cloud-regions. Only the leading edge
regions are transformed into the ST1-0 image and, subsequently, used to calculate cloud-
region displacement vectors. Since these vectors only indicate magnitude and orientation,
they are referred to as orientation-vectors.

Finally, a reconciliation procedure uses knowledge about the tracked-clouds and matched-
clouds to determine the sign or direction of the orientation-vectors. The result is the Cloud-
Tracked Foward-Displacement Vector File (CT-FD-VF), thus completing the CIRRUS I
processing,

Once the CT-FD-VF is composed, it could be used as input to a vorticity modeling program
that computes the synoptic wind or stream flow fields for North America. This stream flow
data could then be accessed on-demand by the Staff Weather Officer, a weather forecast
model, or any Tactical Decision Aid (TDA).

Copyright © 1989 by Consultant's Choice, Inc.
8800 Roswell Road, Atlanta, GA 30350
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2. DIGITAL IMAGE PRE-PROCESSING (DIPP)

The digital image pre-processing steps are shown in more detail in fig, 2. The GOES IR image
is 640 x 480 pixels with 256 gray levels. The image is cut to a 256 x 256 pixel window. The
smaller window retains most of North America while eliminating portions of the image where
curvature of the earth is great. The image is then processed by a 5 x 5 median filter to reduc :
noise. The image is "thick-sliced" into eight equal gray levels (i.e., a 32 gray scale range).
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FIGURE 2. Digital image pre-processing.

Since there appears to be little information in the warmest gray level (i.e., range 0-31) and the
two coldest levels (i.e., range 192-256), these three levels are discarded. Five gray levels are
left that range in temperature between +28°C and -48°C. Table 1 shows each gray level and
its associated temperature range. (Parke, 1998).

TABLE 1
TEMPERATURE RANGES ASSOCIATED
WITH THE FIVE LEVELS BEING PROCESSED

Gray scale Sliced Temperature
Level Range Range (°C)
1 a2 &4 +28% +16
2 65- 96 +16to+ 8
3 97 - 128 +8to-12
4 129 - 160 -12 to -24
5 161 - 192 -24 to -48

Copyright © 1989 by Consultant's Choice, Inc.
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Once the first and second Digital image at Time plus ZERO (DT+0) and ONE (DT+1) are
processed to this point, all five levels in each image are subtracted to produce a differenced
image set (DT1-0) for each of the five levels. The difference image set contains only regions
that do not overlap. These are the leading edges of cloud-objects that are moving. When
completed, these three sets of digital images are ready to be transformed into a symbolic
representation.

3. DIGITAL TO SYMBOLIC IMAGE TRANSFORMATION AND
INITIALIZATION OF CLOUD-OBJECTS

Illustrated in fig. 3 is the transformation of all three sets of digital images into symbolic-cloud-
regions and the initialization of two image sets (ST+1 and ST+0) as cloud-objects.

All gray levels from each digitel image set (i.e., DT+1, DT+2, and DT1-0) are passed through a
FORTRAN algorithm called the Digital-to-Symbolic-Transformation Algorithm (DSTA) to
transform each level from a digital image into three Symbolic image sets (ST+1, ST+2, and
ST1-0). These symbolic image sets are composed of numerical data in a LISP list format (i.e.,
they are bounded by parenthesis). The data defines the width-encoded medial axis for each
cloud-region (i.e., homogeneous temperature region) at each of the five levels.

Each individual symbolic-cloud-region in each of the five levels in image sets ST+1 and ST+2
are then "initialized" in a LISP environment as a cloud-object with attribute slots and default
information. After initialization, each thick-sliced level in the first image set is paired with its
corresponding level in the second image set. The cloud-objects in both levels are then
processed through a tracking process, an attribute calculation process, and a reconciliation
process to ultimately produce the Cloud-Tracked Forward-Displacement Vector File
(CT-FD-VF).

DIGITAL IMAGES SYMBOLIC IMAGES
ST+1 ST+1 %
0T+t |, . . N v e ‘
Digital Image Initialization [ Intelligent
07+0 Ve 10 of Cloud-Object
Symbolic Image Regions as Tracking

oT10 . e asformation -~ Cloud-Objects . 5
sT+0 L ST+0 -
Isn -0

v

Cloud-Track

Cloud-Object Intelligent Forward-Displacement
-| Displacement-Vector Reconciliation |- Vector File
Calculation (CT-FD-VF)

Copyright ® 1988, CCl
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FIGURE 3. Image transformation and initialization.
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4. CLOUD-TRACKED FORWARD-DISPLACEMENT VECTOR FILE
(CT-FD-VF)

