
I .FMC
I 0D February 1990 QN ia eotReport No. R-6376

iD ilC CoLL COPy
mI

A Blackboard-based Dynamic Instructional Planner

/
I

I William R. Murray

Artificial Intelligence Center
Corporate Technology Center

FMC Corporation
1205 Coleman Avenue, Box 580
Santa Clara, California 95052

DTICI .:i! MAR 0 6 19901
ELECTEIIl

Approved for public release; MAR 0
I Distribution Unlirrited

Sponsored by

Manpower, Personnel and Training R&D Committee of the Office of the
Chief of Naval Research

Air Force Human Resources Laboratory

Naval Training Systems Center

Naval Personnel Research and Development Center

I Under contract N00014-86-C-0487

90 03 06059

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE OI N v 0Ae01M

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclasgified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILASIUTY OF REPORT

:b. DEC.ASSIFICATIONI DOWNGRADING SCHEDULE Approved for public release,
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

R-6376

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
FMC, Corporate Technology Ctr w Office of Naval Research - Cognitive Science
Artificial Intelligence Program

6C. ADDRESS (C1. State. and ZIP Cd) 7b. ADORESS (Cit, State,. and Z Cod)
FMC Corporation, CTC Office of Naval Research (Code 1142PT)
1205 Coleman Avenue 300 North Quincy Street
Santa Clara. CA 9050 Arlinaton. VA 22217-5(100

S& NAME OF FUNDING I SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if apkb)3 222 N00014-86-C-0487

SL ADORESS (City, State, and ZI Code) 10. SOURCE OF FUNDING NUMBERS

800 North Quincy Street POGRAM PROJECT TASK WORK UNIT
AlntnVA(21500ELEMENT NO. NO. NO. C2ON NO.

Arlington, VA 22217-5000 62233N RM33M20 r
1 1. TITL (Include Socwny Cladficaoo)

A Blackboard-based Dynamic Instructional Planner

2. PERSONAL AUTHOR(I Williaqm P. Mrrray
13a. TYPE OF REPORT 13b. TIME COVERED 14. ATE OF REPORT (ow. Mot Day) 1S. PAGE COUNT
Final FROM 2/15/aT 0 31/89 1990, February 20 70

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on miwn if neceuay an khwwtfy by bkok nmbed)

FIELD GROUP SUB-GROUP Control for Intelligent Tutoring Systems, Instructional
05 08 oPlanning, Dynamic Planning, Blackboard Architecture
1L OR ii

This research explores dynamic planning as a control mechanism for
intelligent tutoring systems. The motivation for this research is a desire to
integrate plan-based and opportunistic approaches to instruction to provide more
effective and versatile tutoring systems. Although planned instruction is not
always required, planning can provide more coherent instruction, more effective
time management, and greater responsiveness to student needs than unplanned
instruction. Furthermore, a dynamic planner allows pedagogical knowledge to be
applied during instruction rather than requiring a curriculum author to anticipate
student performance and then pre-store appropriate tutorial responses. The more
economic representation of pedagogical knowledge in the planner facilitates
extension to new domains compared to a CAI system, which procedurally

20. DISTRIBUTION /AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0-UNCI SSIFIEOUNurMITED M SAME AS RPT. r"oIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (klde Am C) 22r. OFFICE SYMBOL
D Susan Chiman (209_ 696-41 1 NR 1142CS

00 Form 1473. JUN W6 Prvdw@fttam SECURITY CLASSIFICATION-OF THIS PAGE

S1CURTY CiLA msCATION OF TWS PAGE

encodes pedagogical decisions. The planner is also better suited to handling the
combinatorics of tutorial situations in which mixed-initiative instruction is
allowed, a fine-grained student model varies, time is limited, and there are many
alternative instructional actions.

The Blackboard Instructional Planner is a blackboard-based dynamic planner
for intelligent tutoring systems. Although experimental, the planner demonstrates
key plan generation and replanning capabilities required to handle common
tutorial situations. It generates a sequence of lesson plans customized to a student
model inferred from a pre-instruction questionnaire. The content, delivery, and
length of each lesson is determined by the inferred student model, by the time
allotted for lessons, by the target skill to be taught, and by the subject domain.
These lesson plans are revised during instruction in response to student questions
and requests, changes in time remaining for lessons, and modifications to the
student model.

This report focuses on the final version of the Blackboard Instructional
Planner. Section 7, Related Work, explains differences between this version and
the earlier version, and between this research and earlier project research on
generic ITS architectures. A complete guide to all project publications is included
in Section 8.3, Research Contributions, on page 57.

The planner is designed to be generic to tutors that teach troubleshooting for
complex physical devices. It has been implemented as the controller for the
Lower Hoist Tutor, a prototype tutor for the Mark-45 naval gun mount, to
demonstrate the planner's operation and means of integration. The tutor teaches
troubleshooting of the lower hoist assembly, a complex hydraulic-electronic-
mechanical assembly of the Mark-45, by first imparting a mental model of the
device and its operation. A STEAMER-based display of the lower hoist
schematic has been adapted for use in exposition, assessment, and troubleshooting
practice. Lesson plan steps are instructional procedures that can use this interface
to interleave the presentation of explanatory text with the highlighting and
animation of icons that represent device parts. Other assessment procedures
monitor student progress by asking questions or observing student task
performance. Insufficient student progress initiates replanning.

This research contributes to an understanding of dynamic instructional
planners, planner-controlled tutors, and ITS control architectures. The planner
implementation shows precisely how a blackboard architecture can be used to
realize a dynamic instructional planner. The plan representation and planning
approach provide for plan customization to student background and three kinds of
adaptive replanning (for requests, time, and the student model). The tutor
implementation demonstrates how such a planner can be embedded in an
intelligent tutoring system and what the respective roles of the different
components of a planner-controlled tutor are. Finally, the analysis of the
planner's use of the blackboard architecture clarifies requirements for control
architectures in intelligent tutoring systems and trade-offs made in choosing
alternatives.

V /

J"

* Abstract
This research explores dynamic planning as a/control mechanism for

intelligent tutoring systems. The motivation for .LJ research is a desire to
integrate plan-based and opportunistic approaches to truction to provide more
effective and versatile tutoring systems. Although lanned instruction is not

Aalways required, planning can provide more coherent nstruction, more effective
I time management, and greater responsiveness to st 1ent needs than unplanned

instruction. Furthermore, a dynamic planner allows Iedagogical knowledge to be
applied during instruction rather than requiring a cufriculum author to anticipate
student performance and then pre-store appropriate torial responses. The more
economic representation of pedagogical knowledge in the planner facilitates
extension t6 new domains compared to a a system, which procedurally
encodes pedagogical decisions. The planner is also better suited to handling the
combinatorics of tutorial situations in which mixed-initiative instruction is
allowed, a fine-grained student model varies, time is limited, and there are many
alternative instructional actions. -

The Blackboard Instructional Planner is a blackboard-based dynamic planner
for intelligent tutoring systems. Although experimental, the planner demonstrates
key plan generation and replanning capabilities required to handle common

i tutorial situations. ,It generates a sequence of lesson plans customized to a student
model inferred from a pre-instruction questionnaire. The content, delivery, and
length of each lesson is determined by the inferred student model, by the time
allotted for lessons, by the target skill to be taught, and by the subject domain.
These lesson plans are revised during instruction in response to student questions
and requests, changes in time remaining for lessons, and modifications to the

student model.

The planner is designed to be generic to tutors that teach troubleshooting for
complex physical devices. It has been implemented as the controller for the
Lower Hoist Tutor, a prototype tutor for the Mark-45 naval gun mount, to
demonstrate the planner's operation and means of integration. The tutor teaches
troubleshooting of the lower hoist as. i,.,iy, a complex hydraulic-electronic-
mechanical assembly of the Mark-45, v..' + t imparting a mental model of the
device and its operation. A STEAMt..,-based display of the lower hoist
schematic has been adapted for use in exposition, assessment, and troubleshooting
practice. Lesson plan steps are instructional procedures that can use this interface
to interleave the presentation of explanatory text with the highlighting and
animation of icons that represent device parts. Other assessment procedures
monitor student progress by asking questions or observing student task
performance. Insufficient student progress initiates replanning.

| K-

I

This research contributes to an understanding of dynamic instructional
planners, planner-controlled tutors, and ITS control architectures. The planner
implementation shows precisely how a blackboard architecture can be used to
realize a dynamic instructional planner. The plan representation and planning I
approach provide for plan customization to student background and three kinds of
adaptive replanning (for requests, time, and the student model). The tutor 4k
implementation demonstrates how such a planner can be embedded in an
intelligent tutoring system and what the respective roles of the different
components of a planner-controlled tutor are. Finally, the analysis of the
planner's use of the blackboard architecture clarifies requirements for control I
architectures in intelligent tutoring systems and trade-offs made in choosing
alternatives.

I
I
V
I

t
I

I
a

Acknowledgements
This project was sponsored jointly by the Manpower, Personnel and

Training R&D Committee of the Office of the Chief of Naval Research (under
contract N00014-86-C-0487); the Air Force Human Resources Laboratory; the
Naval Training Systems Center, and the Naval Personnel Research and
Development Center. I would like to thank our contract monitors, Kurt Steuck
(AFHRL) and Susan Chipman (ONR), for their technical advice and guidance.

This project and the ideas presented here have evolved from my interaction
with colleagues over the past three years. Perry Thomdyke first proposed using a
blackboard architecture for dynamic instructional planning. Stuart Macmillan and
Derek Sleeman later proposed a blackboard architecture for dynamic instructional
planning with the ability to improve its own planning behavior. Their work,
focussing on architectural issues, is presented in [MacMillan 87] and [MacMillan
881. Subsequent work by the author focussed on implementing a planner for a
naval training domain within the existing BB 1 blackboard architecture. The first
version of the planner is described in [Murray 89a] and this report describes the
second and final version. 1 would like to thank N.S. Sridharan, Perry Thomdyke,
and Barbara Hayes-Roth for their advice on this project; Lee Brownston for
assisting in the implementation; and both Agustin Araya and Tom Hester for

reviewing drafts of this report. Thanks also to our friends in Minneapolis: TomHoffman, of FMC's Naval Systems Division, who served as our subject matter
expert; and John Darvish and Bob Jancoski, of FMC's Advanced Systems Center,

,I who implemented the STEAMER graphics rendition of the lower hoist schematic.

ITrademarks
'Symbolics' and 'MacIvory' are trademarks of Symbolics, Inc. 'Explorer' isU a trademark of Texas Instruments, Inc.

Acce' - F or

i VD" '' .. ition/

A',:'<~ ,lty Codes

r nd/and/or

Di

I

Table of Contents
1. Introduction - Motivation and Objectives 1
2. Overview of the Blackboard Instructional Planner 9

2.1. Examples of Plan Generation and Customization 10
2.2. Dynamic Replanning 12

2.2.1. An Unexpected Question 12
2.2.2. Less Time than Expected 14
2.2.3. A Failing Instructional Objective 15

2.3. Other Planning Capabilities 18
3. Integration into the Lower Hoist Tutor 20
4. Plan Representation 25
5. Plan Generation, Execution, and Replanning 29
6. The Blackboard Architecture and its Role 35

6.1. Overview of the Implementation 37
6.2. Support for Dynamic Instructional Planning 38

7. Related Work 41
7.1. Related Research in Control for Intelligent Tutoring 42

Systems
7.2. Related Research in Planning, Blackboards, and Other 49

Areas
8. Conclusions and Future Directions 53

8.1. Nature of Dynamic Instructional Planning 53
8.2. Limitations and Future Directions 551 8.3. Research Contributions 57

A. Illustrations of Plan Execution and Interruption 59
B. Two Examples of Customized Instructional Plans 72
C. Blackboards and Knowledge Sources of BB-IP 78

C.I. The Blackboards 78
C.2. The Knowledge Sources 79

D. The PLAN Language Framework 84
E. Comparison of SlIP and BB-IP Research 86
F. Comparison of BB-IP-I and BB-IP-2 92

V
S
1

I
I

II aa

List of Figures
Figure I-1: Traditional computer-assisted instruction 1
Figure 1-2: Opportunistic teaching approaches of intelligent 2

tutoring systems
Figure 1-3: Relationship of the planner to other ITS 3

components
Figure 1-4: The Mark-45 naval gun mount 6
Figure 1-5: Schematic of the lower hoist assembly 7
Figure 1-6: Customizing lesson plans 7
Figure 1-7: Handling questions and requests 8
Figure 1-8: Adaptive replanning 9 1
Figure 2-1: Instructional plan after question is asked 14
Figure 2-2: Planner interface, after replanning for time 15

available
Figure 2-3: Instructional plan after replanning for available 16

time 3
Figure 2-4: Instructional plan after diagnosis and 17

remediation
Figure 3-1: Direct control of auxiliary components by an 21

instructional procedure I
Figure 3-2: Lower hoist - structure 22
Figure 3-3: Lower hoist - operation 23
Figure 3-4: Generic skills for troubleshooting hydraulic- 25

electronic-mechanical devices
Figure 4-1: A simple instructional plan 27
Figure 5-1: Overview of planning in the Blackboard 30 n

Instructional Planner

Figure 5-2: Plan generation 31
Figure 5-3: Control phases in plan generation and execution 32 I
Figure 6-1: Execution cycle of the Blackboard Instructional 38

Planner
Figure 7-1: Integrating plan-based and opportunistic 45

teaching paradigmsFigure A-1: Procedure steps in execution of Cycle-Overview 60procedure 3
Figure A-2: An instructional procedure interrupted by a 65

question
Figure D-1: The PLAN language framework 85
Figure E.1: The BLACKBOARD-instructor ITS 88

architecture
Figure F-I: The ACCORD language framework 93
Figure F-2: The TUTOR language framework 94

I
I
I

1. Introduction - Motivation and Objectives
The goal of this research is to increase the flexibility and effectiveness of

computer-based tutoring systems by applying dynamic planning techniques to
their control. Both traditional CAI systems and current intelligent tutoring
systems tend to be quite limited in their ability to generate customized lesson
plans, execute them, and respond flexibly and appropriately to new information
about the student, student questions and requests, and time remaining in lessons.
These limitations and our approach to overcoming them are discussed below.

Traditional CAI systems do not plan at all. Instead they follow lesson plans
authored by humans (see Figure 1-1). These may be very well-crafted plans and
the instruction may be effective, but the student has little control over the
interaction. For example, the student usually cannot interrupt the instruction withIquestions about the domain or requests to review or cover particular material.
These questions and requests must be disallowed, or severely restricted, since the
CAI tutor cannot reason about the domain or its lesson plan during instruction.IInstead, all such questions and requests must be anticipated by the curriculum
author. Most instructional customization is confined to branching within the
lesson plan since there is no fine-grained student model.1 Opportunistic teaching
methods are avoided since the tutor has impoverished problem-solving
capabilities and so cannot readily evaluate partial student solutions. Even if it
could determine when to intervene, the lack of domain expertise and a fine-
grained student model would make it difficult to determine what to say.

3 qProgrammed
Instruction

3 Student
Figure 1-1: Traditional computer-assisted instruction

SOn the other hand, most intelligent tutoring systems (see Figure 1-2) rely

Inmorporating a fine-grained student model and allowing a wide range of student questions and

requests significantly increases the combinatorics of tutorial situtations that the curriculum author
,must anticipate.

2I i

primarily on opportunistic teaching approaches. Their domain expertise and 1
student modeling capabilities support these approaches and distinguish these
systems from traditional CAI systems. Because these tutors rely on opportunistic
approaches they typically assume that primary instruction has been delivered I
elsewhere. Generally, lesson planning is not done by these tutors although recent
systems have focused on sophisticated local discourse planning. This lack of a
lesson planning capability limits the ability of these tutors to generate and deliver I
customized expository instruction (either primary or remedial), to manage their
time well, and to respond to requests to alter or explain lesson content or delivery.
The purpose of the Blackboard Instructional Planner is to integrate these two
complementary means of instruction - plan-based and opportunistic teaching
approaches - for tutors and domains where this is most appropriate.

