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Executive Summary

ADVANCED MESOSCALE WEATHER FORECASTrNG TO SUPPORT
TACTICAL OPERATIONS ON THE AIRIAND BAi LEFIELD

The wide dispersion of combat forces on the modem battlefield and the complexity of
electro-optical weapon systems have increased the need for forecasted weather
parameters that could be used as input to Tactical Decisions Aids (TDA). The
Integrated Meteorological System (IMETS) will enable the Air Force Staff Weather
Officer, who is assigned to Army Divisions and Corps, to provide weather forecasts and
weather effects information. This innovative research, designed to support IMETS. used
three advanced software technologies (i.e., a traditional neural net, a hybrid neural net,
and image understanding) to provide rapid and accurate tactical weather forecasting
models. CCI believes they are foundation technologies for advanced weather forecasting
and satellite image processing.

I A traditional neural net learning algorithm, back-propagation, was used to create an
optimal weather forecasting model (BP-Atlanta) whose performance could be directly
compared to the GOPAD-Atlanta-RIR -'odel developed during Phase I, the LFM/MOS,
and the National Weather Service Fu6ecast Office (NWSFO). This Investigation also
sought to observe how different back-propagation parameters affected the performance
of the model, and whether the weighting values on the interconnections between the
nodes might be useful for identifying Important variables.

The hybrid neural net approach is based upon an algorithm called Goal Oriented
Pattern Detection (GOPAD), which is technically described as a statistical, optimizing,
machine-learning, analogue, forecast model creation, software tooL The output from
GOPAD is a tactical or mesoscale, real-time weather forecasting software program that
executes in seconds on any computer and in any language. During the summer of
1989, a GOPAD forecast model was independently tested by NOAA during a real-time
severe and significant weather forecasting exercise called SHOOTOUT-89 that took
place around Boulder, Colorado.

An innovative, non-digital, symbolic image representation scheme, technically described
as a width-encoded medial axis (WEMA), was used to perform image understanding by
perceptual grouping. A software program called Cloud Image Representation,
Recognition, and Understanding Software (CIRRUS-I) was developed to demonstrate
a capability to intelligently track clouds in multi-temporal satellite imagery. The
symbolic representation of segmented, or sliced, cloud regions makes it possible to
manipulate individual cloud regions, to attach knowledge to cloud objects, to use shape
information, to use the relative proximity of one object to another, to infer cloud
behavior, to compute the orientation and magnitude of cloud displacements, and to
intelligently deduce the direction of movement of tracked clouds. CIRRUS-I produces
cloud/temperature displacement vectors that could be passed into a vorticity model to
compute synoptic wind patterns across the continent. These wind patterns cou!d then
be used as input into mesoscale weather forecast models.

I

I1



TABLE OF CONTENTS

1.0 RESEARCH OVERVIEW .........--- 1
1.1 Phase I Background ----------------------------------- 1
1.2 Phase II Background ------------------------------------- 2

2.0 PHASE II RESEARCH OBJECTIVES --------------------------- 3

3.0 ARTIFICIAL NEURAL NETS--------------------------------4
3.1 Research Overview ------------------------------------- 4
3.2 Training and Testing Data Base ---------------------------- 4
3.3 Ground Truth Data Base 5--------------------------------5
3.4 LFM/MOS and NWSFO Forecasts --------------------------- 5
3.5 Optimal Forecast Model Research --------------------------- 6
3.5.1 Objective 6------------------------------------------6
3.5.2 Research Results -------------------------------------- 6
3.5.2.1 Learnir- Rate Experiment --------------------------------- 7
3.5.2.2 Hidden Nodes Experiment 8--------------------------------8
3.5.2.3 Passes Experiment ------------------------------------ 10
3.5.2.4 Momentum Experiment -------------------------------- 11
3.5.2.5 Iterations Experiment ---------------------------------- 11
3.5.2.6 Sigmoid Table Experiment-------------------------------- 12
3.5.2.7 Input-Output Layer Connection Experiment --------------------- 12
3.6 Evaluation and Comparisons Research ------------------------ 12
3.6.1 Overall Goals --------------------------------------- 12
3.6.2 General Approach -------------------------------------. I
3.6.3 Spreadsheet Calculation of Skill Score ------------------------ 14
3.6.4 Comparative Performance Evaluations ----------------------- 15
3.6.4.1 Objectives and Approaches -------------------- 15

* 3.6.4.2 Research Results ------------------------------------- 15
* 3.6.5 Identification of Important Predictor Variables ------------------- 18

3.6.5.1 Objective ------------------------------------------- 18
3.6.5.2 Research Results -------------------------------------- 18

4.0 GOAL ORIENTED PA I TERN DETECTION ----------------------- 20
4.1 Background ---------------------------------------- 20
4.2 GOPAD Description ----------------------------------- 21
4.3 Conclusions ---------------------------------------- 22

5.0 MESOSCALE WEATHER FORECASTING EXERCISE-SHOOTOUT-89----- 22
5.1 Background ---------------------------------------- 22
5.2 SHOOTOUT-89 Evaluations ------------------------------- 23
5.2. 1 NOAA/FSL Comparative Evaluation ------------------------- 23
5.2.2 Performance Evaluation -------------------------------- 23
5.3 Conclu.ins --------------------------------------- 23

(continued)

I u



TABLE OF CONTENTS
(concluded)

6.0 CLOUD IMAGE REPRESENTATION, RECOGNITION,
AND UNDERSTANDING SOFIWARE - 24

6.1 Background ----------------------------------------- 24
6.2 CIRRUS-I Data Flow ---------------------------------- 25
6.3 CIRRUS-I Performance ----------------------------------- 25
6.4 Conclusions--------------------------------------- 25

7.0 PHASE II RECOMMENDATIONS --------------------------- 26

APPENDIX A Brier-Based Skill Scores for BP-Atlanta-241
Using Optimal Parameters

APPENDIX B Goal-Oriented Pattern Detection (GOPAD) For
Tactical Mesoscale Weather Forecasting

APPENDIX C A Quantitative Comparison of Forcast Models That
Participated in NOAA/FSL SHOOTOUT-89 Exercise

APPENDIX D Cloud Tracked Winds Derived From Satellite
Imagery Using an Image Understanding Approach

APPENr'X¢ E CIRRUS-I Processing Steps and Performance

I

I
Ii



LIST OF TABLES

1 Architecture and Parameters for BP-ATLANTA-241-------------------- 7

2 Five-Month Skill Scores for Varicus Learning Rates ------------------ 7

3 Weekly Skill Scores for Various Learning Rates ---------------------- 8

4 Hidden Nodes Experiment -----------------------------------. 9

5 Weekly Skill Scores for Various Numbers of Hidden Nodes -------------- 9

6 Passes Experiment ------------------------------------- 10

7 Weekly Skill Scores for Various Numbers of Passes ------------------ 10

8 Momentum Experiment ---------------------------------- 11

9 Iterations Experiment ------------------------------------ 11

10 Sigmoid Table Experiment--------------------------------- 12

11 Learning Rate Experiment----------------------------------- 12

12 Three-Month Skill Scores Using BP-ATLANTA-241 Parameter Settings ------ 16

13 Monthly Skill Scores Using BP-ATLANTA-241 "arameter Settings---------- 17

14 Weekly Skill Scores Using BP-ATLANTA-241 Parameter Settings ---------- 17

15 Weekly Skill Scores Using BP-ATLANTA-241 Parameter Settings ---------- 18

16 Summary of Weights Along the Interconnections from Each Input
Node to the Output Node for the GOPAD Selected Variables ------------ 20

17 Skill Scores for Severe Weather in Regions U, M, and IV --------------- 24

I 18 Skill Scores for Severe Weather in Region IV ----------------------- 24

Iv

I
I
!
I
I
I!



PHASE II FXNAL REPORT

1.0 RESEARCH OVERVIEW

The wide dispersion of combat forces on the modem battlefield and the complexity of
electro-optical weapon systems have increased the need for forecasted weather

parameters that could be used as Input to Tactical Decisions Aids (TIDA). The

Integrated Meteorological System (IMETS) will enable the Air Force Staff Weather

Officer, who is assigned to Army Divisions and Corps, to provide weather forecasts and

weather effects information. CCI's research was designed to support IMETS using two

advanced software technologies (I.e., neural nets and symbolic image processing) to

provide rapid and accurate tactical weather forecasts. CCI believes these are

foundation technologies for weather forecasting and satellite image processing.

1.1 Phase I Backrund

In the fall of 1987, the Atmospheric Effects Division, U.S. Army Atmospheric Sciences

Laboratory (ASL), supported as Small Business Innovative Research (SBIR) a Phase I

project by Consultant's Choice, Inc. (CCI) to develop analysis and graphics techniques

to display current weather-related information over a limited tactical area, and to
experiment with an innovative proprietary software program, called Goal Oriented

Pattern Detection (GOPAD), for creating weather forecasting models. Two prototype

software demonstrations were developed and delivered to the Government: (1) an MS-

DOS-based, attributed vector map representation that could support an object-oriented

programming paradigm, and (2) a Probability of Precipitation (PoP) forecasting model for

Hartsfield International Airport in Atlanta, Georgia.

The attributed vector map representation was designed to demonstrate a capability to

support an advanced programming paradigm that would be created in Phase II called

Frame-Based Reasoning for an MS-DOS computer. However, after the Phase II was

awarded, it was determined that the research should focus on symbolic image

Processing research that would be more beneficial to the Government.

The GOPAD-Atlanta-RIR probability of precipitation (PoP) model was compared to the

forecasts Issued by the National Weather Service Forecasters and LFM/MOS model for

June, July, and August of 1987. It is important to note that the GOPAD model used



data from only three rawinsondes from the 12Z sounding to produce a forecast at

1230Z for the 12-24Z period, whereas the LFM/MOS used the OZ sounding in order to

issue a forecast at appraximately the same time as the GOPAD model. The performance
or skill of all forecasts models was evaluated based upon the Brier scores. The skill

scores for the summer, 1987, were computed as follows: (a) LFM/MOS 16.3%; (b)

NWSFO 20.9%; and (c) GOPAD 27.6%. These preliminary performance results and the

potential to further improve GOPAD forecast models by adding new sources of predictor

variables were sufficient to justify further experimentation In Phase II with the GOPAD
approach, and a more traditional neural net approach, based on the back-propagation

learning algorithm.1

1.2 Phase II Background

In the fall of 1988, the Atmospheric Effects Division, U.S. Array Atmospheric Sciences

Laboratory (ASL), supported a Small Business Innovative Research (SBIR) Phase 11

project by Consultant's Choice, Inc. (CCI) to investigate Goal Oriented Pattern Detection

(GOPAD), Artificial Neural Nets (ANS), and a symbolic satellite image processing

technique to support tactical weather forecasting on the AirLand Battlefield. The overall

goals of the research were to develop technologies that could be used to automate the
production of weather forecasting models, to evaluate the performance of prc,otype

forecasting models, and to demonstrate how an innovative symbolic image

representation scheme could be used to automatically track clouds in multi-temporal

GOES imagery.

CCI's neural net alproach was based upon an algorithm called Goal Oriented Pattern
Detection (GOPAD) and tte back-propagation learning algorithm. GOPAD is

technically described as a statistical, ootimizing, machine-learning, analogue, forecast

model creation, software tool. The output from GOPAD is a tactical or mesoscale, real-

time weather forecasting software program data that executes in seconds on any

computer and in aiy language. During the summer of 1989, a GOPAD forecast model

was independently tested by NOAA during a real-time severe and significant weather
U ~ ~ ~ C S. .9.... .... '4 STfVIerV.TW Of% J %..J 4~.. .. 1... *. J. .... " _3

Colorado, area. CCI believes that. the GOPAD technology will represent a significant

improvement in the ability to forecast a wide variety of mesoscale weather phenomena.

1Uppmann, Richard P., An Ijt.u. ii. ,o Computing with Neural Nets IEEE ASSP Magazine, April, 1987, pages 4-22.
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CCI's symbolic image processing approach was based upon the Digital [image] to

Symbolic Image Trmfrmation Algorithm (DSTA). This transformation algorithm

operates on a segmented digital image to produce a discrete width-encoded medlai axis

(WEMA) in a USP list format. This type of symbolic representation facilitates image

understanding by perceptual grouping. 2 A software program called Cloud Image

Representation, Recognition, and Understanding Software (CIRRUS-I) was

developed to exploit the WEMA by demonstrating a capability to intelligently track

clouds In multi-temporal satellite imagery. CIRRUS-I produces cloud/temperature

displacement vectors that could be passed into a vorticity model to compute synoptic

wind patterns across the continent.

2.0 PHASE II RESEARCH OBJECTIVESI
There were five broad research objectives in Phase II.I

a. To develop a Probability of Precipitation (PoP) forecast model, called BP-

Atlanta, for Hartsfleld International Airport using the back-propagation

learning algorithm (BP) and the same rawinsonde data bases used to train

and test the GOPAD-Atlanta model.

b. To compare the performance of the BP-Aflanta forecasts to the performance

of GOPAD-Atlanta, LFM/MOS, and the NWSFO forecasts.

c. To develop a severe and significant mesoscal,. weather forecasting model,

called GOPAD-RT89, for an NOAA/FSL sponsored forecasting exercise

called SHOOTOUT-89.

d. To compare and evaluate the performance of the GOPAD-RT89 model to the

other forecast models that participated In SHOOTOUT-89.

* e. To demonstrate the capability of a width-encoded medial axis (WEMA) to

track homogenous temperatum regions (i.e., clouds) in GOES IR imagery.

2Blederman, Irving, Human Imagt Undwanding Recent Research and a Theory Computer Vision, Graphics, and

I Iage Processing 32,1985, pages 329-73.
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3.0 ARTIFICIAL NEURAL NETS

3.1 Researcn Overview

This research was siructured- to develop, modify, test evaluate, and compare the

usefulness of Artificial Neural Nets (ANS) as an approach to developing tactical

weather forecasting models. In Phase I, Goal Oriented Pattern Detection (GOPAD1)

was used to develop a Probability of Precipitation (PoP) forecast model for Hartsfield

International Airport in Atlanta, Georgia. The high skill scores achieved by this hybrid

neural net approach suggested that perhaps a more traditional neural net approach
using the back-propagation (BP) learning algorithm might be able to outpe-rform a

GOPADI model. In addition, GOPADI (i.e., the BASIC language version) appeared to

have several problems that might limit its usefulness as a tool for creating tactical

weather forecasting models. Although many of these limitations were eventually

mitigated by the evolution of GOPAD1 into GOPAD2, we believed that it would be

prudent to investigate the potential of a traditional neural net approach, since the data

bases were readily available for direct comparisons.

I 3.2 Training and Test=r Data Base

The training data base consisted of rawinsor le data from three sites: Athens, Georgia;

Waycross, Georgia; and Centerville, Alabama, for a 7-month period (i.e., April to

October) and for a 10-year period (i.e., 1975 to 1984).

The testing data base consisted of rawinsonde data for a 5-month period (Le., May to
September) during 1987. The testing da.a base consisted of the same variables that

were in the training data base.

Both data bases were composed of the twice daily (Le., OZ and 12Z) rawinsonde

soundings. Each sounding was composed of four variables (i.e., temperature, relative

humidity, and wind direction and speed) for ten levels in the atmosphere (i.e., 900, 800,
•'?A CIV wV"% An AC, eV% ')AA 1 -% A 1M AA i 'h^ -A"A A4vft4,", - o .. .A -a-

converted to u (east-west) and v (north-south) components. All variables were

normalized to have a mean of zero and a standard deviation of one. Thus, the historical

training data base consisted of 2,130 records or data points (i.e.. 213 days/year x 10
years), whereas the testing data base consisted of 153 records. Each record in the

ii4



I training and testing data bases had 241 predictor variables (Le., 4 variables/level x 10

levels/rawinsonde x 3 sites x 2 rawinsondes/sites) plus the day-number).

3.3 Ground Truth Data BaseI
The ground truth data, obtained from the National Climatic Data Center (NCDC),"

consisted of hourly precipitation data for the National Weather Service Forecast Office

at HartsfIeld International Airport In Atlanta. Georgia. The time var.able was shifted to

Greenwich (Z) time and summarized in six-hour totals ending at 6Z, 12Z, 18Z, and 24Z.

All variables were normalized to have a mean of zero and a standard deviation of one.

I 3.4 LFMIMOS and NWSFO Forecasts

The forecasts issued by the National Weather Service For.-cast Office (NWSFO) at

Hart.sfeld International Airport in Atlanta and the Limited Fine Mesh/Model Output

Statistics (LFM/MOS) data were obtained from the hand-written reports maintained by

the NWSFO. This information was obtained for the 3-month period June to August,

1987. This data was used as a benchmark during Phase I and Phase II to compare the

performance of GOPAD and BP forecast models.

I It is important to note that the LFM/MOS forecasts used the OZ sounding for the 12-

24Z forecast period, whereas GOPAD-AT.ANrA and BP-ATLANTA models used the 12Z

sounding to produce the 12-24Z forecasts. These times were used because, in an

operational setting, the LFM/MOS 12-24Z forecast based upon the 12Z sounding is not

available until about 15-17Z, whereas the GOPAD-ATLANTA and the BP-ATLANTA

models are available seconds after the 12Z sounding data arrives (i.e., about 1230Z).

Thus, in order for LFM/MOS to provide timely information to a forecaster, it must use

the OZ sounding, whereas a GOPAD or BP model can be based upon the 12Z sounding.

While this difference may appear to disadvantage LFM/MOS vis-a-vis GOPAD and BP, it

Is also important to note the great advantage that LFM/MOS has had in research and

development time compared .o the limited experimentation with GOPAD and BP

models. The point is Chat perectly matched, objective comparisons are not yet possible.I
However, future research and development will eventually make direct quantitative and

qualitative comparisons possible.

I
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3.5 Optimal Forecast Model Research

3.5.1 Objective

The objective of this research was to identify the optimal combination of BP parameters

that would produce a PoP forecast model with the highest possible Brier-based skill

score. 3 The optimal ANS model that was produced is referred to as BP-ATLANTA-241.

3.5.2 Research Results

This research was performed during December, 1988, and January, 1989. The

approach used to find the optimal parameters was trial and error. The measurement

used to identify the optimal model was the single (Brier) skill score obtained for the

combined months of May, June, July, August, and September, 1987. The training and

testing data bases were the data bascs that were prepared for GOPAD during Phase I.

The climatology used to compute skill score for each of the five months was 22%. In

later experiments, the climatology was computed for each month in the training data

base. Consequently, slight differences in skill scores occur between the following tables

in this section and the tables in other paragraphs.

I The BP architecture and parameter settings for BP-Aflanta-241 which produced the

highest Brier-based skill score are listed in Table 1. The skill score obtained for these

settings was 20.19%.

3Murphy, A.H., and Daan, FL, "Forecast Evaluation", Probability. Statistics. and Decision Making In the Atmmoepheric
Sic Westview Press, 1985, pp. 379-437.
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TABLE 1
ARCHITECTURE AND PARAMETERS FOR BP-ATLANTA-241

3 Number of input, hidden, and output layers
241 Number of nodes on input layer

30 Number of nodes on the hidden layer
1 Number of nodes on the output layer

10 Number of passes
1 Number of iterations

0.01 Learning rate
0.90 Momentum

Table Source for Sigmoid finction
n/a Randcrm seed

no Input and output slabs connected

3.5.2.1 Learning Rate Experiment

The purpose of this experiment was to observe the effects of changing the learning rate

parameter while keeping all other network parameters constant. Table 2 shows initial

research using the preprocessed data with fiv- -month skill scores, while Table 3 shows

the weekly skill scores after the training and testing data bas- i were reconstructed.

TABLE 2
FIVE-MONTH SKILL SCORES FOR VARIOUS LEARNING RATES

Brier-based
Ieg1tng Rate Skill Score Time (hr:mnin.sec)

.005 + 17.79% 7.11

.010 + 20.19% 7.11

.020 + 18.45% 7.11

.025 + 14.07% 7.11

.030 + 13.24% 7.11

.040 + 5.20% 7.11

.050 + 4.06% 7.11

.075 + 2.47% 7.11

.100 -3.56% 7.11

7
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TABLE 3
WEEKLY SKILL SCORES FOR VARIOUS LEARNING RATES

LEARNING RATES
Summer
1987 .005 .010 .020 .025 .030 .040 .050 .750 .100

June 7 22.1 18.1 22.5 18.6 15.5 41.2 66.2 74.1 7.6
14 38.7 32.4 21.5 19.3 22.0 77.6 67.1 66.0 8.3
21 58.9 62.1 60.9 25.6 38.0 14.4 71.5 74.0 73.3
28 32.8 40.2 22.1 17.4 34.2 -22.4 6.0 8.7 53.7

July 5 23.4 30.6 19.2 -6.3 -3.8 -22.1 -16.0 -0.5 -7.8
12 -5.7 8.9 13.7 15.3 20.3 -86.7 -131.0 -107.5 -20.9
19 27.7 28.4 10.6 4.9 4.9 -6.3 -3.8 -8.0 :.0.0
26 -10.2 -10.2 -5.5 -8.0 -17.1 15.9 18.3 9.3 -8.6

August 2 2.4 -4.3 -11.2 -12.9 -27.2 -66.8 -84.5 -65.3 -11.3
9 12.0 17.3 -2.0 -3.2 -5.5 -21.6 15.3 6.1 1.2

16 15.4 -10.8 -30.5 -10.8 -19.2 78.5 49.5 25.1 -304.4
23 41.0 50.1 51.3 65.4 75.8 83.0 -0.3 -39.0 3.11
30 -14.0 -7.5 2.3 62.3 71.2 91.2 -99.5 -217.2 -102.0

Averages: 18.8 19.6 13.4 14.4 16.1 13.5 -3.6 -12.6 -21.4

Combined Skill Scores:
J-J-A 23.9 26.1 18.6 9.9 12.3 -0.2 9.5 8.5 11.8

M-J-J-A-S 19.0 21.4 19.6 15.3 14.5 6.6 5.5 3.9 -2.0

3.5.2.2 Hidden Nodes Experiment

The purpose of this experiment was to observe the effects of changing the number of

hidden nodes while keeping all other network parameters constant. Table 4 shows

initial research using the preprocessed data with five-month skill scores, while Table 5

shows the weekly skill scores after the training and testing data bases were

reconstructed.

- 8



TABLE 4
HIDDEN NODES EXPERIMENT

Brier-based
dden NoSki Sore Time (hr:min.sec)

10 +12.76% 2.46
20 +12.71% 4.54

30 +20.19% 7.11
4O +18.64% 9.29
50 +14.50% 11.47
60 +18.44% 14.04

70 +16.52% 16.22
80 +8.87% 18.41

0 +10.37% 20.58
100 +4.84% 23.16

TABLE 5
WEEKLY SKILL SCORES FOR VARIOUS NUMBERS OF HIDDEN NODES

NUMBER OF HIDDEN NODES
Summer-
19.AZ IQ 2Q IV 40 *Q 60 70 80 90

June 7 -1.7 18.2 18.1 28.5 14.4 15.7 6.7 17.3 37.4
14 15.7 29.7 32.4 18.5 34.2 27.3 26.9 39.2 33.1
21 65.8 64.2 62.1 56.6 43.9 54.4 54.6 56.1 57.6
28 51.3 54.5 40.2 44.7 28.8 36.9 39.0 42.4 32.9

July 5 29.1 15.6 30.6 22.7 24.2 22.0 47.2 0.2 18.4
12 -19.3 -19.6 8.9 -10.7 -22.6 26.1 6.6 5.7 -33.3
19 49.5 33.3 28.4 11.6 7.5 5.5 13.4 15.0 18.8
26 -5.9 27.7 -10.2 18.6 -3.5 19.0 -0.4 5.1 0.5i 2 -3.1 -12,7 -4.3 -11.9 -31.3 -34.8 -53.7 -35.5 -37.6

August 9 19.4 5.7 17.' 25.6 26.8 22.8 9.7 5.1 12.2
16 -66,7 -7'.5 -10.8 12.9 1.6 -63.7 -83.3 -127.9 -28.2

I 23 -,,.7 30.9 50.1 19.9 -40.0 40.6 64.3 -19.8 -35.6
30 -131.2 43.C -7.5 19.4 55.5 -0.2 34.5 -70.4 -86.4

Averages: -1.8 15.3 19.6 19.7 10.7 13.2 12.7 -5.233 -0.8

Combined Skill Scores:
* J-J-A 20.3 23.8 26.1 25.5 17.5 23.2 20.3 13.8 15.8

M-J-J-A-S 14.C 14.0 21.4 19.6 15.7 19.6 17.7 10.2 11.7
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U
3.5.2.3 Passes Experiment

The purpose of this experiment was to observe the effects of changing the number of

passes in a back-propagation algorithm, waile keeping all other network parameters

constant. Table 6 shows initial research using the preprocessed data with five-monthU skill scores, while Table 7 shows the weekly skill scores after the training and testing

data bases were reconstructed.