Shown in fig. 4 are the remaining processing steps needed to produce the CT-FD-VF. In the
following sections, each of these steps is described in detail.
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FIGURE 4. Intelligent cloud tracking and displacement vector reconciliation.
4.1. CLOUD-OBJECT ATTRIBUTE CALCULATIONS

This algorithm identifies all possible candidate-clouds in image set ST+1 that are in close
proximity to a target-cloud in image set ST+0. Close proximity is determined in the following
manner. During initialization, a framing box is created from the WEMA that encloses the
target-cloud within some tolerance to allow for maximum displacement. Similarly, another
framing box is created that just encloses each candidate-cloud. Then, all the cloud-objects in
the ST+1 ime ve that overlap the target-cloud box are candidate-clouds.

The size and length of candidate-clouds are computed using the WEMA. The size of a cloud-
object is defined as a diagonal between the upper-left-most corner and the lower-right-most
corner of the frame box that encloses the WEMA skeleton. The length of a cloud-object is
defined as the summation of all arcs in the WEMA.

Copyright © 1989 by Consultant's Choice, Inec.
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The gross overlapping area between the remaining candidate-clouds and the target-cloud is
the difference between the box that encloses the target-cloud and the box that encloses one of
its candidate-clouds. The area of overlap is normalized by t} . area of the target-cloud box and
then the area of the candidate-cloud box, thus producing two measures of the gross overlap for
each candidate-cloud. These measures are then attached to the cloud-objects for use during
the behavior classification process.

4.2 INTELLIGENT CLOUD-OBJECT BEHAVICR CLASSIFICATION

The next processing step is to determine the behavior of the cloud-objects.l The objective here
is to classify how a target-cloud might be evolving so that it can be used to select by logical
inference the correct candidate-cioud(s) when possible, and to logically infer the most relevant
cloud-candidate(s) when necessary.

Cloud behavior is determined by using ancillary information and a dozen or so rules to classify
the target-clouds into one of five categories (i.e., Sub-Cloud, Super-Cloud, Hyper-Cloud, Meta-
Cloud, and Null). The distinction between behavior classes is illustrated in figs. 5-9. The
region labeled "A" is the target-cloud and the region labeled "D" is the correctly tracked cloud-
candidate (i.e., the tracked-cloud).

Cloud Behavior-1 (CB-1) is illustrated in fig. 5 where gll of D is a subset of A. CB-1 is the
situation where target cloud A is breaking up into one or more subclouds (i.e., one-to-one or
one-to-many). In other words, D is a Sub-Cloud of A. CB-2 is illustrated in fig. 6 where Disa
superset of gll of A. CB-2 is the situation where candidate cloud D has been formed by the
merging of more than cne cloud (i.e., many-to-one). In other words, D is a Super-Cloud »of A.
CB-3 ig illustrated in fig. 7 where part of D is a subset of A. CB-3 is the situation where
candidate cloud D has been formed by the breaking up of target cloud A and the merging with
one or more other clouds (i.e., few-to-many) to form cloud D. In other words, D is a Hyper-
Cloud of A. CB+4 is illustrated in fig. 8 where D is a superset of part of A. CB-4 is the
situation where candidate cloud D has been formed by the merging of part of cloud A with
other clouds (i.e., many-to-few). In other words, D is a Meta-Cloud of A. CB-5 is the Null
category to account for those candidates that do not have any relevant behavior.

When the behavior of the target-clouds is finally determined, it is attached to the target-clouds
in the ST+0 image set. The behavioral knowledge can then be used to logically infer which
candidate-cloud(s) are the matched-cloud(s). When the target-cloud is matched to its
candidates (i.e., matched-clouds), the target-cloud is referred to as the tracked-cloud.

4.3 CLOUD-OBJECT DISPLACEMENT VECTOR FILE

The symbolic differenced image set ST1-0 is used to compute the orientation-vectors for
leading edges of the cloud-regions in ST+1 and ST+0. Typically, the WEMA for a leading edge
is distinctly elongated. In this case, the cloud-region orientation-vector is perpendicular to
each of the major WEMA arcs. However, no attempt is made to determine which direction the
orientation-vectors are actually pointing (i.e., the sign). This problem is resolved by the
reconciliation process described in the next section.

1Examplc-:s of typical cloud behavior are as follows: growing, merging, converging,
diverging, shrinking, dissipating, and breaking-up without dissipating. In CIRRUS I these
behaviors are grouped into five categories as follows: breaking-up, merging, breaking-up-and-
merging, and merging-and-breaking-up, and no discernable behavior (i.e., null).