Case Method Instruction with
Problem-Solving Monitors
* Advie... I*Hints

..* Probing questions..
Rernedialon ... V

*New matertie...

Discovery Learning I
- Simulated microworlds AIM

Mixed Initiative Instruction with 3
Socratic Method

Question - Answer

Coaching (D e Correction - Question

. I
II II

Figure 1-2: Opportunistic teaching approaches of intelligent tutoring systems

Our approach to this control problem is called dynamic instructional
planning. In this approach, an initial instructional plan is generated by the
planner. This plan is customized to an inferred student model. It also takes into
account the resources available to the tutor (e.g., time). The tutor interprets this
plan to control its delivery of instruction. The planner is dynamic since it can

I
I

• u m mI

1 3

t S3tudsnt

I

Planner

STUDENT DOMAIN

MODEL EXPERT

IFigure 1-3: Relationship of the planner to other ITS components

later revise this plan during instruction as the tutorial situation changes. The
tutorial situation changes as the student model changes, the amount of time
available changes, and as student-initiated interactions interrupt the tutor's plan.

The planner operates as the control element of an intelligent tutoring system,
as shown in Figure 1-3 (arrows indicate data flow). The planner generates an
initial instructional plan customized to the inferred student model. The actions in
the instructional plan are procedures that control the text, highlighting, and
animation displayed on the student interface. The interface also accepts student
input, including student-initiated questions and requests that can interrupt these
instructional procedures. The library of possible instructional procedures the
planner can draw upon is part of the courseware. The courseware also includes
curriculum materials such as test questions and troubleshooting cases. The
domain expert evaluates student performance on these cases, demonstrates correct
troubleshooting, and provides answers to student questions about the domain.
These evaluations update the student model. Changes to the student model cause3 replanning if student progress is much better or worse than expected.

The chief contribution of this research is the Blackboard InstructionalI
I
i

41

Planner, a blackboard-baseu dynamic instructional planner for intelligent tutoring 3
systems. It generates a sequence of lesson plans customized to a student model
inferred from a pre-instruction questionnaire. The content, delivery, and length of
lessons are determined by the inferred student model, by the time allotted for I
lessons, by the target skill to be taught, and by the subject domain. These lesson
plans are revised during instruction in response to student questions and requests,
changes in time remaining for lessons, and modifications to the student model. i

The planner presented in this report is actually the second version of the
Blackboard Instructional Planner. It will be abbreviated as BB-IP, unless there is 5
a possibility of confusing it with the earlier planner, in which case it will be
referred to as BB-IP-2. The earlier planner will always be abbreviated as BB-IP-1I.I

Now we consider the research objectives of this project in more detail. They
were to:

1. Develop a dynamic instructional planner - capable of both
customized plan generation and dynamic plan revision in resnonse
to a. Changes in the student model

b. Changes in time remaining

c. Student questions and requests

2. Demonstrate feasibility for a training application - i.e., show that
the planner can be embedded in a tutor, generate appropriate lesson U
plans, respond appropriately to student initiative, and achieve near
real-time performance. All instructional actions must be fully
implemented, not just simulated.

3. Demonstrate utility of approach - i.e., show that the planner can
generate firely-tuned lesson plans, allow flexible mixed-initiative
instruction, and integrate customized expository instruction with
case-method problem solving and microworid exploration.

These objectives have been achieved as will be described in the remainder of this
report. To circumscribe the project goals, the following were not researchIU
objectives:

1. To build a complete tutor for the training application - the focus
was just on the planner. Enough of the other components were
implemented to suggest how a complete tutor would operate, but
much more work is required before such a tutor is ready for
classroom instruction. I

2. To prescribe pedagogical theories of planning and replanning - I
I
I

although the current implementation encodes specific means of plan
customization and replanning, these can be changed. Alternate
theories could be incorporated in the planner, resulting in different
plan generation and replanning behavior. The planner framework2 -
the plan representation, resources for planning, and use of the
blackboard architecture for generation, execution, monitoring, and
replanning - would be unchanged.

The Blackboard Instructional Planner has been incorporated into the Lower
Hoist Tutor, a prototype tutor for the Mark-45 naval gun mount, to demonstrate
the planner's operation and means of integration. Before describing the planner
and tutor further, a brief overview of the lower hoist domain will be helpful. The
Mark-45 is a 5-inch 54-calibre gun, about six stories high, composed of over
23,000 individual parts and 15 major assemblies. It is shown in Figure 1-4. The
U-shaped assembly at the bottom that connects the ammunition handling room
with the loader room is called the lower hoist. The lower hoist assembly has a
simple function: to raise or lower rounds of ammunition from the magazine to a
mechanical storage drum where rounds are stored prior to firing. Its actual
mechanism is complex. It consists of electrical solenoids and switches; hydraulic
valves and pistons; and mechanical latches, gears, and a drive coupling. A
schematic is shown in Figure 1-5. The mechanism is complex since the lower
hoist can operate in several different modes of operation and a latching
mechanism is required to secure rounds in position when the device is not
operating.

With this background the target functionality of the planner can be
illustrated with examples from the lower hoist domain. Figure 1-6 illustrates the
ability to generate a customized sequence of lesson plans for a particular student,
taking into account individual background and time constraints. The top and
bottom parts of Figure 1-7 illustrate the tutor's presentation being interrupted with
either a request or a question. In each case the tutor must decide whether to
accommodate the student's question or request, to defer it, or to explain why it
cannot be handled. Figure 1-8 illustrates the tutor monitoring student
performance in troubleshooting. When performance is less than expected the
tutor alters its instructional approach to provide remedial instruction. These three
examples illustrate the most important abilities of the current planner - plan
generation, mixed-initiative instruction, and adaptive replanning. Eleven

21he word "framework" is used rather than "architecture" to imply that the current planner is
generic to troubleshooting tutors and extensible but that it does not possess the characteristics ofan architecture. Specifically, there is no precise programming discipline and the planner is not a
shell into which domain knowledge can be readily added.

I
S

66

SHIELD GUN BARREL~'

LOADING SYSTEM -zq- IGUN LAYING3

LOADIE -4'.i ~

STRIKI

LANGDL AE

AONIJNITIO HANDLNG ROM LOADING STATIN

UUPPERAHOIS
LODIGATAIO

Figure 1-4: The Mark-45 naval gun mount 1
scenarios illustrating these capabilities and others (e.g., incremental planning and
time management) have been implemented in the lower hoist domain for the

Blackboard Instructional Planner and Lower Hoist Tutor. I
These scenarios have been chosen to be representative of the planning and

replanning situations that would arise for a planner-controlled tutor. Each I
scenario illustrates some aspect of planner functionality such as time
management, question handling, request handling, or providing remedial
instruction as needed. A scenario assumes particular student behavior - such asi
asking a question during an instructional procedure or performing poorly on an
assigned troubleshooting task. The scenarios are not hardwired since similar

I

I

M K Mmmm •niID 2 l m.......

* 7

E.+t L...., .T . .L+,_ + C

asLn. .LIv e .. o-ueco asa

-- i Hydraulic

troubleshooting? lom~+ ,

LC. CS 0003. StS

Ls 12 s 3 Len 4ASA

Figur 1 CsmCi lesson plan

responses Fig uame, in them auetiof ng scenari the 's weuoitaseimob

I S m~tent~m' 1 cm+.Im

I ~l lO~ hil~ m l•

3 LesoniLessn2 Lsson Ls .I. von

Figre1-: Cstmiingleso plansSstuentbhavio can ccurelsewere i the essonplanandpodu ce apport
respnse. Fo exmpl, inthequesionhanlingsceari th stdn' quetio

I1 Nl t m, r.a e
IL lo~v em m~c

Iol cuc las a~ m e

8I

is not restricted to just one particular question that must be asked during just one W
particular instructional procedure. Instead, any question can be asked in any
instructional procedure. The knowledge sources for handling these scenarios are
specific to the planner functionality involved, not the scenarios. On the other 1
hand, when all knowledge sources are enabled and the Lower Hoist Tutor is run
as a tutor per se it frequently tends to replan when it should not, and not replan
when it should. So the Lower Hoist Tutor testbed is more than just a set of I
hardwired scenarios, but is still quite far from a tutor ready for student use.

Tutor Student

NoI'lexplain
w the latch "I'd rather practice

valve assembly troubleshooting
the control volve
assembly."

I~ o , ,
OVe-energlzlng

solenoid coil3
LHK1-LC2 Initiates "Suppose
the last step of the LHKI-LC2 would
lower hoist cycle..." nt denergizeI

Figure 1-7: Handling questions and requests

The remainder of this report describes the implementation of the planner and
the tutor, and the role of the blackboard architecture in the implementation.
Section 2 provides an overview of the planner. Section 3 describes the other
components of the Lower Hoist Tutor and the integration of the planner with
these components. Details of plan representation, generation, execution, and I
replanning are discussed in Sections 4 and 5. Section 6 discusses the role of the
blackboard architecture. The final two sections discuss related work, conclusions,
and future directions for research.

I
I

I
I • I II I i1

39

Lookslike e's 'nspect solenoid LHKI"
I

"Enter 309 on built-intestequipment. Run test.'

I 'Adjust UVK1 1

"No, you should first determine at
what point the lower hoist cycle
stopped.

Lets review how this can be
determined..."

IFigure 1-8: Adaptive replanning

1 2. Overview of the Blackboard Instructional Planner
This section provides an overview of the Blackboard Instructional Planner

(BB-IP), showing what the planner does by examples but deferring details until
later sections. Different scenarios are used to illustrate plan generation, question
handling, time management, and replanning to provide remedial instruction.
Before discussing the examples, we consider the scope of the planner to describe
to what degree it is generic.

BB-IP is neither domain dependent nor domain independent, rather it was
designed for a class of tutoring systems. These are tutors that teachtroubleshooting for complex hydraulic-electronic-mechanical systems, where

effective troubleshooting requires a mental model of device operation. A further
assumption is that the tutor has a STEAMER [Hollan 84] simulation of the device
that it can use for exposition and assessment. Thus, BB-IP could be used in tutors
for other assemblies of the Mark-45 and similar complex defense equipment.
However, BB-IP has only been tested with the lower hoist assembly and no
authoring tools have been implemented. It is not clear how much transfer there
would be if BB-IP were applied to tutors outside of its intended class. Much of
the planner - such as plan representation, and use of blackboard architecture -
would transfer. However, the set of generic troubleshooting skills that BB-IP

I

draws upon in its plan generation process would not apply. A skill breakdown for 3
the new domain would be required. So it would be more difficult to apply BB-IP
to programming tutors or foreign language tutors, although much of the current
planner design should be reusable.

With this background we consider examples of BB-LP in operation. Two
types of plans are shown in the scenarios below. A lesson plan is shown as a
sequence of steps where each step is an instructional procedure to be performed.
For example, such a procedure might present text explaining the operation of
some part or it might give a quiz over its role. The overall sequence of lesson 3
plans is referred to as the instructional plan. The process of producing such a
sequence of lesson plans will be referred to as curriculum planning. Both kinds
of plans will be shown in a considerably simplified form compared to their actual U
internal representation. Such plans have a richer hierarchical structure
representing both abstract lesson plan steps and the rationale behind these steps,
as discussed in Section 4.

2.1. Examples of Plan Generation and Customization
First, we consider plan generation and customization. In all of the examples I

presented we assume the following options are selected by the instructor:
e Device knowledge base - is the Mark-45 lower hoist assembly. Thisknowledge base is a semantic representation of the parts breakdown Iand the changes that occur in normal operation of the device.

*Instructional objective - is CAN-TROUBLESHOOT-LOWER- 3
HOIST, the highest level skill. Instructional objectives can also be
low level, such as CAN-IDENTIFY-PART-UVK3 or intermediate
level, such as UNDERSTANDS-STRUCTURE-LOWER-HOIST. 3
Time constraints - are 45 minutes per lesson with hard deadlines,
meaning that lessons cannot exceed 45 minutes. Soft deadlines allow
lessons to run over or under so that overall lesson length averages I
about 45 minutes. Any other lesson length can also be chosen.

*Pedagogical mode - is PRIMARY-INSTRUCTION. The tutor can
also REVIEW a skill or let the student PRACTICE a skill. m

*Planning mode - is COMPLETE-PLAN-ELABORATION rather
than INCREMENTAL. In the latter the choice of procedures for a I
lesson plan step is deferred until the previous step has been executed.

All these options can be changed by menu. g
There are 24 basic student models consisting of a combination of cognitive

stereotypes and a general assessment of student aptitude. For each of the areas of

I

I

I, I!

I
hydraulics, electronics, or mechanics the student can be either deficient in that
area or have the prerequisite knowledge. 3 The student's aptitude is an orthogonal
measure. It is either low, average, or high according to the student's overall
learning rate. The cognitive stereotypes and aptitude are inferred based on a
series of multiple-choice questions that precede instruction. Different sets of
questions are given for hydraulics, electronics, and mechanics.

I Appendix B provides two instructional plans to illustate plan customization
and the steps in an instructional plan. The first plan is for a low aptitude student
lacking proper skills in electronics. This student will be referred to asIELECTRONICS-DEFICIENT, LOW-APTITUDE. The second plan is for a high
aptitude student with the expected background in hydraulics, electronics, and
mechanics. This second student will be referred to as HAS-PREREQUISITES,
HIGH-APTITUDE. Before we consider differences between the two plans we
will consider the content of the first plan.

3 The first instructional plan consists of five lessons and 51 steps. In the first
lesson an introduction to lower hoist structure and operation is given, followed by
a detailed description of the lower hoist parts, their location, and their role in
lower hoist operation. Part of the overview of the operation of the lower hoist is
shown in the color photographs of Figure A-1. The second lesson explains how
solenoids operate and then provides a detailed explanation of all the part state
changes that occur in a normal cycle of operation of the lower hoist. This detailed
explanation interleaves text explaining part state changes with animation showing

the changes discussed. Some of this explanation is shown in Figure A-2 (color
photographs (a) through (g)). In the third lesson the student must demonstrate his
understanding of normal operation by successively pointing to the next part that
should change state and indicating what the new state should be. Essentially, the
student leads the simulation. In the fourth lesson, the tutor discusses the possible
faults that can occur in the lower hoist. It also discusses how to reason from

symptoms to possible faults. Then it presents a troubleshooting strategy that takes
into account part change cost, malfunction probability, and split-half testing.
Finally, troubleshooting is demonstrated for a particular case. The last lesson is
devoted to letting the student practice troubleshooting for various cases with the
tutor's assistance.

The lessons for the HAS-PREREQUISITES, HIGH-APTITUDE student are
customized differently. Instead of five lessons and 51 steps there are only three
lessons and 26 steps. This plan omits much of the layered instruction given to the

l'hese particular stereotypes were selected based on advice from our subject matter expert,
taking into account his means of tailoring instruction to students.

£
B

12

I

first student. For example, the procedures that introduce the structure and
operation of the lower hoist in a layered fashion (the Cycle-overview and
Structure-Overview procedures referred to in Appendix B) are omitted. Similarly,
procedures that introduce troubleshooting in a layered fashion (such as
Explain-Fault-Types and Generating-Plausible-Fault-Hypotheses) are also
omitted along with topics that the tutor judges to be of lower priority, such as part
locations and descriptions. Procedure parameters also differ in the procedure that I
monitors student troubleshooting (Monitor-Student-Troubleshooting). In the

second instructional plan its parameters are set to provide hints later, tolerate
more incorrect actions, and provide less assistance with selecting test codes than I
in the first instructional plan.