TABLE 6

PASSES EXPERIMENT
Brier-based

Pass Skill Score Time fhrmln.sec)

I +19.14 3.35
10 +20.19 7.12
20 + 18.28 14.22
30 + 14.98 21.34
40+ 7.76 28.46
60+ 1.74 43.08

TABLE 7

WEEKLY SKILL SCORES FOR VARIOUS NUMBERS OF PASSES

NUMBER OF PASSES

Summer-87 & IQ 2Q 0 40 60

June 7 20.1 18.1 30.3 24.9 22.7 17.0
| 14 32.8 32.4 27.5 29.0 15.0 27.9

21 57.1 62.1 55.9 58.2 56.3 52.7
28 30.8 40.2 26.5 39.8 47.5 40.7

July 5 20.2 30.6 37.7 37.7 33.9 33.8
12 6.1 8.9 12.4 14.7 27.7 23.3
19 22.3 28.4 7.6 9.0 6.7 -4.8
26 -9.6 -10.2 -19.5 -20.6 -24.3 -27.1

| August 2 4.3 -4.3 -13.5 -23.9 -34.8 -34.1
9 10.9 17.3 -0.7 -17.7 -14.0 -4.8

16 14.5 -10.8 -11.8 -82.9 -144.7 -195.6I 23 53.0 50.1 50.1 19.5 -102.4 -178.3
30 3.8 -7.5 -3.8 -16.3 -70.2 -152.4

mA -... ... r_ 'A . _- I = 1, C.5 -In.^-0.

* Combined Skill Sores:
J-J-A 23.8 26.1 19.8 16.6 10.8 6.3

M-J-J-A-S 20.3 21.4 19.5 6.2 9.1 3.2
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3.5.2.4 Momentum Experiment

The purpose of this exp-nent was to observe the effects of changing the momentum In

a back-propagation alg.rithm, while keeping all other network parameter, constant.

Table 8 shows initial research using the preprocessed data with five-month skill scores.

TABLE 8
MOMENTUM EXPERIMENT

Brier-based
Momenmm Skill Score Time (hr:min.sec)

.710 + 16.98 7.11
. ,00 + 17.96 7.11
.1i50 + 19.04 7.11
.90 +20.19 7.11
.925 + 19.79 7.11
.950 +19.90 7.11

I
3.5.2.5 Iterations Experiment

The purpose of this experiment was to observe the effects of changing the number of

iterations in a back-propagation algorithm, while keeping all other network parameters

constant Table 9 shows initial research using the preprocessed data with five-month

* skill scores.

TABLE 9
ITERATIONS EXPERIMENT

Brier-based
Iterations Ski; Score Time fhr;min.sec)

1 + 20.19 7.11
2 + 14.97 14.97
3 + 9.22 21.05
5 - 8.99 34.58



3.5.2.6 Sigmod Table Fxperir.:nt

The purpose of this experiment was to observe the effects of obtaining the Sigmoid value

from a table, and obtaining the value by calculation for a back-propagation algorithm,

while keeping all other network parameters constant. Table 10 shows initial research

using the preprocessed data with five-month skill scores.

I TABLE 10
SIGMOID TABLE EXPERIMENTBrier-based

Si moid Value Skill Scor

Table + 20.19

Calculated + 20.19

I
3.5.2.7 Input-Output Layer Conntoction Experiment

The purpose of this experiment was to observe the effects of not connecting the input

layer directly to the output layer in a back-propagation algorithm, while keeping all

other network parnmeters constant. Table 11 shows initial research using the

preprocessed data with five-month skill scores.

I TABLE 11
LEARNING RATE EXPERIMENT

Brier-based
Input-Output Skill Score

Not Connected + 20.19
Connected -29.41

3.6 Evaluation and Comparisons Research

This research sought to validate the previous research work by setting aside the

preprocessed historical data base that was originally created to train the GOPAD-

I
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ATLANTA-IR, and reconstructing a new aata base from the raw soundings provided by

the National Climatic Data Center.

This research sought to develop a combination of BP forecasts models that could be

compared to the GOPAD -E, -F, and -G models that comprise the GOPAD-ATLANTA-RIR

model developed during Phase I.

This research sought to observe the degradation that would occur when a 12-24 hour

forecast model was created rather than a 0-12 hour forecast model.

This research sought to determine whether the weighting factors on the

interconnections in a BP model could be used to prioritize the relative contribution of

the input variables.

3.6.2 General Approach

This research was performed during April-May 1989. A Hecht-Neilsen Anza Plus

neurocomputer-board in an 80286-based microcomputer was used to perform the

experiments. The training data base used was reconstructed from the original raw

sounding data files.

Once the apparent optimal parameter settings (listed in Table 1) were found, the

number of hidden nodes, the number of passes, and the learning rate parameters were

selectively varied to observe the effect on weekly forecasting skill scores for the test

period. This task was accomplished by setting all parameters to their optimal values,

and then varying the settings for one parameter at a time. The ten-year historical data

base was then processed through the network to create a forecast model.

Once a BP forecast model was created, the 5-month testing data base for 1987 was

* processed through this model one day at a time to produce the probability of rain for

each day. The probability of rain for each of the 153 days in zhe test data base was

then written to a orec,st file. Each forecast file for each of the 24 models was overlaid

onto a staidard LOTUS m spreadsheet, where the daily, weekly, and monthly Brier-

based skill scores were immediately calculated. The results of these experiments are

shown inTables 3. 5, and 7.
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3.6.3 Spreadsheet Calculation of Skll Score

Attached as Appendix A are samples of 3 of the 24 LOTUSTM spreadsheets that were

used to calculate skill scores for the various BP models. These spreadsheets

automatically calculated the performance of each experimental k-ode.l when the BP

output file was overlaid.

The Optimal Parameters column shows the optimal settings for BP-Atlanta-241. The

column is the same on all spreadsheets.

The Variable Changed column shows which parameter was changed and its settir-g.

The Day # column is a day count number for each of the 153 days or records in the

testing data base.

The Forecast Output column is the PoP for that day.

The Actual Rain column contains either a "!" or a "0" to designate whether it rained or

did not rain on thlat particular day during the 12Z-24Z period.

The ANS column is the squared error between the probability forecast column and the

Actual Rain column.

The Climatology column is the squared error between climatology for each month and

the Actual Rain column. The climatology for rain in May was 27.7%; in June, it was

21.0%; in July, it was 24.9%; in August. it was 22.8%; and in September, it was 23.0%.

A single climatology wa,3 used for all raonths in Phase I to compute skill scores for the

GOPAD-ATLANTA-RIR model, so the skill scores prepared in Phase II are slightly

different than those reported In the Phase I Final Report.

The Daily, Weekly, and Monthly columns compute the skill scores for the prenent day

and the past seven days, and for the present day and the past 30 days, respectively

The Brier-based skill score wa.3 computed according to the following formuula:

SS = 1 - V(ANS sq error/ climatology sq error)
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3.6.4 Comparative Performance Evaluations

3.6.4.1 Objectives and Approaches

The objective of this research was to compare the performance of BP-ATLANTA models

to the National Weather Service Forecast Office (NWSFO), the LFM/MOS, and the

GOPAD-ATLANTA-RIR models created during Phase I. The approach was to create a

series of BP-based forecast models that were similar in structure to the GOPAD-

ATLANTA-RIR model developed in Phase I u.ng a PC/AT with a Hecht-Neilsen

neurocomputer board installed. The performance of these new models would then be

compared to the performance of the GOPAD-ATLANTA,-RIR, the NWSFO, and the

LFM/MOS forecasts.

As an additional objective, CCI sought to verify the performance of the BP-ATLANTA-

241 model by completely reprocessing the original rawinsonde training data base In-

house. Consequently, all the preprocessed historical data files that were used to find

the optimal parameter settings for BP-Atlanta-241 were discarded. In conjunction with

the reconstruction of these data bases, all forecasts were consolidated into ILXUSl"

spreadsheets so that all skill score computations would be calculated exactly the same.

3.6.4.2 Research Results

Six BP forecast models were created with the optimal parameter settings used by the

BP-ATLANTA-241 model. These models are designated BP-E241, BP-F241, BP-G241,

BP-E32, BP-F32, and BP-G32. Each of these models was trained on a different

combination of months. The E-model was trained on May-June-July data: F-model was

trained on June-July-August data; and G-model was trained on July-August-September

data. Although neither a D-model nor an H-model was developed, the D, E, and

F-models would be polled to produce a forecast for June: the E. F. and G-models would

be polled for July; and the F. G, and H-models would be polled for August in an

operational environment.

The numbers 241 or 32 in a model's name Indicate the number of input variables that

were used in the training mode. The 32 variables were those that GOPAD selected out

of all the 241 variables that were available as candidate predictor variables--a form of
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dimensionality reduction. Thus, it was possible to measure how much information was

contained in the variables that GOPAD 1 (i.e., the BASIC language version) had selected.

I The skill scores for these models were calculated using the LotuSTM spreadsheets

described earlier so they could be compared to the GOPAD-ATLANTA-RIR, the WSFO,

and LFM/MOS forecast models.

Table 12 summarizes the three-month combined skill scores. This table shows that the

GOPAD1 selection process appears to lose some information as a result of

dimensionality reduction.

TABLE 12
THREE-MONTH SKILL SCORES

USING BP-A, IANTA-241 PARAMETER SETTINGS

I-o F-Models G-Models Summer

BP-241 25.0% 27.0% 22.0% not computed
BP-32 17.5% 19.7% 15.6% not computed

GOPAD-ATL 22.2% 10.0 18.8% 26.3*

I LFM/MOS n/a n/a n/a 16.1%
WSFO n/a n/a n/a 21.7%

I BP-241 2.1% 5.9% 0.79% not computed

*This score represents the result of polling the E, F and G-models, and applying the Reliability Index Rule
(RIRm) as modified. In Phase I, the skill score for the GOPAD-AMLANTA-RIR model used 22% as the
climatology for all five months. In Phase II. the actual climatologles for each month were computed and
used in the computation of skill scores. Consequently, there is a slight difference between the skill scores
for GOPAD reported in the Phase I and Phase II final reports.

"*These models used the same OZ sounding that the LFM/MOS model used to make the 12-24Z forecast;
whereas the other BP and GOPAD models used the 12Z sounding to make the 12-24Z forecast.

I
I
U
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Table 13 shows the skill scores for each model for each month.

TABLE 13
MONTHLY SKILL SCORES

USING BP-ATLANTA-241 PARAMETER SETTINGS

Name June August Summer

BP-E241 49.3% 6.9% -0.8% 25.0%
BP-F241 46.5% 12.1% 7.6% 27.0%
BP-G24 38.1% 0.5% 10.8% 22.0%

BP-E32 41.0% 10.7% -23.2% 17.5%
BP-F32 35.4% 11.1% - 4.7% 19.7%
BP-G32 24.6% 7.1% 4.4% 15.6%

GOPAD-RIR 43.2% 22.4% -0.6% 26.3%

LFM/MOS 26.0% 12.0% 3.0% 16.1%
WSFO 35.6% 11.3% 9.6% 21.7%

I Table 14 shows the weekly skill scores using BP-Atlanta-241 parameter settings. The
rain column shows the number of times it rained during each week.

I TABLE 14
WEEKLY SKILL SCORESI USING BP-ATLANTA-241 PARAMETER SETTINGS

Summer-87 WSFO LFM/MOS GOPAD-E GOPAD-F OPAD- M Ei

June 7 -19.0 4.3 7.6 -21.7 15.5 5.4 1
14 2.7 14.3 40.8 25.2 35.4 27.3 2
21 61.3 39.2 64.5 48.4 40.8 5.6 6
28 34.1 18.3 20.6 13.7 47.9 29.3 3

July 5 24.7 24.2 49.0 1.1 36.4 54.9 3
12 -11.3 2.1 16.7 0.7 25.3 34.0 1
19 18.5 1.8 44.5 10.3 39.2 44.5 1
26 28.5 17,0 -24.5 6.8 -22.4 -22.4 2

August 2 6.8 5.4 -19.9 -37.7 -0.7 -7.4 2
9 13.9 11.6 -1.7 13.3 -1.7 -8.3 4

16 -36.5 -24.0 83.6 -50.6 15.1 54.3 0
23 17.0 52.4 64.4 83.6 67.1 75.4 0
30 1.9 -41.7 -204.0 -127.3 -220.4 -47.0 0

Averages 10.97 9.61 10.9 -2.6 6.0 23.5

J-J-A 21.7 16.1 22.2 10.0 18.8 26.3

!17



Table 15 shows weekly skill scores using BP-Atlanta-241 Parameter Settings. The rain
column shows the number of times It rained during each week.

TABLE 15WEEKLY SKILL SCORES
USING BP-ATLANTA-241 PARAMETER SETINGS

I Summer 7 E241 F241 G241 E32 F32 G32 Rain

June 7 22.7 21.2 10.8 -5.8 3.1 3.2 1
14 31.7 31.2 27.5 38.6 27.1 18.6 2
21 65.7 64.4 55.1 62.8 53.5 36.7 6
28 46.0 39.7 41.3 33.5 28.9 17.0 3

July 5 26.8 30.1 -4.7 24.1 22.3 20.3
12 -16.9 11.5 24.8 -4.1 4.3 5.2 1
19 44.3 28.9 34.0 51.1 42.4 35.7 1
26 -11.3 -9.1 -19.2 -3.4 -3.0 -13.2 2

August 2 -12.6 -6.4 -5. . -7.5 -2.6 -6.1 2
9 16.2 22.2 1.0 17.6 24.6 19.4 4

16 22.0 -11.1 53.4 -50.6 -64.1 -28.1 0
23 65.8 52.6 72.3 -46.5 -14.1 23.7 0
30 -1.4 -20.8 39.7 -184.0 -56.0 17.7 0

I Averages 23.0 19.6 25.4 -5.7 5.1 11.5

J-J-A 25.0 27.0 22.0 17.5 19.7 15.6
M-J-J-A-S 16.4 20.9 22.4 11.0 16.0 15.8

3.6.5 Identification of Important Predictor Variables

3.6.5.1 Objective

The objectives of the research are (1) to create a list of parameters sorted according to

each parameter's relative weighting along the interconnection paths to the output node;

and (2) to Identify the 32 GOPAD selected parameters in this sorted list to determine if

weights along the interconnections could be used to find important variables.

I 3.6.5.2 Research Results

ITis resarch wa ondrat durir~i^o1 i n Aprl, 1OQQ A-iiviain wasr%+4r3^ "?o ,nduct+,edlt

determine whether the BP learning algorithm could be used to identify the predictor

variables that had the greatest hifluence on the forecast. This effort was thought to be

useful because the most important ANS variables could be compared to those selected
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by the statistical analysis process in GOPAD1. Since statistical analysis is the most

time-consuming GOPAD process, it might be possible for the BP algorithm to perform

dimensionality reduction because it appeared to be much faster than GOPAD 1.

The BP-F241 model was used for this research. The weights between each input node

and the output node for all interconnection paths were summed. These weights were

then sorted. The 32 candidate predictor variables that GOPAD selected were identified

in this sorted list to determine if they were bunched near the top, middle, or bittom of

the list, or whether they were scattered evenly throughout. Appendix A shows the

sorted list with all 241 variables, and the 32 variables that GOPAD selected as

containing the most statistical information. This Appendix shows that the GOPAD-

selected variables are scattered fairly evenly throughout this list. Table 16 is an extract

from Appendix A showing Just the 32 variables that GOPAD selected. Based on these

results, simply summing the weights along the Interconnections does not appear to

provide any insight into which variables are most important.
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TABLE 16

SUMMARY OF WEIGHTS ALONG THE INTERCONNECTIONS
FROM EACH INPUT NODE TO THE OUTPUT NODE

FOR THE GOPAD SELECTED VARIABLES

Ranking Inuut Variable

7 2.541121 CA600U
22 2.350847 AA900D
25 2.340340 WA400U
33 2.296635 AA800U
42 2.250115 AA900V
50 2.207791 CA800V
65 2.160017 AA300D
69 2.137422 AA600U
77 2.088976 AA600T
90 2.061990 WA700T
94 2.058352 AA800V
98 2.039243 DAYCNT

103 2.031388 CA900V
104 2.030351 AA100U
107 2.024281 CA400U
122 1.982341 AA700D
127 1.974752 CA800U
129 1.961482 WA800V
139 1.938703 AA700U
145 1.930760 A400U
155 1.887024 AA100T
158 1.875487 CA200T
165 1.853136 A300T
186 1.769200 WA700V
188 1.760480 WA900V
190 1.748589 CA700V
191 1.745677 CA300U
204 1.692686 WA300T
211 1.658782 CA600D
221 1.596003 CA600T
232 1.440968 WA900U
233 1.435088 AA700V

4.0 GOAL ORIENTED PATTERN DETECTION

Previously, CCI had investigated expert systems for creating tactical weather forecast

models. During Phase I and II, standard and non-standard neural net approaches were
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investigated. Through this effort, it was found that a proprietary algorithm, called Goal

Oriented Pattern Detection (GOPAD), developed by Dr. Kenneth Young at the

Institute of Atmospheric Physics, University of Arizona, held the greatest potential to

achieve Army objectives for tactical weather forecasting. During CCI's research, GOPAD

was used to produce two experimental models--GOPAD-Atlanta-RIR and GOPAD-

SHOOTOUT-89. The GOPAD-Atlanta-RIR was a Probability of Precipitation (PoP) model

developed for Hartsfleld International Airport in Atlanta, Georgia. The GOPAD-

3 SHOOTOUT-89 model was a severe and significant weather forecast model that was

independently tested by NOAA during a real-time severe and significant weather

forecasting exercise called SHOOTOUT-89 that took place in the Boulder and Denver,

Colorado, area. The forecasting skill of these GOPAD models appears to be very

promising, in spite of the limited number of sources of candidate predictor variables for

the former model, and the limited amount of input data that was available for the latter

model.

4.2 GOPAD DescriptionI
GOPAD is technically described as a statistical, optimizing, machine-learning, analogue,

forecast model creation, software tool. GOPAD extends the multi-discriminant analysis

(MDA) methods developed by Miller (1962), and the analogue forecasting method of

Kruizinga and Murphy (1983). GOPAD uses a k-nearest neighbor search. GOPAD

produces data that can be used to construct a mesoscale, real-time weather forecasting

software program that executes in seconds.

In general, the GOPAD model development tool (1) creates optimal machine-derived

indices from highly correlated variables: (2) identifies the optimal statistical

relationships between all candidate predictor variables and indices using a very large,

historical weather data set (i.e., 100 to 30,000 variables/indices per data point and 100

to 40,000 data points); and (3) optimizes the n-space scaling and neighborhood size to

provide information that can be used to prepare a non-linear forecast model. GOPAD

models are able to reveal the underlying physical relationships upon which the model is

based in the form of exemplars--thus enabling a meteorologist to examine a model's

U forecast.

Appendix B is a paper that was presented at the 1989 EOSAEL/TWI Conference that

describes how GOPAD operates, the types of tactical mesoscale forecast models that

* 21



could be developed, a method for defining forecast models, and how the GOPAD

development process is used to create new forecast models.

H 4.3 Conclusions

I The full potential of the GOPAD development system to create mesoscale models that

can provide accurate forecasting information to the Staff Weather Officer on the

battlefield has not yet been determined. To date, GOPAD has been used to produce

forecast models with very few sources of candidate predictor variables (i.e., rawinsonde

and mesonet) and, in tie SHOOTOUT-89 exercise, with a severely limited and

inaccurate historical data base. The true potential of GOPAD cannot be fully

documented until (a) all available sources of predictor variables are used, (b) an

adequate historical training data base is provided, and (3) accurate records are

available for the event to be predicted. These requirements also point out the Achilles

heal for any neural net approach. However, when compared to the knowledge

engineering problem for an expert systems approach to tactical weather forecasting, a

machine learning approach still appears to offer the greatest long term cost-benefit to

the Army.

5.0. MESOSCALE WEATHER FORECASTING EXERCISE--SHOOTOUT-89

U 5.1 Backrund

I At the conclusion of Phase I research, GOPAD1 (i.e., the BASIC language version)

appeared to he a promising approach for automating the construction of mesoscale

weather foiecastng models for a tactical environment. However, GOPADI had several

problems that appeared to limit its usefulness for more complex problems that would

require many sources of predictor variables and larger data bases. Consequently,

research with a more traditional neural net (i.e., the back-propagation learning

algorithm) was undertaken for comparison m.arposes.

Between Phase I and Phase II, the GOPAD 1 program was upgraded to a VAX FORAN

version called GOPAD2. This new version appeared to z'vercome many of the problems

perceived in GOPAD1. Since GOPAD2 appeared to have much more potential than

GOPADI, a decision was made to use GOPAD2 to construct a model that would
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participate in the Forecast System Laborato.7y/NOAA-sponsored exercise called

SHOOTOUT-89. The SHOOTOUT-89 modej is referred to as GOPAD-RT89.

5.2 SHOOTOUT-89 Evaluations

5.2.1 NOAA/FSL Comparative Evaluation

A massively co-authored paper is being prepared by NOAA/FSL that evaluates all six

models that participated In the SHOOTOUT-89 exercise and will be submitted for

publication In the Bulletin of American Meteorological Society (BAMS) in 1990.

5.2.2 Performance Evaluation

Appendix C is a paper that quantitatively compares the perfrmance of all models that

participated in SHOOTOUT-89 In more detail.

5.3 Conclusions

There are many different ways to quantitatively and qualitatively compare the

performance of the system that participated In the SHOOTOUT-89 exercise. We choose

to summarize and caveat the quantitative performance in Table 17 and Table 18.

First, Table 17 shows the (Brier) skill scores for 'vcre weather based upon the

forecasts in which there was no statistically signiftcant difference between reporting of

severe weather between 1985/87 and 1989 (i.e., Regions II, M, and IV). This table

eliminates the effect from seriously u;der-reportlng significant weather in all regions,

and from seriously under-reporting severe weather in region I. GOPAD and ALPS are

most helped by this caveat.
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TABLE 17
SKILL SCORES FOR SEVERE WEATHER

IN REGIONS II, I, AND IV

GOPAD1 + 2.1%
GOPAD2 +1.9%
ALPS -0.7%
Willard -11.9%
KASSPr -17.0%
CONVEX -24.0%
OCI -32.3%

Second, Table 18 shows the skill scores only for region IV which was the only region
that had an adequate number of events upon which to train a GOPAD model. This
tables mitigates the fact that there was not a large historical data base available to
develop a GOPAD model GOPAD Is helped most by this caveat.

TABLE 18
SKILL SCORES FOR SEVERE WEATHER

IN REGION IV

GOPADi +13.8%
GOPAD2 +13.2%
ALPS + 1.8%
KASSPr -0.2%
OCI -3.1%
Willard -12.6%
CONVEX -40.9%

6.0 CLOUD IMAGE REPRESENTATION, RECOGNITION, AND uI;DERSTANDING
SOFTWARE

6.1 Background

Cloud Image Representation, Recognition, and Understanding Software (CIRRUS-I)

autonomously tracks individual homogeneous temperature regions in GOES Infrared

(IR) imagery. and intelligently derives cloud displacement vectors from the leading edges
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of tracked cloud-objects. The CIRRUS-I vector file could be used as input to a vorticity

modeling program to produce synoptic wind or stream flow fields over North America.

The synoptic wind patterns would then be used as an important source of candidate

predictor variables for a neural net or GOPAD.

6.2 CIRRUS-I Data Flow

Appendix D Is a paper that was presented at the 1989 EOSAEL/TWI Conference. This

paper describes how the CIRRUS algorithm operates.

6.3 CIRRUS-I Performance

Appendix E is a series of photographs that show examples of how CIRRUS-I performs.I
6.4 Conclusions

U CIRRUS-I was developed to provide yet another source of candidate predictor variables

that would be processed by GOPAD to produce a more accurate forecast model. The

ultimate test of the usefulnesE' of CIRRUS-I for mesoscale forecasting is the quality of

systematic Information contained in its candidate predictor variables that can

contribute to the forecast relative to the information available from other sources.

Therefore, the best way to determine the value of the CIRRUS-I and the vorticity

modeling program is to produce a multi-year historical synoptic wind flow data base,

and measure the statistical contribution of CIRRUS-I as a source of predictor variables

relative to the candidate predictor variables from other sources (e.g., rawinsonde,

mesonet, NGM, barotropic, etc.).

I CIRRUS-I lays the foundation for automating many tedious visual analysis tasks that

are performed by a human, where shape, relative proximity of individual objects to each

3 other, a prtori knowledge, and inferencing are important for object recognition and

image interpretation. In the weather domain, for example, CIRRUS-I could be extended

o gcognize f ,eatu.re In GOE sat t 11.. ci oagcny suca,€ trougsb rige, and

areas of high and low pressure, and to speculate about the future state and location of

I these features.