Copyright © 1989 by Consultant’'s Choice, Inc.
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BREAKING UP (ONE TO MANY) OR (ONE TO ONE)

MERGING (MANY TO ONE)
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FIGURE 5. Cloud behavior 1: sub-cloud

FIGURE 6. Cloud behavior 2: super-cloud

BREAKING UP AND MERGING (FEW TO MANY)
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FIGURE 7. Cloud behavior 3: hyper-cloud

4.4 KNOWLEDGE RECONCILIATION

Al Rights Reserved.

FIGURE 8. Cloud behavior 4;: meta-cloud

By the time the reconciliation process is ready to begin, a considerable amount of infurmation
or knowledge is readily available. For example, the locations of the orientation-vectors for all
the leading-edges of the overlapping cleud-regions are known. The tracked-clouds and their

locations are kniown. The matched-clouds and their locations are known. The behavior of all
the target-clouds is knoww. This knowledge is now reconciled to determine the direction that

the orientation-vectors are pointed.

Each orientation-vector is extended in both directions until it crosses the major medial axis
(i.e., a major WEMA arc) of a matched-cloud and its corresponding tracked-cloud. The
direction of the orientation-vector is from the tracked-cloud toward the matched-cloud. The
process is repeated for all orientation-vectors. Thus, the output from this last processing step
is the Cloud-Tracked Forward-Displacement Vector File (CT-FD-VF) which consists of all the
cloud displacement vectors for the leading edges of all tracked-clouds for all five gray levels.

Copyright @ 1989 by Consultant’s Choice, Inc.
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5. CONCLUSION

It is important to note that the goal of CIRRUS I is to extract systematic wind flow
information from the movement (i.e., the displacement) of clouds as viewed from satellite
imagery. Obviously, as little unsystematic error as possible is desired. However, if the CT-
FD-VF is directly compared to a synoptic stream flow map, one could reasonably expect
correlation, systematic bias, and non-systematic error. Although we once considered
determining the "accurary” of the CT-FD-VF by comparing it to a synoptic stream flow map,
we finally realized that it was actually an irrelevant comparison given the intended purpose of
CIRRUS L

CIRRUS 1 is supposed to provide yet another source of candidate predictor variables that
would be processed by the GOPAD forecast model development system. Consequently,
CIRRUS 1 has been biased, relative to a synoptic wind flow map, because it produces
displacement vectors only for the leading edges of cloud regions. While it may be very
desirable for forecasting, this bias may appear to be unsystematic error if these CIRRUS
vectors were compared to a synoptic steam flow map. Therefore, an accuracy measurement for
CIRRUS I was not performed. It is speculated that a neural-net-based weather forecasting
model like GOPAD will remove, to a great extent, the systematic bias, and mitigate the
unsystematic error to some degree, even if CIRRUS I and the vorticity modeling program
produce wind flow vectors that appear to have error relative to a stream flow map.

The ultimate test of the usefulness of CIRRUS I for mesoscale forecasting is the quality of
systematic information contained in its candidate predictor variables that can contribute to
the forecast relative to the information available from other sources. Therefore, the best way
to correctly determine the value of the CIRRUS I and the vorticity modeling program is to
produce a multi-year historical synoptic wind flow data base and measure the statistical
contribution of CIRRUS I as a source of predictor variables relative to the candidate predictor
variables from other sources (e.g., rawinsonde, mesonet, NGM, barotropic, etc.). The GOPAD
model development system is an ideal tool for such a task (Young and Lampru, 1989).
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APPENDIX E

CIRRUS-I PROCESSING STEPS AND PERFORMANCE




CIRRUS-I PERFGRMANCE

1.0 INTRODUCTION

The performance of CIRRUS-I is shown in the following series of photographs.! These
photographs illustrate the results obtained from the following image processing

procedures:

(a) digital image pre-processing

(b) digital image to symbolic image transformation

(c) symbolic cloud-object behavioral classification

(d) symbolic cloud-object structural matching

(e) calculation of leading edge orlentation and magnitude displacements

However, before reading this Appendix, it may be helpful to refer to Appendix D first for
a complete description on how CIRRUS-I operates.

2.0 DIGITAL IMAGE PRE-PROCESSING

2.1 RAW GOES-IR IMAGE

These photographs were taken with a Minolta X 700, manual focus camera with F8, 1/8 second exposure on Kodak Gold
400/32 film.




This photograph shows a raw, ZA-unenhanced, IR, 640x400, GOES Central image that
was captured on June 22, 1989 at 20:01 hours GMT. This image is referred to as T+0.
The dark yellow color represents warm clouds and/or thin clouds in whicl. wne warm
temperature from the earth's surface have bleed-through. The yellow-green and
greenish-blue colors represent intermediate temperatures, while the darker blue
represents the coldest clouds.