2.2. Dynamic Replanning i

BB-IP is a dynamic planner precisely because most instructional plans will
need to be changed eventually. It might seem that if this is the case it would be I
better not to plan at all. But then the tutor might not finish before time (or the
student's patience) was exhausted, the student could be confused as the tutor
wandered from topic to topic (perhaps with some local coherence), and the3
importance of topics would not necessarily be reflected in the dialog or
instruction given. Given enough time everything might be taught but this is an
unrealistic expectation. A more detailed discussion of the advantages of having
an instructional plan and being able to modify it during the instructional session is
presented in [Murray 89b]. Below we consider three examples of dynamic
replanning illustrating mixed-initiative instruction, time management, and the
diagnosis and correction of an ineffective instructional plan.

2.2.1. An Unexpected Question 3
Consider an example where a question is asked that interrupts the tutor's

presentation. Assume the tutor is executing Explain-Subcycles (step 21) of the
first instructional plan. It is explaining the detailed sequence of changes that 3
occur during the operation of lower hoist - the LHK2-LC2 solenoid coil
energizes, solenoid valve UVK1 shifts right, pilot valve UVK3 shifts right,
coupling actuating piston UVK4 shifts down... During this explanation the
student interrupts with a question, as shown in Figures A-2 (h) through (j).

The interruption and specification of questions are handled by a menu
interface as shown. Procedures are themselves broken down into smaller steps,
allowing student questions and requests to occur between these procedure steps.
The steps in the Explain-Subcycles procedure correspond to the presentation of
text chunks explaining part state changes followed by incremental STEAMER
display updates illustrating part state changes. Assessment procedures that ask a I

I
I

3 13

a
series of questions (short answer, true/false, or multiple choice) can also be
interrupted between questions. This step-wise implementation of procedures
ensures that the student will never have to wait long for an opportunity to
interrupt and that procedures are only interrupted at points that allow easy
resumption.

At any of these interruption points the student can select to either continue,
ask a question, or make a request. In this example the student selects "Ask a
Question" and then a second menu appears showing templates for various
questions that can be asked. These templates are drawn from the various
instructional procedures that can be used to answer questions. Possible templates
are retrieved from each instructional procedure in the instructional procedure
library, which is part of the courseware. In this way the tutor restricts the student
to only ask questions that it can answer by running instructional procedures. For
example, the template associated with the procedure Part-Roles is "What is the
role of ...?". The student selects this template from the menu of question
templates and then points to coupling actuating piston UVK4. This sequence is
shown in Figures A-2 (h), (i), and (j).

The tutor can either defer or directly answer the question. In this case the
tutor chooses to answer the question now since the material being asked about
will not be covered later. To answer the question the current procedure is
suspended and a step to answer the question is inserted. The step
Explain-Subcycles [device subcycles lower hoist] is suspended and two steps are
spliced in after it:
Patch-i :Part-Roles(to-answer-Question #1) [uvk4]
Patch-i :Explain-Subcycles(continued) [device subcycles lower hoist continued]

The first step answers the question and the second continues Explain-Subcycles
where it was interrupted. But this is not all that happens since the student model
is affected simply by the student asking the question.

U! When the student asks a question about material that was covered earlier, the
tutor's belief that the student knows that material is diminished. In this case the
tutor covered the roles of the lower hoist parts in step 10 (the Part-Roles
procedure). The tutor detects that its prior goal, that the student knows the roles
of these parts, is no longer satisfied and still should be. To reachieve this goal it
splices in a review of the roles of the lower hoist parts before resuming
Explain-Subcycles. Now the affected portion of the plan, after both plan patches
have been added, appears as:

Explain-Subcycles [device subcycles lower hoist]
Patch-I :Part-Roles(to-answer-Question #1) [uvk4]

I

14

I

Patch-2:Part-Roles(to-provide-review) [parts lower hoist] 1
Patch-2:Multiple-Choice-Quiz [part roles lower hoist]
Patch-i :Explain-Subcycles(continued) [device subcycles lower hoist continued]

Patch-2.Multiple-Choice-Quiz has been added to check that the tutor's review is I
successful.

Now plan critics are applied to improve the flow of tutorial discourse. There I
is an abrupt context shift from the review of the roles of the lower hoist parts back
to the detailed discussion of the lower hoist cycle. This shift in discourse is
smoothed out by adding a step I'
Patch-2:Transition [part roles, device subcycles lower hoist]

whose execution is shown in Figure A-2 (n). Another plan critic attempts to 3
remove redundant discussions. It ensures that only the first Part-Roles procedure
discusses uvk4 by removing uvk4 from the list of parts discussed by the second
Part-Roles procedure. After all the edits, the affected portion of the lesson plan I
appears as shown in Figure 2-1.

Explain-Subcycles
Patch-i :Part-Roles(to-answer-Question #1) [uvk4]

Patch-2:Part-Roles(to-provide-review)[parts lower hoist except uvk4]
Patch-2 :Multiple-Choice-Quiz[part roles lower hoist]
Patch-2:Transition [part roles, device subcycles lower hoist]
Patch-1.'Explain-Subcycles (continued) [device subcycles lower hoist continued]

Figure 2-1: Instructional plan after question is asked

2.2.2. Less Time than Expected
The question asked by the student has an additional side-effect other than U

altering the student model. It alters the amount of time left in the lesson. Now we
consider an example where the amount of time remaining in a lesson is less than
the time required to finish the lesson.

Assume the tutor is executing Explain-Predicting-Symptoms-from-Faults,
which was originally step 34. The tutor estimates that it has about 37 minutes left
in this lesson and that 27 minutes are needed to finish the activities it has planned.
Suppose the amount of time remaining is reduced to only 10 minutes by manually
altering the amount of time left. This can be done using the planner interface
shown in Figure 2-2, which the student would not have access to or see.

The tutor detects that the amount of time remaining is insufficient to finish
the remaining steps of the lesson. It removes the remaining partitions between U
lessons and then determines where partitions should be placed considering the I

I
I

I
I MiO So £ ol4n (h41 .e 54 Sot Th pIs'a User m

1-15

1 Cf 5 1: 80 0 fft 1E-S
48Dtf924054 1 1.4-.S Is.LK. K-

1 . - 8 52: MW L-CATS

52 MI0-W48.8

5I88 53SA-(ELtC84(8S ASEO-

1- t, EECVSECI23 ft~.loPlcst1'l ftM.-CT 0 IIEst

PSS-t511rE2?) 1MVGW'0t01321 EXEMIE1241 D14G00SE-8P88-8

E-A3 .bo.. ADM.
44 40,0[f 8? 44 4 - E -- -2 'N.12IL-C1 |l- t

ADD40 1 -LE Wft 1' AE? 5 V-1t-1

4 190 hAwD o. IrI1) e 0 49 . ssun.LESSOI-I00
4 00044 C-1.-(41m(4) 41 nO00 790- -S
39 .00 (_ _!60144 0 1 ? 4 40C 4-0880 ADD Z, . -4s -A)1 -4 5 - 04C4J4E-890CI01

-9 90 .8,o OWP-4081 311 4. E??0C444-400CE000W0
29 g0o0o P. (391 36) 43 ([CUtE-4V0M08
") meOFltvt 35) 42[(X[IEW -WE;DUREI

43 90 o,4,4l 9 084.SCh.. PLAMNFMCOMTROL b4040hO0'

4
O i 04 . 595.1 .,.-. 1. L-USED US. 140

I Figure 2-2: Planner interface, after replanning for time available

amount of time available now. The result is that the steps:

Short-Answer
Summarize-Topic
Demo- Troubleshooting

are moved from the end of lesson four to the beginning of lesson five. Actually,
the partition between lesson four and five is moved, but the effect is the same.
Figure 2-2 shows the planner interface after these operations. That part of the
instructional plan that has been changed is now shown in Figure 2-3. For
comparison, the original instructional plan is shown in Appendix B.

2.2.3. A Failing Instructional Objective
Failure to achieve or make adequate progress towards an instructional

objective can also trigger replanning. This replanning is caused by changes to the
student model. Continued poor student performance lowers the tutor's belief that
the student is learning the skill currently being taught. When this happens, the
planner attempts to determine why the instructional plan is failing. Then it
replans to address the problem.

For example, assume the student is practicing troubleshooting in the
procedure Monitor-Student-Troubleshooting of the last lesson. The student is
expected to select troubleshooting actions to diagnose the fault in the lower hoist

I
I

161

34. Explain-Predicting-Symptoms-from-Faults

35. Multiple-Choice-Quiz [propagating faults to symptoms lower
hoist] 3

36. Summarize-Topic [predicting faulted behavior lower hoist]

37. Multiple-Choice-Quiz [predicting faulted behavior lower hoist] 5
38. Motivate-Topic [abduction lower hoist]

39. Generating-Plausible-Fault-Hypotheses [generating the fault
hypothesis set lower hoist]

40. Short-Answer [generating the fault hypothesis set lower hoist]

41. Summarize-Topic [abduction lower hoist] B

42. True-False-Quiz [abduction lower hoist]

43. Motivate-Topic [device troubleshooting lower hoist] i
44. Explain-Troubleshooting-Strategy [troubleshooting strategy

weighted split half troubleshooting] i
45. Wrap-Up [lesson 4]

Lesson 5 I
46. Overview [lesson 5]

47. Short-Answer [troubleshooting strategy weighted split half i
troubleshooting]

48. Summarize-Topic [device troubleshooting lower hoist] 5
49. Demo-Troubleshooting [troubleshooting strategy weighted split

half troubleshooting]

50. Monitor-Student-Troubleshooting [case-difficulty 3, wrong-tries-
before-hint 2, prompt-menu yes, number-of-cases 5]

51. Course-Wrap-Up

Figure 2-3: Instructional plan after replanning for available time 3
and then repair it. However, the student repeatedly selects poor actions and
requests numerous hints. For each simulated troubleshooting action the tutor
compares the student's choice to the domain expert's to compute a measure of 5
utility. This measure of utility is used to update the student model. Over a series
of poor choices, the tutor incrementally lowers its belief that the student has

I
U

3 17

acquired the skill of troubleshooting the lower hoist. When the difference
between the expected change to the student model (an increase) and the actual
change (a decrease) is too large then the tutor suspends execution of the
instructional plan. It notes that the current instructional plan is not having its
expected effect, i.e., it is failing. The tutor enters a diagnosis phase. The current
approach to diagnosis is to determine the prerequisite skills for the current
instructional objective, order them by their likelihood of being misunderstood,
and then to assess the student's knowledge of each prerequisite. For each
prerequisite, the assessment is performed by asking multiple choice questions.
When the tutor finds a prerequisite that the student does not know, it infers that
the problem with the current plan is that the student has forgotten or never learned
that prerequisite. To correct this problem it splices in remedial instruction for the3 prerequisite.

In this example the skill is Can-Troubleshoot-Lower-Hoist and there are
numerous prerequisites such as Understands-Operation-Lower-Hoist,
Understands-Device-Subcvcles-Lower-Hoist, etc. Some skills the tutor assumed
that the student had because of the inferred student model. When the tutor asks
questions about one of these skills, Can-Predict-Part-Type-Operation-Piston, the

I student cannot answer the questions correctly. The tutor infers that this is the
missing prerequisite causing the student's poor performance. It splices in a
discussion of the operation of pistons, a quiz, and then a transition back to the
troubleshooting practice as shown in Figure 2-4.

Monitor-Student-Troubleshooting [case-difficulty 3, ...]
Patch-3.:Explain-Part-Type-Operation(pistonl
Patch-3:Multiple-Choice-Quiz [operation pistons]
Patch-3.'Transition [operation pistons, device troubleshooting lower hoist]3 Patch-3.Monitor-Student-Troubleshooting(continued)

Figure 2-4: Instructional plan after diagnosis and remediation

Of course this is just one approach to diagnosis and revision of a failing
instructional plan. The fault in the plan may actually be different - the student
might not be motivated or the tutor's representation of the skill being taught may
differ from the student's. Alternative approaches to diagnosis that have been
implemented are to simply ask the student what skills he thinks that he needs to
review, or simply to reteach the failing instructional objective using a different
approach. The creation of multi-step diagnostic plans to pinpoint the problen, is
possible, but not implemented.

The key point in the three examples presented here is that the planner and
tutor functionality illustrated by Figures 1-6, 1-7, and 1-8 has been implemented.
In order to demonstrate these kinds of functionality specific decisions had to beI

I
I

18

I

made about how to customize plans, how to handle student questions, and how to
diagnose and correct ineffective plans. The claims made in this report are not
about these specific decisions, since at present there is little guidance from the
educational psychology literature that is specific enough to be applied in these I
situations. Other approaches can be implemented with the planner that would
customize plans differently and make different decisions about when and exactly
how to replan. The claim made is that the planner framework - the plan i
representation, the use of blackboard architecture, and the kinds of plan editing
that can be performed - would support alternative pedagogical approaches as well. g

2.3. Other Planning Capabilities
The three scenarios above are fully implemented along with eight others 3

demonstrating different types of planner functionality. Here is the full set of
eleven scenarios used to test the planner:

Lesson Plan Generation
1. For LOW-APTITUDE, ELECTRONICS-DEFICIENT student.

2. For HIGH-APTITUDE, HAS-PREREQUISITES student. 5
3. REVIEW only for HIGH-APTITUDE, HAS-PREREQUISITES

student.

4. PRACTICE only for HIGH-APTITUDE, HAS-PREREQUISITES
student.

Dynamic Replanning I
5. For a failed instructional objzctive.

6. In response to a student request. H

7. In response to a student question.

Curriculum Planning and Time Management
8. Basic curriculum planning. 3
9. Not enough time.

10. Too much time.
Incremental Planning

11. Incremental planning.
The fifth, seventh, and ninth scenarios illustrating replanning were used as the I
examples of Section 2.2. The other scenarios are discussed below.

The two other plan generation scenarios (3 and 4) demonstrate that the tutor i
can be used in three ways: I

I
• • lU

319

I
1. To teach material for the first time - as illustrated in the

instructional plans discussed in Section 2.1.

2. To review material covered earlier - for example, to provide a
refresher course several months after initial instruction.

3. To provide practice on some skill - for example, the student can
practice troubleshooting or predicting part state changes.

When the tutor is used to review material the only difference in its planning is that
it is more selective in the topics it covers. It only reviews the most important
topics, skipping over some of the topics it would have covered in primary

instruction. When the tutor is used in the practice mode it acts as a problem-
solving monitor, although it will still plan and deliver remedial instruction as

Snecessary. It only puts into the initial lesson plan those procedures necessary to
practice the requested skill along with any auxiliary procedures needed to
improve the discourse flow.

The request handling scenario (the sixth) is similar to the question handling
scenario, but the replanning can result in steps being omitted from the lesson plan,
not just added. In this scenario the student requests to use the device simulation
while the tutor is giving a detailed explanation of part state changes with
Explain-Subcycles. The student's request is granted by splicing in a step (the

Explore-Device-Simulation procedure) that lets the student use the device
simulation while the tutor monitors the student's actions. Another step to
continue the Explain-Subcycles procedure where it was interrupted is spliced in
after this new step. Next, the student-requested activity
Explore-Device-Simulation is initiated, allowing the student to use the device
simulation. The tutor monitors the student in a rather simple way. It just
observes which device subcycles the student steps through. If the student has
stepped through most of the subcycles then the tutor marks as deleted the step that
would continue the Explain-Subcycles procedure. Of course this is somewhat
arbitrary since it is not clear how best to determine what a student learns from
using a simulation. The key point is that if the tutor can detect that a student-
initiated activity renders future activities redundant, the planner can eliminate

3 them.

The basic curriculum planning scenario (eighth scenario) has been folded
into the other scenarios. For any scenario a lesson length can be optionally
specified and a sequence of lessons produced. The time management scenario in
which there is not enough time to finish a lesson was discussed in Section 2.2.2.
In the time management scenario in which the lesson will finish too early

(scenario ten) the tutor replans to take advantage of the remaining time rather than
waste it. The tutor adds activities to the end of the lesson to make use of theI

I
U

201

remaining time. Currently, it just lets the student use the device exploration in the
remaining time. Again the pedagogical approach is overly simple but sufficient to
demonstrate replanning for this circumstance. Another approach - not
implemented - is to move activities from the next lesson into this lesson if there is a
sufficient time to finish them.