I
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For other applications, CIRRUS-I demonstrates the usefulness of a very Innovative, non-

digital, image representation scheme that makes it possible to develop software

programs that can use the visual cues that a human uses to recognize objects. This

approach to image processing mitigates many classical image understanding problems.

7.0 PHASE II RECOMMENDATIONS

Artificial Intelligence techniques investigated during Phase I and H can be used to provide a new

level of automated computer support to the Staff Weather Officer. In order to properly

evaluate the capability of these technologies to support the SWO, a human forecaster

who is using GOPAD models and/or CIRRUS should be directly compared to a second

forecaster who is using the next best technology that might be available in a tactical

environment. If it can be shown that the performance of the former forecaster is

statistically higher than the latter, then the value of a system should be apparent.
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Appendix A

BRIER-BASED SKILL SCORES FOR BP-ATLANTA-241
USING OPTIMAL PARAMETERS

Optimal Variable
Parameters Changed Architectural Options

2 # Slabs
30 # Hidden Nodes
10 # Passes
1 # Iterations

0.01 Learning Rate
0.9 Momentum

Table Sigmoid SourceI 0.1 Random Seed
241 # Input parameters
no Input slab connected to output

mI Overall Performance:

* June-July-Aug Skill = 26.1%
May-June-July-Aug-Sept Skill = 21.4%

Squared-Errors Skill Scores
Forecast Actual--

I ay# Output Rain ANS Climatology D Weekly Monthl Date

1 0.201184 1 0.638 0.522 -22.2% May 1
2 0.499511 0 0.250 0.077 -224.2%

I 3 0.305489 0 0.093 0.077 -21.3%
4 0.345105 1 0.429 0.522 17.9%
5 0.062103 0 0.004 0.077 95.0%
6 0.209793 0 0.044 0.077 42.8%
7 0.242564 0 0.059 0.077 23.5% -6.1%
8 0.231266 0 0.053 0.077 30.5% 5.3%
9 0.080213 0 0.006 0.077 91.6% 30.0%

10 0.203865 0 0.042 0.077 46.0% 35.2%
ii 0.528777 1 0.222 0.522 57.5% 56.3%
12 0.494628 0 0.245 0.077 -217.9% 31.8%
13 0.460046 0 0.212 0.077 -175.0% 14.8%
14 0.736211 1 0.070 0.522 86.7% 40.6%
15 0.650689 0 0.423 0.077 -450.2% 14.7%
16 0.540196 0 0.292 0.077 -279.2% -5.3%

I 17 0.5348!5 0 0.286 0.077 -271.8% -22.4%
* 18 0.677047 0 0.458 0.077 -495.7% -101.8%

19 0.745583 1 0.065 0.522 87.6% -26.4%
20 0.316369 0 0.100 0.077 -30.1% -18.5%
21 0.548915 1 0.203 0.522 61.0% -27.9%
22 0.109134 0 0.012 0.077 84.5% 0.9%

I 23 0.067608 0 0.005 0.077 94.1% 21.0%

* A-i
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I 24 0.458348 0 0.210 0.077 -173.0% 26.3%
25 0.054701 0 0.003 0.077 96.1% 58.2%I 26 0.038394 0 0.001 0.077 98.1% 45.7%
27 0.025107 0 0.001 0.077 99.2% 55.8%
28 0.050988 0 0.003 0.077 96.6% 56.5%
29 0.103930 0 0.011 0.077 86.0% 56.7%H 30 0.043365 0 0.002 0.077 97.6% 57.2%
31 0.077169 0 0.006 0.077 92.3% 95.1% 12.1% May 31
32 0.125600 0 0.016 0.044 63.9% 92.3% 16.5% June 1
33 0.025589 0 0.001 0.044 98.5% 91.9% 21.3%
34 0.175114 1 0.680 0.626 -8.7% 29.7% 18.3%
35 0.167490 0 0.028 0.044 35.7% 24.7% 18.5%I 36 0.035914 0 0.001 0.044 97.0% 23.1% 18.0%
37 0.012747 0 0.000 0.044 99.6% 20.5% 18.3%
38 0.031232 0 0.001 0.044 97.8% 18.1% 19.0%
39 0.020138 0 0.000 0.044 99.1% 19.8% 19.6%H 40 0.075721 0 0.006 0.044 86.9% 19.2% 19.0%
41 0.028571 0 0.001 0.044 98.1% 87.7% 19.3%
42 0.227640 1 0.597 0.626 4.7% 31.7% 12.9%
43 0.322525 0 0.104 0.044 -138.4% 20.2% 15.4%
44 0.587706 1 0.170 0.626 72.8% 40.2% 25.4%45 0.340923 0 0.116 0.044 -166.3% 32.4% 16.6%
46 0.348644 1 0.424 0.626 32.2% 30.9% 25.5%
47 0.605566 1 0.156 0.626 75.1% 40.5% 35.1%
48 0.617858 1 0.146 0.626 76.7% 46.8% 43.1%
49 0.372276 0 0.139 0.044 -217.6% 52.4% 48.0%
50 0.590070 1 0.168 0.626 73.1% 59.0% 47.2%
51 0.606731 1 0.155 0.626 75.3% 59.5% 50.7%
52 0.496337 1 0.254 0.626 59.5% 62.1% 50.7%
53 0.500000 0 0.250 0.044 -472.9% 60.6% 47.0%
54 0.321672 1 0.460 0.626 26.5% 51.2% 44.8%
55 0.205455 0 0.042 0.044 3.3% 44.3% 46.8%
56 0.564338 1 0.190 0.626 69.7% 52.8% 48.1%
57 0.473900 1 0.277 0.626 55.8% 49.4% 48.2%
58 0.084266 0 0.007 0.044 83.7% 43.8% 48.0%
59 0.013363 0 0.000 0.044 99.6% 40.2% 47.8%I 60 0.019568 0 0.000 0.044 99.1% 52.4% 47.7%
61 0.401452 0 0.161 0.044 -269.3% 53.9% 45.6% June 30
62 0.516107 1 0.234 0.563 58.4% 56.3% 46.4% July 1
63 0.538740 0 0.290 0.062 -366.2% 32.0% 43.1%
64 0.598312 1 0.161 0.563 71.4% 37.3% 44.7%
65 0.431104 1 0.324 0.563 42.5% 37.8% 44.4%
66 0.385837 0 0.149 0.062 -139.1% 30.6% 46.7%I 67 0.324235 1 0.457 0.563 18.9% 26.6% 45.1%
68 0.518790 0 0.269 0.062 -332.4% 22.8% 42.6%
69 0.246714 0 0.061 0.062 2.2% 11.8% 42.0%
70 0.124851 0 0.016 0.062 75.0% 25.9% 42.0%
71 0.n099996 0 0.010 0.062 83.9% 10.6% 42.0%
72 0.082845 0 0.007 0.062 89.0% -3.3% 42.1%
73 0.185061 0 0.034 0.062 45.0% 8.9% 41.9%
74 0.134094 0 0.018 0.062 71.1% 4.8% 44.5%
75 0.200400 1 0.639 0.563 -13.5% 16.2% 42.1%
76 0.049912 0 0.002 0.062 96.0% 22.4% 40.4%I 77 0.010091 0 0.000 0.062 99.8% 24.1% 41.7%
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I 78 0.065186 0 0.004 0.062 93.2% 24.7% 42.8%
79 0.050237 0 0.003 0.062 95.9% 25.2% 40.7%
80 0.066873 0 0.004 0.062 92.8% 28.4% 38.2%
81 0.034068 0 0.001 0.062 98.1% 30.1% 40.2%
82 0.082919 0 0.007 0.062 89.0% 95.0% 37.7%
83 0.056340 0 0.003 0.062 94.9% 94.8% 34.7%I 84 0.093677 0 0.009 0.062 85.9% 92.8% 32.7%
85 0.074432 0 0.006 0.062 91.1% 92.5% 36.9%
86 0.070176 1 0.865 0.563 -53.5% 4.5% 29.5%
87 0.166810 1 0.694 0.563 -23.2% -10.2% 25.2%
88 0.073164 0 0.005 0.062 91.4% -10.5% 21.2%
89 0.240061 0 0.058 0.062 7.4% -14.0% 17.1%
90 0.095517 0 0.009 0.062 85.3% -14.4% 17.3%
91 0.505859 0 0.256 0.062 -311.1% -31.6% 12.9%
92 0.276299 1 0.524 0.563 7.0% -24.3% 11.7% July 31
93 0.213049 0 0.045 0.052 13.0% -11.5% 13.8% Aug 1I 94 0.209307 1 0.625 -0.595 -5.0% -4.3% 7.8%
95 0.344002 1 0.430 0.595 27.7% 2.3% 13.1%
96 0.338295 1 0.438 0.595 26.5% 7.9% 9.3%
97 0.403096 0 0.162 0.052 -211.5% 1.4% 4.4%
98 0.419172 1 0.337 0.595 43.3% 16.0% 9.2%
99 0.171615 0 0.029 0.052 43.5% 18.5% 8.6%

100 0.208662 1 0.626 0.595 -5.2% 14.0% 10.6%I 101 0.275129 0 0.076 0.052 -45.1% 17.3% 10.2%
102 0.081739 0 0.007 0.052 87.2% 16.0% 10.2%
103 0.145600 0 0.021 0.052 59.4% 13.3% 9.9%I 104 0.172868 0 0.030 0.052 42.7% 22.4% 9.4%
105 0.103839 0 0.011 0.052 79.3% 11.9% 9.7%
106 0.062674 0 0.004 0.052 92.5% 14.7% 9.7%
107 0.326808 0 0.107 0.052 -104.7% 30.2% 10.9%
108 0.474874 0 0.226 0.052 -332.3% -10.8% 7.1%
109 0.242026 0 0.059 0.052 -12.3% -25.1% 5.9%
110 0.299719 0 0.090 0.052 -72.2% -43.9% 4.4%

I 1110.122418 0 0.015 0.052 71.3% -39.8% 4.0%
112 0.049819 0 0.002 0.052 95.2% -37.5% 3.9%
113 0.029958 0 0.001 0.052 98.3% -36.7% 3.7%
114 0.023531 0 0.001 0.052 98.9% -7.6% 3.7%
15 0.122103 0 0.015 0.052 71.4% 50.1% 3.3%

116 0.141637 0 0.020 0.052 61.5% 60.6% 2.9%
117 0.279434 0 0.078 0.052 -49.7% 63.9% 1.6%I 118 0.108471 0 0.012 0.052 77.4% 64.7% 8.0%
119 0.116060 0 0.013 0.052 74.2% 61.7% 12.2%
120 0.241310 0 0.058 0.052 -11.6% 46.0% 11.0%I 121 0.447218 0 0.200 0.052 -283.4% -8.6% 7.9%
122 0.104385 0 0.011 0.052 79.1% -7.5% 7.7%
123 0.548190 0 0.301 0.052 -476.1% -84.3% 6.6% Aug 31
124 0.397470 0 0.158 0.053 -196.1% -105.5% 4.1% Sept 1

S25 0.304454 0 0.093 0.053 -73.7% -126.8% 3.0%
126 0.109419 0 0.012 0.053 77.6% -125.7% 5.3%
127 0.106783 0 0.011 0.053 78.6% -112.3% 2.4%I 128 0.341143 1 0.434 0.591 26.6% -12.1% 2.4%
129 0.511472 1 0.239 0.591 59.6% 13.9% 14.2%
130 0.424650 0 0.180 0.053 -237.9% 22.2% 4.8%I 131 0.119716 0 0.014 0.053 73.1% 32.2% 5.3%
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132 0.280616 0 0.079 0.053 -47.6% 33.1% 6.5%
133 0.317637 0 0.101 0.053 -89.1% 27.0% 5.7%
134 0.717210 0 0.514 0.053 -864.0% -7.7% -12.7%
135 0.637933 0 0.407 0.053 -662.7% -68.3% -26.6%
136 0.294620 0 0.087 0.053 -62.7% -270.1% -28.6%
137 0.077867 0 0.006 0.053 88.6% -223.5% -28.4%
138 0.065246 0 0.004 0.053 92.0% -220.8% -28.4%
139 0.388849 0 0.151 0.053 -183.4% -240.2% -29.9%
140 0.347979 0 0.121 0.053 -126.9% -245.6% -26.1%
141 0.077378 0 0.006 0.053 88.8% -109.5% -24.1%
142 0.660391 1 0.115 0.591 80.5% 46.2% -4.7%
143 0.147309 0 0.022 0.053 59.3% 53.3% -4.8%
144 0.042324 0 0.002 0.053 96.6% 53.8% -4.8%
145 0.194062 0 0.038 0.053 29.4% 50.1% -5.8%
146 0.068787 0 0.005 0.053 91.1% 66.2% -5.9%
147 0.070240 0 0.005 0.053 90.8% 78.9% -5.6%
148 0.008985 0 0.000 0.053 99.8% 79.6% -4.9%
149 0.009869 0 0.000 0.053 99.8% 81.0% -2.6%
150 0.128415 0 0.016 0.053 69.1% 82.4% -2.7%
151 0.169818 0 0.029 0.053 46.0% 75.1% -3.1%
152 0.283186 0 0.080 0.053 -50.3% 63.8% -3.7%
153 0.110087 0 0.012 0.053 77.3% 61.8% 2.0% Sept 30

I

I
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BRIER-BASED SKILL SCORES FOR BP-ATLANTA-241
USING LEARNING RATE = .005

Optimal Variable
Parameters Changed Architectural Options

2 # Slabs
30 # Hidden Nodes
10 # Passes
1 # Iterations

0.01 .005 Learning Rate
0.9 Momentum

Table Sigmoid Source
0.1 Random Seed
241 # Input parameters
no Input slab connected to output

I Overall Performance:

June-July-Aug Skill = 23.9%
May-June-July-Aug-Sept Skill = 19.0%

Squared-Errors Skill Scores
Forecast Actual =-

Day# Output Rain ANS Climatology Daily Weekly Monthly Date

1 19% 1 0.657 0.522 -25.8% May 1
2 46% 0 0.213 0.077 -176.5%
3 28% 0 0.077 0.077 0.5%
4 31% 1 0.477 0.522 8.6%I 5 10% 0 0.011 0.077 86.1%
6 19% 0 0.035 0.077 54.6%
7 22% 0 0.050 0.077 35.1% -6.3%
8 29% 0 0.085 0.077 -10.9% 3.7%
9 10% 0 0.009 0.077 87.7% 24.4%

10 19% 0 0.036 0.077 52.7% 28.4%
I ll 42% 1 0.333 0.522 36.2% 43.1%

12 52% 1 0.267 0.077 -246.5% 17.1%
13 44% 0 0.192 0.077 -149.4% 1.1%

I 14 67% 1 0.108 0.522 79.4% 27.9%
15 57% 0 0.321 0.077 -317.0% 11.4%
16 54% 0 0.292 0.077 -279.2% -8.3%
17 50% 0 0.251 0.077 -225.8% -23.3%
18 58% 0 0.334 0.077 -333.4% -79.2%
19 71% 1 0.081 0.522 84.4% -10.4%
20 41% 0 0.166 0.077 -115.1% -8.6%

I 21 57% 1 0.183 0.522 64.9% -13.9%
22 17% 0 0.028 0.077 63.2% 6.6%
23 15% 0 0.022 0.077 71.2% 25.5%

I 24 47% 0 0.226 0.077 -193.1% 27.3%
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25 13% 0 0.018 0.077 76.8% 49.3%
26 9% 0 0.008 0.077 90.0% 33.9%
27 7% 0 0.005 0.077 93.7% 50.2%
28 11% 0 0.012 0.077 83.9% 40.8%
29 19% 0 0.035 0.077 54.1% 39.5%
30 6% 0 0.004 0.077 95.4% 43.0%
31 19% 0 0.035 0.077 53.9% 78.2% 9.6% May 31
32 19% 0 0.036 0.044 16.5% 73.1% 13.7% June 1
33 7% 0 0.005 0.044 88.7% 71.8% 17.7%
34 25% 1 0.560 0.626 10.5% 32.6% 17.1%
35 28% 0 0.081 0.044 -85.6% 23.4% 17.0%
36 8% 0 0.006 0.044 85.6% 23.7% 16.5%
37 2% 0 0.000 0.044 98.9% 21.3% 16.7%
38 5% 0 0.002 0.044 94.4% 22.1% 17.1%
39 4% 0 0.002 0.044 95.8% 26.0% 18.4%
40 11% 0 0.011 0.044 73.7% 25.2% 17.7%
41 6% 0 0.004 0.044 91.5% 64.9% 17.8%
42 39% 1 0.373 0 626 40.5% 55.1% 18.8%
43 32% 0 0.105 0.044 -139.6% 44.0% 21.8%
44 56% 1 0.196 0.626 68.6% 52.9% 30.3%
45 46% 0 0.211 0.044 -382.9% 38.7% 20.7%
46 31% 1 0.478 0.626 23.6% 32.9% 26.1%
47 59% 1 0.170 0.626 72.9% 41.7% 35.5%
48 58% 1 0.175 0.626 72.0% 46.9% 42.4%
49 49% 0 0.237 0.044 -444.2% 40.3% 43.6%
50 57% 1 0.186 0.626 70.3% 48.6% 42.9%
51 63% 1 0.138 0.626 77.9% 50.4% 47.9%
52 58% 1 0.177 0.626 71.8% 58.9% 48.8%
53 54% 0 0.294 0.044 -573.5% 57.2% 44.7%
54 31% 1 0.471 0.626 24.8% 47.8% 42.7%
55 11% 0 0.012 0.044 71.4% 42.5% 45.3%
56 48% 1 0.272 0.626 56.5% 51.8% 45.9%
57 46% 1 0.293 0.626 53.2% 48.5% 46.1%
58 19% 0 0.035 0.044 19.1% 41.0% 45.5%
59 5% 0 0.002 0.044 95.2% 32.8% 45.4%
60 4% 0 0.002 0.044 95.7% 47.0% 45.6%
61 47% 0 0.219 0.044 -401.0% 43.1% 42.8% June 30
62 51% 1 0.240 0.563 57.5% 46.6% 43.7% July 1
63 57% 0 0.321 0.062 -415.1% 22.1% 40.4%
64 53% 1 0.217 0.563 61.5% 24.1% 41.8%
65 44% 1 0.310 0.563 45.0% 30.5% 41.8%
66 39% 0 0.150 0.062 -140.6% 23.4% 42.6%
67 28% 1 0.520 0.563 7.7% 18.4% 41.2%
68 50% 0 0.247 0.062 -296.1% 17.9% 38.9%
69 32% 0 0.101 0.062 -62.9% 3.8% 38.0%
70 22% 0 0.049 0.062 21.1% 17.8% 37.7%
71 20% 0 0.040 0.062 35.0% 1.4% 37.4%
'72 n 0.^- A  -7 . - -19.7% 37 .5%

73 14% 0 0.019 0.062 70.1% -5.7% 37.5%
74 12% 0 0.013 0.062 78.4% -10.9% 37.5%
75 20% 1 0.634 0.563 -12.5% 7.1% 35.5%
76 8% 0 0.007 0.062 88.99 17.2% 33.6%
77 2% 0 0.000 0.0C2 99.5% 22.4% 36.0%
78 6% 0 0.004 0.062 94.0% 26.3% 37.3%
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79 8% 0 0.006 0.062 90.6% 27.1% 35.0%
80 12% 0 0.013 0.062 78.6% 27.7% 32.3%
81 8% 0 0.006 0.062 90.6% 28.5% 35.5%
82 14% 0 0.018 0.062 70.4% 87.5% 32.8%
83 13% 0 0.016 0.062 74.4% 85.4% 28.9%
84 17% 0 0.029 0.062 53.2% 78.8% 24.7%
85 16% 0 0.025 0.062 59.5% 73.9% 29.4%86 10% 1 0.806 0.563 -43.0% 2.5% 23.1%
87 17% 1 0.685 0.563 -21.5% -10.2% 18.9%
88 9% 0 0.008 0.062 86.8% -10.4% 15.7%
89 27% 0 0.072 0.062 -15.2% -14.1% 11.0%
90 10% 0 0.010 0.062 83.2% -13.7% 11.8%
91 40% 0 0.159 0.062 -155.0% -22.7% 9.2%
92 24% 1 0.581 0.563 -3.1% -19.7% 7.4% July 31
93 24% 0 0.060 0.052 -14.3% -10.3% 10.2% Aug 1
94 27% 1 0.535 0.595 10.1% 2.4% 5.8%
95 34% 1 0.442 0.595 25.7% 6.7% 11.6%
96 28% 1 0.514 0.595 13.6% 8.9% 7.5%
97 37% 0 0.140 0.052 -168.3% 3.4% 2.5%
98 39% 1 0.369 0.595 38.0% 13.4% 7.1%
99 25% 0 0.064 0.052 -23.4% 16.3% 6.8%

100 19% 1 0.649 0.595 -9.0% 11.9% 8.2%
101 24% 0 0.056 0.052 -7.1% 12.0% 8.7%
102 10% 0 0.011 0.052 79.2% 9.6% 9.2%
103 19% 0 0.038 0.052 27.7% 8.6% 9.1%
104 20% 0 0.039 0.052 24.9% 15.5% 8.6%
105 15% 0 0.023 0.052 56.4% 3.2% 8.4%
106 11% 0 0.013 0.052 75.7% 8.9% 8.2%
107 24% 0 0.057 0.052 -10.1% 35.2% 10.0%
108 36% 0 0.128 0.052 -146.0% 15.4% 7.8%
109 24% 0 0.059 0.052 -13.5% 2.2% 6.7%
110 27% 0 0.072 0.052 -37.5% -7.2% 5.4%
11 24% 0 0.057 0.052 -9.8% -12.1% 4.4%
112 10% 0 0.010 0.052 80.0% -8.7% 4.3%
113 5% 0 0.002 0.052 95.5% -5.9% 4.2%
114 5% 0 0.003 0.052 95.0% 9.1% 4.3%
115 11% 0 0.012 0.052 77.4% 41.0% 4.2%
116 14% 0 0.021 0.052 59.9% 51.5% 4.2%
117 24% 0 0.060 0.052 -14.8% 54.8% 3.4%
118 16% 0 0.025 0.052 52.7% 63.7% 8.7%
119 20% 0 0.041 0.052 21.4% 55.3% 12.3%120 24% 0 0.059 0.052 -12.3% 39.9% 11.1%
121 41% 0 0.166 0.052 -219.2% -5.0% 9.0%
122 21% 0 0.045 0.052 14.2% -14.0% 8.1%
123 53% 0 0.278 0.052 -432.0% -84.3% 5.5% Aug 31
124 46% 0 0.216 0.053 -304.2% -126.2% 2.8% Sept 1
125 29% 0 0.084 0.053 -57.6% -141.6% 2.3%
1 2 16% 0 0.025 0.053 53.6% -136.5% 1.Q%
127 17% 0 0.030 0.053 43.6% -128.0% -1.9%
128 34% 1 0.434 0.591 26.7% -22.1% 0.5%
129 45% 1 0.301 0.591 49.1% 5.6% 10.2%
130 38% 0 0.143 0.053 -168.7% 15.0% 2.3%
131 13% 0 0.017 0.053 67.5% 28.7% 3.8%
132 24% 0 0.057 0.053 -5.9% 30.6% 6.4%
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i 133 29% 0 0.082 0.053 -53.9% 26.6% 5.5%
134 68% 0 0.464 0.053 -768.8% -3.3% -10.9%
135 61% 0 0.372 0.053 -596.2% -57.5% -23.0%
136 30% 0 0.092 0.053 -71.8% -228.3% -24.8%
137 11% 0 0.012 0.053 77.5% -193.1% -24.4%
138 9% 0 0.008 0.053 84.7% -190.6% -24.1%I 139 38% 0 0.143 0.053 -167.1% -213.7% -27.2%
140 40% 0 0.161 0.053 -201.7% -234.8% -28.3%
141 10% 0 0.011 0.053 79.6% -113.6% -26.5%I 142 62% 1 0.142 0.591 76.0% 37.7% -8.0%
143 22% 0 0.047 0.053 12.7% 42.6% -7.6%
144 6% 0 0.004 0.053 93.0% 43.5% -7.4%
145 18% 0 0.033 0.053 37.2% 40.7% -8.3%
146 11% 0 0.012 0.053 77.8% 55.1% -8.5%
147 7% 0 0.006 0.053 89.6% 72.1% -8.3%
148 2% 0 0.000 0.053 99.3% 73.3% -7.6%I 149 2% 0 0.001 0.053 98.8% 72.6% -5,8%
150 17% 0 0.028 0.053 47.8% 77.6% -5.9%
151 17% 0 0.030 0.053 43.2% 70.5% -5.5%
152 24% 0 0.060 0.053 -11.6% 63.6% -5.5%
153 20% 0 0.039 0.053 26.3% 56.2% -1.6% Sept 30

I
I
I

I
I
I
I
I
I
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BRIER-BASED SKILL SCORES FOR BP-ATLANTA-241
USING NUMBER OF PASSES 20