2.2 CUTTING AND FILTERING

The raw GOES IR imnage is cut with the following offsets: x=256 and y=32. This cutting
produced a sub-timage, shown on the left, that is 256x256 pixels in size. After cutting,
a 5xb median filter is applied to produce the image shown on the right in which the IR
regions are more homogeneous.
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2.3 LEVEL SLICING

The T+0 image and the T+1 are Level 1 slices taken after the median filter is applied.
The temperature range for this level is +16° to +28°C. Notice the changes in shape and
the movement of the cloud regions from one slice to the nexi.
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2.4  DIFFERENCING LEVEL PAIRS

The sequential slices are now differenced to identify the leading edges of clouds (+1), the
trajling edges of clouds (-1), and the overlapping regions (0). This photograph shows the
leading edges.
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3.0 DIGITAL TO SYMBOLIC IMAGE TRANSFORMATION

3.1 TRANSFORMATION OF LEADING EDGES

When differencing is completed, the differenced image and all binary slices are
transformed into a symbolic or WEMA representation. This photograph displays the
medial axis of the leading edges redrawn frorn the WEMA. The width encodation s not
displayed.




3.2  CALCULATION OF LEADING EDGE ORIENTATION AND MAGNITUDE
DISPLACEMENT
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Trailing Edge Leading Edge

Cloud T0 Cloud T1

This diagram shows how the WEMA for the leading edge of & cloud are used to calculate
orientation and magnitude displacement data. The onentation is calculated from the
perpendicular bisection of the WEMA. The magnitude is .alculated from the width data
explicit in this symbolic representation. During intelligent reconciliation, the direction
of movement is derived Ly using behavioral and structural information to determine the
track of a target cloud to all its candidate clouds.
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3.3 CALCULATION CF CLOUD DISPLACEMENT DATA

This photograph shows the leading cdge displacement data drawn Lo scale.
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4.0 IMAGESET1

The overall goal CIRRUS-I is (a) to classify the behavior of cloud-objects, (b) to
suucturally match target-cloud arcs to candidate-cloud arcs, (c) to intelligently use all
the accumulated behavioral and structural knowledge to produce the Cloud-Tracked
Forward-Displacement Vector File (CT-FD-VF). Behavioral classification determines
how a target-cloud might be evolving so that this information can be used to decide
which candidates will be structurally matched. Structural matching determines which
arcs in the target's WEMA correspond to arcs in a candidate's WEMA. This information
is important for two reasons. First, structural matching helps the behavioral
classification process to correctly discriminate between relevant and irrelevant clouds.
Second, structural information is used, along with behavioral information, during an
intelligent reconciliation process to determine the direction in which each target cloud is
displacing. ‘

In the series of photographs that follow, pairs of symbolic images are shown which were
taken at one-hour intervals. In each photograph, the left image contains the medial

axis of the target clouds, while the right image contains the medial axis of the candidate
clouds.

4.1 OVERLAY OF TARGET AND CANDIDATE CLOUDS

In the following photograph, the medial axes from the T+0 slice and the T+1 slice at
Level 1 are overlaid so spatial and shape information can be observed. The target
clouds are shown in blue; the candidate clouds are shown in green; and the overlapping
axes are shown i aqua.
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4.2  BEHAVIORAL CLASSIFICATION (SUB-CLOUD AND HYPER-CLOUD)

On the left, a massive target cloud, shown in white, is selected to begin the tracking
process. Note that cloud-objects are defined as a single, unbroken linkage of arcs.

On the right, the T+1 is shown with the color-coded results obtained after CIRRUS-1 has
completed behavioral classification. The blue arcs are non-candidate clouds. The two
red structures are candidate clouds that broke off from the target cloud. They are
classified as sub-clouds (i.e., dissolving and breaking up). The magenta cloud
structure apparently has broken off from the target cloud and combined with another
cloud that was north of the target cloud. It is classified as a hyper-cloud (i.e., breaking
1p and merging). Although it is difficult to see, there are scattered brown cloud
structures which are located close to the magenta cloud and that were considered to be
candidates. After classification was completed, these clouds were determined to be
frrelevant.
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4.3  STRUCTURAL MATCHING (SUB-CLOUDS AND HYPER-CLOUDS)

When behavioral classification is completed, a WEMA structural match between the
target cloud and the behaviorally classified candidates is performed. The target cloud's
arcs that structurally match the arcs in the candidate clouds are shown in red and
pink in both images. The intermixed white fragments in the target cloud now depict
the arcs where no structural match is found. Notice the long, horizontal, white arc in
the lower portion of the target cloud. This arc cannot be matched by a similar arc in
any candidate cloud because that portion of the target cloud apparently dissolved.
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4.4  BEHAVIORAL CLASSIFICATION (SUB-CLOUD AND META-CLOUD)

The white target cloud is behaviorally matched to three candidate clouds shown on the
right in green, red, and brown.