In the incremental planning scenario the initial instructional plan is not fully
elaborated since instructional procedures are not selected for each lesson plan
step. Instead, only intended methods of instruction (called activities) are planned.
Each can be implemented by different possible procedures. The procedure for a3
lesson plan step is selected when that step is reached. For example, a lesson plan
step could specify assessment of the student's knowledge of lower hoist
subcycles. Alternate procedures are available for the activity, such as a multiple- i

choice test, true-false test, or short-answer test. One of these is selected when the
step is reached. In principle, more information is available and a better choice
can be made than when the initial instructional plan is generated. However, the 3
current implementation does not yet take advantage of this new information. The
main difference between the two modes of planning is that plan generation is
faster for the incremental planner compared to the full-elaboration planner. Plani
execution starts sooner in the incremental case but is slowed down marginally
during execution since each step requires extra time for procedure selection.

3. Integration into the Lower Hoist Tutor
This section describes how the tutor components are integrated with the

planner in the Lower Hoist Tutor. The boxes shown in Figure 1-3 are actually
only conceptual modules, not independent software modules. Instead, they are
implemented as declarative data structures and routines that interpret and update
them. A more precise description of the integration follows. The planner
generates an instructional plan that is a sequence of procedures. One of these
procedures is shown in Figure 3-1. Its execution is controlled by the planner, but
the procedure itself draws upon the courseware and domain expert to generate I
text and graphics presented to the student through the student interface. If the
procedure performs assessment then the text are questions and the student's
answers determine how to update the student model. The instructional procedure
calls upon the domain expert to compare the student's performance to ideal
performance. The key point is that the planner itself does not have actions that
deal with these auxiliary modules. Instead, it controls instructional procedures
that interact with the modules.

Communication is primarily via shared data structures called blackboards. i
A procedure can update the student model by storing records in a blackboard. It

I
U

3 21

ExlntosInterface

Courseware -_ In c . Ida

Student Correct Actions

£ Expert

I Figure 3-1: Direct control of auxiliary componentsI by an instructional procedure

can emulate domain expertise by interpreting records of correct troubleshooting
I actions stored on a blackboard. The student interface is handled differently: anI instructional procedure can issue graphics commands and text display commands

directly and accept student responses, all without use of blackboards. Each of the
I non-planner tutor components shown in Figure 1-3 has a blackboard associatedI with it, except the interface. These are the Device, Student Model, and

Curriculum blackboards described in Appendix C. 1. Some components, such as
I the domain expert and student model, also have additional procedures to interpret

I or update the records on the blackboards.

I These non-planner components have been implemented expeditiously sinceI the focus of this research is the planner. No contributions have been made in
student modeling, student diagnosis, curriculum design, or interface design.Difficult research issues in the design of these non-planner components are not

addressed here. Instead, existing techniques used in other intelligent tutoring

systems have been appropriated.3 The student interface is STEAMER-based [Hollan 84]. Icons correspond to

lower hoist parts. The same icon can me drawn differently to correspond to
different part states. For example, in Figure A-l the lower hoist rack piston
UCKI (labeled in Figure 1-5) is initially down (in photograph (h)) and then later

up (in photograph (i)). Particular parts are highlighted by drawing a light bluetbox around them as shown in those two pictures. Device operation is shown by

U sequentially changing icon states to mirror the sequence of part states. A windowto the left of the device simulation displays text. Pop-up menus, such as the one
shown in Figure A-I (a) allow the student to continue the lesson, ask a question,

or make a request. Figure A-I illustrates part of an instructional procedure that
animates the device simulation while explaining the sequence of changes that

I
I
U

IC I (lbee in Fiur 1-5 isiiilydwii htorph)adteae

221

I

occurs. The student can also provide input by pointing to parts. For example, the I
student can ask what role a part plays by selecting a question template from a
menu then pointing to the part, as shown in Figure A-2 (h) through (j). I

Ideally, the domain expert should allow the tutor to solve troubleshooting
cases and answer "What if?" questions the student might ask about the device.
There is a causal model simulation of the lower hoist that can answer such
questions, but it is not tied into the Lower Hoist tutor. Instead, troubleshooting
expertise is simulated by interpreting a graph representing alternative traces of
correct troubleshooting actions and states resulting from each action. These 3
graphs are an offline compilation of correct troubleshooting obtained by
interviewing our subject matter expert. The use of such a graph to monitor
student troubleshooting performance is an approach borrowed from the 3
SHERLOCK tutoring system [Lesgold 88].

The Lower Hoist Tutor's simulated domain expert includes a device
knowledge base. This is a semantic network representation of lower hoist
structural decomposition and operation. Figure 3-2 and Figure 3-3 show part of
these representations. The representation of lower hoist operation is used to drive !
the device simulation when animating the lower hoist.

4-CU CT URY M G-#11

410M MN,-ALV

Fg-Lur3 -: ower osMT -8tuce
.- 10I-VSI T4P -W M anI ZS ¢S€TLS~ I I

-UALOC -KV L- n n

Figure 3-2: Lower hoist - structureI

Some of the courseware consists of procedurally encoded domain-specific g
£
U

123

instructional procedures. An example is the Cycle-Overview procedure which
presents an overview of the subcycles of the lower hoist. However, most
courseware is stored declaratively as blackboard records. These records are
interpreted by domain-independent instructional procedures. For example, in
giving a multiple choice test the questions for a domain-specific topic are part ofthese blackboard records.

IThe generic troubleshooting skills knowledge base is also part of the
courseware. This is a representation of subskills required for effective
troubleshooting of complex hydraulic-electronic-mechanical devices. It is shown
in Figure 3-4 with vertical links rpresenting prerequisites. Device structure and
operation must be understood along with a general theory of troubleshooting.
Other component skills include understanding possible faults of the device, being
able to predict consequences of faults, and being able to reason from symptoms to
possible underlying faults. This is a high level strategy for teaching
troubleshooting of hydraulic-electronic-mechanical devices. It was derived from
analyzing the lower hoist reference manuals and the subject matter expert's
approach to teaching this material in the classroom. It is not based on any
cognitive theory but is sufficient to test the instructional planner and produce-
plausible lesson plans.

I
L~t-~ ~ H r - - - - -- PwI I -

m)-!4T ~ L ~L0 u2-LC2-Mt*Wf MIZ-EP

t~at 1-k£q # m3-o1fl-t-S4IO [1.UF~ t..€ LI t C 1- l! gDIf G- 0 N - CUI

IL CG_%M,, I_ I-

3Figure 3-3: Lower hoist - operation

g The student model consists of three parts:

I
I

241

1. Cognitive stereotypes - a list of inferred cognitive stereotypes [Rich I
79] (e.g., a student could be described as HYDRAULICS-
DEFICIENT, HAS-ELECTRONICS-PREREQUISITE, HAS-
MECHANICS-PREREQUISITE. I

2. An inferred aptitude - One of HIGH, AVERAGE, or LOW.

3. An overlay of the domain-specific skills - Associating certainty 5
factors with domain-specific skills.

The first and second characterize the student's background knowledge and overall
capability; the last characterizes his acquisition of device-specific troubleshooting 5
skills.

The cognitive stereotypes indicate whether the student does or does not have
the expected prerequisite background in hydraulics, electronics, and mechanics.
For each background area x the student is assigned either the stereotype
HAS-x-PREREQUISITE or x-DEFICIENT. The set of cognitive stereotypes are
inferred from the pre-instruction questionnaire. If the student misses more than a
certain number of the questions in an area such as hydraulics then he is inferred to
be deficient in that area. The cognitive stereotypes are so named since they set up
stereotypical expectations of student performance for the device-specific
troubleshooting skills. For example, if the student is inferred to be
HYDRAULICS-DEFICIENT then the tutor initially believes that the student does
not understand how the UVK4 hydraulic valve operates.

The aptitude represents the tutor's classification of the student's overall
learning and intellectual capability. It is inferred from the student's performancei
on all parts of the pre-instruction questionnaire and the student's educational
background. 5

The student model overlay [Carr and Goldstein 77] represents the tutor's
beliefs that the student has acquired each of the device specific troubleshooting
skills. Associated with each node of the domain-specific skills is a pair of I
numbers. Each pair represents the tutor's belief that the student knows that skill
and the tutor's certainty in its assessment. The tutor's belief is represented from
-5 (student does not know skill based on evidence so far) to +5 (student knows the U
skill). The certainty of the tutor's belief is based on the amount of accumulated
evidence so far. It ranges from 0 (no certainty) to 10 (very certain).
Misconceptions are not explicitly represented in this student model. U

During the course of the instructional plan various assessment procedures
may test the student directly by asking questions, or indirectly by monitoring his I
performance on some task, such as troubleshooting. Each assessment procedure
updates the student model based on the data it gathers. Presently each assessment

I
U

1 25

C -ZDF r1 - S C -E'AI CeVES C -sfoT - S - CI -C S - C J' - l .

WC CMM -S1.11-C-GS MKSIM . ' C K '-

I

1 i-..e 0t.tSlyt 1,1 CfA-I* C.U k .SKILL cS C-'V.mcSNNT

Figure 3-4: Generic skills for troubleshooting
hydraulic-electronic-mechanical devices

I directly updates only one node in the student model, and then effects are
propagated to related nodes. Changes to a node affect its ancestors since the node
represents one of their prerequisite skills. Propagation is fairly simple. It is based
on approaches used in IMTS [Towne 89 and BIP [Barr, et al 76]. The value of a
node is determined by combining direct evidence for that node with evidence for
its immediate children (its prerequisites). More weight is given to direct evidence
then evidence oropagated upwards.

3 4. Plan Representation
This section presents the hierarchical instructional plan representation.

There are three levels:
* Instructional objectives - Instructional objectives are the goals of the

tutor. These are domain specific skills which the tutor intends for the
student to acquire (e.g., CAN-PREDICT-NORMAL-BEHAVIOR-
LOWER-HOIST).

9 Activities - Activities are abstract methods for achieving these goals.
The most common activities are to cover a topic (e.g., COVER-
TOPIC-PART-ROLE-UVK4) or perform assessment for a skill (e.g.,
ASSESS-UNDERSTANDS-STRUCTURE-LOWER-HOIST).I

I
I

261

* Procedures - Procedures are instructional routines that implement I
specific activities (e.g., the Explain-Subcycles procedure illustrated in
Figure A-2).

Multiple procedures are available for the same activity. For example, different
kinds of tests can be used for student assessment. Also, the same procedure may
be used for different activities by setting its parameters differently. n

Figure 4-1 shows a small instructional plan, for teaching the structure of the
lower hoist, assuming that it only had two parts. The top level is the instructional
objectives level. On it, the top-level instructional objective has been broken down I
into two subordinate (i.e., prerequisite) objectives. First, that the student can
explain the roles of the parts of the lower hoist. Second, that the student
understands how the different part types operate. These objectives are broken I
down still further. First, the student must understand the role of each of the two
parts. Then since LHK1 is a solenoid assembly the student needs to understand
how solenoids operate. Similarly, since UVK4 is a hydraulic valve the student $
needs to understand how hydraulic valves operate.

Now we consider the activities level. There is one activity for each terminal 3
skill node plus additional activities to improve discourse flow and monitor plan
progress. The activities COVER-TOPIC-ROLE-LHKI and COVER-TOPIC-
ROLE-UVK4 simply present text describing the role of the two lower hoist parts. I
The activity MOTIVATE-TOPIC-STRUCTURE-LOWER-HOIST has been
added to improve discourse flow. It explains to the student that it is important to
understand lower hoist structure in order to perform effective troubleshooting. I
The activities COVER-TOPIC-SOLENOID-OPERATION and COVER-TOPIC-
VALVE-OPERATION present material explaining the operation of solenoids and
valves. The final activity ASSESS-UNDERSTANDS-STRUCTURE-LOWER-
HOIST tests the student to determine if the plan has had its intended effect.

The final level is the procedures level. For each activity a single procedure
has been chosen to carry it out.4 For the activities COVER-TOPIC-ROLE-UVK4 I
and COVER-TOPIC-VALVE-OPERATION alternate candidate procedures that
were not selected are also shown. For example, to cover UVK4's role the tutor
can use either Part-Role or Demo-in-Cycle. Part-Role presents a textual
description of UVK4's role. It also highlights and labels it in the device
simulation. Demo-in-Cycle demonstrates the part's operation in the lower hoist
cycle by animating the device simulation. Similarly, the topic of hydraulic valve

I
*'rhere is a one-to-one mapping between activities and selected procedures in the current plan

representation. The use of multiple procedures for activities has not been explored. 3
I
I

3 27

I U nde rstands -stru ctu re- Iowe r-hoaisat

Cnx p al n- pa rt- role Understands-part types-
lower-hoist lower-hoist

SInstructional Can PIn.Cnepa.Cnexplain- C an-explain- -,

OblectliXe role LHKa role-UVK4 U tJ i[;Understands-] Underst Inds-

solenoid valve

Actiiti 1 or-, ..
C .. TeP- I\l"""'""er""o[c... ,-

Procedurerole I cj....lv"- er

(UUCtu -t* P.l,-role Porl-role 001f"o.irt. yPe Multiple-clhoice

MOil wer-hos (LHKI) (UVK4) (soa no) struture-iower-hole)

Denw-Pafl-typo
(valve)

3 Figure 4-1: A simple instructional plan

operation can be taught either by Student-Exploration or by Demo-Part-Type.
The first procedure asks the student to use the device simulation to explore the
operation of a particular valve. The second demonstrates different valve states
and how they affect connecting parts. Parameters, which are shown in
parentheses, allow the same procedure to be used for multiple purposes. For
instance, Demo-Part-Type is used for two different kinds of parts.

The procedures selected to carry out the activities are also linked together in
a sequence and implicitly separated into individual lessons. Lesson boundaries
are represented by pointers from the two partition objects at the bottom. Each has
a pointer to the beginning and end of the lesson it represents. In the examples
given in Section 2 it was only this bottom level that was shown. The previous
simplified representation would show these two lessons as:

I

I
I

281

Lesson I

Motivate-Topic[structure lower hoist]
Part-Role[lhkil
Part-Role[uvk4]

Lesson 2 3
Demo-Part-Type[solenoid]
Demo-Part-Type[valve]
Multiple-Choice[structure lower hoist]

Parameters specify what parts, subcycles, or topics that a procedure should
address. Many procedures operate in a data-directed manner. For example, the
Part-Role procedure retrieves text discussing a part's role directly from the part's
description in the device knowledge base. Similarly, Explain-Subcycles refers to
the device knowledge base to retrieve text to explain the next part state change I
and to decide how to animate the device simulation.

Each procedure is broken down into steps called procedure steps. A
procedure can be interrupted between procedure steps and then resumed later. I
Typically, a procedure step displays another paragraph of text, or makes an
incremental change to the device simulation shown on the student interface. For
assessment procedures, each procedure step asks a question. Procedures are
written this way so the student can ask questions or make requests between
procedure steps. Another reason is to monitor procedure execution and student
progress since the tutor can assess progress or lack of progress between procedure
steps. If progress is insufficient then the tutor can interrupt the procedure to
adjust its parameters or abandon it altogether. 5

Procedures are the primitive actions in instructional plans since it is not cost-
effective to apply control reasoning to reason about more primitive actions.
Instead, more primitive actions, such as presenting a text paragraph, are I
performed within procedure steps. There is no need to incur the cost of another
layer of interpretation using the blackboard architecture simply to emulate
procedural control constructs for sequencing, looping, and conditional branching. u
The instructional plan becomes unnecessarily detailed and the planner is slowed
down considerably when every procedure step is represented in the plan.
Unnecessary overhead is introduced since planner knowledge sources are required U
to replicate simple procedural control constructs such as LISP's PROGN, COND,
and DO. g

The use of an intermediate level of plan abstraction allows incremental
planning. The planner can intend to cover a sequence of topics without deciding 5

I
I

1 29

I
3 exactly how until those topics are reached. Although incremental planning has

only been demonstrated in BB-IP - as opposed to being well developed and used
to advantage - this intermediate level of representation supports it.