Optimal Variable
Parameters Changed Architectural Options

2 # Slabs
30 # Hidden Nodes
10 20 # Passes
1 # Iterations

0.01 Learning Rate
0.9 Momentum

Table Sigmoid Source
0.1 Random Seed
241 # Input parameters
no Input slab connected to output

Overall Performance:

June-July-Aug Skill = 19.8%
May-June-July-Aug-Sept Skill = 19.5%

Squared-Errors Skill Scores
Forecast Actual

Day# Output Rain ANS Climatology Daily Weekly Monthly Date

1 0.185356 1 0.664 0.522 -27.1% May 1I2 0.548190 0 0.301 0.077 -290.5%
3 0.299924 0 0.090 0.077 -16.9%
4 0.410637 1 0.347 0.522 33.5%S5 0.020944 0 0.000 0.0'7 99.4%
6 0.125600 0 0.016 0.077 79.5%
7 0.255900 0 0.065 0.077 14.9% -3.8%
8 0.091058 0 0.008 0.077 89.2% 15.9%
9 0.052037 0 0.003 0.077 96.5%s 46.1%I10 0.200088 0 0.040 0.077 48.0% 51.2%

11 0.6379331 1 0.131 0.522 74.9% 73.2%
12 0.426560 0 0.182 0.077 -136.5% 54.7%
13 0.343781 0 0.118 0.077 -53.6% 44.3%I14 0.617397 1 0.146 0.522 72.0% 56.0%
15 0.561455 0 0.315 0.077 -309.7% 34.5%
16 0.487551 0 0.238 0.077 -208.9% 18.1%
17 0.319970 0 0.102 0.077 -33.0% 13.7%
10V659 .3 0.077- 5.2 -5.7%

19 0.683208 1 0.100 0.522 80.8% -1.5%
20 0.056236 0 0.003 0.077 95.9% 6.5%I21 0.471466 1 0.279 0.522 46.5% -2.8%
22 0.027480 0 0.001 0.077 99.0% 19.2%
23 0.020274 0 0.000 0.077 99.5% 35.8%I24 0.497070 0 0.247 0.07*7 -221.1% 25.7%
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25 0.020824 0 0.000 0.077 99.4% 55.8%
26 0.005905 0 0.000 0.077 100.0% 46.0%
27 0.007232 0 0.000 0.077 99.9% 46.3%
28 0.020884 0 0.000 0.077 99.4% 53.7%
29 0.036459 0 0.001 0.077 98.3% 53.6%
30 0.012206 0 0.000 0.077 99.8% 53.7%
31 0.013299 0 0.000 0.077 99.8% 99.5% 24.2% May 31
32 0.050424 0 0.003 0.044 94.2% 99-1% 30.8% June 1
33 0.017934 0 0.000 0.044 99.3% 98.9% 36.9%
34 0.217836 1 0.612 0.626 2.2% 39.6% 33.4%
35 0.058131 0 0.003 0.044 92.3% 37.3% 34.0%
36 0.016308 0 0.000 0.044 99.4% 35.2% 33.5%
37 0.001824 0 0.000 0.044 100.0% 32.8% 33.3%
38 0.012883 0 0.000 0.044 99.6% 30.3% 34.3%
39 0.009312 0 0.000 0.044 99.8% 30.6% 34.0%
40 0.037856 0 0.001 0.044 96.7% 30.5% 33.5%
41 0.011008 0 0.000 0.044 99.7% 98.2% 33.9%
42 0.180106 1 0.672 0.626 -7.4% 24.0% 23.5%
43 0.453019 0 0.205 0.044 -370.3% 0.9% 22.4%
44 0.633183 1 0.135 0.626 78.5% 31.0% 30.5%
45 0.228328 0 0.052 0.044 -19.5% 27.5% 25.3%
46 0.199619 1 0.641 0.626 -2.4% 16.8% 27.0%
47 0.587470 1 0.170 0.626 72.8% 28.8% 35.2%
48 0.736400 1 0.069 0.626 88.9% 39.5% 41.5%
49 0.177668 0 0.032 0.044 27.7% 50.5% 47.6%
50 0.649801 1 0.123 0.626 80.4% 62.0% 48.2%
51 0.594080 1 0.165 0.626 73.7% 61.1% 50.0%
52 0.310903 1 0.475 0.626 24.1% 55.9% 47.9%
53 0.420361 0 0.177 0.044 -304.9% 62.4% 45.1%
54 0.212395 1 0.620 0.626 0.9% 48.4% 40.8%
.. 0.154184 0 0.024 0.044 45.5% 38.7% 43.6%
56 0.588416 1 0.169 0.626 72.9% 45.5% 45.3%
57 0.280813 1 0.517 0.626 17.4% 33.2% 42.8%
18 0.019700 0 0.000 0.044 99.1% 24.7% 42.5%
5. 0.003090 0 0.000 0.044 100.0% 26.5% 42.3%
60 0.007815 0 0.000 0.044 99.9% 35.1% 42.1%
61 0.338076 0 0.114 0.044 -161.9% 43.9% 40.5% June 30
62 0.488527 1 0.262 0.563 53.6% 46.6% 41.3% July 1
53 0.484623 0 0.235 0.062 -277.3% 20.9% 38.6%
64 0.722527 1 0.077 0.563 86.3% 49.5% 41.2%
65 0.437342 1 0.317 0.563 43.8% 46.7% 41.1%
66 0.423457 0 0.179 0.062 -188.1% 37.7% 42.2%
67 0.332201 1 0.446 0.563 20.8% 32.7% 40.7%
68 0.555435 0 0.309 0.062 -395.6% 25.2% 37.7%
69 0.155590 0 0.024 0.062 61.1% 18.2% 37.6%
70 0.074298 0 0.006 0.062 91.1% 30.0% 37.7%
71 0.045777 0 0.002 0.062 96.6% 10.8% 37.8%
72 0.037047 0 0.001 0.062 97.8% -3.2% 37.9%
73 0.181118 0 0.033 0.062 47.3% 12.4% 37.7%
74 0.095181 0 0.009 0.062 85.4% 12.0% 41.0%
75 0.078925 1 0.848 0.563 -50.6% 1.4% 37.6%
76 0.021125 0 0.000 0.062 99.3% 4.0% 35.3%
77 0.005992 0 0.000 0.062 99.9% 4.5% 36.0%
78 0.084795 0 0.007 0.062 88.4% 4.0% 39.0%
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79 0.023757 0 0.001 0.062 99.1% 4.1% 36.9%
80 0.015573 0 0.000 0.062 99.6% 7.6% 33.3%
81 0.007800 0 0.000 0.062 99.9% 8.5% 33.8%
82 0.032191 0 0.001 0.062 98.3% 97.8% 30.3%
83 0.018404 0 0.000 0.062 99.5% 97.8% 26.9%
84 0.045310 0 0.002 0.062 96.7% 97.4% 27.9%
85 0.029367 0 0.001 0.062 98.6% 98.8% 31.0%
86 0.031828 1 0.937 0.563 -66.4% -0.6% 25.0%
87 0.118895 1 0.776 0.563 -37.8% -19.5% 19.5%
88 0.037116 0 0.001 0.062 97.8% -19.6% 14.7%
89 0.138694 0 0.019 0.062 69.1% -20.9% 15.0%
90 0.032405 0 0.001 0.062 98.3% -20.9% 15.3%91 0.581778 0 0.338 0.062 -443.7% -44.3% 9.4%
92 0.280813 1 0.517 0.563 8.2% -33.6% 8.6% July 31
93 0.153549 0 0.024 0.052 54.8% -17.5% 10.3% Aug 1
94 0.130174 1 0.757 0.595 -27.1% -13.5% 2.5%I 95 0.187578 1 0.660 0.595 -10.9% -16.2% 4.0%
96 0.356670 1 0.414 0.595 30.5% -7.3% -0.7%
97 0.464658 0 0.216 0.052 -313.9% -16.3% -7.5%
98 0.311740 1 0.474 0.595 20.4% -0.4% -3.3%
99 0.061480 0 0.004 0.052 92.8% -0.4% -4.7%

100 0.134775 1 0.749 0.595 -25.7% -6.2% -2.9%
101 0.202285 0 0.041 0.052 21.6% -0.7% -3.3%I 102 0:033399 0 0.001 0.052 97.9% 4.9% -3.4%
103 0.075448 0 0.006 0.052 89.1% -2.6% -3.6%
104 0.083890 0 0,007 0.052 86.5% 11.8% -3.9%I 105 0.045310 0 0.002 0.052 96.1% 10.9% -3.5%
106 0.026455 0 0.001 0.052 98.7% 11.3% -3.6%
107 0.226099 0 0.051 0.052 2.0% "70.2% 0.8%
108 0.583678 0 0.341 0.052 -553.1% -11.8% -4.9%
109 0.269517 0 0.073 0.052 -39.2% -31.4% -6.3%
110 0.308815 0 0.095 0.052 -82.8% -56.0% -8.0%
111 0.026205 0 0.001 0.052 98.7% -54.2% -8.1%I 112 0.010997 0 0.000 0.052 99.8% -53.7% -8.3%
113 0.013808 0 0.000 0.052 99.6% -53.6% -8.5%
114 0.009831 0 0.000 0.052 99.8% -39.6% -8.7%i 115 0.114467 0 0.013 0.052 74.9% 50.1% -9.1%
116 0.165727 0 0.027 0.052 47.3% 62.5% -9.7%
117 0.386763 0 0.150 0.052 -186.7% 47.6% -12.4%
118 0.070367 0 0.005 0.052 90.5% 46.5% -5.8%I 119 0.069163 0 0.005 0.052 90.8% 45.2% -1.1%
120 0.143067 0 0.020 0.052 60.8% 39.6% -1.7%
121 0.404036 0 0.163 0.052 -212.9% -5.0% -4.8%I 122 0.092114 0 0.008 0.052 83.7% -3.8% -5.2%
123 0.493164 0 0.243 0.052 -366.2% -62.9% -3.5% Aug 31
124 0.418696 0 0.175 0.0'- -228.5% -69.4% -7.7% Sept 1
125 0.177810 0 0.032 0.05 40.7% -76.1% -7.9%
I A AC C c f lA A C ^I no. _7C AO _ o
.L•d-VJ . V .J.J v v v v . v 1.L O - .. )

127 0.056340 0 0.003 0.053 94.1% -70.1% -0.6%
128 0.282591 1 0.515 0.591 13.0% -7.9% -3.8%I 129 0.518546 1 0.232 0.591 60.8% 16.9% 10.4%
130 0.328960 0 0.108 0.053 -102.8% 26.2% 6.7%
131 0.112697 0 0.013 0.053 76.2% 37.5% 6.5%I 132 0.371820 0 0.138 0.053 -159.1% 30.1% 10.2%
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133 0.314050 0 0.099 0.053 -84.8% 23.6% 8.2%
134 0.791821 0 0.627 0.053 -1075.0% -19.4% -14.5%
135 0.688259 0 0.474 0.053 -787.7% -85.4% -31.4%
136 0.221350 0 0.049 0.053 8.2% -303.6% -32.8%
137 0.110183 0 0.012 0.053 77.2% -277.9% -33.1%
138 0.035310 0 0.001 0.053 97.7% -274.8% -33.1%
139 0.353762 0 0.125 0.053 -134.5% -271.3% -35.7%
140 0.335677 0 0.113 0 n53 -111.2% -275.0% -27.4%
141 0.039158 0 0.002 0.j53 97.1% -107.6% -24.8%
142 0.769080 1 0.053 0.591 91.0% 61.0% -3.2%
143 0.090654 0 0.008 0.053 84.6% 65.5% -3.4%
144 0.040313 0 0.002 0.053 97.0% 66.7% -3.4%
145 0.176387 0 0.031 0.053 41.7% 63.4% -4.3%
146 0.032805 0 0.001 0.053 98.0% 77.0% -4.3%
147 0.035577 0 0.001 0.053 97.6% 89.2% -3.9%
148 0.001396 0 0.000 0.053 100.0% 89.4% -3.0%I 149 0.000851 0 0.000 0.053 100.0% 88.4% 1.6%
150 0.049634 0 0.002 0.053 95.4% 89.9% 1.7%
151 0.184179 0 0.034 0.053 36.4% 81.3% 0.8%i 152 0.210766 0 0.044 0.053 16.8% 77.7% 0.1%
153 0.027350 0 0.001 0.053 98.6% 77.8% 5.1% Sept 30

A
I
I
I
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NWSFO POP FORECAST SKILL SCORE
0-12 HRS POP FORECASTER FOR HARTSFIELD INTERNATIONAL AIRPORTI

June-July-August Skill Score = 22.2%I
Squared-Errors Skill Scores

Forecast Actual
Day# Output Rain ANS Climatology Daily Weekly Monthly Date

32 30% 0 0.090 0.044 -106.2% June 1
33 30% 0 0.090 0.044 -106.2%
34 20% 1 0.640 0.626 -2.3%
35 50% 0 0.250 0.044 -472.9%
36 0% 0 0.000 0.044 100.0%
37 0% 0 0.000 0.044 100.0%
38 0% 0 0.000 0.044 100.0% -20.5%
39 0% 0 0.000 0.044 100.0% -10.4%
40 0% 0 0.000 0.044 100.0% -0.3%

41 20% 0 0.040 0.044 8.3% 5.1%
42 10% 1 0.810 0.626 -29.4% 4.2%S43 40% 0 0.160 0.044 -266.6% -13.8%

44 60% 1 0.160 0.626 74.4% 20.4%
45 50% 0 0.250 0.044 -472.9% 3.4%S46 50% 1 0.250 0.626 60.1% 18.6%

47 70% 1 0.090 0.626 85.6% 33.2%
48 60% 1 0.160 0.626 74.4% 41.6%
49 60% 0 0.360 0.044 -724.9% 45.7%

S50 50% 1 0.250 0.626 60.1% 52.7%
51 60% 1 0.160 0.626 74.4% 52.7%
52 60% 1 0.160 0.626 74.4% 62.4%

S53 50% 0 0.250 0.044 -472.9% 55.5%
54 30% 1 0.490 0.626 21.7% 43.1%
55 30% 0 0.090 0.044 -106.2% 33.2%56 50% 1 0.250 0.626 60.1% 48.7%
57 50% 1 0.250 0.626 60.1% 48.7%

58 0% 0 0.000 0.044 100.0% 43.4%
59 0% 0 0.000 0.044 100.0% 35.2%
60 0% 0 0.000 0.044 100.0% 47.4%

61 10% 0 0.010 0.044 77.1% 59.2% 36.6% June 30
62 50% 1 0.250 0.563 55.6% 61.8% 37.8% July 1
63 70% 0 0.490 0.062 -687.1% 29.9% 32.7%
64 60% 1 0.160 0.563 71.6% 33.3% 35.7%
65 40% 1 0.360 0.563 36.1% 32.6% 36.3%
66 50% 0 0.250 0.062 -301.6% 20.1% 36.7%
67 20% 1 0.640 0.563 -13.6% 10.8% 36.1%
68 40% 0 0.160 0.062 -157.0% 5.3% 34.6%
69 20% 0 0.040 0.062 35.7% -8.3% 34.3%
70 20% 0 0.040 0.062 35.7% 14.9% 34.0%
71 20t 0 0.040 0.062 35.7% -6.4% 33.7%
72 20% 0 0.040 0.062 35.7% -29.2% 33.5%
73 20% 0 0.040 0.062 35.7% -6.8% 33.6%
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74 30% 0 0.090 0.062 -44.6% -3.3% 37.2%
75 20% 1 0.640 0.563 -13.6% 0.7% 35.7%
76 5% 0 0.003 0.062 96.0% 4.7% 33.5%
77 0% 0 0.000 0.062 100.0% 9.0% 36.3%
78 0% 0 0.000 0.062 100.0% 13.3% 35.1%
79 0% 0 0.000 0.062 100.0% 17.5% 31.8%
80 0% 0 0.000 0.062 100.0% 21.8% 28.9%
81 0% 0 0.000 0.062 100.0% 31.4% 33.7%
82 0% 0 0.000 0.062 100.0% 99.4% 31.9%
83 0% 0 0.000 0.062 100.0% 100.0% 28.6%
84 5% 0 0.003 0.062 96.0% 99.4% 24.5%
85 20% 0 0.040 0.062 35.7% 90.2% 28.2%86 20% 1 0.640 0.563 -13.6% 27.1% 25.0%

87 40% 1 0.360 0.563 36.1% 27.5% 26.8%
88 30% 0 0.090 0.062 -44.6% 21.2% 22.6%
89 40% 0 0.160 0.062 -157.0% 10.1% 16.2%
90 30% 0 0.090 0.062 -44.6% 3.8% 14.8%
91 20% 0 0.040 0.062 35.7% 1.2% 14.4%
92 20% 1 0.640 0.563 -13.6% -4.2% 11.1% July 31
93 30% 0 0.090 0.052 -72.5% -3.0% 9.9% Aug 1
94 50% 1 0.250 0.595 58.0% 6.8% 10.4%
95 40% 1 0.360 0.595 39.5% 18.2% 19.7%
96 40% 1 0.360 0.595 39.5% 27.6% 17.0%
97 50% 0 0.250 0.052 -379.2% 20.9% 11.9%
98 40% 1 0.360 0.595 39.5% 24.2% 17.3%
99 40% 0 0.160 0.052 -206.7% 27.9% 18.3%

100 20% 1 0.640 0.595 -7.5% 22.8% 17.6%
101 30% 0 0.090 0.052 -72.5% 12.5% 16.7%
102 30% 0 0.090 0.052 -72.5% 2.2% 15.8%
103 30% 0 0.090 0.052 -72.5% -15.7% 14.9%
104 40% 0 0.160 0.052 -206.7% -9.5% 13.0%
105 20% 0 0.040 0.052 23.3% -39.8% 12.9%106 20% 0 0.040 0.052 23.3% -26.6% 13.5%

107 5% 0 0.003 0.052 95.2% -40.3% 16.7%
108 20% 0 0.040 0.052 23.3% -26.7% 15.9%
109 20% 0 0.040 0.052 23.3% -13.0% 15.1%
110 40% 0 0.160 0.052 -206.7% -32.1% 12.3%
ill 20% 0 0.040 0.052 23.3% 0.7% 11.5%
112 2% 0 0.000 0.052 99.2% 11.6% 11.4%
113 2% 0 0.000 0.052 99.2% 22.4% 11.2%
114 2% 0 0.000 0.052 99.2% 23.0% 11.1%
115 20% 0 0.040 0.052 23.3% 23.0% 10.3%
116 5% 0 0.003 0.052 95.2% 33.3% 10.1%
117 20% 0 0.040 0.052 23.3% 66.1% 9.9%
118 20% 0 0.040 0.052 23.3% 66.1% 12.5%
119 20% 0 0.040 0.052 23.3% 55.3% 9.9%120 40% 0 0.160 0.052 -206.7% 11.6% 8.3%

0.040 0.052 23.3% 0.7% 10.6%122 10% 0 0.010 0.052 80.8% 8.9% 12.0%
123 50% 0 0.250 0.052 -379.2% -58.8% 7.6% Aug 31

I
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LFM/MOS POP FORECAST SKILL SCORE
0-12 HRS POP FORECASTER FOR HARTSFIELD INTERNATIONAL AIRPORT

June-July-August Skill Score = 16.6%

Squared-Errors Skill Scores
Forecast Actual

Day# Output F ain ANS Climatology Daily Weekly Monthly Date

32 20% 0 0.040 0.044 8.3% June 1
33 30% 0 0.090 0.044 -106.2%
34 20% 1 0.640 0.626 -2.3%
35 30% 0 0.090 0.044 -106.2%
36 0% 0 0.000 0.044 100.0%
37 0% 0 0.000 0.044 100.0%
38 0% 0 0.000 0.044 100.0% 3.1%
39 0% 0 0.000 0.044 100.0% 7.6%
40 0% 0 0.000 0.044 100.0% 17.8%
41 2% 0 0.000 0.044 99.1% 70.4%
42 20% 1 0.640 0.626 -2.3% 27.9%
43 30% 0 0.090 0.044 -106.2% 17.7%
44 60% 1 0.160 0.626 74.4% 39.4%
45 60% 0 0.360 0.044 -724.9% 14.9%
46 30% 1 0.490 0.626 21.7% 15.2%
47 60% 1 0.160 0.626 74.4% 27.9%
48 40% 1 0.360 0.626 42.5% 29.7%
49 50% 0 0.250 0.044 -472.9% 29.0%
50 50% 1 0.250 0.626 60.1% 36.9%
51 50% 1 0.250 0.626 60.1% 34.1%
52 30% 1 0.490 0.626 21.7% 40.8%
53 50% 0 0.250 0.044 -472.9% 37.5%
54 20% 1 0.640 0.626 -2.3% 22.6%
55 20% 0 0.040 0.044 8.3% 17.6%
56 40% 1 0.360 0.626 42.5% 29.1%
57 40% 1 0.360 0.626 42.5% 25.7%
58 0% 0 0.000 0.044 100.0% 18.8%
59 0% 0 0.000 0.044 100.0% 19.6%
60 0% 0 0.000 0.044 100.0% 31.8%
61 20% 0 0.040 0.044 8.3% 45.6% 27.1% June 30
62 40% 1 0.360 0.563 36.1% 43.7% 27.6% July 1
63 60% 0 0.360 0.062 -478.3% 21.5% 24.1%
64 50% 1 0.250 0.563 55.6% 25.9% 26.1%
65 40% 1 0.360 0.563 36.1% 27.2% 27.2%
66 40% 0 0.160 0.062 -157.0% 19.5% 27.9%
67 20% 1 0.640 0.563 -13.6% 10.4% 26.2%
68 20% 0 0.040 0.062 35.7% 11.1% 25.9%
69 20% 0 0.040 0.062 35.7% 4.6% 25.7%
70 20% 0 0.040 0.062 35.7% 21.1% 25.4%
71 20% 0 0.040 0.062 35.7% 8.2% 25.1%
72 20% 0 0.040 0.062 35.7% -6.8% 24.9%1 73 20% 0 0.040 0.062 35.7% 6.1% 24.6%
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74 20% 0 0.040 0.062 35.7% 35.7% 26.5%
75 10% 1 0.810 0.563 -43.8% -12.1% 23.1%
76 10% 0 0.010 0.062 83.9% -8.9% 20.1%
77 10% 0 0.010 0.062 83.9% -5.7% 23.9%
78 10% 0 0.010 0.062 83.9% -2.5% 24.5%
79 5% 0 0.003 0.062 96.0% 1.5% 21.3%
80 0% 0 0.000 0.062 100.0% 5.8% 20.2%
81 0% 0 0.000 0.062 100.0% 10.1% 23.6%
82 2% 0 0.000 0.062 99.4% 92.4% 21.1%
83 0% 0 0.000 0.062 100.0% 94.7% 18.2%
84 20% 0 0.040 0.062 35.7% 87.9% 18.0%
85 20% 0 0.040 0.062 35.7% 81.0% 21.7%
86 20% 1 0.640 0.563 -13.6% 23.1% 20.9%
87 30% 1 0.490 0.563 13.0% 15.8% 20.3%
887 2% 0 0.490
88 20% 0 0.040 0.062 35.7% 13.0% 18.1%89 20% 0 0.040 0.062 35.7% 10.3% 15.5%
90 20% 0 0.040 0.062 35.7% 7.5% 15.1%I91 20% 0 0.040 0.062 35.7% 7.5% 14.6%
92 20% 1 0.640 0.563 -13.6% 0.5% 11.3% July 31
93 30% 0 0.090 0.052 -72.5% 3.3% 10.6% Aug 1
94 30% 1 0.490 0.595 17.7% 5.5% 9.0%
95 40% 1 0.360 0.595 39.5% 14.7% 16.4%
96 30% 1 0.490 0.595 17.7% 14.9% 13.1%
97 50% 0 0.250 0.052 -379.2% 6.2% 7.6%
98 40% 1 0.360 0.595 39.5% 12.1% 12.0%
99 30% 0 0.090 0.052 -72.5% 16.1% 13.7%

100 20% 1 0.640 0.595 -7.5% 13.0% 11.6%
101 30% 0 0.090 0.052 -72.5% 10.2% 10.7%
102 20% 0 0.040 0.052 23.3% 1.7% 10.6%
103 30% 0 0.090 0.052 -72.5% -7.5% 9.7%
104 40% 0 0.160 0.052 -206.7% -1.3% 7.7%
105 20% 0 0.040 0.052 23.3% -26.6% 7.6%
106 10% 0 0.010 0.052 80.8% -17.8% 7.9%
107 20% 0 0.040 0.052 23.3% -28.7% 12.8%
108 20% 0 0.040 0.052 23.3% -15.0% 12.2%
109 20% 0 0.040 0.052 23.3% -15.0% 11.5%
110 20% 0 0.040 0.052 23.3% -1.3% 10.9%
i1 20% 0 0.040 0.052 23.3% 31.5% 10.1%
112 2% 0 0.000 0.052 99.2% 42.4% 10.0%
113 2% 0 0.000 j.052 99.2% 45.0% 9.8%
114 2% 0 0.000 0.052 99.2% 55.9% 9.7%
115 20% 0 0.040 0.052 23.3% 55.9% 8.8%116 20% 0 0.040 0.052 23.3% 55.9% 8.7%
117 30% 0 0.090 0.052 -72.5% 42.2% 7.7%
118 20% 0 0.040 0.052 23.3% 42.2% 10.0%
119 20% 0 0.040 0.052 23.3% 31.3% 9.8%m 120 30% 0 0.090 0.052 -72.5% 6.8% 8.6%