The green candidate cloud is classified as a meta-cloud (i.e., merging and breaking up)
because it has combined with a cioud to the south which is breaking off another, larger
structure. The red candidate cloud is classified as a sub-cloud (i.e., breaking up)
because it broke off the northern part of the target cloud. The brown candidate cloud

which is very difficult to see is irrelevant because it is too far away from the target cloud
to have broken off.
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4.5 STRUCTURAL MATCHING (SUB-CLOUD AND META-CLOUD)

w Loy

The target cloud is now colored green to indicate the arcs that are structurally matched
to the green arcs in the candidate cloud. Likewise, the red arcs in the target cloud are
structurally matched to the red arcs that broke off to the north.
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4.6 BEHAVIORAL CLASSIFICATION (SUPER-CLOUD)

The small, white target cloud on the left is behaviorally matched to two caudidate
clouds shown in yellow and brown on the right. The large, yellow candidate is
classified as a super-cloud (i.e., merging and/or growing) because it combines with
several cloud regicns that were north of the target cloud. A small, brown candidate
cloud, which is very difficult to see, was determined to have no relevant behavior.
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4,7 STRUCTURAL MATCHING (SUPER-CLOUD)

The target cloud is now structurally matched to that portion of the supei-cloud to
which it correctly corresponds.

4.8 BEHAVIORAL CLASSIFICATION (SUPER-CLOUD)
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The white target cloud is behaviorally matched to two candidate clouds shown iz yellow
and brown. The yellow cloud is classified as a super-clord (l.e., merging end/or
growing) becauase it has a larger are.. than the target cloud suggesting that the ‘.rget
cloud has grown. A small, brown candidate cloud to the northwest o the yellow
candidate cloud is determined to be irrelevant.

4.9 STRUCTURAL MATCHING (SUPER-CLOUD)

The yellow target cloud arcs are structurally matched to the yellow candidate cloud
arcs. Notice that the white arc in the upper middle portion of the target cloud is not
matched, while the arc at the tip Is matched. The white arc iIs considered to be
unmatched because its structure Is too different fr..u the candidate cloud. However,

the tip of the arc was matched because it Is similar.
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4.10 BEHAVICORAL CLASSIFICATION (SUB-C1.0UD AND HYPER-CLOUD)

The white target cloud is behaviorally matched to eight candidate clouds shown in red,
magenta, and brown. The red clouds are classified as sub-clouds because they broke
up into smaller clouds. The magenta cloud is correctly classified as a hyper-cloud, yet
Incorrectly selected as a relevant candidate. dently, CIRRUS-I considered the
magenta cloud to be a candidate which might have broken off from the target cloud and
merged with other clouds. However, the magenta cloud is actually formed by the
combination of the blue clouds to the north of the (arget cloud. As will bz seen in the

next photograph, this temporary mismatch is corrected during the structural matching
process.
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4.11 STRUCTURAL MATCHING (SUB-CLOUD AND HYPER-CLOUD)

The red arcs in both images show the arcs that structurally match. Notice that the
magenta hyper-cloud is determined fo be irrelevant (unmatched) to the target cloud
and is now correctly colored blue. The white arc on the tip of the target cloud indicates
it is not structurally matched to the red candidate cloud because [we assume] its
displacement exceeds the maximum allowed.
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5.0 IMAGE SET 2

The remaining GOES IR images were taken on January 23, 1989, at 11:00 and 12:00
hours GMT. The first photo shows the results obtained by behavior classification while
the second shows structural matching. This serles < photographs provides addit.- nal
tracking scenarios to demonstrate the robustness of CIRRUS-I.

5.1 OVERLAY OF TARGET AND CANDIDATE CLOUDS
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5.2 BEHAVIORAL CLASSIFICATION (SUB-CLOUD AND HYPER-CLOUD)
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5.3 STRUCTURAL MATCHING (SUB-CLOUD AND HYPER-CLOUD)
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5.4  BEHAVIORAL CLASSIFICATION (META-CLOUD)
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5.6  BEHAVIORAL CLASSIFICATION (SUB-CLOUD AND HYPER-CLOUD)
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5.8

LEADING EDGE ORIENTATION/MAGNITUDE DISPLACEMENT DATA
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