The reason that the instructional objectives level is important is that it
supports replanning. BB-IP needs to know why it was doing a procedure to
determine what to do if that procedure fails. This representation of plan rationale
supports replanning when previously satisfied instructional objectives are no
longer maintained, or when pending instructional objectives are discovered to be3 already satisfied.

5. Plan Generation, Execution, and Replanning
Figure 5-1 presents an overview of the operation of the Blackboard

Instructional Planner. The generic skills knowledge base is instantiated with the
device knowledge base to form a cartesian product of domain-specific skills. For
example, if a generic skill is UNDERSTANDS-DEVICE-SUBCYCLE with
parameter subcycle and if the device knowledge base has the six subcycles3 ENGAGE-COUPLING, EXTEND-RACK, DROP-ENGAGE-COUPLING,
ENGAGE-LATCH, RETRACT-RACK, DROP-ENGAGE-LATCH then there
will be six domain-specific skills that result:

1 1. UNDERSTANDS-DEVICE-SUBCYCLE-ENGAGE-COUPLING

2. UNDERSTANDS-DEVICE-SUBCYCLE-EXTEND-RACK

U 3. UNDERSTANDS-DEVICE-SUBCYCLE-DROP-ENGAGE-COUPLING

34. UNDERSTANDS-DEVICE-SUBCYCLE-ENGAGE-LATCH

5. UNDERSTANDS-DEVICE-SUBCYCLE-RETRACT-RACK

3 6. LNDERSTANDS-DEVICE-SUBCYCLE-DROP-ENGAGE-LATCH

The instructional plan is produced through a plan generation process that
will be described shortly. The plan is shown in Figure 5-1 as if the lesson plans
were disjoint, but they actually share goal substructure, as shown in the example
plan of Figure 4-1. The instructional plan usually includes assessment activities.UWhen these are executed the student model is updated. These changes, along
with student questions and requests, can lead to replanning. Replanning causes
plan edits which add or delete lesson plan steps, alter procedure parameters, or

I repartition the remaining instructional plan.

Figure 5-2 shows the resources used in plan generation. The activities

I
I

306

Generic Skills Domain 3
Reuests Knowledge Knowledge
Quions Base Base

Student Model

Goals
nDomain-Specific Skills

(Asseesmat)1

Plan Generatton

uoInstructional

Plan

- -,

II 'I

Lesn1 Lesson 2 Lesn3 Lso

Figure 5-1: Overview of planning in the Blackboard Instructional Planner i

library is a set of generic activities (e.g., COVER-TOPIC, ASSESS-TOPIC,

DEMO-SKILL) that can be used to achieve objectives. The procedures library is
a set of instructional routines that can be used to achieve activies (e.g.,

EPLAIN-SUB CYCLES). These libraries are part of the courseware for the
domain, although most of the activities and procedures can apply to other similar

domains. The student model is a resource since it is used to filter out those
objectives, activities, and procedures that are inappropriate for the student.

Another resource is the library of discourse critics. These can be thought of
as demons or special purpose rules that improve the discourse flow or coherence
of the instructional plan. They critique and revise the instructional plan either
during plan generation or immediately after plan editing. For example, one
discourse critic detects abrupt topic transitions and adds a call to the Transition
procedure to signal the context change in the tutor's presentation. The operation
of this discourse critic was illustrated at the end of Section 2.2.1 and in Figure
2-1.

Once the instructional plan has been developed, it is partitioned by the
lesson partitioning algorithm. This algorithm estimates lesson length and the I
abruptness of transitions to decide where to place partitions between lessons. It I

I

I I' I

3 31

I

I-A
i Figurevi-2: leeatios

Pacin Procedsres

ovra a t a lgorithm in th

3thseatclge ttioni

3em 4OW OM3 Lo

Figure 5-2: Plan generation

fst estimates the time required for each procedure. Associated with each
procedure is a function to estimate the number of procedure steps and a second
function to estimate the average time per step. These are used to arrive at the

overall estimate. The partitioning algorithm also takes into account the disruption
in the semantic coherence of the instruction caused by placing a partition between
two procedures. For example, ending a lesson with a procedure that provides
motivation for a topic in the next lesson is less desirable than having the
motivation immediately precede the topic motivated.

A heuristic function that combines these two criteria - semantic coherence
and deviation from target lesson length - is used to score how bad different
possible partition placements would be. The algorithm is quite simple. It moves
a possible partition placement from the beginning of the lesson towards the end.
The measure of how bad the partitioning is decreases until a minimum is reached
and then the partition is placed. The procedure repeats with the remaining
lessons. This is a simple lull-climbing procedure and obviously more
sophisticated scheduling or search algorithms could be applied.

3 Plan generation and execution occur in phases called control phases. These
are states where only certain kinds of planning actions are performed. BB-IP'sI

U
I

32

I
control phases are shown in Figure 5-3. Phases on horizontal lines are next to the 3
planning level they affect. Planning actions that occur in these phases either add
to or modify a partially refined instructional plan. The special Meta-Level phase
decides what plan phase to jump to next. I

Refine Assess Meta-level

Propose Prloril z Fiter Sequence Critique Metsl.vel
/ Activtlf t• :

Z ProPeduree

It I
Partition Lessons Mets-level

Leso Partitingo

Critique Mets-level

monlitor_-op

L811 I L9san 2 eLmWR Z 'Ellit

Diagnose

Figure 5-3: Control phases in plan generation and execution

Consider plan generation first, assuming complete top-down plan
elaboration. The basic sequence of phases is: I

1. Refine Objectives- The top-level instructional objective is refined by
copying prerequisite objectives from the domain specific skills. 3

2. Assess Objectives - The student is given a pre-instruction
questionnaire to initialize the student model.

3. Propose Activities Activities to achieve the objectives are
proposed.

4. Prioritize Activities Numerical priorities are assigned to each 3
activity to indicate its importance.

5. Filter Activities - Only those activities above a threshold are
retained. I

6. Sequence Activities - These activities are now sequenced.

I

* 33

I
3 7. Critique Activities - Improvements in the discourse flow are made.

8. Propose Actions - Candidate procedures for each activity are3 proposed.

9. Select Actions - Heuristics are used to select the best procedure for
each activity. Parameters are set for the procedures.

1 10. Sequence Actions - Procedures are sequenced in the same order as
their parent activities.

11. Critique Actions - The plan is again critiqued and improved.

12. Partition Lessons - Partitions are laid down, breaking the
instructional plan up into lesson plans.

The Meta-Level phases at the end of each horizontal line in Figure 5-3 were not
mentioned since they just produce the sequencing above. However, when
incremental planning occurs phases 8, 9, 10, and 11 are skipped.

The planner uses the student model to customize the plan in several of the
phases above. In the Prioritize Activities phase the priorities for covering various3topics and performing other activities are set based on the student model.
Similarly, in the Select Actions phase the selection and setting of procedure
parameters also depend on the student model.

After the Partition Lessons phase execution begins. The Meta-Level phase
moves the planner into the execution loop at the bottom of Figure 5-3, starting
with the Execute phase. The planner stays in the Execute phase as long as the
instructional plan is executing smoothly. Interruptions occur when the student
model or time do not change as expected or if there are student-initiated questions
or requests. The planner enters the Monitor phase and the reason for the plan's
interruption is recorded as a plan execution complaint.

A question or a request is deferred if it will be handled later in the
instructional plan anyway. Otherwise it is granted immediately. In the former
case the tutor explains why the request is being deferred and continues with the
Execute phase. In the latter case a step performing the procedure that answers the
question or grants the request is spliced into the lesson plan in the Edit phase.
The Critique phase adds a transition step then execution resumes. The next step3 to be executed is the step satisfying the student's request.

An unexpected change to time remaining or the student model means that
the plan has some flaw. The Diagnose phase attempts to infer what is wrong.
This phase ends when a decision has been made about what the problem is. Then
the Edit phase either adds or deletes lesson plan steps, or alters procedureI

I
I

34I

parameters, according to the kind of problem. The steps added may only be at the 3
activity level, requiring a digression back to the plan generation process to select
procedures. Then this new plan patch is critiqued and execution resumes.

Several planning actions may occur in any one control phase, although
abstractly the phases can be considered as one planning action. For example, the
Propose Activities plan phase is actually broken down into three separate planning 3
actions. One proposes activities that cover topics. Another proposes assessment
activities that monitor plan progress. The last proposes pedagogical activities
such as letting the student explore the device exploration or practice new skills.
Similarly, the Execute phase in the execution cycle may correspond to the
execution of many individual procedures and procedure steps. Mc ' of the time
the planner is in the Execute phase. 3

Changes to plans are called plan edits or plan patches. These involve adding
steps, deleting steps, adjusting parameters, or repartitioning lessons. Objectives
are not added or deleted but their status as satisfied or unsatisfied can be altered
which has the same effect. Another approach not explored in the current planner
is to discard the remaining lesson plan or even the remaining instructional plan
and plan anew from the current situation. This approach could be disruptive to
the student's expectations and wasteful in planning time. However, this may be
the best approach in some situations that would otherwise require numerous
interacting plan edits.

PLanning and execution are interleaved through the use of control phases and
in particular the Meta-level control phase. The Meta-level phase allows i
suspending the execution cycle to return to the generation process and then
resume execution. This interleaving is used in three ways in the current planner
(all implemented): I

I. Incremental Planning - execution of the plan, refined only to the
activity level, is interleaved with selection of procedures and
critiquing the refined plan.

2. Elaborating and Integrating Plan Patches - plan patches, consisting
of only activities, are refined to the procedure level and then spliced m
into the current plan before execution resumes.

3. Initial Assessment - a single-step plan for performing assessment is
generated and executed to assess the student's knowledge of the I
instructional objectives. This is a digression that is initiated by the
Assess Objectives plan phase. Although not currently performed,
the planner could develop more elaborate multi-step assessment
plans in this manner.

I
I
I

* 35I

3 6. The Blackboard Architecture and its Role
This section describes how the blackboard software architecture has been

used to implement the Blackboard Instructional Planner. The role of the
architecture and its implications for implementing future ITS systems are
discussed. First we clarify what we mean by "architecture" since this term can be
used in many ways.

A software architecture is defined here as a layered software environment
that defines a knowledge base structure and inference mechanism. It is a general
purpose inference engine or reasoning subsystem [Feigenbaum 88] that can be
implemented in any standard programming language, with varying degrees of
efficiency. The architecture defines a new programming language at a higher
level [Chandrasekaran 891 than those used to implement it. The architecture is
not the progranming language itself, rather it is a virtual machine that can
interpret this high-level programming language. Associated with a software
architecture are a set of programming conventions for using it and a set of
problems that it is most appropriate for. Other problems can be handled because
of Turing compatibility, but part of what differentiates one architecture from
another is the target class of problems it is designed to handle best. To simplify
the problem-solving for the intended class of problems the architecture imposes
constraints on the user. Some of these are explicit - in terms of constructs
provided by the higher-level programming language - and some are implicit - in
terms of the programming style associated with the architecture. In turn the
virtual machine defined by the architecture is specially designed to accelerate and
structure the problem-solving process by taking advantage of these constraints.
Additionally the structure imposed may simplify human conceptualization of the
problem and its solution, independent of its use by the architecture's

* implementation.

Examples of software architectures are production rule languages, neural
networks, blackboards (discussed below), and logic programming. Object-
oriented programming would not be a software architecture by this definition
since no virtual machine, knowledge base, or inference engine is provided.
Instead, object-oriented programming is a programming style and a set of tools
that can be used to build software architectures. If we allow any change to a data
structure to be considered an inference, and any program to define a virtual
machine, then all programs define architectures and the term is not useful. The
inference engine defined must be general purpose.

There is a looser definition of architecture that can easily be confused with
the stronger definition given above. Consider the diagram in Figure 1-3. It is a
functional diagram, showing conceptual layout, rather than an architecture sinceI

U
I

36

I

it does not meet the criteria above. Although it is intended for a class of problems I
(intelligent tutoring systems) it does not define a higher-level programming
language or a virtual machine that interprets this language. If the modules
corresponded to separate processes and the arrows to message passing then the I
diagram would correspond to a looser definition of architecture. This looser
definition of architecture specifies a software system's organization by defining
its constituent software modules and a static set of data and control flow
pathways. Message passing conventions may also be defined. This looser
definition is more a software infrastructure rather than a higher-level virtual
machine. This paper uses the first definition of architecture unless otherwise
specified.

There are three defining features of the blackboard architecture: 3
1. Hierarchically structured global database - this is the blackboard,

typically organized into levels to reflect the hierarchy. 5 The
evolving problem solution is recorded here as objects on the levels. I
The objects can have attributes and be linked to other objects.

2. Independent knowledge sources - these are software modules that
communicate only by accessing and recording data on the I
blackboard.

3. Agenda control mechanism - the knowledge sources that can be run 3
are stored on an agenda. Problem-solving heuristics are used to
select which knowledge source to run next.

The programming conventions for using blackboards effectively are: 3
" Knowledge source independence - the knowledge sources should not

make assumptions about the presence of other knowledge sources or
their sequence of execution. They cannot communicate by global I
variables or message passing, only by the blackboard.

" Knowledge source granularity - the knowledge sources make
significant contributions to problem solving. The contribution should I
be large enough to justify the overhead of the agenda control
mechanism. The granularity of knowledge sources is typically much
greater than that of production rules in production rule languages.

* Problem structuring - the problem is represented on the blackboard at
various levels of abstraction. 3

I
'*BB I [Hayes-Roth 84] is as described here; GBB [Corkill 87] allows more complicated

structural breakdowns of the blackboard into spaces of n-dimensions. 5
I
I

1 37

I
3 6. . Overview of the Implementation

BB-IP is built on the BB I Blackboard Architecture [Hayes-Roth 84], which
allows multiple blackboards, rather than just one. These are the main blackboards
used by BB-IP:

*Instructional Plan - represents the three-level instructional plan. As
discussed before, the levels are:

1. Instructional Objectives

2. Activities

3. Procedures
* Student Model - represents the student model.

3 e Device - represents the structure and operation of the device.

" Planner Control - represents meta-level decisions such as whether to
continue planning or start execution. Problems noted in the plan's
execution and decisions about their cause are also recorded.

The device blackboard is not updated during execution; the others are.

I The knowledge sources of BB-IP are planning actions. They primarily
modify the Instructional Plan blackboard. The kinds of actions performed are:

* Plan generation - new objects are added to the instructional plan and
linked to the objects they refine. These objects represent objectives,
activities, or procedures.

* Plan execution - a step in a procedure is executed.

o Plan monitoring - some problem in plan execution is noted. For
example, the time available or student model is not as it should be.

o Plan diagnosis - a decision is made regarding a plan failure.

o Plan revision - part of the plan is modified. New activities or
procedures may be added or others deleted.

The execution cycle of BB-IP is shown in Figure 6-1. Changes to the
blackboards are caused either by the execution of planning actions, or by student
interaction. These changes are called events. They trigger knowledge sources
(KSs) creating activation records which are placed on the agenda. These3 knowledge source activation records or KSARs record the knowledge sources and
their variable bindings when triggered. The scheduler (described below) selects
the next KSAR to run. Then the next KSAR is interpreted. Its execution may3 cause changes to the student interface, the instructional plan, or both. This cycle
continues until the instructional plan has been completed.

I
I
I

36

I

Reqdets Dspay ¢heuid cheduler

I

Figure 6-1: Execution cycle of the Blackboard Instructional Planner 1
Control reasoning is reasoning about what to do next. In BB-IP it is quite

simple. Triggering of knowledge sources is restricted not only by the events
which have just occurred but also by the current control phase, which is recorded
on the Planner Control blackboard. The special Meta-Level knowledge source
switches control phases when appropriate. Several KSARs may be on the agenda
during each control phase. Each KSAR has an attribute called its priority or a
function that can be called to compute this number. The scheduler always selects
the KSAR with highest priority to execute rzwxt.