121 30% 0 Q.090 0.052 -72.5% -17.8% 7.4%
122 30% 0 0.090 0.052 -72.5% -31.4% 6.2%
123 50% 0 0.250 0.052 -379.2% -89.0% 1.7% Aug 31I
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SUM OF WEIGHTS ALONG THE INTERCONNECTIONS
FROM EACH INPUT NODE TO THE OUTPUT NODE

Ranking weighting Input Variable

1 2.911733 CP500V
2 2.711369 AP700U
3 2.668178 CA150V
4 2.602760 CA800T
5 2.555386 P800U
6 2.543929 WP400V

GOPAD 7 2.541121 CA600U
8 2.530459 AA300V
9 2.525478 AP700V

10 2.504251 CP150V
11 2.498630 CP700D
12 2.441557 CA200D
13 2.406791 AA600D
14 2.405581 AP500T
15 2.391812 CA100D
16 2.378694 CA800D
17 2.374402 AP300D
18 2.366579 CA700T
19 2.364362 AP300U
20 2.364124 WPI00V
21 2.359408 CA150T

GOPAD 22 2.350847 AA900D23 2.344415 CP200U

24 2.343939 AP200D
GOPAD 25 2.340340 WA400U

26 2.328331 WA600V
27 2.326402 WP200U
28 2.316905 AA200T
29 2.312125 WP900U
30 2.310261 WA900T
31 2.306701 WP300D
32 2.297834 WA600T

GOPAD 33 2.296635 AA800U
34 2.296424 CP200D
35 2.295634 CP200T
36 2.278786 WP800U
37 2.268543 API50D
38 2.264325 CP700U
39 2.255943 WP500V
40 2.254840 CA500U
41 2.254013 wP600u

GOPAD 42 2.250115 AA900I
43 2.246739 WA600U
44 2.245973 AP800U
45 2.242491 AP600D
46 2.239413 WA200V
47 2.235012 WP700V
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48 2.226358 CP700T
49 2.213338 CP600D

GOPAD 50 2.207791 CA800V
51 2.207051 CP600T
52 2.204367 AP150V
53 2.197721 WA500V
54 2.193971 WA600D
55 2.192145 WP300T56 2.186021 CP600V
57 2.184488 WA900D
58 2.181702 AP400V59 2.178080 AA400D

60 2.175112 WA800D
61 2.173228 CP700V62 2.169908 CP900D
63 2.163131 WP800D
64 2.162275 WA400VGOPAD 65 2.160017 AA300D
66 2.159704 AA500D
67 2.145610 AP900V68 2.142212 WPS00V

GOPAD 69 2.137422 AA600U
70 2.124437 AP800V71 2.122836 CP150D

72 2.107995 AP300T73 2.107691 CP150U
74 2.104243 AP600V
75 2.099675 AA400V
76 2.089873 WA500U

GOPAD 77 2.088976 AA600T78 2.086111 WP700U

79 2.081774 CP100V
80 2.081373 CA100U
81 2.078511 CA400D
82 2.07268 CA150D
83 2.070478 AA300U
84 2.070300 WA300U
85 2.069681 AP300V
86 2.069205 CP900T
87 2.066138 AA200U
88 2.066046 AA600V
89 2.065295 WP150V

GOPAD 90 2.061990 WA700T
91 2.061002 CP900U
92 2.060100 AP600T
93 2.060040 WA700UGOPAD 94 2.058352 AA800V
95 2.049728 WP400D
96 2.048078 CP800D
97 2.042189 WP300V

GOPAD 98 2.039243 DAYCNT
99 2.039145 WP900T

100 2.039141 WA100U
101 2.034025 WP800T
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102 2.032360 AA100V
GOPAD 103 2.031388 CA900V
GOPAD 104 2.030351 AA100U

105 2.029932 WP400T
106 2.026695 WA400D

GOPAD 107 2.024281 CA400U
108 2.023258 AP400D
109 2.021585 AP600U
110 2.019581 CP400D
i11 2.014587 WA400T
112 2.013900 TP700T
113 2.012967 APS00V
114 2.008278 AA500T
115 2.007701 AP100U
116 2.006664 AA400T
117 2.005505 CP800T
118 2.002861 CA300T
119 2.002381 WA800U
120 2.000854 WA200T
121 1.999283 WP300U

GOPAD 122 1.982341 AA700D
123 1.982100 AP900U
124 1.981929 AA800T
125 1.979996 CP300T
126 1.974905 WA150V

GOPAD 127 1.974752 CA800U
128 1.966168 CA200U

GOPAD 129 1.961482 WA800V
130 1.959604 AP200U
131 1.959304 AP500U
132 1.956458 WP100T133 1.955483 AA150D
134 1.948286 CP200V

135 1,941446 AA900U
136 1.541157 WP900V
137 1.940861 WA500T
138 1.940551 WP150U

GOPAD 139 1.938703 AA700U
140 1.938693 WA150U
141 1.934963 CA100V
142 1.934620 CA500T
143 1.931488 AP800T
144 1.931081 WA100D

GOPAD 145 1.930760 AA400U
146 1.929377 CA200V
147 1.916327 API50T

* 148 1.912604 CP100U
149 1.911037 CP150T
150 1.910569 CA100T
151 1.910101 CP500T
152 1.909751 AP100DAI00
153 1.903888 AP700D
154 1.887930 AP500DGOPAD 155 1.887024 AA100T
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156 1.87P347 CP600U
157 1.875954 CP500U

GOPAD 158 1.875487 CA200T
159 1.874961 AP100V
160 1.869607 AP200V
161 1.860836 WA100T

163 1.857536 AP800D
164 1.853144 WA200U

GOPAD 165 1.853136 AA300T
166 1.851860 CA150U
167 1.848877 WA150D
168 1.846307 CA300D
169 1.844337 WP200D170 1.840719 AP100T
171 1.839105 WA800T
172 1.836656 CP800V
173 1.834760 CP400T
174 1.833024 WP150D
175 1.832038 WP500T
176 1.824288 WP600D
177 1.823195 AA500V
178 1.823091 AA150T
179 1.821531 CA700D
180 1.820413 WA300D
181 1.807886 CP500D
182 1.803082 CA400T
183 1.785021 AP700T
184 1.783709 WP500Ui185 1.783413 AA150V

GOPAD 186 1.769200 WA700V
187 1.761752 WP600V

GOPAD 188 1.760480 WA900V
189 1.755016 WP200T

GOPAD 190 1.748589 CA700V
GOPAD 191 1.745677 CA300U

192 1.741396 CP400U
193 1.736056 WP100D
194 1.729476 AA800D
195 1.723241 CP400V
196 1.722183 AA200D
197 1.720485 AA15OU
198 1.714073 WA200D
199 1.711.676 WP200V
200 1.708119 CA900D
201 1.704934 WA300V

i 202 1.692764 CA900T
203 1.692764 WA100V

GOPAD 204 1.692686 WA300T
205 1.691195 WP150T
206 1.689967 AA200V
207 1.683903 WA700D
208 1.674008 CP300V
209 1.673079 AP900D
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I 210 1.665392 CP300D
GOPAD 211 1658782 CA600D

212 1.-543406 AA500U
213 1.637009 WP400U
214 1.636141 AA700T
215 1.629690 WA150T
216 1.627893 AP15OU
217 1.627503 CA500D
218 1.615998 WA500D
219 1.614467 CA900U
220 1.611914 AP200T

GOPAD 221 1.59603 CA600TI222 1.573736 AP400U
223 1.571156 CP100T
224 1.569651 AA900T
225 1.568914 WP900D
226 1.541798 WP700D
227 1.534481 CA700U
228 1.499521 WP500D
229 1.498209 CA400V
230 1.479125 CA500V
231 1.459406 CP900V

GOPAD 232 1.440968 WA900U
GOPAD 233 1.435088 AA700V

234 1.434691 CP100D
235 1.393521 CA600V
236 1.368853 AP900T
237 1.329901 AA100D
238 1.281635 WP600T
239 1.236936 WP100U
240 1.174124 CA300V
241 1.129619 AP400T

II
I
I
I
I
I
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U ABSTRACT

The widc dispersion of Army forces on the modern battlefield and the
complexity of current weapons systems have increased the need for forecasted
weather data that could be used as input to Tactical Decision Aids. The
Integrated Meteorological System (IMETS) will enable the Staff Weather
Officer (SWO) to support Division and Corp staffs who are primarily engaged
in planning. These staffs and other operational units need a diverse set of
weather parameters on-demand for specific locations and specific time
frames. Research and development work investigated the potential of a
software program called Goal Oriented Pattern Detection (GOPAD) to
produce tactical weather forecasting models. This paper describes: (1) how
GOPAD operates, (2) the types of tactical mesoscale forecast models thatcould be developed, (3) a method for defining forecast models, and (4) the
GOPAD development process used to create new forecast models.

1. THE ROLE OF AUTOMATED WEATHER
FORECASTING ON THE BATTLEFIELD

The wide dispersion of Army forces on the modern battlefield and the complexity of
current weapons systems have increased the need for forecasted weather data that could be
used as input to Tactical Decision Aids (TDA) that perform weather effects analysis.
Weather conditions affect various types of military units in different ways, depending upon
the type of unit, the mission, the enemy situation, and the terrain. Since weather varies with
time and locality, weather forecasting and effects analysis must be constantly reappraised to
retain its usefulness as combat intelligence. The complexity of this analysis process, the
premium placed on timeliness, and the availability of tactical computers requires that the
forecasting, analysis, and display techniques be automated. Consequently, research and
development is ongoing to devise new ways of automating mesoscale weather parameter
forecasting in the battlefield environment.

We believe that weather parameter forecasting is one of the fundamental functional
requirements for the Integrated Meteorological System (IMETS) because IMETS will supportI Division and Corps staffs who are primarily engaged in planning. These staffs need a diverse
set of forecasted weather parameters on-demand for specific locations and times frames. The

H Copyright 0 1989 by Consultant's Choice, Inc.
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i
incorporation of automated weather forecasting models in IMETS is therefore crucial to the
Staff Weather Officer's (SWO) ability to provide forecasted weather parameters for input to a
myriad of Tactical Decision Aids (TDA).

The Required Operational Capability1 (ROC) states that IMETS will provide the
commander with weather forecasts in the operational area. These documents reflect the
critical importance of automated weather parameter forecasting to IMETS. Clearly, IMETS
must enable the SWO to supervise, control, understand, and subsequently brief the current
and projected weather to the commander. But IMETS must also enable the SWO to provide
forecasts for a diverse set of weather parameters that will be used as input to many TDAs.
The SWO cannot be expected to manually produce individual forecasts for all the weather
parameters required by all Corps/division/Brigade staffs and operational units, as needed, for
specific locations and time frames.

In addition, the SWO and his staff may not be very familiar with local conditions for
the area of interest. Consequently, the forecasting performance of humans in a tacticalIa
situation might be highly variable when positive skill and consistent performance are crucial.
Thus, automated weather forecast models are essential to a SWO-based forecasting process
and should be considered as yet another type of decision aid. For example, the SWO woulduse automated forecast models just as the National Weather Service forecasters use the
Limited Fine Mesh/Model Output Statistics (LFM/MOS) models.

i t Assuming that there is a critical need for a highly automated process which is under
the control of the SWO, then the next question is how do we produce these weather forecast
models? Should these models be based upon statistical modeling techniques, expert system,
neural nets, chaos theory, satellite-based image understanding, cr some appropriate
combination? What are the expected time and resource costs to produce these weather
forecast models using any approach verses the pocential performance of each approach? The
answers to these types of questions is one of the goals of our research.

2. OVERVIEW OF GOPAD

CCI is investigating the potential of a neural net approach to produce tactical
weather forecast models. This neural net research is based upon a proprietary algorithm,
called Goal Oriented Pattern Detection (GOPAD), developed by Dr. Kenneth Young at
the Institute of Atmospheric Physics, University of Arizona. GOPAD has been used to
produce two research models-GOPAD-Atlanta-RIR and GOPAD RT-89. The GOPAD-
Atlanta-RIR was P Probability of Precipitation (PoP) model developed for Hartsfield
International Airport in Atlanta, Georgia. The GOPAD RT-89 was a severe and significant
weather forecast model develop for the SHOOTOUT-89 exercise sponsored by NOAA/FSL inBoulder, Colorado.

In general, GOPAD first identifies the optim ' statistical relationships between the
variables and indices from an arbitrarily large, correlated weather data set, and then
develops a non-linear forecast model. This model development process is also able to reveal

exemplars. GOPAD extends the multi-discriminant analysis (MDA) methods developed by
Miller (1962) and the analogue forecasting method of Kruizinga and Murphy (1983). The

I iLetter, Department of the Army, ATSI-CD-AS, Subject: Revised Integrated
Meteorological System (IMETS) Required Operational Capability (ROC), dated July 31, 1989.

I Copyright Q 1989 by Consultant's Choice, Inc.
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GOPAD approach is a k-nearest neighbor search which is similar to Leon Cooper's Reduced
Coulomb Energy (RCE) algorithm.

The GOPAD model development software is actually a set of three separate programs
called FUZAN, FUZPICK, and FUZUP. The first two programs are the statistical front-end
to the third, which is a neural net type of program.

The first program (FUZAN) analyzes all the candidate predictor variables one at a
time to determine their individual potential contribution of information to the forecast model
to be developed. Once this is completed, it creates linear combinations of the variables that
are considered by the developer to be highly correlated (e.g., all temperature variables, etc.).
FUZAN systematically creates increasingly complex indices from all the specified variables
until the Chi-square value cannot be increased by a more complex index. The creation of
indices from highly correlated variables serves to improve the signal-to-noise ratio and
sharpen the overall forecast ability of the model.

In the GOPAD RT-89 model there were approximately 1400 candidate rawinsonde
and mesonet predictor variables for three years-1983, 1985, and 1987. FUZAN used these
variables to automatically create about 120 candidate predictor indices. FUZAN then
analyzed all 1520 candidate variables and indices to choose a subset of 400-500 variables and
indices for further processing by the second program.

T he second program called FUZPICK selects the optimal combination of variables
and indices that contain virtually all the predictive information in the original data set. In
the GOPAD RT-89 six sub-models, there were 3 to 6 variables/indices that were ultimately
selected. All together there are about 40 individual predictor variables that are required to
run the GOPAD RT-89 model (indices may combine up to 10 individual predictor variables).

The third program called FUZUP optimizes the n-space scaling and the neighborhood
size to maximize a measure of forecast performance (e.g., Brier-based skill score). One major
advantage of this process is that it allows direct access to all the other forecast parameters
that were not used in training the model. This enables a GOPAD forecast model to display a
wide variety of forecast parameters derived from the data variables.

The forecast model is based on the output of FUZUP which includes the historical
data base of the predictor variables chosen by FUZPICK. Forecasts are made using analogs
selected from the historical data set. The number of analogs is the neighbor size as optimized
by FUZUP. The forecast model can also be used to generate exemplars to illustrate the
patterns leading to a particular forecast.

There are three versions of the GOPAD software-GOPAD I, GOPAD II, and GOPAD
III. GOPAD I operates on an IBM-compatible 8386 type computer. GOPAD I was used to
produce the GOPAD-Atlanta Probability of Precipitation model. GOPAD II operates on a
VAX 3200. GOPAD II was used to produce the GOPAD RT-89 severe/significant weather
forecasting model. GOPAD III (presently in development) operates on a VAX 3200 which is a
host for Interstate Electronics' Quen supermini-computer rated at 150 Megaflops. GOPAD
I lis the latest version. Each subsequent v1011io L -f -OA is -bl to rocs - or- sre
of raw weather parameters and larger data bases.

Copyright @ 1989 by Consultant's Choice, Inc.
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3. TACTICAL MESOSCALE FORECAST MODELS

The GOPAD development software can be used to automate the creation of a wide
variety of tactical forecast models. Four of the most difficult tactical mesoscale forecasting
problems are (1) fog as it is related to visibility and ceiling;, (2) precipitation amounts and
type; (3) severe weather such as tornadoes, hail, lightning, and wind gusts; and (4) cloud
distributions, types, and coverage. The following paragraphs describe the type of information
that a GOPAD model for each of these forecasting problems could provide.

A GOPAD based fog model would forecast formation and dissipation times, and
graphically display visibility and ceiling. The operator would be able to specify the
probability that visibility or ceilings would be below a specified value on a time axis. The
operator would be able to produce maps showing regions of visibility or ceiling using a zoom
capability. The user would be able to display a wide variety of exemplar conditions to help
explain, confirm, modify, or reject a computer-generated forecast. Fog models might use
terrain information, the output from a model of wind flow over complex terrain, local
rawinsonde data, low-level cloud information from a satellite, and output from a synoptic
scale forecast model. Ground truth would be derived from hourly surface observations from a
variety of locations.

A GOPAD based precipitation model would display isopleths of expected amounts
and types (e.g., rain, snow, freezing rain, etc.). The user would be able to selectively display
the probability of precipitation greater than a specified amount in a specified period. A user
would be able to display the expected total cumulative amount of precipitation expected
within a specified period. The user would be able to predict rain intensities as a function of
time and within a specified confidence interval. The user would be able to display a wide
variety of exemplar conditions to help explain, confirm, modify, or reject a computer-
generated forecast. These models might use the output from a synoptic scale numerical
model, local rawinsonde data, and satellite-derived cloud track winds, total ozone
measurements, precipitable water, etc. Ground truth would be obtained from archived
records.

A GOPAD based severe/significant weather model would forecast the
probabilities of occurrence of severe weather events such as tornadoes, hail, lightning, and
high winds as a function of time. However, spatial resolution of severe weather phenomena
greater than one hour in advance on a scale of ten kilometers or less is unlikely. The user
would be able to display a wide variety of exemplar conditions to help explain, confirm,
modify, or reject a computer-generated forecast. These models might use the output from a
synoptic scale numerical model, local rawinsonde data, conventional and Doppler radar data,
wind profiler data, surface meso-net data, mesoscale models, and satellite-derived cloud track
winds, total ozone measurements, precipitable water, etc. Ground truth data would be
obtained from conventional surface observations, meso-net data, and severe weather studies
like the real-time exercises conducted every two years by NOAA/ERL in northeast Colorado.

A GOPAD based cloud model would forecast a three-dimensional distribution of
ouus over time. Volumcs ,;ill have an ,, ...... t f raction..f.cLu and an

indication of basic cloud type (e.g., cumuloform or stratiferm). The display would use this
fraction to randomly distribute clouds within each vulume. Typical cloud sizes would be
estimated from the forecasted cloud type and climatoogy. ',)phisticated display techniques
would enable the user to specify an arbitrary point and direction of sigh", and display a cloud-
free line-of-sight view. The capability would also be applied to non-visible wavelengths such

Copyright 0 1989 by Consultant's Choice, Inc.
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as infrared. Consequently, forecast models would also be developed to predict parameters
like temperature and water vapor profiles that affect non-visual wavelength visibilities. The

user would be able to display a wide variety of exemplar conditions to help explain, confirm,
modify, or reject a computer-generated forecast These models might use the output from a
synoptic scale numerical model, satellite-derived cloud track winds, cloud types, heights, and
amounts derived from satellites, and local rawinsonde data. Ground truth would be obtained
from surface observations and satellites.

4. WEATHER FORECAST MODEL DEFINITION

In order to completely describe a forecast model at least four components should
be specified: (1) the meteorological event to be forecasted; (2) the sources of historical input
variables and ground truth; (3) the lead time and forecast period; (4) the size of the forecast
region. Each of these four components are described in the following paragraphs.

4.1 THE EVENT TO BE FORECASTED

PRECIPITATION
(a) PoP by type (rain, snow, freezing rain)
(b) estimate of precipitation amount with confidence limits
(c) probability of precipitation (PoP) greater than specified amount

I TEMPERATURE
(a) expected temperature with confidence limits
(b) probability of temperature above or below specified value

WNDS
(a) expected wind direction, speed, and gusts with confidence limits
(b) probability of winds above or below specified speed

CLOUD COVER, CEILnG, AND VISM TY
(a) expected cloud cover, ceiling, and visibility with confidence limits
(b) probability of an event above or below specified values
(c) expected cloud types and coverage with confidence limits

SEVERE WEATHER
(a) probabilities of funnel cloud or tornado
(b) probabilities of hail larger than specified sizes
(c) probability of wind gusts greater than specified speed
(d) probability of cloud-to-ground lightning within specified grids

Although there are many environmental events that can be predicted, the GOPAD
model development process requires a fairly accurate training set (i.e., a historical data base)
in order to develop a model to forecast the desired event. We have found that as a minimum

these data bases should include about 100 data points for climate forecasters or about 500
data points for snorter term forecasters.

Another important criteria for determiniig how well an event can be forecasted is
that there must be a minimum number of occurretces of that event in the historical data
base. For example, a rare event (e.g., a tornado) m. y occur with a frequency of 0.1%. A data
set containing 500 data points would contain -'y 5 tornado events. We find that at least 10
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or more occurrences are required to accurately forecast a rare event. If the historical data set
does not contain a sufficient number of occurrences of an event, then more data and/or
"multiplexing' may be required.

In order to achieve the optimal level of performance given a limited number of ground
truth events in the training set, we experimented with two techniques to mitigate this
problem which we refer to as the "rare event" problem. First, a new technique, called
multiplexing (plexing), was developed to enable different sets of ground truth events to be
used in the creation of a model thereby increasing the number of occurrences of the event in
the training set. The concept of multiplexing was tested on a very small scale using
geographically similar contiguous regions during SHOOTOUT-89. GOPAD RT-89 used
multiplexing to extend a historical training set that contained only three years of ground
truth data for forecasting severe storm parameters and two years of ground truth data for
forecasting significant storm parameters. GOPAD RT-89 is composed of six submodels. One
submodel is single-plexed, four are two-plexed, and one is three-plexed. By comparison, a
site-specific scenario model might require as many as 20-plexes. Methods for selecting the
optimal number of plexes for a given problem have been addressed only in a preliminary
manner. It is also fair to note that greater plexing will be more computationally expensive.

I Second, a self-adapting forecast model that learns as it is being used was also
developed for SHOOTOUT-89 to evaluate the potential of this technique for mitigating the
lack of ground truth data. We are presently evaluating the skill of our self-adapting model
compared to an identical but static model to estimate the potential learning curve.

4.2. SOURCES OF PREDICTOR VARIABLES

I A. Mesonet or other surface data F. Satellite derived cloud track winds
B. Rawinsonde data G. Other satellite derived variables
C. Barotropic model output H. Topographic or terrain data
D. Nested Grid Model (NGM) output I. Worldwide monthly average
E. Mesoscale primitive equation temperaturesmodel output J. Worldwide monthly average sea

level pressures

This list shows many, but not all, of the possible sources of predictor variables that
could be used to construct a model. The selection of the variables to use depends upon many
factors. One of the major cost factors in developing a model is the number of new historical
data bases that must be developed for a particular site or region. Often these historical data
bases can be formed one time for very large regions (e.g., several states in size) and,
subsequently, be used to produce a variety of models in the same region or in different areas
of the same region. After the data bases are developed and organized for processing, GOPAD
model construction is primarily man-out-of-the-loop.

Generally, the best models will be produced when the widest possible variety of input
variables are used to develop a forecast model. This variety should include variables that
.may nevcr have ben thought to be .portant enough to considerin a mode. The number of
individual candidate variables that can be included in a GOPAD model could number from
100 to 8,000 or more. It also makes no difference whether these variables are highly
correlated or not. The GOPAD model development process creates a near optimal model for a
given data set, no matter how much redundancy is present in the training set. Normally, the
redundant variables are automatically combined by GOPAD to form optimal machine-derived
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indices which usually contain much more predictive information than any of the individual
candidate variables from which they were derived. We find that these indices are often so
complex that they cannot be easily explained. Nevertheless, the indices that are selected
have extremely high Chi-square values (e.g., over 100) indicating very high predictive power.

The only limitation pertaining to these input variables is that they should be
continuous, rather than binary or discrete, with few possible values. For example, discrete
variables with relatively few values (i.e., less than 10) do not facilitate optimization of the
separation between these multi-dimensional data points. In the weather domain, the raw
variables are generally continuous variables, so this limitation is usually not important.

Finally, the size of the training set should be as large as possible. For example,
these data base should contain 1,000 or more data points. Consequently, the size of these
data bases are usually on the order of 10-500 megabytes in size. For example, the NGM
historical data base for just the past four years is about 5-7 gigabytes in size, but only about

I 500 MB of candidate predictor variables will be extracted for processing.

4.3. FORECAST LEAD TIMES AND VALID PERIODS

IFOREC TYPES L MINIMUM VALID PERIODS

Immediate-range 0 to 4 hours 1 hour
Short-range 6 to 24 hours 3 hours
Mid-range 24 to 96 hours 12 hours
Long-range 4 to 9 days 1 day
Extended-range 10 to 30 days 5 days
Short-cImate 1 to 3 months 10 days
Mid-climate 3 to 9 months 30 days
Long-climate 9 to 24 months 3 months

The lead time is the amount of lag between the time that the forecast model
produces a forecast and the time that the valid period begins. The valid period is the
timeframe within which the forecast is valid. For example, an Immediate-range forecast
model may produce a forecast at 12Z which is valid for 15Z-16Z. In this example, the lead
time is three hours and the valid period is one hour. The valid period may be equal to or
longer than the temporal resolution of the ground truth data used to train the model. Valid
periods shorter than those listed are not recommended, but valid periods may be longer than
those listed.

A forecast model with a short valid period could be very important to the battlefield
planning process. If a series of hourly forecast models were run at the same time and if their
forecasts were graphically displayed on the same time line, then one could see the temporal
evolution of the weather event being forecasted. We refer to this type of combined forecast
model as a scnarimodi. A scenario model wiil make it possible for one to see breaks or
windows in the weather. In addition, a scenario model would support the tactical planning
and decision-making process at Division and Corps hy making forecast information readily
available for any combination of lead time and valid period that might be required by a
myriad of the Tactical Decision Aids (TDA).

Copyright Q 1989 by Consultant's Choice, Inc.
8800 Roswell Road, Atlanta, GA 30350
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4.4. SIZE OF FORECAST REGION

I FIXED POINT MODELS
(a) Single-Site Model-one model forecasts for one site.
(b) Multi-Site Model--one model forecasts for several sites.

REGIONAL MODELS
(a) Low-Res Single Region Model--one model provides a forecast to cover a single

geographical region.
(b) Multi-Region Model-one model forecasts in several regions that may be

meteorologically very similar and/or relatively close geographically.

FULL REsoLUrION MODELS
(a) Hi-Res Single Region Model--one model forecasts for any/all specified points

within the given geographical region.
(b) Generic Model--one model forecasts for any/all specified points in a variety ofIa

meteorologically or geographically similar regions.

Fixed point forecast models are trained on the ground truth information that is
specific to one or more sites. A probability of precipitation (PoP) model trained on the
amount of rain received in one rain gauge is a good example of a single-site model. A
multi-site model would be trained on the data from several locations and therefore could be
used to make predictions for any of those sites. In either case, a point model generally will
provide useful forecasts only for the specific locations where it was trained.

A low-res single region model will make predictions for a region rather than for
one or more sites within a region. The resolution of the ground truth data is the region as a
whole. Consequently, the output of a regional model only indicates the probabilities that a
specific event will occur within the region but will not localize the event within the region.

A multi-region model is a concept designed to reduce the cost of creating many
regional models when these areas are meteorologically similar and relatively close
geographically. This concept suggests that when models are required for large regions, it is
possible to multiplex the ground truth data from several smaller portions of the larger region
to create a multi-region model. For example, the ground truth data base for a mesoscale
weather forecasting model, developed for four regions around Boulder, Colorado, contained a
record of whether or not severe/significant weather had occurred anywhere within the region.

The hi-res single region model combines the advantage of the point and regional
models to provide point forecasts for any or all of the points in the region, whether or not
there is ground truth data available for the desired region. In order to make this model

useful, non-meteorological information (e.g., terrain elevation data, direction of slope,
vegetation type, surface roughness, lat-long, distance to ocean, etc.) must be used in addition
to the meteorological data.

* The hi-res generic model takes the high resolution model one step farther. A
generic model, in concept, would be portable to geographic locations where insufficient
historical data was available to construct a model. This concept suggests that it might be
possible to create a model using the historical data from a variety of geographically-different,
but meteorologically-similar locations. Thus, a region-specific model for an overseas area
might be initially developed for a similar region in the United States for example, and once

I Copyright 0 1989 by Consultant's Choice, Inc.
8800 Roswell Road, Atlanta, GA 30350

* B-8



constructed it would be used in the overseas location. Such a model would be designed to
self-adapt using real-time data and post-forecast ground truth information. Eventually it
would transform itself into a site-specific forecast model with a greater level of skill than
when it was first placed into service. A generic model could enclose a region of almost any
size (e.g., the State of Georgia, or Georgia and Alabama) and it would also be trained with
meteorological data and non-meteorological data. It is appropriate to note that the
development of a generic model will require exploration and the development of new
production techniques.

Finally, all of these high resolution regional models would isopleth their forecasts
(e.g., expected amount of precipitation) over the region. A zoom capability would enable
regions of interest to be isoplethed at any desired resolution. Similar isopleth maps could be
constructed, for example, for the minimum expected amounts of precipitation with any user-
specified confidence limit. In this way, isopleths maps could also show the probability that
precipitation would exceed any user-specified amount. The list of possibilities is extensive.

5. GOPAD MODEL DEVELOPMENT PROCESS

This section describes how the GOPAD development software would be used to
develop a new weather forecast model for cloud cover, ceiling, and visibility for an
overseas country where the developer has no prior knowledge about the weather patterns and
where he must create all new historical data bases. As these time estimates will show, the
majority of the man-hours required is in formatting, correcting, and organizing the historical
data bases. The development procedure would be organized into three ordered phases. Upon
completion of each phase, an operational model would be available that could be fielded.

5.1 DEVELOP A SINGLE-SITE, SCENARIO MODEL

In Phase I, the objective would be to develop, test, and deliver a single-site, 12-month,
scenario model for City, Country (e.g., some city in a Latin American country). The model
developed in Phase I would use either one, two, or three sources of predictor variables.
Obviously, a model that uses more variable sources will take more time, but its accuracy
would also be greater. So a trade-off decision must be made by selecting from the available
sources of predictor variables that may be used to develop the Phase I model. Although we
would fully expect the performance of this simple model to surpass climatology, we cannot
know how much of an increase is possible.

If only one source of pr-dictor variables could be used, then rawinsonde data from
five to ten stations in and around the country would be used. It would take A'bout 10 weeks to
develop this model.

If two sources of predictor variables could be used, then rawinsonde and barotropic
model data would be used. The historical barotropic data base would be constructed from
scratch for a 10-year period. Obviously, this option will produce a better forecast model, but
it will take an additional effort to create the barotropic data base. Nevertheless, the

* production of this data base for a country needs to be done only once, but it can be used many
times. It would take about 26 weeks to develop this model from scratch. This option
probably offers the best trade-off between cost and development time versus the potential foru increased performance.

Copyright Q 1989 by Consultant's Choice, Inc.
8800 Roswell Road, Atlanta, GA 30350
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If three sources of predictor variables could be used, then this model would be
developed using satellite-based imagery to derive cloud-tracked winds, barotropic, and
rawinsonde data as predictor variables. In addition to the rawinsonde data and the
development of the barotropic historical data base, this option would include Che development
of a cloud-tracked winds historical data base using GOES imagery, CIRRUS I, and a vorticity
model to derive synoptic scale wind patterns. It would take about 45 weeks to develop thismodel from scratch.

5.2 DEVELOP MULTI-SITE, MULTI-SOURCE, SCENARIO MODEL

In Phase II, a multi-site, multi-source, scenario model would be developed for up to
ten specified sites in a country in three-hour increments out to 24 hours. This model would
use the predictor variable data sets produced in the Phase I (i.e., rawinsonde only;
rawinsonde and barotropic only; or rawinsonde, barotropic, and synoptic scale wind flow).
The multiplexing concept would be used to create this model. Although the selection of these
10 sites may be somewhat arbitrary, each site selected must have about 10 years' worth of
historical ground truth information available. It would take about 5 weeks to develop this
model.

I 5.3 DEVELOP A HIGH RESOLUTION, MULTI-SOURCE, SCENARIO MODEL

In Phase III, a high-resolution, scenario model would be developed to produce
forecasts anywhere in a country. This model would be constructed using all the historical
data bases created in Phases I and II, and at least one new historical data base of non-
meteorological variables (e.g., terrain elevation, direction and amount of slope, etc.). The
multiplexing concept would be used to create this model. Once this model has been
completed. other forecast models (e.g., precipitation, temperature, etc.) would be able to use
many of tie same historical data bases that were developed for the first time. Therefore, the
costs of additional models would be significantly less. It would take about 16 weeks to
develop this model.

6. SUMMARY

The Army and other services need a high technology initiative in me-oscale weather
forecasting for high-, medium-, and low-intensity combat situations. Rapid weather
forecasting is critical to the planning cycle. Forecasting, which is a difficult task in peace-
time, will be even more difficult on the battlefield. The number of weather parameters
required for a new generation of Tactical Decision Aids and automated systems has placed
increased importance on the requirement for the Army to develop a highly automated,
tactical weather forecasting system. New technologies and hardware are now available that
may make this possible. Therefore, bold research is needed to develop a technical foundationto achieve this goal. ACKNOWLEDGMENT
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1.0 ABSTRACT

During the summer of 1989, the Forecast Systems Laboratory, NOAA, sponsored an
evaluation of Artificial Intelligence systems that forecast convective storms taking place
within a 1 10-mile radius of Boulder, Colorado. This exercise was called SHOOTOUT-89
and was designed to be an exploratory study of the effectiveness of a variety of AI
systems in the weather forecasting process. Data gathered during the forecast phase of
the exercise was used to evaluate the performance of the participating systems. The
systems participating included: (1) Knowledge Augmented Severe Storms Predictor
(KASSPr); (2) Goal Oriented Pattern Detection (GOPAD); (3) NOAA/NESDIS CONVEX; (4)
Additive Linear Prediction System (ALPS); (5) WILLARD; and (6) Objective Convective
Index (OCI). The goal of SHOOTOUT-89 is to provide A system designers with feedback
so they can design future systems that will support the overall weather forecasting
process. This paper summarizes the results and discusses some of the lessons learned
from this exercise.

2.0 INTRODUCTION

During the summer of 1989, the Forecast Systems Laboratory (FSL) of the National
Oceanic and Atmospheric Administration (NOAA) conducted an exercise that was
designed to evaluate Artificial Intelligence (AI) systems that forecast significant and
severe weather over four regions in the northeastern Colorado plains. This exercise,
called SHOOTOUT-89, took place in Boulder, Colorado. Previous real-time (RI)
exercises were conducted during the summers of 1983, 1985, and 1987, in northeast
Colorado by the Program for Regional Observations and Forecasting Services (PROFS).
PROFS operates an extensive network of sensors, maintains historical data bases, and
facilitates advanced research studies in mesoscale forecasting.

The SHOOTOUT-89 was an exploratory, quantitadve, and qualitative comparison of Al
systems that forecast severe weather. Although each system required different
predictor variables, all systems received real-time data at approximately the same time,
and were required to produce a forecast for the 11:00 A.M. weather briefing. Thus, the
unique format for the SHOOTOUT exercises made it possible to directly compare and
contrast the -er..ance of Al.-based forecasting ystems in a laboratory setting. Data
gathered during the exercise will be used to evaluate the tasks, rules, and regulations of
the study, as well as to evaluate the participating systems. System evaluation included
testing the robustness of the systems in an operational situation, comparing the
effectiveness of different Al approaches, determining the need for expert human input,
evaluating the sensitivity of a system given different operators, soliciting user
comments, and stimulating collaboration among researchers. In thLQ paper, we focus
on the effectiveness of the systems that participated.
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3.0 PARTICIPATING SYSTEMS

There were six AI systems that participated in the SHOOTOUT-89 exercise. A few of the
systems required no more than a few keystrokes to initiate the forecast model. Other
systems required extensive interaction with a human expert, and some system
interrogated the meteorologist. A brief review of these sys^tems follows:

1) KASSPr (Knowledge Augmented Severe Storm Predictor) was ".eveloped by the
Atmospheric Environment Service of Canada, Department of the Environment,
in cooperation with Digital Equipment Corporation. KASSPr is a traditional
expert system written in OPS-5. Rule firing is controlled by the forward-
chaining OPS-5 production system. The knowledge base was derived from Jolm
Bullas, an expert in severe weather forecasting, and Bruno deLorenzis (1988),
the developer, from Atmospheric Environment Service of Canada.

KASSPr requires both NGM numerical model output, and extensive input from
the meteorologist running the system. The meteorologist identifies and draws
the forecasted positions of numerous meteorological features, such as troughs
and ridges, on the computer screen (deLorenzis, 1988). Once this task has been
completed, the system generates forecasts without further interaction.

2) GOPAD (Goal Oriented Pattern Detection) was developed by Dr. Kenneth Young
with the help of Paul Lampru of Consultant's Choice, Inc. GOPAD is a
combination of a front-end program which uses multiple discriminant analysis
(MDA) to screen a large number of potential predictor variables and to create
indices, which are linear combinations of these variables. The forecast model is
then developed using a non-linear k-nearest neighbor approach, based on the
predictor variables selected by MDA. The forecast model was developed using
PROFS mesonet data for 1200Z through 1555Z, and 1200Z rawinsonde data
from Denver and seven surrounding stations.

GOPAD is designed to run autonomously. During the exercise, the necessary
mesonet and rawinsonde information was provided in a file created by the
PROFS computer system, and the forecast program was initiated by the human
operator. In addition to the standard probability forecasts required, GOPAD
forecasts the probability of tornados and/or funnel clouds, the probability
distributions of expected maximum hailstone sizes, and the probability
distributions of expected peak wind gusts.

Two versions of GOPAD were run. The "learning version" received verification
data for the previous day which, along with the forecast parameters for that day,
were added to its historical data base. The "static" version received no updated
verification data and so did not alter the historical data base from which it made
forecasts.

3) CONVEX was developed by John Weaver, NOAA/NESDIS, who provided the
severe storm forecasting experience, and by R. Phillips from NOAA/NESDIS, who
was the knowledge engineer C-weaver and Phillips, 1987: Weaver and Phillips,
1989). CONVEX relies heavily on a sounding analysis package which
determines the instability of the host airmass and its likelihood of initiating
convection over the front range. It also requires the operator to predict the
surface temperatures and dew points for each forecast region, which form the
basis for the sounding analysis package.
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I In addition to the Denver morning sounding and surface mesonet data, CONVEX
requires reasonably knowledgeable responses from a meteorologist to several
questions regarding synoptic scale conditions.

4) ALPS (Adaptive Linear Prediction System) was developed by Tom Stewart of the
State University of New York at Albany, and Cynthia Lusk of the University of
Colorado at Boulder. ALPS is a linear model developed using the methods of
judgment analysis from the field of cognitive science. The foundation for this
theory is the belief that linear models are robust prediction systems that are
more consistent than human judgment in certain situations. This theory
suggests that simple algebraic models can capture the skill in the judgments of
an expert in tasks that involve a high degree of uncertainty, intercorrelated
variables, and monotonic relationships between variables and the observed
event.

Meteorological expertise was required only in the selection of variables,
estimating their relative weights, and calibral.tng the output. The six key
variables used by ALPS are positive buoyancy, wind shear, surface temperature,
humidity, wind direction, and wind speed. Some of the values are read
automatically from the PROFS mesonet data, while others are determined by the
operator from the Denver morning sounding.

5) WILLARD was developed originally by Steve ZubrJck at Radian Corporation.
WILLARD is an expert system where rules were developed using an induction
algorithm in Rulemaster (Zubrick and Riese, 1985). WILLARD was originally

designed and developed to forecast the potential of severe thunderstorms in the
central United States. The system's forecasts are designed to be similar to the
Convective Outlooks issued three times a day by the National Severe Storm
Forecast Center.

WILLARD is an expert system that is composed of a hierarchy of about 30
modules at least containing one decision rule. For SHOOTOUT-89, additional
rules were added to WILLARD, based on the expertise of forecasters and the
Denver NWS Forecast Office. WILIARD might ask the operator up to forty
questions before making a forecast. These questions pertain to current synoptic
and mesoscale features, as well as numerical forecast guidance. Relatively few
questions might be asked if the situation is not iromising for severe weather.

6) OCI (Objective Convective Index) was developed by Robert Shaw with
considerable input from Thomas Corona, Denice Walker, and many participants
of the PROFS Real-Time 1987 experiment (RT-87). A long list of potential
predictor variables was developed, using many Boulder-area meteorologists as
experts. OCI uses proven severe weather forecasting principles to answer the
question, "What are the chances of severe weather this afternoon in the PROFS
mesonet region?"

Many Boulder-area meteorologists were consulted to identify a comprehensive
list of potential predictor variables. However, the amount of archived data and
number of potential predictor variables were too large for effective regression
equations to be generated. Consequently, predictors were subjectively weighted
to build a linear model. Heuristic rules were added to identify :elationships
among the variables that might inhibit convection. Both observed data and
NGM forecast model data were included for each of the four basic weather
elements: temperature, pressure, moisture, and wind. Since the OCI is based
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on universal convective forecasting principles, it can be modified for any climate.

OCI iequires the operator to input surface observations, Denver sounding data,
and NGM forecast model data for Denver and Cheyenne. Forecasts are
produced without further interaction.

4.0 EXERCISE PERIOD AND REGION

SHOOTOUT-89 ran from May 17 through August 16, 1989. On each day of the
exercise, all systems were to generate forecasts of the mutually exclusive and
exhaustive probabilities of occurrence of each of three weather categories, in each of
four designated zones in northeast Colorado. The choice of the forecast zones was
based on work by Weaver et al., (1987). The four forecast regions are shown on the
map in Figure 1.

CHEYENNE .
*WYOMING__ REGI N KA

I COL 00~I ... If . REG 1 ON
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ID DEN VER
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IVICOLORADO ..

Figure 1. Forecast Regions for SHOOTOUT-89. (Roberts et al., 1989)
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5.0. DEFINITION OF WEATHER CATEGORIES

The weather categories are listed as follows:

Category 0: Nonsignficant (Nil) weather is the absence of category 1 or
category 2 weather.

I Category 1: Significant weather is the absence of category 2 weather, with the
occurrence of any of the following: (a) hail at least 0.25 inches but
less than 0.75 inches diameter, (b) surface winds between 35 and
49 kts, (c) a rainfall rate of 2 inches/hour or more, based on 5-
minute measurements, and/or (d) a funnel cloud.

Category 2: Seere weather is the occurrence of any of the following: (a) hail

with a diameter of at least 0.75 inches, (b) wind gusts of 50 kts or
greater, and/or (c) a tornado.I

6.0 FORECAST LEAD TIME AND VALID PERIOD

Forecasts were required by 11:15 A.M. (1715Z) to be valid from 1:00 P.M. (1900Z) to
8:00 P.M. (0200Z). Due to the amount of manual input required, forecasts for OCI were
run in the early afternoon, based on data available that morning. Not all forecast
models produced forecasts for all four regions for all operational days of the exercise.
WILLARD generated only a single forecast for the entire region. This forecast was
assumed to be the same for each region. OCI did not generate forecasts for Region I.

Most of the data required by the systems was available by 10:15 A.M. Forecasts for all
systems except OCI were completed by 11:15 A.M. (1715Z) and presented at the FSL
daily weather briefing at 11:25 A.M. Not all the forecast models were operational on the
first day of the exercise.

7.0 NUMBER 3F OPERATIONAL DAYS

The starting dates and number of days each system was operated are shown J, rable 1.
Forecasts were not met when a program crashed (programming problems), or when
required input data was not available. OCI did not produce forecasts for Region I.
Since GOPAD and ALPS are totally objective systems, they were rerun for the days that
were missed during the exercise.
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TABLE I
NUMBER OF DAYS EACH SYSTEM WAS OPERATIONAL

Starting Date #Da=s Operational

KASSPr 17 May 1989 60 days
GOPAD learning 17 May 1989 53 days
GOPAD static 24 May 1989 50 days
CONVEX 19 May 1989 57 days
ALPS 7 Jun 1989 48 days
OCI 30 May 1989 45 days

WILLARD 30 May 1989 54 days

* The number of operational days for Regions II, Ill and IV.

After the exercise was completed, the objective systems were allowed to generate offline
forecasts for the days they were not operational. The purpose was to obtain the largest
number of common days in which forecasts were available for comparative evaluations.
As a result of this effort, there were 48 common days for Region I, and 45 common days
for Regions II, I and IV.

I 8.0 VERIFICATION DATA

8.1 Verification During SHOOTOUT-89

The collection of verification data is a crucial aspect of SHOOTOUT-89. A full-time
Verification Coordinator (VC) was responsible for gathering and documenting the
verification data for the exercise. These data are also used by the Denver WSFO in its
own forecast verification studies. The VC was stationed at the Denver WSFO, where
real-time radar data was readily available. When radar or other data suggested possible
significant or severe weather, the VC called cooperative observers in the affected
regions. The VC also received reports that were phoned in to the Denver WSFO, and
made follow-up phone calls on the day following a possible weather event.

The following sources provided verification data: (1) a volunteer spotter network, and a
paid cooperative observer network sponsored by the NWS; (2) police and fire stations,
county emergency preparedness staffs, and highway road crews; (3) a network of
amateur radio operators; (4) weather service offices in Colorado Springs and Cheyenne,
in addition to the Denver WSFO; (5) automated mesonet stations (PROFS) that provide
information on wind gusts and rainfall rates; (6) daily weather observations recorded by

M a network of approximately 30 specially recruited weather observers with observations
mailed in monthly; and (7) volunteer chase teams consisting of research meteorologists
who maintain contact with the VC by cellular phones, or who report after the fact. In
spite of this extensive list of possible observers, it was nonetheless very difficult to
obtain verification data with sufficient accuracy to make absolute measures of skill or
performance highly reliable.
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8.2 Statlonarlt of Historical Validation Data

Table 2 contrasts the frequencies of severe and significant/severe weather events
observed in 1989 with those observed in previous years for each of the four forecast
regions. With the exception of Region I. the observed frequencies of sevre weather for1989 were similar to the frequencies observed for three previous exercises. Table 2 also

suggests that significant weather was greatly over-reported in 1989, or at least
significantly different than during 1985 and 1987. Note that we did not have access to
significant weather information collected in 1983. The observed frequencies in 1989 are
probably more reflective of the true climatology for each region. The probability that the
observed frequencies for 1989 occurred by chance, given the averages for 1985 and
1987. is less than 0.1%; that is, this is not a chance occurrence. Obviously, the
methods of reporting significant weather events dramatically changed in 1989 as
compared to previous years.

TABLE 2
OBSERVED FREQUENCY OF EVENTS BY REGION

Severe Weather Frequency

I I II III IV
Observed (1989) 8.3% 4.4% 13.3% 17.8%
Observed (1983,1985,1987) 2.9% 5.5% 8.8% 18.4%

Significant or Severe Weather Frequency

I II III IV
Observed (1989) 45.8% 37.8% 33.3% 55.6%
Observed (1985,1987) 9.4% 14.9% 15.8% 29.2%

Serious over-reporting, (or under-reporting), of significant weather adversely affects the
performance of all the models, but it especially impacts GOPAD and ALPS, since the
historical data sets for Rr-83, RT-85, and RT-87 were essential to the development of
these models. Although this situation might occur when tactical forecast models are
developed for one region and used in another region, or whenever one year is abnormal
from all other years, it should not vary so much that it is statistically significant. Thus,
the possibility that past exercises seriously under-reported significant weather is a
critical Issue In properly comparing the performance of all the models that participated
in the SHOOTOUT-89 exercise. In order to investigate this issue In depth, a Markov
chain simulation was performed to compare the reporting of significant and severe
weather events in 1985 and 1987 to 1989.

8.3 Markov Chain Simulation

The fraction of significant weather events reported during the RT-89 experiment, shown
in Table 3, is markedly higher tha the fraction reported during the RT-85 and RT-87
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experiments as shown in Table 4. The fraction of Nil weather events was likewise much
lower in 1989. However, the fraction of severe weather events appears to be quite
similar.