Further details of the implementation are provided in the appendices. I
Appendix C describes all the blackboards and knowledge sources. The first
version of the planner, which relies more heavily on BBI's built-in control
reasoning capabilities, is described briefly in Section 7 and more extensively in
Appendix F. U
6.2. Support for Dynamic Instructional Planning

The blackboard architecture facilitates the implementation of dynamic
instructional planners by supporting an explicit plan representation, meta-level I
reasoning, interruptibiity, and rapid prototyping. Other reasons cited
[Hayes-Roth 87a] for using blackboard architectures such as integrating 3

I
I
I

3 39

I

3 uncertain data, island driving, 6 and providing opportunistic control appear more
relevant to interpretation applications (e.g., HEARSAY-iI [Erman, et al 80]) than
this planning application. If more sophisticated student modelling were
performed these reasons might justify using a blackboard for constructing the
student model.

An explicit instructional plan representation supports dynamic planning by
representing plan rationale, future unexecuted actions, global resource allocation,
and constraints on partially refined plans. The use of plan critics are also
supported. These are explained in more detail below:

" Plan rationale - the instructional objectives represent the rationale for
each plan step. Representing plan rationale supports replanning
when current goals fail, previously satisfied goals are not maintained,
or future goals unexpectedly become true. By knowing why steps are
in the plan, BB-IP can detect when they are no longer necessary or
what remains to be done if the steps do not have th,.r xpected
effects.

" Future unexecuted actions - by representing future actions BB-IP can
provide the student with lesson and course overviews, and plan
smooth transitions back from interruptions to the main lesson plan.

" Global resource allocation - with an explicit representation of the
overall plan BB-IP can appropriately allocate resources to best use its
resources. Otherwise local decisions made now could deplete
resources required for future goals.

" Partially refined plans - An explicit representation of partially
refined plans allows constraints on future plan steps to be represented
without committing to a specific step; this supports the kind of
incremental planning that BB-IP performs.

" Plan critics - can be used to improve initial plans. They detect
interactions between different parts of the plans and make local
optimizations by examining subsequences of plan steps.

BB-IP does not fully exploit these features although all are used. For example,
only time is reasoned about in resource allocation. Similarly, BB-IP's
incremental planning capabilities do not take advantage of additional information
that can be gathered by deferred decision-making.

The blackboard architecture supports an explicit plan representation by

I
6lsland driving focuses problem-solving activity on merging together those solution fragments3 that have the greatest support from the evidence available.

I
I

40

I
providing the blackboard data structure and mechanisms for defining blackboard
objects, attributes, and links. Objects on blackboard levels can represent steps on
different levels of plan abstraction. Links can represent step sequencing and
refinement. Attributes can represent constraints or allocated resources.

Meta-level reasoning supports dynamic planning by allowing plan
generation, refinement, execution, monitoring, diagnosis, and repair to be I
interleaved as required. It supports efficiency by focussing the planner's activity.

The blackboard architecture supports meta-level reasoning by allowing control
decisions to be explicitly represented on blackboards and by allowing these I
control decisions to affect the scheduling of knowledge sources. The scheduler
and agenda control mechanism allow the planner to choose the best action
(KSAR) possible given its current planning goals. These planning goals might be I
conflicting or diverse; the scheduler can choose that action that best contributes to
achieving the most important goals.

Interruptibility is required by a dynamic instructional planner to allow I
unexpected student-initiated questions and requests. The blackboard architecture
supports interruptibility by allowing control to switch from one action (KSAR
execution) to another in different cycles. For example, in BB-IP the Execute
Procedure knowledge source is used to execute the next step in an instructional
procedure. It may need to be called many times to finish the procedure. If a
student question occurs during the procedure another knowledge source to handle
the question is triggered. That knowledge source has higher priority than Execute
Procedure so it will execute next. In this way instructional procedures are
interruptible between procedure steps.

Rapid prototyping facilitates construction of planners such as BB-IP and
exploring different planning approaches with them. The planner has evolved
incrementally. Increasing capabilities were added that required extending and
revising the knowledge sources and plan representation. First, plan generation
and execution were implemented but no lesson partitioning, plan monitoring, or
dynamic replanning was performed. Next, plan monitoring and replanning for
failed lesson objectives were added. These extensions required adding knowledge
sources to monitor changes to the student model, to diagnose the cause of plan
failure, and to edit the plan to fix the problem. The ability to handle student-
initiated questions and requests was added next. A means of recording these
interactions was required along with new knowledge sources for handling
requests. Additional plan critic knowledge sources ensured that the tutor
provided a smooth transition from student-initiated digressions back to the main
lesson topic. When curriculum planning was added the instructional plan
representation had to be extended to represent lesson plan partitions. A new I

I
I

* 41

I
3 knowledge source to partition lessons was added at the same time. All of these

changes were facilitated by the rapid prototyping environment afforded by the
BB I blackboard architecture [Hayes-Roth 84] that was used to implement BB-IP.

Blackboard architectures support prototyping by allowing knowledge
sources to be selectively enabled or disabled. Other knowledge sources do not
need to be modified if each has been written to be independent and to
communicate only through blackboards. BBI additionally provides graphic
display of blackboards, events, and the agenda. KSAR execution can be traced3 and the display updated after each execution cycle. BB 1 also provides windows
with menu commands that allow blackboards and knowledge sources to be easily
created or modified.

Each of these features - explicit plan representation, meta-level reasoning,
interruptibility, and rapid prototyping - were essential to the BB-IP
implementations (both planner versions) and facilitated by the BBl blackboard
architecture. But BBI and blackboard architectures are not required. For
example, MRS [Russell 85] would support many of the features listed except
rapid prototyping. Alternatively, the planner shell SIPE [Wilkins 84] could have
been extended, as will be discussed in Section 7. Finally, BB-IP could have been
written from scratch in LISP. All could have been done but would have been
more difficult.

The role of the architecture is to facilitate the solution to the problem, not to
solve it. The architecture alone does not solve the problem; it is just a tool. The
two implementations of the planner show that even one architecture (BB I) can be
used in two quite different ways to solve the same problem. Focussing too much
on the architecture can obscure the difficult task of determining what knowledge
to add and how to structure it. Control issues about how to apply that knowledge
must also be addressed. For example, the architecture may provide a meta-level
reasoning capability, but the system designer must still determine how to use it
and what meta-level knowledge to add.

1 7. Related Work
This section discusses related work in intelligent tutoring systems, planning,

explanation generation, and blackboard applications. We start with a discussion
of different approaches to control for intelligent tutoring systems, organized
around the models of instruction shown earlier in Figure 1-2. A more detailed
discussion, organized by control mechanisms rather than instructional approaches,
can be found in [Murray 89b].

I
I
I

421

7.1. Related Research in Control for Intelligent Tutoring Systems
As mentioned earlier, most intelligent tutoring systems rely primarily on

opportunistic tutoring strategies. The simplest approach, requiring no planning
capabilities, is to provide a reactive learning environment consisting of a U
simulated microworld. The student discovers concepts and acquires new skills in
the process of exploring the microworld. Examples of such instructional systems
include STEAMER [Hollan 84], REFRACT [Reimann 89], SMITHTOWN [Shute U
861 (considering just the economic simulation of the town), and LOGO [Papert
80] (since a graphic turtle simulates the motions of a robot turtle). Such
environments may lack a student model, non-simulation domain expertise, and
provide only limited or no tutorial interventions. They are discussed here since
they rely heavily upon artificial intelligence techniques and environments.
Learning environments currently being developed that exploit hypermedia may I
also adopt a similar discovery learning approach. Again, no planning is required.

Planning is also not required for tutors that act as coaches (e.g., WEST 3
[Burton and Brown 791 or WUSOR [Stansfield 76]). These systems more

closely fit the usual model of an intelligent tutoring system since they have
domain problem-solving capabilities and a student model. The domain expert 3
allows the tutor to compare the student's moves to an expert's to infer the student
model. These tutors are still primarily reactive since they do not plan lesson
content and delivery, or engage in extended discourse with the student. Instead,
simple hints are provided when appropriate. U

More complicated control mechanisms are required to handle mixed-
initiative instruction. Discourse management techniques are required to allow the
student to ask questions and make requests of a tutor using a Socratic method
style of instruction. SCHOLAR [Carbonell 70], WHY [Stevens and Collins 77],
MENO-TUTOR [Woolf, et al 84], and GUIDON [Clancey 79] are examples of
such tutors.

A rule-based approach to dialog control is used in SCHOLAR and WHY. I
GUIDON builds on this work and introduces domain-independent tutorial rules,
called t-rules, that handle discourse and changes to the student model. Each T-
rule is a pre-stored plan consisting of a sequence of steps. Execution of each step
can depend on the student model and dialog history. Step execution can cause
text presentations, student model updates, or the execution of other t-rules
[Clancey 87]. Overall dialog control is provided by a discourse management

network, this network is a state transition graph of dialog states. Dialog states
focus the discussion on domain rules, goals, data, or student hypotheses.
Transitions between states are again managed by t-rules. So although GUIDON
uses a discourse management network, its principal control mechanism is its t- I

I
I

3 43

I

3 rules [Murray 88a].

In contrast, the principal control mechanism of MENO-TUTOR is its
discourse management network. Rules associated with each dialog state
determine discourse actions and a default next state. Specific meta-rules can
override these defaults. MENO-TUTOR differs from GUIDON in its reliance on
this discourse management network for control, and in its hierarchical
representation of tutorial discourse decisions.

The key point is that these tutors are not just reactive, they have more
sophisticated control mechanisms for local planning of discourse. The tutors plan
only in the sense that they select a sequence of actions to perform. They do not
plan in the sense of reasoning about the results of action sequences or performing
global resource allocation among plan actions. Instead, control in GUIDON and
MENO-TUTOR more closely resembles planners that perform hierarchical plan
expansion with dynamic selection of pre-stored skeletal plans.

Discourse management techniques are not required for tutors that act as
intelligent problem-solving monitors, although they are sometimes employed.
Such tutors adopt a case-method style of instruction that is currently the
predominant paradigm for intelligent tutoring systems. Socratic-style instruction
is possible but most case-method tutors do not support sophisticated discourse
management, with GUIDON being a notable exception. More commonly, as the
student solves some problem the tutor assists the student with hints and provides
the next step as a last resort. It also looks for and acts on opportunities to either
introduce new material or point out possible misconceptions. Such tutors usually
have sophisticated problem-solving capabilities that allow them to monitor the
student's progress (examples include GREATERP [Reiser 85], RBT [Woolf 87],
SOPHIE [Brown 75] and IMTS [Towne 89]) or to evaluate the final solution
(examples include PROUST [Johnson 85] and TALUS [Murray 88b]).

3 Some of these tutors dynamically select problems to suit a student's skill
level but many do not. BIP [Barr, et al 76], GREATERP [Reiser 85], and IMTS
[Towne 89] belong in the former category. In contrast, PROUST and GUIDON
assume that the case to discuss is pre-selected. Those systems that dynamically
select a sequence of cases perform a simple kind of incremental planning of
lesson content. However, these systems still lack an ability to plan and deliver
customized expository instruction; instead they are intended to augment prior or
concurrent instruction from the classroom (e.g., PROUST) or a workbook (e.g.,
GREATERP).

In summary, the opportunistic tutors discussed above use fairly simple
control mechanisms:

I
I

44

I
" Reactive planning - as in SOPHIE-I or WEST.

" Dynamic task selection - as in BIP.

" Dynamic selection and expansion of pre-stored skeletal plans - as in
GUIDON (using t-rules) or MENO-TUTOR (using a discourse
management network).

Other possible control mechanisms for opportunistic tutors such as agendas are
considered in more detail in [Murray 89c].

All of these control mechanisms are not dynamic instructional planners by 3
the definition on page 2 since these control mechanisms do not

* Construct a data structure representing the tutor's instructional plan
- Instead there is either a pre-stored plan, no plan at all, or else some I
other pre-stored data structure that is interpreted to determine course
content and delivery. For example, GUIDON refers to a pre-stored
MYCIN trace to select topics to discuss. 3

* Interpret this explicit plan representation - to control delivery of
instruction.

* Revise the plan - as the tutorial situtation changes.

* Perform global resource allocation - because unlimited time is
usually assumed.

Now we consider intelligent tutoring systems that are dynamic instructional
planners, according to the definition on page 2. They have the potential for 3
integrating the opportunistic teaching methods presented above with the ability to
generate customized expository instruction, as shown in Figure 7-1. BB-IP is a
step in this direction, but much more work remains to be done. We consider other
approaches to planner-based control to tutoring systems below, along with earlier
planners and planner architectures implemented in this project. Differences
between these systems and BB-IP are discussed in some detail to help place the I
current work in perspective and trace the evolution of planners developed in this
project.

The first major step in the direction of a dynamic instructional planner was U
taken by Peachey and McCalla [Peachey 86] in their STRIPS-based lesson
planner. The planner's operators are very high level: they deliver instruction and
perform assessment for topics in economics. The plan generated is non-
hierarchical but explicitly represents expected changes to the student model.
Replanning occurs when these changes do not occur and none of the contigent
branches in the plan apply. A plan editor determines a plan patch to change the
student model from what it is to what it should be before the remainder of the I

I
i

3 45

I

I

H Instructor St ent

Figure 7-1: Integrating plan-based and opportunistic teaching paradigms

plan can be continued.

3 BB-IP differs in many ways, although there are some similarities. Unlike
the planner above, the plan representation of BB-IP is hierarchical, includes time
estimates for plan steps, but does not have conditional branches. It does not have
to be generated all at once, instead it can be refined incrementally. The Peachey
and McCalla planner, like BB-IP, can generate customized lesson plans and
adaptively replan according to changes in the student model. But it does not
address mixed-initiative instruction, time management, or detailed lesson
delivery. The emphasis is on planning lesson content. The planner's actions are
very coarse grained (e.g., TEACH-COD for teach concept of demand) and assume
that all changes to the student model are known after each action is executed.
Thus each action is also responsible for assessment of the concept taught. In
contrast, BB-IP unbundles presentation and assessment by having separate
instructional procedures for each. It plans how and when to perform assessment.
To support mixed-initiative instruction, BB-IP's procedures are interruptible.
Finally, BB-IP plans the amount of time per lesson and adaptively replans as time

I available changes; the STRIPS-based planner does neither.

IDE-INTERPRETER [Russell 88a] is a dynamic instructional planner that is
more similar to BB-IP than the Peachey and McCalla planner. IDE-
INTERPRETER delivers instruction for the IDE [Russell 88b] (instructional
design environment) system. The planner interprets a set of rules to expand

I
I

46 I
I

instructional goals into subgoals. IDE-INTERPRETER and BB-IP are similar 3
since the planning approach of both is basically top-down plan expansion, both
represent the goal structure in lesson plans to support incremental planning and
'adaptive replanning, and both execute instructional routines (called instructional I
units in IDE-INTERPRET ER) as primitive plan actions. During each cycle of
IDE-INTERPRETER's execution it selects and executes an instructional unit
relevant to the current instructional goal. It does not select these before it begins I
execution, so its operation is similar to BB-IP's incremental planning approach.

IDE-INTERPRETER's instructional units are similar to BB-IP's
instructional procedures, but are not broken down into smaller steps to support
interruptibility and monitoring. It does not appear that IDE-INTERPRETER sets
the parameters of its instructional units as BB-IP does, but instead IDE- I
INTERPRETER selects the most appropriate instructional unit available. The
student model is not updated until after the execution of an instructional unit, at
which time a history list of interactions is analyzed. Student requests that could
not be handled by an instructional unit would also be handled at that time. In
contrast, BB-IP monitors the execution of instructional procedures, updates the
student model, and handles student input during procedure execution (between I
procedure steps). Thus, BB-IP deals with issues of procedure monitoring,
interruption, suspension, resumption, abandonment, and the planning of smooth
transitions to and from student-initiated digressions that occur during procedure I
execution; IDE-INTERPRETER does not address these issues. For example, BB-
IP 'nonitors procedures and adjusts procedure parameters between procedure
steps if student performance is too low; IDE-INTERPRETER cannot make such •
adjustments.