I
TABLE 3

1989 REPORTED NIL, SIGNIFICANT, AND SEVERE WEATHER

Nil Sig Sev

I 35 (56%) 23 (37%) 4 (6%) 62
I 39 (63%) 20(32%) 3 (5%) 62

III 42 (68%) 13 (21%) 7 (11%) 62
IV 31 (50%) 20(32%) 11 (18%) 62

Sum 147(59%) 76 j3,%) 25 (10%) 248

I
I

TABLE 4
1985 AND 1987 REPORTED NIL, SIGNIFICANT, AND SEVERE WEATHER

Nil Sig Sev

I I 183(91%) 15(7%) 4 (2%) 202
11 172(85%) 18(9%) 12 (6%) 202

Il 170(84%) 14(7%) 18 (9%) 202
IV 143 (71%) 23 (11%) 36 (18%) 202

Sum 668 (83%) 70(9%) 70 (9%) 808

Note: Frequencies may vary from those in Table 2 because only 1985 and 1987
severe events are included in this Table.I

This situation raises a question: Is the larger fraction of significant weather reports
during 1989 within expected statistical fluctuations? In order to answer this question,
Markov chain simulations were conducted for each of the four regions. These
simulations assumed that the probabilities of significant or severe weather are
influenced by the occurrence or non-occurrence of significant or severe weather on the

The Null hypothesis assumed the true population of significant and severe weather
events was that observed In the RT-85 and RT-87 experiments. The transition matrices
used for the Markov chain simulations are shown in Table 5. In region IV, for example,
the transition probability for a severe weather occurrence to occur on the next day,

I
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given a significant weather event, is 0.250. The transition probabilities were assumed
to be stationary;, that is, they do not change throughout the experiments (from May
through August).

TABLE 5
MARKOV CHAIN TRANSITION PROBABILITIES

Region I Region 11

Nil Sig Sev Nil Sig Sev

Nil .922 .061 .017 Nil .860 .087 .052
Sig .733 .200 .067 Sig .765 .176 .059
Sev 1.000 .000 .000 Sev .833 .000 .167

Region Il Region I

Nil Sig Sev Nil Sig Sev

Nil .851 .065 .083 Nil .710 .099 .191
Sig .786 .143 .071 Sig .583 .167 .250
Sev .778 .056 .167 Sev .722 .139 .139

The RT-89 experiment was conducted on 62 days within a 92-day span from May 17
through August 16. Thus, a simulated sequence of 92 days was conducted and then
analyzed by removing the 30 days on which the R-89 experiment was not conducted.
Each sequence was initiated using the stationary probabilities for Nil, Significant, and
Severe weather. The number of Nil, Significant, and Severe weather days was
determined for each of 10,000 trials. Cumulative distributions of the fraction of trials
that yielded "n" or fewer Nil, Significant, and Severe days were prepared.

These cumulative distributions were developed for each of the four regions. The
probabilities that the fractions of Nil, Significant, and Severe weather events reported
for 1989 could have occurred by chance (P-values), given the transition probabilities
based on the 1985 and 1987 experiments, are readily derived from these cumulativedistributions.

I For example, Table 6 shows the cumulative distribution of the fraction of trials that
yielded n" or fewer Nil, Significant, and Severe weather events for Region IV based on

* the Markov chain simvlations. During 1989, there were 31 Nil weather events reported
* for Region IV. Using tihe cumulative distribution shown n Table 6, the probability o

having 31 or fewer Nil weather events Is 0.12%. Similarly, the probability of having 20
or more significant weather events Is less than 0.0 1%. and the probability of having 11
or fewer severe weather events is 49%. Thus, we conclude that there is no difference in
the frequency of severe weather events reported for Region IV, but the frequency of

I
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significant weather events is significantly higher and the frequency of Nil weather events
is significantly lower in 1989.

TABLE 6
CUMULATIVE DISTRIBUTIONS FROM MARKOV CHAIN SIMULATIONS

FOR REGION IV

n Nil Sig Sev n Nil

0 0.00% 0.02% 0.00% 31 0.12%
1 0.00 0.51 0.00 32 0.23
2 0.00 2.57 0.02 33 0.50
3 0.00 7.24 0.05 34 1.17
4 0.00 15.68 0.37 35 2.05
5 0.00 27.55 1.23 36 3.84
6 0.00 42.73 3.31 37 6.50
7 0.00 57.67 7.39 38 10.07
8 0.00 71.63 14.18 39 15.37
9 0.00 82.24 23.39 40 22.57

10 0.00 89.83 36.09 41 31.66
11 0.00 94.58 49.06 42 42.19
12 0.00 97.53 62.32 43 52.65
13 0.00 98.86 74.23 44 62.81
14 0.00 99.59 83.37 45 72.37
15 * 0.00 99.84 89.90 46 81.07
16 0.00 99.94 94.22 47 87.75
17 0.00 99.97 97.20 48 92.62
18 0.00 99.99 98.67 49 95.90
19 0.00 99.99 99.40 50 -%8
20 0.00 100.00 99.80 51 4. 4
21 0.00 99.94 52 99.65
22 0.00 99.99 53 99.84
23 0.00 99.99 54 99.94
24 0.00 100.00 55 99.99
25 0.00 56 99.99
26 0.00 57 100.00
27 0.00 58 100.00
28 0.01 59 100.00
29 0.01 60 100.00
30 0.03 61 100.00

The P-values representing the probabilities that the numbers of Nil, Significant, and
Severe weather events reported in 1989 are within the expected range of natural
variability based on the 1985 and 1987 experiments, as shown in Table 7. The pattern
discussed above for Region IV is quite similar for the other three regions. Region I does
show an increased frequency of severe weather events in addition to the increased
frequency of significant weather events.

C-10



TABLE 7
P-VALUES LIKELIHOOD RANGE

Nil Sig Sev

I <0.01% <0.01% 3.3%
II <0.01% <0.01% 50%

Il 0.20% 0.03% 33%
IV 0.12% <0.01% 50%

8.4 Conclusions

Therefore, it may be concluded that the ob-erved frequency of severe weather events for
1989 is within the range of natural variability given by the 1985 and 1987 observations,
whereas the frequency of significant weather events for 1989 is certainly n=t within the
expected range. This situation suggests that the verification procedures used in RT-89
were significantly different than those used in RT-85 and RT-87 in detecting the
occurrence of significant weather. Note that the increase in significant weather events

Iis balanced by a decrease in the Nil weather events with virtually no effect on the severe
weather events. This would not be expected if the changes were due to natural
variability.

The primary difference between the RT-85/RT-87 exercises and the RT-89 exercise
appears to be the method of validating severe and significant weather events. For
example, the RT-85/RT-87 exercises used chase teams to verify severe weather events
while none were used during RT-89. These chase teams confined their efforts to
Regions II, 11, and IV and did not pursue storms n Region I. During RT-89, the
validation coordinator actively used radar information to identify where severe and
significant weather might be occurring. Aggressije telephone calls were then initiated
to sheriff's departments, fire departments, highway crews, and other agencies located in
areas where the radar showed activity.

These differences suggest that the RT-89 verification methods were:

(a) equivalent to using chase teams to determine the incidence of severe
weather in Regions II, Ill, and IV;

(b) superior to the chase teams in determining the incidence of severe weather
in Region I;

(c) superior to the chase teams in determining the incidence of significant
weather in all regions.

9.0. PERFORMANCE COMPARISONS

I All forecasts models that participated in the SHOOTOIJT-89 exercise produced three
forecasts--the probability of Nil weather, significant weather, and severe weather--for

I
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I each day for each region, except OCI which did not forecast for Region I. Evaluations
were done for Nil versus Non-Nil, and severe versus non-severe weather.

The GOPAD forecast models used in RT-89 were developed on the basis of reports of
significant and severe weather reports obtained in RT-83, RT-85, and RT-87. There
were virtually no reports of significant weather available for RT-83. The incidence of

significant weather reports for RT-85 and RT-87 were substantially lower than in RT-89.
Thus, one may expect that the skill scores for GOPAD based on the significant weather
forecasts will be much lower than if the "training" data had shown a similar frequency
of significant weather events. Likewise, the skill scores for severe weather In Region I
should be adversely affected as well.

1 9.1 SillScre

The individual forecasts for each system, for each region, and for each of the common
days for which all systems produced forecasts, are presented in Attachments 1 to 9.
The event outcome for each day is coded as follows: EO means Nil weather; El means
significant weather; and E2 means severe weather. The Brier scores and the Brier-
based skill scores are also given for each region and each system.

I 9.1.1 Regional Climatological Brier Scores

The Brier score is a cumulative form where the probability that the event will occur is P.
If the event occurs, then the contribution to the Brier score is 1 - (1-P)2 . If the event
does not occur, then the contribution to the Brier score is 1-P 2 . The climatological
Brier score is determined in the same maner using the long-term frequency as the
forecast probability (1983, 1985, and 1987 for severe weather, 1985 and 1987 for
significant weather). The long-term frequencies on which the climatologlcal Brier scores
are based are listed in Table 8.I

TABLE 8
LONG-TERM FREQUENCIES USED FOR

CLIMATOLOGICAL BRIER SCORE CALCULATIONS

l_..II II___ Iv

Non-Nil 9.41% 14.85% 15.84% 29.21%
Severe 3.68% 5.52% 8.82% 1-S.38%

9.1.2 Brier-Based Skill Scores

* A Brier-baser 'kill score is calculated from the observed Brier score for the actual
forecasts and * z climatological Brier score. Attachments 1 to 4 show the calculation of
Brier scores for severe weather. Attachments 1 to 8 show the Brier scores for severe
and non-Nil weather. For example, Attachment 4, severe weather forecasts for Region
IV, shows the Brier score for GOPAD 1 to be 39.332. Using the long-term frequencies
for those same forecasts, the climatological Brier score is 38.421. The maximum
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I possible Brier score is 45 (i.e., no error in any of the forecasts). Thus, the Brier- based
skill score is calculated as follows:

SS = (39.332 - 38.42 1) / (45 - 38.42 1) = +13.9%.

This formulation of the Brier score makes it easy to combine the scores from each of the
four regions to determine the overall forecast skill. Attachment 9 shows the Brier
scores for (1) severe weather, (2) non-Nil, and (3) combined forecasts. For example, the
Brier scores for GOPAD1 in each of the four regions are 44.019, 43.r'12, 39.164, and
39.332, totaling 165.527. The corresponding climatological Brier scores are 44.229

*43.084, 39.709, and 38.42 1, totaling 165.443. The corresponding perfect score is 48 +
45 + 45 + 45. totaling 183. Thus, the severe weather skill score for the four regions
combined is calculated as follows:

SS = (165.527 - 165.443) / (183-165.443) = + 0.5%

The analysis of severe weather forecasts appears to be a better indicator of the
forecasting skill than an analysis that is based upon non-Nil weather forecasts. This
opinion is based upon the fact that there appears to be a significant difference in the
observed frequency of significant weather in 1985 and 1987 compared to 1989. It is
difficult to re.oncile this difference when no similar difference appears in severe
weather.

9.1.3 Conclusions

There are many different ways to compare the performance of the system that
participated in the SHOOTOUT-89 exercise. We choose to rank the models in two ways.

First, Table 9 shows the (Brier) skill scores for severe weather based upon the forecasts
in which there was no statistically significant difference between reporting of severe
weather between 1985/87 and 1989 (i.e., Regions I, M, and V). This table eliminates
the effect from seriously over-reporting significant weather in all regions and from over-
reporting severe weather in Region I. GOPAD and ALPS should be helped by this caveat
since they were trained on the 1985 and 1987 data.

I TABLE 9
SKILL SCORES FOR SEVERE WEATHER3 IN REGIONS II, II, AND IV

GOPAD1 + 2.1%
GOPAD2 + 1.9%
ALPS -0.7%
WILLARD -11.9%
KASSPr -17.0%

I. CONVEX -24.0%
U [ OCl -32.3%

Second, Table 10 shows the skill scores only for Region IV, which was the only region
that had an adequate number of events upon which to train a GOPAD model. This
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table mitigates the lack of a large historical data base that is needed In order to develop
a GOPAD or ALPS model.

TABLE 10
SKILL SCORES FOR SEVERE WEATHER

IN REGION IV

GOPAD1 +13.8%
GOPAD2 + 13.2%
ALPS + 1.8%
KASSPr - 0.2%
OCI - 3.1%
WLLARD -12.6%
CONVEX -40.9%

9.2 Relative Operating Characteristic

A good forecasi system should bc able to 'detect" or correctly forecast the event without
giving too many "false alarms." Consider the following tables for GOPAD1 forecasts of
severe weather for Region IV. Consider that forecast probabilities above the threshold
(18% and 40%, respectively) represent a forecast for severe weather, whereas forecast
probabilities below the threshold are forecasts that severe weather will not occur.

TABLE 11
SEVERE WEATHER FORECASTS FOR REGION IV

(GOPADI)

Pr Pr Pr P1.
<=18% >18% Sum <=40% >40% Sum

EO/El 27 10 37 EO/EI 35 2 37
E2 3 5 8 E2 6 2 8
Sum 30 15 45 Sum 41 4 45

13_U
Consider the first table with a threshold of 18%. GOPADI forecast severe weather on
,15 occasions with sev-re weather occurring 5 times. Note that five of the eight severe
weather occurrences were "detected," or the probability of dete, ing severe weadler
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(POD) is 5/8 or 0.625. There were ten forecasts for severe weather which were not
followed by severe weather, i.e., false alarms. The false alarm rate (FAR) is 10/37, or
0.270.

One may improve (decrease) the FAR by increasing the probability threshold. If this
threshold is increased to 40% (Table 10), the FAR drops to 2/37, or 0.054. The
probability of detecting severe weather events also decreases (i.e., the forecast will miss
more occurrences of severe weather). Now the POD Is 2/8, or 0.250.

The relative operating characteristic (ROC) combines t1,e FAR and POD Into a single
diagram over the entire range of thresholds. A forecast system with positive skill will
consistently show a larger POD than a FAR. The ROC plot will lie above the diagonal
between (0,0) and (1,1). The further above the diagonal the ROC plot lies, the better the
discrimination between severe and non-severe weather. Note that this measures the
discrimination ability of the forecast model and it is not affected by bias.

The ROC plots shown in Figures 4 and 5 show a much smaller spread among the
different forecast 3ystems than do the ROC plots in Figures 2 and 3. Clearly, this
difference is a result of using a larger number cf forecasts to determine the ROC plot.
The significant + severe weather (Figure 4) ROC plots suggest CONVEX, KASSPr, and
GOPAD exhibit the greatest skill, whereas WILLARD and ALPS demonstrate the least
skill, with substantial portions of their ROC plots lying below the diagonal These
findings are not inconsistent with the conclusions given by the Brier score analysis.

The forecast systems did better forecasting severe weather, according to Figure 5. Here,
only WHIARD shows a portion of its ROC plot below the diagonal. GOPAD exhibits
relatively smooth ROC plots, suggesting it produces useful forecasts over its entire
range. The OCI forecast system does a much better job in the upper right region of its
ROC plot, suggesting It does a better job Identlfying those days on which severe weather
will occur (lower left) somewhat better than it identifies days on which severe weather
will not occur.

9.3 Measure of Forecast Sharness

A sharp forecast model tends to issue, for example, either rain or no-rain forecasts.
Obviously, the Ideal forecast model would be very sharp (i.e., totally categorical) and
perfectly accurate. However, such a perfect model is far beyond current technology.

Since the state of the art in weather forecasting is far less than perfect, a non-
categorical or probabilistic model is the best means for providing information on-
demand to a myriad of Tactical Decision Aids (IDA). If a TDA is designed to use a
categorical type of forecast, then that TDA should receive the probabilistic forecast and
convert it to a categorical forecast, based upon a criteria tailored for its individual
tolerance for false alarms, and/or probability of detecting the event. Each TDA may be
expected to have its own tolerance level, and thus its own interpretation of the
probabilistic forecast.

I The distribu~o-i of forecast probabilities for each of the models is presented in Tables
12, 13, and 14. The models are arranged, in increasing order of sharpness, from ALPS,
which produces forecasts that deviate little from climatology, to KASSPr, which
produces nearly categorical forecasts. Forecasts that are overly sharp may be expected
to show decreases in skill.

I
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GOPAD, ALPS, and OCI were capable of producing virtually any probability between 0
and 100%; KASSPr, CONVEX, and WILLARD were rule-based systems that provided for
a relatively limited number of options for probability forecasts. To a certain extent, the
three models with the greatest sharpness, CONVEX, KASSPr, and WILLARD, were
designed to be categorical in nature because they were intended to assist human
forecasters in issuing severe weather watches. Tables 12 and 13 list the systems in
increasing order of sharpness.

TABLE 12
DISTRIBUTION OF SEVERE FORECASTS

ALL REGIONS COMBINED

Forecasted Probability of Severe Weather

Sharp-

Model 0-90/ 10-19% 20-39% 40-69% 70-1000/ Total ness

ALPS 76% 24% 192 0.22
GOPAD 73% 15% 8% 3% 212 0.30
OCI 56% 11% 18% 11% 4% 129 0.43
WILLARD 800/ 15% 6% 216 0.80
CONVEX 80% 13% 2% 5% 228 0.83
KASSPr 93% 1% 1% 1% 40/6 240 0.95

TABLE 13
DISTRIBUTION OF NON-NIL FORECASTS

ALL REGIONS COMBINED

Forecasted Probability of Non-Nil Weather

Sharp-
I Model 0-9% 10-19%/o 20-39% 40-69% 70-100/6 Total ness

ALPS 54% 34% 11% 192 0.19
GOPAD 41% 33% 18% 7% 1% 212 0.22
OCI 21% 27% 21% 21% 10%b 129 0.31
WILLARD 5 00/0 290/ 17% 1% 216 0.56
CONVEX A0% 19/0 20% 3% 18/ 228 0.64
KASSPr 84% 1% 5% 100/ 240 0.93
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9.4 Examination of Bias

Another desirable characteristic for a weather forecasting model is that the model
should produce forecasts whose average for a season Is very close to the observed
frequency of the event being forecasted (i.e., an unbiased model). Bias is defined as the
average event forecast probability divided by the observed event frequency. A bias less
than one indicates under-forecasting (i.e., forecasted probabilities are too low); whereas
a forecast greater than one indicates over-forecasting.

Tables 14 and 15 show the forecast bias for each region and the overall bias for each
forecast model. The models in Tables 14 and 15 are listed in order from least overall
bias to greatest overall bias. Since GOPAD was trained and optimized on the observed
frequencies for the past three exercises, GOPAD should have very little bias, unless
ground truth reporting methods are altered. OCI was the only system that consistantly
over-predicted severe weather. All the other systems tended to under-predict both non-
Nil and severe weather.

I Bias in a model's forecast may be expected to decrease the skill scores. If the forecast is
determined, the model's forecasting skill can be improved by correcting for the bias.
The model with the greatest bias tend also to be the models exhibiting the least skill
(Le., KASSPr and WILLARD).

I
TABLE 14

SEVERE WEATHER FORECAST BIASES

Overall
I1II il IV Bias

GOPAD2 .52 1.04 .64 1.02 0.812
GOPAD1 .48 1.04 .63 1.01 0.798
OCI x 3.06 1.40 1.20 (1.509)*
CONVEX .40 .70 .75 .43 0.569
ALPS .04 .88 .47 .75 0.544
KASSPr .86 1.06 .06 .12 0.339
WILLARD .40 .65 .22 .16 0.273

60CI is ranked by 1/1.509 since there is an inverse relation between under-forecasting and
over-forecasting.

I
I
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TABLE 15
NON-NIL FORECAST BIASES

Overall
I II III IV Bias

CONVEX .45 .78 1.09 .53 0.668
OCI x .59 .95 .66 0.714'
GOPAD2 .28 .29 .47 .47 0.382
GOPADI .27 .29 .47 .46 0.372
,VILLARD .30 .34 .39 .23 0.304
KASSPr .38 .34 .29 .17 0.284
ALPS .02 .22 .31 .36 0.229

*ICI is ranked by comparison to biases for the other systems based on Regions II, 1, and IV
(non-show).I

10.0 CONCLUSIONS

I Accurate verification of severe and significant weather events plays a very important
role in evaluating the performance of those forecast models. Verification of weather
events for a region rather than a single point depends upon a network of diligent and
cooperative observers. The verification data received for RT-89 reflects a substantial
change in verification, especially in recognizing significant weather. This change maybe a result of a more active procedure for gathering verification data.

I The valid periods and rei"lns for the SHOOTOUT-89 exercise did not match those used
for operational fore- t ers by the Denver WSFO, so direct comparisons of performance
to the forecasts L- ed by operational meteorologists were not possible. One
recommendation for future improvement in the format for the SHOOTOUT exercises is
that a human forecaster should be used as a benchmark so that it might be possible to
estimate the potential these AI-based systems offer for improving human forecasting
skill.

Another desirable characteristic is that a tactical forecast model should forecast each
event individually (e.g., hail size, high winds, funnel cloud/tornado) rather than
forecasting a weather phenomenon (e.g., convection-induced severe or significant
weather) that is a combination of events. Clearly, the Attack Helicopter Battalion is
interested in forecasts of high winds, whether they are convection induced or non-
convection induced.

In addition, probability forecasts should also include a confidence level to measure the
degree of certainty in the forecast and, thereby, enable a TDA to provide even more

* tailored information. Although none of the models had this feature, it is an Important
feature that should be required in tactical forecast models.

The rich variety of forecast models has provided a source of information that makes it
possible to better understand the nature of our forecast modeling approach. We have

I
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provided the reader with a general overview of how the SHOOTOUT-89 exercise was
conducted.

The very fact that six Al-systems were brought together in one location to make the
same forecasts on the same day in an operational setting, and that each system
produced forecasts for a majority of the operational days, is sufficient to deem the RT-
89 experiment a success. The nature of SHOOTOUT-89 made it possible for different
developers to discuss their approaches in a very cooperative spirit. The SHOOTOUT
exercises are Important to advancing the state of the art in mesoscale event forecasting.
The exceptional effort provided by NOAA/FSL, the chief meteorologist, Woody Roberts,
and Bill Moninger are major factors in this success.
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ABSTRACT

A LISP program called Cloud Image Representation, Recognition, and
Understanding Software (CIRRUS I) autonomously tracks individual
homogeneous temperature regions and intelligently derives displacement
vectors for the leading edges of cloud-objects from GOES IR imagery. CIRRUS
I processes use Al maethods and rules--but it is not an expert system. Essential
to this processing is the transformation of the digital image into a "symbolic"
representation defined as a width-encoded medial axis. The symbolic image
representation scheme makes it possible to apply image understanding by
perceptual grouping concepts. The output from CIRRUS I is called the Cloud-
Tracked Forward-Displacement Vector File (CT-FD-VF). This vector file could
be used as input to a vorticity modeling program that would produce the
synoptic wind or stream flow fields over North America. CIRRUS I lays the
foundation for automating many tedious visual analysis tasks that are
performed by a human where shape and relative proximity information are
important to object recognition. For example, CIRRUS I could be extended to
recognize weather related features such as fronts, troughs, ridges, areas of
high and low pressure, and to speculate about the future b.ste and location of
these features.

1. CIRRUS I DATA FLOW OVERVIEW

A data flow overview for CIRRUS I, shown in fig. 1, depicts a satellite receiver collecting
multi-temporal GOES IR images at one hour intervals. These digital images (DT+1 and
DT+2) are cut, filtered, and sliced into eight bina ry images--or temperature levels of which
only five are actually processed. We refer to the grayscale shapes as cloud-regions. Each of
the five levels is differenced to produce a third set of images (DT1-0). Then, each image set is
transformed into "symbolic" image sets, referred to as ST+1, ST+0, and ST1-0. A symbolic-
cloud-region corresponds to a width-encoded medial axis (WEMA) of segmented regions
in an image. The WEMA is czmposed of data that is organized into LISP lists for the
individual cloud-regions. Once these GOES images are in this particular type of symbolic
representation, the symbolic-cloud-regions in ST+1 and ST+O are initialized as cloud-oojects.

Once initialization is completed, intelligent cloud-object tracking is performed. This process
treats all the cloud-objects in the ST+0 image set as target-clouds which must be found or
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FIGURE 1. CIRRUS I overview.

matched in the ST+1 image set. The cloud-objects in the ST+I image set are potential
candidate-clouds that may or may not correspond to one or more target-clouds. The
tracking process first identifies a finite set of candidate-clouds for each target-cloud. Then the
tracking process proceeds to reduce the number of candidate-clouds until it selects one or more
matched-clouds for each target-cloud, thus completing the tracking process. A target-cloud
that has been tracked to one or more matched-clouds is now referred to as a tracked-cloud.

Once the tracking process is completed, cloud-region displacement vectors are computed from
the differenced image set ST1-0. The difference calculation is performed on binary images
DT+I and DT+O to produce an image array with values +1, 0, and -1. The +I represents the
non-overlapping leading edges of clouds-regions. The 0 represents the overlapping areas. The
-1 represents the non-overlapping trailing edges of cloud-regions. Only the leading edge
regions are transformed into the ST1-0 image and, subsequently, used to calculate cloud-
region displacement vectors. Since these vectors only indicate magnitude and orientation,
they are referred to as orientation-vectors.

I Finally, a reconciliation procedure uses knowledge about the tracked-clouds and matched-
clouds to determine the sign or direction of the orientation-vectors. The result is the Cloud-
Tracked Foward-Displacement Vector File (CT-FD-VF), thus completing the CIRRUS I
processing.