BB-IP also has greater control reasoning capabilities; these are facilitated by 3
its explicit representation of control decisions separate from the instructional plan.
Its use of control phases allows it to deviate from plan generation, execution, and
refinement to reason about causes of plan failure and the best plan edits to fix the
problems. Encoding these kinds of deviations appears more difficult in IDE-
INTERPRETER since it does not explicitly represent control decisions.

There is insufficient space to cover all the related work in instructional i
planning for intelligent tutoring systems. Research in this area is ongoing at the
University of Amsterdam (EUROHELP project [Breuker 87]), Li.iversity of
Saskatchewan (SCENT project [Brecht 89]), and Florida State University (TAPS
intelligent tutoring system [Derry 88]).

Now we consider two precursors to BB-IP developed under this same I
research contract. BB-IP's immediate predecessor is the first version of the
Blackboard Instructional Planner, described in [Murray 89b] and [Murray 89a]. 3

I
I

S47

3 This first version will be referred to as BB-IP-l and the second (current) version
as BB-IP-2 or just BB-IP when there is no chance of confusion. Preceding both
versions of the Blackboard Instructional Planner is the research on planner and
ITS architectures by MacMillan described in [MacMillan 87] and [MacMillan
881; this will be discussed first.

MacMillan's research focuses on the design and implementation of planner
and ITS architectures, rather than the implementation of any specific dynamic
instructional planner. In [MacMillan 87] two architectures are presented:

1. The BLACKBOARD-instructor - an ITS architecture.

2. The SlIP architecture - an architecture for dynamic instructional
planners, to be used in conjunction with the BLACKBOARD-
instructor.

The SUP architecture is an architecture in the first sense defined on page 35, i.e.,
it defines a virtual machine. The BLACKBOARD-instructor is an architecture in
the second, looser sense since it only specifies that certain software processes
correspond to components of an intelligent tutoring system, defines the
relationship of these components, and specifies a protocol for communication. In
addition to modules for the student model, planner, and domain expert there was
another module for a learning element to improve planning behavior. Both the
SUP and BLACKBOARD-instructor architectures were implemented but a
planner was never demonstrated for a realistic and nontrivial application that used
these architectures, nor was any leaming element ever implemented for those
planners that were built in the SUP architecture. Further discussion of these
architectures and a detailed comparison of BB-IP-2 and SIP is provided in
Appendix E.

3 The first version of the Blackboard Instructional Planner discarded both the
SIP and BLACKBOARD-instructor architectures. Instead an existing
architecture (the BB1 Version 2 blackboard architecture [Hayes-Roth 84]) was
adopted. The focus of the research shifted from generic ITS/planner architectures
to the implementation of a dynamic instructional planner for a realistic domain.

3 The first such planner implemented was Bb-IP-1. It was not based on SUP
but instead on an unrelated blackboard application called PROTEAN
[Hayes-Roth 87b]. PROTEAN infers the three-dimensional structure of protein

molecules based on constraints including measurements obtained from nuclear
magnetic resonance (NMR). It relies on a high-level language of problem-solving
operators. These operators are appropriate for solving similar constrained
arrangement problems by a method of incrementally assembling solutions. The
high-level language was called ACCORD [Hayes-Roth, et al 87]. Hayes-RothU calls such a high-level language, appropriate to a class of problems, a language

I
I

481

framework. Extensions to BB I called BB* simplify the construction of new
language frameworks.

The first Blackboard Instructional Planner was built by defining a new
language framework called TUTOR. Rather than solving a class of arrangment
problems it solves a class of instructional problems. It is intended for tutors that
teach the troubleshooting of complex hydraulic-electronic-mechanical devices by I
first imparting a mental model of the device and its operation using a STEAMER
device simulation.

A planner was built using these operators and scenarios were implemented
that illustrated lesson content customization, question handling, request handling,
context-sensitive tutorial strategies (expository and case-method), and the 3
dynamic adjustment of tutorial strategies. But the planner had the following
shortcomings that led to the implementation of BB-IP-2:

* Instructional actions were only simulated - so it was difficult to
determine if assumptions about actions were realistic.

* The implementation was slow - because of time required to interpret
the language framework and the complex control structures used.

* Other tutor components were overly simple - so it was difficult to
draw any conclusions about the relationship of planner to other tutor
components that would interact with it.

* Planning was very restricted - since only local incremental planning
could be performed. The tutor would at most plan out the next few I
topics and the next few steps in presenting the current topic.

A complicated multi-step instructional plan with multiple lessons and estimated
lesson lengths was far beyond the capability of the first Blackboard Instructional I
Planner. Plan patching and plan critics were also not implemented.

BB-IP-2 has a much more sophisticated plan representation than BB-IP-1
and implements all instructional actions. Other differences include a higher-level
of granularity for knowledge source actions, an emphasis on lesson planning
rather than discourse planning, and a more sophisticated approach to plan I
generation and replanning that includes the planning of lesson sequences. Unlike
BB-IP-1, there are no knowledge sources to directly carry out didactic actions.
Instead, BB-IP-2 knowledge sources only perform planning and plan execution i
actions and instructional procedures are used to carry out all didactic actions. As
a result of the design changes, BB-IP-2 runs much faster than BB-IP-l. A
detailed discussion of differences between these two planners is presented in I
Appendix F.

I
I
I

I 49

I

I 7.2. Related Research in Planning, Blackboards, and Other Areas
The planning, blackboard, and simulation-based training research most

related to BB-IP and te Lower Hoist Tutor is presented here. Some of the
research presented, such as IMTS, has influenced the design of the non-planning
components of the Lower Hoist Tutor. Other work is more related to just the
planner. For example, independent research in applying dynamic planning
techniques coupled with an explicit plan representation to non-ITS knowledge
communication follows somewhat parallel lines to BB-IP. Johanna Moore's
[Moore 89] work on explanation generation exemplifies this area of research.

Recent work that extends classical planning (i.e., SIPE [Wilkins 88]) will be
reviewed to provide a useful perspective on BB-IP's approach to dynamic
replanning. Finally, those blackboard applications that were important influences
in developing BB-IP will be discussed.

vIMTS provides a set of tools for rapidly constructing intelligent tutoring
systems for simulation-based training. It is discussed here since its primary
influence is on the Lower Hoist Tutor's interface and student model and not on its
planning component (BB-IP). Its influence on the student model has been
discussed in Section 3. The IMTS interface has also influenced the way that the
STEAMER [Hollan 84] lower hoist simulation has been adapted for use as a
student interface. Although the domains are different, the IMTS Helicopter3Bladefold simulation discussed in [Towne 89] and the lower hoist device
simulation are similar in the following respects:

1. Use of icons - graphic images depict device parts and show what
state they are in (e.g., a piston icon might be drawn as extended or
retracted).

2. Propagated effects - part state changes propagate to model similar
changes in the device modelled. Display updates mirror changes
that occur in the underlying device model.

3. Simulated troubleshooting tests - the student can simulate the use of
test equipment such as logic probes or pressure gauges.

4. Simulated part replacement - the student can simulate the
replacement of parts to correct a device fault.

The first two similarities are due to a common heritage (STEAMER) while the
last two are borrowed from [MTS. In contrast, here are some key differences
between the systems:

1. Color - the lower hoist device simulation uses color to show high
and low pressure in pipes. RATS does not yet use color.

2. Platforms - IMTS has been developed for Xerox D-machines and is
currently being ported to other platforms. The lower hoist

I
I

50

simulation runs on the Symbolics and TI-Explorer family of LISP m
machines.

3. Authoring tools - IMTS provides a general set of authoring tools for
constructing device simulations while the Lower Hoist device
simulation was built using only the original STEAMER graphics
tools.

4. Domain expertise - IMTS provides general domain expertise for
inferring the propagation of part state changes, and for determining
optimal troubleshooting actions. IMTS can also simulate faulted I
device operation; the lower hoist device simulation cannot. No
general troubleshooting expert is yet available for the lower hoist. 7

Although IMTS can select optimal troubleshooting actions it cannot m
participate in an dialog to explain why its choice is best and why another choice is
not. Explanation generation is another research area where dynamic planning
techniques, explicit plan representations, and the use of blackboard architectures
are being explored. Moore [Moore 891 advocates the use of an explicit plan
representation and dynamic planning for generating explanations for expert
systems. Dynamic planning is required to further elborate an initial explanation,
to clear up misunderstandings, and to answer user questions about the
explanation. As in BB-IP, an explicit representation of intended goals is used in
replanning. Other recent work in natural language generation [Nirenburg
89] takes advantage of the blackboard architecture's ability to support
opportunistic planning (discussed below). Although BB-IP relies on a blackboard
architecture it is not currently an opportunistic planner.

BB-IP is built using the BBl blackboard architecture [Hayes-Roth 84]. BB 1
in turn derives from research on a planner called OPM [Hayes-Roth 85], which
simulates human errand-planning. The planner pieces together a plan to handle a
set of errands in a fictional town. There is not enough time to perform all the
errands. The errands have different priorities and different locations in the town. I
The planner selects an overall strategy (such as perform tasks in the southwest
comer of town first) but can deviate from a high-level strategy to take advantage
of unforeseen opportunities. E.g., if the bank is nearby the post office both
errands may be performed even if this causes a deviation from the original
strategy. This kind of ability to take advantage of unforeseen opportunities that 3

7Work is underway to provide such expertise using an approach based on truth maintenance
systems. Basically, contradictions between the expected device state and actual device state lead
to the discovery of those parts or sets of parts that may be faulted and which can resolve the
apparent contradictions. 3

I
I

S51

I

3 arise in planning is what is meant by opportunistic planning. Opportunistic
planning should not be confused with opportunistic tutoring, which takes
advantage of pedagogical opportunities that arise in the course of tutoring. It is
not clear how to usefully apply opportunistic planning to instructional planning,
and BB-IP does not do so at this time. Later research on BB I led to the
development of language frameworks and the BB* environment that support
these high-level problem-solving languages. This research in turn influenced the
first version of the Blackboard Instructional Planner (BB-IP-I), as discussed

* earlier.

Although BB-IP-2's approach to plan generation does not resemble OPM's
approach, its approach to dynamic replanning does resemble that of the SIPE
planner [Wilkins 88]. SIPE extends classical planning techniques based on
STRIPS [Fikes and Nilsson 7 1] and NOAH [Sacerdoti 77] by incorporating:

* Heuristics for efficiency - these allow SIPE to generate plans rapidly
enough (in a matter of seconds) to be used in practical applications.

" A deductive causal theory - this simplifies operator representations by
allowing context-dependent effects of actions to be deduced.

* Reasoning about resources - this allows reasoning about the cost of
actions (e.g., fuel or time).

UConstraint posting and propagation - this allows a least-commitment
strategy to planning that cuts down on unnecessary backtracking.
Objects that are to be used in actions may be only partially specified.
Later constraints may narrow the choice of acceptable objects to only
one.

• Plan critics - these allow incorrect plans to be detected and (if
possible) corrected. Backtracking occurs if no acceptable plan can be
found.

*Replanning - SPE provides domain-independent strategies for
repairing or improving a plan.

BB-IP's approach to replanning differs from SIPE's primarily by its incorporation
of a diagnosis phase to determine the cause of plan failure. In contrast, SIPE
assumes that a complete description of all unexpectedly violated predicates is
available; these predicates are entered by the user. However, SIPE's
classification of plan execution problems and its terminology is useful in
understanding BB-IP's diagnosis of similar errors and the plan repair methods it

i uses.

us Here are some of SIPE's classification of plan execution errors, its
replanning responses, and the BB-IP analogs:

I
I

52

Purpose not achieved - Some action fails to achieve its intended 1
effects. SIPE calls its planner to produce a new plan for that part of
the plan that failed. BB-IP analog: when assessment immediately
following presentation indicates the student did not acquire the skill I
just covered, BB-IP replans to cover it again. A different procedure
is used if possible. i

" Previous phantom untrue - A phantom is a goal that is believed true
at some point in the plan. If such a goal is no longer true and should
be then SIPE attempts to achieve the same goal using different
variable bindings for objects in actions. If that fails it will attempt to
achieve the original goal by calling its planner. BB-IP analog: when
the student asks a question indicating that he has forgotten
prerequisite material, the prerequisite material is riviewed. The
prerequisite material is similar to SIPE's phantom goals if the tutor
assumed that the student knew it based on the pre-instruction
questionnaire.

" Future goal already satisfied - Some future goal no longer needs to
be achieved since it is already true. The part of the plan to achieve
the goal is removed. BB-IP analog: when the student performs I
discovery activities and covers material that BB-IP intended to cover,
then those activities and procedures to cover the redundant material
are marked as deleted. I

Other kinds of SIPE plan execution errors discussed in [Wilkins 85] do not have
BB-IP analogs and so are not discussed here.

Although SIPE provides many planning capabilities required by dynamic
instructional planners, extensions would be required to implement planners such
as BB-IP. SIPE's efficiency, hierarchical plan representation, and its ability to
reason about resources, to replan, and to plan incrementally all provide some
support for dynamic planning. However the following do not yet appear possible
in the planner architecture described in [Wilkins 88]: U

* Plan critics that improve plan utility - SIPE has no notion of plan
utility. Plans are either correct or not. Its plan critics detect
violations of resource constraints and unacceptable orderings of I
actions. In contrast, the plan critics in BB-IP improve the utility (i.e.,
discourse coherence) of an instructional plan.

" Planning actions to monitor plan progress or diagnose plan failure - i
SIPE assumes that the user types in a complete description of all
violated predicates to indicate planning failures. BB-IP cannot make
such assumptions. It must insert assessment actions into its plan to I
monitor its progress and it must decide how to diagnose plan failures. i

I
I

I 53

I

ml Of course SIPE could be extended to overcome these limitations, although it
is not clear how difficult this would be. Possible extensions to BB-IP to perform
opportunistic planning and sophisticated meta-level reasoning about replanning
might also be much more difficult to replicate in SIPE than to implement in the
current blackboard architecture.

m 8. Conclusions and Future Directions
This section summarizes the conclusions of this research, discusses some

unanswered questions, and considers future research to address these questions.
Observations on the instructional planning task and instructional planners are
presented in Section 8.1. Section 8.2 discusses limitations of the Blackboard
Instructional Planner and the Lower Hoist Tutor, and future directions for
research. The final section, Section 8.3, summarizes the research contributions of
this work.I
8.1. Nature of Dynamic Instructional Planning

Dynamic instructional planning is an instance of a larger class of dynamic
planning problems characterized by an environment that is

* Incomplete - since the tutor has limited access to the student's mental
state,

* Uncertain - since this access is indirect and the tutor's inferences
may be wrong,

e Dynamic since the student's knowledge changes during and
between tutorial sessions,
Multi-agent - since the tutor and student cooperate to facilitate the
student's learning,

and where
Results of actions are uncertain - since the tutor cannot predict with
certainty the results of its actions.

Other examples of problems sharing these characteristics include battle
management, air traffic control, natural language discourse, crisis management,
and legal argumentation. In some ways instructional planning is not as difficult
since multi-agent planning and real-time stress are less important issues. There
are only two agents involved (more in a collaborative learning environment, or if
the classroom instructor interacts with the instructional planner), and real-time
stress is only moderate. Furthermore, the student and tutor are in a cooperative
rather than adversarial context.U

I
I

I
54

I

Instructional planning is also simpler than other planning problems due to 3
the limited reasoning about parallelism. SIPE can generate complicated nonlinear
plans allowing parallel execution by multiple agents. Such plans could be used to
control several robots at once in an assembly task. This kind of parallelism does I
not need to be dealt with in the one-on-one tutoring context assumed in this
research. If multiple interacting tutors were used to teach students, then such
planning would be required.