Once the CT-FD-VF is composed, it could be used as input to a vorticity modeling program
that computes the synoptic wind or stream flow fields for North America. This stream flow
data could then be accessed on-demand by the Staff Weather Officer, a weather forecast
model, or any Tactical Decision Aid (TDA).

H Copyright @ 1989 by Consultant's Choice, Inc.
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2. DIGITAL IMAGE PRE-PROCESSING (DIPP)

The digital image pre-processing steps are shown in more detail in fig. 2. The GOES IR image
is 640 x 480 pixels with 256 gray levels. The image is cut to a 256 x 256 pixel window. The
smaller window retains most of North America while eliminating portions of the image where
curvature of the earth is great. The image is then processed by a 5 x 5 median filter to reduc.
noise. The image is "thick-sliced" into eight equal gray levels (i.e., a 32 gray scale range).

GOES IR

so401480

Cut Image Apply 5 x 5 Threshold Image Into
8 Grayscale Levels

StI (256x 256) Medium Noise Fiter (0-7)F R I,',e - TOI

I L-v---- s12l I O e T .0

., " Ac-,

07.1 ( 0 1 .c1T-

FIGURE 2. Digital image pre-processing.

Since there appears to be little information in the warmest gray level (i.e., range 0-31) and the
two coldest levels (i.e., range 192-256), these three levels are discarded. Five gray levels are
left that range in temperature between +2800 and -48'°C. Table 1 shows each gray level and
its associated temperature range. (Parke, 1998).

H TABLE 1
TEMPERATURE RANGES ASSOCIATEDWITH THE FIVE LEVELS BEING PROCESSED

Gray scale Sliced Temperature
Level Range Range (00)

- l" - = TS t u, r".l.u
2 65 - 96 +16 to+ 8
3 97 -128 + 8to -124 129-160 -12to-24
5 161-192 -24 to -48

SCopyright 0 1989 by Consultant's Choice, Inc.
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Once the first and second Digital image at Time plus ZERO (DT+O) and ONE (DT+1) are
processed to this point, all five levels in each image are subtracted to produce a differenced
image set (DT1-0) for each of the five levels. The difference image set contains only regionsI that do not overlap. These are the leading edges of cloud-objects that are moving. When
completed, these three sets of digital images are ready to be transformed into a symbolic
representation.

3. DIGITAL TO SYMBOLIC IMAGE TRANSFORMATION AND
INITIALIZATION OF CLOUD-OBJECTS

Illustrated in fig. 3 is the transformation of all three sets of digital images into symbolic-cloud-
regions and the initialization of two image sets (ST-41 and ST+O) as cloud-objects.

All gray levels from each digitpl image set (i.e., DT+1, DT+2, and DT1-0) are passed through a
FORTRAN algorithm called the Digital-to-Symbolic-Transformation Algorithm (DSTA) to
transform each level from a digital image into three Symbolic image sets (ST+1, ST+2, and
ST1-0). These symbolic image sets are composed of numerical data in a LISP list format (i.e.,they are bounded by parenthesis). The data defines the width-encoded medial axis for each
cloud-region (i.e., homogeneous temperature region) at each of the five levels.

Each individual symbolic-cloud-region in each of the five levels in image sets ST+1 and ST+2
are then "initialized" in a LISP environment as a cloud-object with attribute slots and default
information. After initialization, each thick-sliced level in the first image set is paired with its
corresponding level in the second image set. The cloud-objects in both levels are then
processed through a tracking process, an attribute calculation process, and a reconciliation
process to ultimately produce the Cloud-Tracked Forward-Displacement Vector File
(CT-FD-VF).

DIGITAL IMAGES SYMBOLIC IMAGES

0 T 1 D ig ita l Im a g e S~ n t a i a i n S ~ n e l g n

DT+.O to of Cloud-Object
DT~ [Symbolic Image Regions as TrackingT1-O sformation Cloud-Objects -

I T+O ST+O EZ

Cloud-Object Intelligent Forward -Displacement
Displacement-Vector Reconciliation Vector File

Calculation (CT-FD-VF)

Copyright (D 1989, CC
All Rights Reserved.

FIGURE 3. Image transformation and initialization.

Copyright 0 1989 by Consultant's Choice, Inc.
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4. CLOUD-TRACKED FORWARD-DISPLACEMENT VECTOR FILE
(CT-FD-VF)

Shown in fig. 4 are the remaining processing steps needed to produce the CT-FD-VF. In the
following sections, each of these steps is described in detail.

* ~STi 7
iTe Symbolic Target-Cloud

N Cloud-Object Tacg
Images Proximity/and Shape Candidate List

ST.o Calculations

1 Intelligent Logically Infer Kowlodgbe os Compute Magnitde','-0 Cbi Coud-Oblectf]:'\:,; eaoadrcs ::;,Co ud-O bT, and

ueor ' Tracks e ttac S Onentation Vectors
CcnfiraiRefute Image

IT-
I7

Int Kelligent Cloud-Tracked Vorta~ty
, nowledge -'i Forward-Displacement ModelingoIReconciliation - Vector File Program

Copyright ()19, CC

All Rights Reserved.

FIGURE 4. Intelligent cloud tracking and displacement vector reconciliation.

4.1. CLOUD-OBJECT ATTRIBUTE CALCULATIONS

This algorithm identifies all possible candidate-clouds in image set ST+1 that are in close
proximity to a target-cloud in image set ST+O. Close proximity is determined in the following
manner. During initialization, a framing box is created from the WEMA that encloses the
target-cloud within some tolerance to allow for maximum displacement. Similarly, another
framing box is created that just encloses each candidate-cloud. Then, all the cloud-objects in
the ST+1 imr ,e that overlap the target-cloud box are candidate-clouds.

The size and length of candidate-clouds are computed using the WEMA. The size of a cloud-
object is defined as a diagonal between the upper-left-most corner and the lower-Tight-most
corner of the frame box that encloses the WEMA skeleton. The length of a cloud-object is
defined as the summation of all arcs in the WEMA.

Copyright 0 1989 by Consultant's Choice, Inc.
8800 Roswell Road, Atlanta, GA 30350
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H The g= overlapping area between the remaining candidate-clouds and the target-cloud is
the difference between the box that encloses the target-cloud and the box that encloses one of
its candidate-clouds. The area of overlap is normalized by tl . area of the target-cloud box and
then the area of the candidate-cloud box, thus producing two measures of the gross overlap for
each candidate-cloud. These measures are then attached to the cloud-objects for use during

* the behavior classification process.

4.2 INTELLIGENT CLOUD-OBJECT BEHAVIOR CLASSIFICATION

The next processing step is to determine the behavior of the cloud-objects. 1 The objective here
is to classify how a target-cloud might be evolving so that it can be used to select by logical
inference the correct candidate-cloud(s) when possible, and to logically infer the most relevant

I cloud-candidate(s) when necessary.

Cloud behavior is determined by using ancillary information and a dozen or so rules to classify
the target-clouds into one of five categories (i.e., Sub-Cloud, Super-Cloud, Hyper-Cloud, Meta-
Cloud, and Null). 'he distinction between behavior classes is illustrated in figs. 5-9. The
region labeled "A" is the target-cloud and the region labeled "D" is the correctly tracked cloud-
candidate (i.e., the tracked-cloud).

I Cloud Behavior-i (CB-1) is illustrated in fig. 5 where all of D is a subset of A. CB-1 is the
situation where target cloud A is breaking up into one or more subclouds (i.e., one-to-one or
one-to-many). In other words, D is a Sub-Cloud of A. CB-2 is illustrated in fig. 6 where D is a
superset of al of A. CB-2 it the situation where candidate cloud D has been formed by the
merging of more than one cloud (i.e., many-to-one). In other words, D is a Super-Cloud ,)f A.
CB-3 is illustrated in fig. 7 where part of D is a subset of A. CB-3 is the situation where
candidate cloud D has been formed by the breaking up of target cloud A and the merging with
one or more other clouds (i.e., few-to-many) to form cloud D. In other words, D is a Hyper-
Cloud of A. CB-4 is illustrated in fig. 8 where D is a superset of plr of A. CB-4 is the
situation where candidate cloud D has been formed by the merging of part of cloud A with
other clouds (i.e., many-to-few). In other words, D is a Meta-Cloud of A. CB-5 is the Null
category to account for those candidates that do not have any relevant behavior.

When the behavior of the target-clouds is finally determined, it is attached to the target-clouds
in the ST+O image set. The behavioral knowledge can then be used to logically infer which
candidate-cloud(s) are the matched-cloud(s). When the target-cloud is matched to its
candidates (i.e., matched-clouds), the target-cloud is referred to as the tracked-cloud.

4.3 CLOUD-OBJECT DISPLACEMENT VECTOR FILE

The symbolic differenced image set ST1-0 is used to compute the orientation-vectors for
leading edges of the cloud-regions in ST+1 and ST+O. Typically, the WEMA for a leading edge
is distinctly elongated. In this case, the cloud-region orientation-vector is perpendicular to
each of the major WEMA arcs. However, no attempt is made to determine which direction the
orientation-vectors are actually pointing (i.e., the sign). This problem is resolved by the
reconciliation process described in the next section.

1Examples of typical cloud behavior are as follows: growing, merging, converging,
diverging, shrinking, dissipating, and breaking-up without dissipating. In CIRRUS I these
behaviors are grouped into five categories as follows: breaking-up, merging, breaking-up-and-
merging, and merging-and-breaking-up, and no discernable behavior (i.e., null).

Copyright Q 1989 by Consultants Choice, Inc.
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BREAKING UP (ONE TO MANY) OR (ONE TO ONE) MERGING (MANY TO ONE)

C A B
I~~ JI___ __ __ __ __I

C W , Co= (0) c A (DIM, (A)

FIGURE 5. Cloud behavior 1: sub-cloud FIGURE 6. Cloud behavior 2: super-cloud

BREAKING UP AND MERGING (FEW TO MANY) MERGING AND BREAKING UP (MANY TO FEW)

10 . c [DIC A Cojro* 019". cc 0 C [A]I AZR, 4)Im. AD _ _i_ _ _.,,_ _

FIGURE 7. Cloud behavior 3: hyper-cloud FIGURE 8. Cloud behavior 4: meta-cloud

I 4.4 KNOWLEDGE RECONCILIATION

By the time the reconciliation process is ready to begin, a considerable amount of infurmation
or knowledge is readily available. For example, the locations of the orientation-vectors for all
the leading-edges of the overlapping cloud-regions are known. The tracked-clouds and their
locations are known. The matched-clouds and their locations are known. The behavior of all
the target-clouds is knowzi. This knowledge is now reconciled to determine the direction that
the orientation-vectors are pointed.

* Each nrientation-vector is extended in both directions until it crosses the major medial axis
(i.e., a major WEMA arc) of a matched-cloud and its corresponding tracked-cloud. The
direction of the orientation-vector is from the tracked-cloud toward the matched-cloud. The
process is repeated for all orientation-vectors. Thus, the output from this last processing step
is the Cloud-Tracked Forward-Displacement Vector File (CT-FD-VF) which consists of all the
cloud displacement vectors for the leading edges of all tracked-clouds for all five gray levels.

Copyright 0 1989 by Consultant's Choice, Inc.
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5. CONCLUSION

It is important to note that the goal of CIRRUS I is to extract systematic wind flow
information from the movement (i.e., the displacement) of clouds as viewed from satellite
imagery. Obviously, as little unsystematic error a,3 possible is desired. However, if the CT-
FD-VF is directly compared to a synoptic stream flow map, one could reasonably expect
correlation, systematic bias, and non-systematic error. Although we once considered
determining the "accum-a-yl' of the CT-FD-VF by comparing it to a synoptic stream flow map,
we finally realized that it was actually an irrelevant comparison given the intended purpose of
CIRRUS I.

CIRRUS I is supposed to provide yet another source of candidate predictor variables that
would be processed by the GOPAD forecast model development system. Consequently,
CIRRUS I has been biased, relative to a synoptic wind flow map, because it produces
displacement vectors only for the leading edges of cloud regions. While it may be very
desirable for forecasting, this bias may appear to be unsystematic error if these CIRRUS
vectors were compared to a synoptic steam flow map. Therefore, an accuracy measurement for
CIRRUS I was not performed. It is speculated that a neural-net-based weather forecasting
model like GOPAD will remove, to a great extent, the systematic bias, and mitigate the
unsystematic error to some degree, even if CIRRUS I and the voricity modeling program
produce wind flow vectors that appear to have error relative to a stream flow map.

The ultimate test of the usefulness of CIRRUS I for mesoscale forecasting is the quality of
systematic information contained in its candidate predictor variables that can contribute to
the forecast relative to the information available from other sources. Therefore, the best way
to correctly determine the value of the CIRRUS I and the vorticity modeling program is to
produce a multi-year historical synoptic wind flow data base and measure the statistical
contribution of CIRRUS I as a source of predictor variables relative to the candidate predictor
variables from other sources (e.g., rawinsonde, mesonet, NGM, barotropic, etc.). The GOPAD
model development system is an ideal tool for such a task (Young and Lampru, 1989).

ACKNOWLEDGMENT

The authors gratefully acknowledge the outstanding assistance provided by Kathie Speas and
Susan Winkler. This paper could not have been completed without their editing, graphics, and
publication support.

REFERENCES

Parke, Peter S., 1986: Satellite Imagery Interpretation for Forecasters, Vol 1, General
Interpretation Synoptic Analysis. Meteorological Monogranhs The National Weather
Association, 4400 Stamp Road, Temple Hill, MD, 1-A-18.

Young, K. and P. Lampru, 1989: Goal Oriented Pattern Detection (GOPAD) for Mesoscale
Weather Forecasting. In Proceedings from the Tenth Annual EOSAEL-TV[
Conference November 29-30 and December 1, 1989, to be pub'ished.

Copyright 0 1989 by Consultant's Choice, Inc.
8800 Rowell Road, Atlanta, GA 30350

D-8



I
I
I

* APPENDIX E

CIRRUS-I PROCESSING STEPS AND PERFORMANCE

I l



CIRRUS-I PERFORMANCE

1.0 INTRODUCTION

The performance of CIRRUS-I Is shown in the following series of photographs. 1 These

photographs illustrate the results obtained from the following image processing

procedures:

(a) digital image pre-processing

(b) digital image to symbolic Image transformation

(c) symbolic cloud-object behavioral classification

(d) symbolic cloud-object structural matching

(e) calculation of leading edge orientation and magnitude displacements

I However, before reading this Appendix, it may be helpful to refer to Appendix D first for

a complete description on how CIRRUS-I operates.

I 2.0 DIGITAL IMAGE PRE-PROCESSING

1 2.1 RAW GOES-IR IMAGE

IJ

1These photographs were taken with a Minolta X 700, manual focus camera with F8,1/8 second exposure on Kodak Cold
400/32 film.

1
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This photograph shows a raw, ZA-unenhanced, MR 640x400, GOES Central image that

was captured on June 22, 1989 at 20:01 hours GMT. This image is referred to as T+0.

The dark yellow color represents warm clouds and/or thin clouds in whIch the warm

temperature from the earth's surface have bleed-through. The yellow-green and

greenish-blue colors represent intermediate temperatures, while the darke!r blue

represents the coldest clouds.

2.2 CUITING AND FILTERING

The raw GOES IR image is cut with the following offsets: x=256 and y=32. This cutting

produced a sub-hmage, shown on the left, that is 256x256 pixels in size. After cutting,

a 5x5 median filter Is applied to produce the image shown on he right in which the IR

regions are more homogeneous.
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2.3 LEVEL SLICING

I
I

The T+O image and the T+ 1 are Level 1 slices taken after the median filter is applied.

The temperature range for this level is + 160 to +280C. Notice the changes in shape and

the movement of the cloud rgions from one slice to the next.

I
I
I
I
I
I
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.12.4 DIFFERENCING LEVEL PAIRS
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* 3.0 DIGITAL TO SYMOLIC IMAGE TRANSFORMATION

3.1 TRANSFORMATION OF LEADING EDGES

Whe _______ scmleetedifrn:d mg n albni sie r

trnfreInoasmoi rWM ereetto.Ti htgahdbly h
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3.2 CALCULATION OF LEADING EDGE ORIENTAION AND MAGNITUDE
DISPLACEMENT

Trailing Edge Overlap Leading Edge

I
I
I

Cloud TO Cloud T1

I
This diagram shows how the WEMA for the leading edge of a cloud are used to calculate

orientation and magnitude displacement data. The onentation is calculated from the

perpendicular bisection of the WEMA. The magnitude is 2Aculated from the width data

explicit In this symbolic representation. During intelligent reconciliation, the direction

of movement is derived by using behavioral and structural information to determine the
track of a target cloud to all Its candidate clouds.

I
I
I

I
I
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II

I 3.3 CALCULATION OF CLOUD DISPLACEMENT DATA

I
[I
I
I
I
I
I
I
I
I
I
I
I

I
This photogriph shows the leading cdgc disphu enient data drawn to scale.

I
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4.0 IMAGE SET 1

The overall goal CIRRUS-I is (a) to classify the behavior of cloud-objects, (b) to

s..ucturally match target-cloud arcs to candidate-cloud arcs, (c) to intelligently use all

the accumulated behavioral and structural knowledge to produce the Cloud-Tracked

Forward-Displacement Vector File (CT-FD-VF). Behavioral classification determines

how a target-cloud might be evolving so that this information can be used to decide

which candidates will be structurally matched. Structural matching determines which

arcs in the target's WEMA correspond to arcs in a candidate's WEMA. This information

is important for two reasons. First, structural matching helps the behavioral

classification process to correctly discriminate between relevant and irrelevant clouds.

Second, structural information Is used, along with behavioral information, during an

intelligent reconciliation process to determine the direction in which each target cloud is

displacing.

In the series of photographs that follow, pairs of symbolic images are shown which were

taken at one-hour intervals. In each photograph, the left image contains the medial

axis of the target clouds, while the right image contains the medial axis of the candidate

* clouds.

4.1 OVERLAY OF TARGET AND CANDIDATE CLOUDS

In the following photograph, the medial axes from the T+0 slice and the T+1 slice at

Level I are overlaid so spatial and shape information can be observed. The target

clouds are shown in blue; the candidate clouds are shown in green; and the overlapping

I axes are shown ir, aqua.

I
I
U
I

I
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Ii
4.2 BEHAVIORAL CLASSIFICATION (SUB-CLOUD AND HYPER-CLOUD)

I
I
I
I

I
On the left, a massive target cloud, shown in white, is selected to begin the tracking

process. Note that cloud-objects are defined as a single, unbroken linkage of arcs.

On the right, the T+ 1 is shown with the color-coded results obtained after CIRRUS-I has

completed behavioral classification. The blue arcs are non-candidate clouds. The two

red structures are candidate clouds that broke off from the target cloud. They are

classified as sub-clouds (i.e., dissolving and breaking up). The magenta cloud

structure apparently has broken off from the target cloud and combined wih another

cloud that was north of the target cloud. It Is classified as a hyper-cloud (i.e., breaking

1-p and merging). Although it is difficult to see, there are scattered brown cloud

structures which are located close to the magenta cloud and that were considered to be

candidates. After classification was completed, these clouds were determined to be

Irrelevant.
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4.3 STRUCTURAL MATCHING (SUB-CLOUDS AND HYPER-CLOUDS)

When behavioral classification is completed, a WEMA structural match between the
target cloud and the behaviorally classified candidates is performed. The target cloud'c
arcs that structurally match the arcs in the candidate clouds are shown in red and
pink in both images. The intermixed white fragments in the target cloud now depict

the arcs where no structural match is found. Notice the long, horizontal, white arc In

the lower portion of the target cloud. This arc cannot be matched by a similar arc in
any candidate cloud because that portion of the target cloud apparently dissolved.

E-11
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4.4 BEHAVIORAL CLASSIFICATION (SUB-CLOUD AND META-CLOUD)

rih ingren....ad.ron
I
I
I
I
I

I The white target cloud is behaviorally matched to three candidate clouds shown on the

right in green, red, and brown.

The green candidate cloud is classified as a meta-cloud (i.e., merging and breaking up)

because it has combined with a cioud to the south which is breaking off another, larger

structure. The red candidate cloud is classified as a sub-cloud (i.e., breaking up)

because it broke off the northern part of the target cloud. The brown candidate cloud
i 3which is very dicult to see is irrelevant because it Is too far away from the target cloud

to have broken off.

I
I
[]

Iu
I!
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i 4.5 STRUCTURAL MATCHING (SUB-CLOUD AND META-CLOUD)

I

I
I
I
I
I

The target cloud is now colored green to indicate the arcs that are structurally matched

to the green arcs in the candidate cloud. Likewise, the red arcs in the target cloud are

structurally matched to the red arcs that broke off to the north.

I
I
I
I

I
I
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4.6 BEHAVIORAL CLASSIFICATION (SUPER-CLOUD)

I
I

* The small, white target cloud on the left is behaviorally matched to two caadidate

clouds shown in yellow and brown on the right. The large, yellow candidate is

classified as a super-cloud (i.e., merging and/or growing) because it combines with

several cloud regicns that were north of the target cloud. A small, brown candidate

cloud, which is very difficult to see, was determined to have no relevant behavior.

E
I
I
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I4.7 STRUCTURAL MATCHING (SUPER-CLOUD)

I

I
I
I
I
I
i The target cloud is now structurally matched to that portion of the supei-cloud to

which it correctly corresponds.

4.8 BEHAVIORAL CLASSIFICATION (SUPER-CLOUD)

I_1 "
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I The white target cloud is behaviorally matched to two candidate clouds shown Lz. yellow

and brown. The yellow cloud is classified as a super-clor I (i.e., merging nd/or

growing) because it has a larger are- than the target cloud suggesting that the t-rget

cloud has grown. A small, brown candidate cloud to the northwest t,f the yellow

candidate cloud is determined to be Irrelevant.

4.9 STRUCTURAL MATCHING (SUPER-CLOUD)

unace becus It strutur Io iffereut ft - the caddt cloud Hoevr

I
I
I
I
I
I

I The yellow target cloud arcs are structurally matched to the yellow candidate cloud
arcs. Notce that the white arc in the upper middle portion of the target cloud is not
matched. wvhile the arc at the tip is matched. The white arc Is considered to be
unmatched because its structure is too different fr..ai the candidate cloud. However.

the tip of the arc was matched because it Is similar.

I
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4. 10 BEHAVIORAL CLASSIFICATION (SUB-CLOUD AND HYPER-CLOUD)

I

I
I
I

The white target cloud is behaviorally matched to eight candidate clouds shown in red,

magenta, and brown. The red clouds are classified as sub-clouds because they broke
- up into smaller clouds. The magenta cloud is correctly classified as a hyper-cloud, yet

incorrectly selected as a relevant candidate. EvIdently, CIRRUS-I considered the
* magenta cloud to be a candidate which might have broken off from the target cloud and

merged with other clouds. However, the magenta cloud Is actually "ror-med by the

combination of the blue clouds to the north of the arget cloud. As will b- seen in the

next photograph, this temporary mismatch is corrected during the structural matching

process.

I
I
I
I
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I 4. 11 STRULTURAL MATCHING (SUB-CLOUD AND HP'PER-CLOUD)

Iq
I
I
I
I
I

I The red arcs In both images show the arcs that structurally match. Notice that the

magenta hyper-cloud is determined to be irrelevant (unmatched) to the target cloud

and is now correctly colored blue. The white arc on the tip of the target cloud indicates

it is not structurally matched to the red candidate cloud because [we assume] its

displacement exceeds the maximum allowed.

I
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I 5.0 IMAGE SET 2

[ The remaining GOES IR images were taken on January 23, 1989, at 11.00 and 12:00

hours GMT. The first photo shows the results obtained by behavior classification while

the second shows structural matching. This serles cf photographs provides addit,, dal

tracking scenarios to demonstrate the robustness of CIRRUS-I.

I 5.1 OVERLAY OF TARGET AND CANDIDATE CLOUDS

II
I
I
I
I
I

I

I
I
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5.2 BEHAVIORAL CLASSIFICATION (SUB-CLOUD AND HYPER-CLOUD)

I
I
I
I

iiII

5.3 STRUCTURAL MATCHING (SUB-CLOUD AND HYPER-CLOUD)

I _________ _____

I
I

.1
I

(I

I
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5.4 BEHAVIORAL CLASSIFICATION (META-CLOUD)

I
I
I
I
I
I

'I
5.5 STRUCTURAL MATCHING (META.CLOIJD)

I ____________________ _____

I
I
I
I
I

I
I
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I 5.6 BEHAVIORAL CLASSIFICATION (SUB-CLOtJl) AND HYPER-CLOUD)

ar
I
I
I

I
1
I
j 5.7 STRUCTURAL MATCHING (SUB-CLOUD AND HYPER-CLOUD)

I
I
I
I
I
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5.8 LEADING EDGE ORIENTATION/MAGNITUDE DISPLACEMENT DATA
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