Reasoning about resources is simpler because typically only time needs to be
considered. In most instructional planners even time is not considered and then I
planning can be very simple. Top-down plan expansion can be used as in IDE-
INTERPRETER [Russell 88a] or simple goal-driven planning as in Peachey and
McCalla's planner [Peachey 86]. However, such methods by themselves would
be inadequate if nonlinear plans and resource conflicts were allowed. Additional
methods, such as SIPE's use of plan critics and backtracking, would be required
then. BB-IP does reason about a single resource - time - but its approach is quite I
simple since it does not handle nonlinear plans nor does it provide a general
mechanism for handling resource conflicts. U

Most plan representations used in instructional planning are hierarchical.
Some only represent lesson content but not means of delivery (e.g., IDE-
INTERPRETER). Others, such as BB-IP, represent both content and delivery.
Some represent plan contigencies (e.g., the non-hierarchical plan representation
used in [Peachey 86]) and others do not (e.g., BB-IP). The tutor's intentions can
either be explicitly represented or not. When these intentions are represented,
replanning is facilitated. The tutor can reason about what should have happened,
why it should have happened, and what to do about it. Alternatively, special rules
to handle particular kinds of errors can be provided (e.g., the error recovery a
language of SIPE [Wilkins 35]).

The key point is that fairly simple top-down expansion planners may be
sufficient and easily implemented for many ITS systems. Complexities are I
introduced when time is important, when student interrupts can overturn plans,
and where fime-grained diagnosis and replanning is required for remediation.
Then more complicated planners are required, and the blackboard architecture is
useful for implementing such planners.

The blackboard architecture is a software tool that simplifies the I
construction of dynamic instructional planners by providing a hierarchically-
structured global database, independent knowledge sources, and agenda control.
The database supports the instructional plan representation. The knowledge I
sources can act as plan refinement operators, plan critics, monitoring demons,
plan diagnosis experts, and plan editors. The agenda control mechanism supports i

I
U

m 55I 3

meta-level reasoning when there are conflicting goals and several competing
actions to choose among. Of course, because of Turing compatibility, the
blackboard architecture is not required. BB-IP could have been implemented
from scratch, by extending SIPE, or in MRS. But these implementations would
have been much more difficult.

iThe SLIP and BLACKBOARD-instructor architectures proved too
complicated and abstract to facilitate implementation of dynamic instructional
planners. The multiprocessing of the BLACKBOARD-instructor was especially
cumbersome. Experience with these architectures suggests that research
constructing general-purpose ITS architectures is only useful if an application can
be built that demonstrates the utility of the architectures and provides specific
guidelines on how to use the architectures.

8.2. Limitations and Future Directions
There are still many unresolved issues that a planner such as BB-IP raises.

How much planning should be performed before instruction begins? How often
should assessment be performed to monitor the student's progress? What is the
best approach to diagnosing plan failure when the student is not learning as
expected? The planner provides a framework to explore these issues.

IThe SlIP -esearch and BB-IP research does not address pedagogical issues
regarding the best means of initial student assessment, plan customization,
diagnosing plan failures, or providing remedial instruction. The SLIP planner,
BB-IP-l, and BB-IP-2 each make arbitrary decisions in these areas that have
surface plausibility but which are not based on any pedagogical theory. Theseg planners could be modified to test different theories by alterin1 their knowledge
sources. Since this has not yet been done in any nontrivial way a future direction
of research would be to attempt to operationalize and evaluate alternative
pedagogical theories to guide plan generation and replanning in a dynamic
instructional planner.

Limitations in the Blackboard Instructional Planner (version 2) suggest other
avenues for future research. These limitations are:

Interruptibility - interrupts are only allowed between procedure steps.
Ideally, the student should be able to interrupt at any time.

I 8'The Geometry Tutor described in Appendix E attempted to embody Bruner's theory of concept
attainment as described in [Joyce 861. However, it was unclear how to operationalize several parts
of the theory and the tutoring task was overly simple.

I
I

I
56 I

* Meta-level reasoning - is largely absent. The planner will use the I
same replanning method repeatedly even if it fails the first time.

Plan diagnosis - is quite primitive. Better approaches to diagnosing i
plan failure and planning remedial instruction are needed. Planning
for diagnosis should be addressed.

" Reasoning about time - is unrealistically simple at present. The U
application of scheduling algorithms could be investigated here.

* Robustness - is inadequate for classroom use. When not running
scenarios, the planner tends to either not replan when it should or to I
replan when it should not.

The lack of robustness is caused by the difficulty in determining the effect
that assessments should have on the student model and in determining when
replanning should occur. Currently replanning occurs when the certainty factors
associated with a student model skill either: I

" Exceed a threshold - indicating that the tutor now believes the student
has acquired the skill. I

" Fall below a threshold - indicating that the tutor believes the student
does not have the skill.

* Fall when they should rise - indicating that the tutor believes that the
student is not making progress towards acquiring the skill.

It is not clear what these thresholds should be or how to update the student model
based on assessments so that the tutor will draw the proper conclusions about the ,I
student's learning.

Future research can provide a more principled approach to student modeling B
in planner-based tutoring systems, integrating a means of updating the student
model to incorporate new assessment information with a means of deciding when
replanning is appropriate. Such research is necessary before the current approach
can scale up to the point that systems can be built for classroom use. The current
use of numbers to aggregate possibly conflicting assessment information
accumulated over a tutorial session is inadequate. A better approach would be to
represent the tutor's beliefs about the student's beliefs along with the
justifications for the tutor's beliefs. These justifications would refer to tests,
student self-assessment, student-initiated questions and requests, results of the I
pre-instruction questionnaire, and student performance on troubleshooting. A
sophisticated inference mechanism would be required for deciding how to
incorporate new assessments and to decide whether or not replanning is justified.
The use of a truth maintenance system (TMS) appears promising for this student
modelling application. If a replanning approach failed or if later assessments

I

* 57

B
contradicted tutor beliefs inferred from cognitive stereotypes, the TMS could be
used to isolate the faulty assumptions, revise them, and remove dependent
inferences that would otherwise lead to further inappropriate tutorial actions.
Student diagnosis could also benefit since uncertainty about possible erroneous
assumptions could guide the tutor's questions. Finally, the tutor could use the
TMS to explain its replanning actions in terms of its beliefs about the student.IThese explanations could be used either to assist in the debugging of the planner
or to explain to the student why the lesson plan is being changed.

1 8.3. Research Contributions
This section discusses the publications, software, and academic contributions

of this research. First we consider publications.

Macmillan and Sleeman's design for the SiP planner architecture and
BLACKBOARD-instructor ITS architecture is presented in Computational
Intelligence [MacMillan 87]. Operation of the SUP planner is also discussed in
that paper. The book chapter appearing in [MacMillan 88] is largely the same but

I includes an expanded discussion characterizing the instructional planning process.

Research on BB-IP-1 is first presented in an FMC technical report [Murray
88c]. An expanded version of this paper appears in the Proceedings of the 4th
International Conference on Artificial Intelligence and Education [Murray 89b].
It includes a survey and analysis of alternative approaches to control for
intelligent tutoring systems. That paper received the conference best paper awardUand was later reprinted in ECCAI's journal Al Communications [Murray 89c]. A
very similar paper with less emphasis on ITS and more on the blackboard
implementation appears as a book chapter in [Murray 89a]. A different paper31 comparing discourse management networks and blackboard architectures appears
in Journal of Machine-mediated Learning [Murray 88a]. This ONR final report is
the first publication describing the second version of the Blackboard Instructional
Planner.

Source and object code for the Blackboard Instructional Planner is available
from the author. Recipients must first sign an agreement with Stanford's Office
of Technology Licensing to obtain permission to use BB 1. The BB-IP code will

run on any Symbolics LISP machine, including the Maclvory. Code for the lower
hoist simulation is FMC proprietary and cannot be distributed without special
arrangement. The planner can run without the lower hoist simulation, in which
case the graphics commands are simulated and no color monitor is required.

Now we consider academic contributions. The first major contribution of
this research is its analysis of architectural and planning issues in ITS. ThisI

U
I

I
58

I

analysis is presented both in the papers discussed above and in Section 6 of this I
report. Alternative approaches to planning for ITS, and trade-offs made between
them, are considered in [Murray 89b]. Two particular architectures for intelligent
tutoring systems, discourse management networks and blackboard architectures, I
are analyzed in [Murray 88a]. That paper concludes that blackboard architectures
provide greater support for the implementation of dynamic instructional planners,
although discourse management networks are sufficient for sophisticated dialog I
management where only local planning is required.

A second research contribution is the implementation of the Lower Hoist
Tutor. This prototype tutor shows how a dynamic instructional planner such as
BB-IP can be integrated with other ITS components to form a complete system.
A realistic naval training application, teaching troubleshooting of the lower hoist a
assembly of the Mark-45 naval gun mount, has been selected to test the planner.

Although the tutor is experimental and not yet ready for classroom use, all
instructional actions have been implemented and the tutor can deliver about two I
hours worth of instruction on the lower hoist.

The major research contribution of this work is the implementation of the 3
Blackboard Instructional Planner. This planner shows precisely how a dynamic
instructional planner can be implemented in the blackboard architecture. The
Blackboard Instructional Planner generates an instructional plan customized to
student background and time constraints, then adaptively replans to support
mixed-initiative instruction, and to handle changes to the student model and time
remaining.3

I
!I

I
I
I

.... . . - .- m l l l l~l l l llilll [- -- U

1 59

3 A. Illustrations of Plan Execution and Interruption
The color plates shown in Figure A-I show the execution of one of the

instructional Frocedures in the first lesson plan of Appendix B. This is the
procedure called Cycle-Overview. It provides an overview of the six subcycles
that occur in tle normal operation of the lower hoist. The illustrations show only
the beginning part of the procedure up to the explanation of the second subcycle.
Note that the student's attention is drawn to the most important changes that occur
in each subcycle and that intermediate part state changes are ignored. Figures

1A-I (a) - (i) each correspond to a different procedure step.

The color plates shown in Figure A-2 show part of the execution of the
procedure Explain-Subcycles and its interruption by a student question. This
procedure is similar to Cycle-Overview but elaborates on all the changes that
occur in each subcycle, explaining each part state change. The student interrupts
with a question about the role of the UVK4 coupling actuating piston (Figure 1-5
shows the lower hoist schematic and where this part is located). The tutor
answers the question and reviews related material on part roles since it appears
that the student may have forgotten this material. After the review, the tutor
presents a transition statement to provide a smooth context shift back to the
resumption of the Explain-Subcycles procedure, at the point where it was
interrupted.

I
I
I.
I

I
I
I

* 60

3 (a)

Mam

(b
man

FiueA1Ircdr tp neecto fCceOeve rcdr

* 61

Il

* (d)

JI V!qM

Fiur (-,)nine

*
62

I
I
I

(d)

I
1
I
I
I
a
I

(e)

I
I
£
I

Figure A-i, continued

I
I
I

3
63

I
I
I
U
I
I
I
I
I
I
I'
1

(8)

I
I
U

Figure A-I. continued

I
I
I

3 64

I

I -
I

UUU (h)

I
a
I
I
I
S

II
(i)I

I
I
I

Figure A-I, continued

I
I
I

1 65

(a)

ItR

I (b)

Figure A-2: An instructional procedure interrupted by a question

3
66

I
A __ __

-3 m - i

I
(C)

I
U
1
I
I
I
I

(d)

I
3
I
I

Figure A-2, continued

I
I
I

3
67

I
-* , I

-I - -flU

I
U-
U

(e)

I
U
I
I
I
I
I

(f)I
I
I
I

Figure A-2, continued

I
I
I

I h.

I (g)
Nu a

(h

IiueA2 otne

3 69

U _

S_

1!I --
*
U (i)

I
3
I
I
I
I
3
I U)

I
I
I

Figure A-2, continued

U
I
£

3 70

I
_ _ --

ft U-

I
(k)

I
3
I
I
I
I
I
1

(1)

U
I
I

Figure A-2. continued

U
I
S

3 71

1
4 _ --

H U-

I
UI

(in)

I
I
I
I
I
I
I

(n)

I
U
I
I

Figure A-2, continued

I
I
I

3 72I!

3 B. Two Examples of Customized Instructional Plans
We consider two different student backgrounds and the resulting lesson

plans to illustrate plan customization. Shown below is the instructional plan for a
student who is deficient in electronics and has a low aptitude. It consists of 5
lessons and 51 steps. Some of the parameters of the procedures are shown in
brackets after the name of the procedure.

Instructional Plan 13 (ELECTRONICS-DEFICIENT, LOW-APTITUDE student)

Lesson 1
31. Orientation

2. Course-Overview

3 3. Structure-Overview [structure lower hoist]

4. Explain-Device-Simulation

3 5. Cycle-Overview [device subcycles lower hoist]

6. Motivate-Topic [normal behavior lower hoist]

3 7. Motivate-Topic [structure lower hoist]

8. Part-Identifications-by-Label [parts lower hoist]

3 9. Identify-Part-From-Role [parts lower hoist]

10. Part-Roles [parts lower hoist]

3 11. Multiple-Choice-Quiz [part roles lower hoist]

12. Summarize-Topic [structure lower hoist I

3 13. Short-Answer [structure lower hoist]

14. Motivate-Topic [operation lower hoist]

3 15. Cycle-Intro [device subcycles lower hoist]

16. Multiple-Choice-Quiz [device subcycles lower hoist]

517. Wrap-Up [lesson 1]

Lesson 2

18. Overview [lesson 2]

19. Explain-Part-Type-Operation [solenoid assemblies]

I
S m m mm l

731

I

20. Short-Answer [operation solenoid assemblies] l

21. Explain-Subcycles [device subcycles lower hoist]

22. Wrap-Up [lesson 2]

Lesson3 3
23. Overview [lesson 3]

24. Predict-Part-State-Changes [device subcycles lower hoist]

25. Summarize-Topic [operation lower hoist]

26. Multiple-Choice-Quiz [operation lower hoist]

27. Summarize-Topic [normal behavior lower hoist]

28. Multiple-Choice-Quiz [normal behavior lower hoist] 3
29. Wrap-Up [Lesson 3]

Lesson 4 1
30. Overview [lesson 4]

31. Motivate-Topic [predicting faulted behavior lower hoist] 3
32. Explain-Fault-Types [possible faults lower hoist]

33. Short-Answer [possible faults lower hoist] 3
34. Explain-Predicting-Symptoms-from-Faults

35. Multiple-Choice-Quiz [propagating faults to symptoms lower 3
hoist]

36. Summarize-Topic [predicting faulted behavior lower hoist] 3
37. Multiple-Choice-Quiz [predicting faulted behavior lower hoist]

38. Motivate-Topic [abduction lower hoist]

39. Generating-Plausible-Fault-Hypotheses [generating the faulthypothesis set lower hoist]

40. Short-Answer [generating the fault hypothesis set lower hoist]

41. Summarize-Topic [abduction lower hoist]

42. True-False-Quiz [abduction lower hoist] 3
43. Motivate-Topic [device troubleshooting lower hoist]

I
S

* 74

S44. Explain-Troubleshooting-Strategy [troubleshooting strategy
weighted split half troubleshooting]

45. Short-Answer [troubleshooting strategy weighted split half
troubleshooting]

46. Summarize-Topic [device troubleshooting lower hoist]

3 47. Demo-Troubleshooting [troubleshooting strategy weighted split
half troubleshooting]

3 48. Wrap-Up [lesson 4]

Lesson 5

149. Overview [lesson 5]

50. Monitor-Student-Troubleshooting [case-difficulty 3, wrong-tries-3before-hint 2, prompt-menu yes, number-of-cases 5]

51. Course-Wrap-Up

I The next instructional plan that follows is for a student with the expected
background in hydraulics, electronics, and mechanics and a high aptitude. It3 consists of only 3 lessons and only 26 steps:

Instructional Plan 2
(HAS-PREREQLrI I"ES, HIGH-APTITUDE student)

Lesson 1
1. Orientation

3 2. Course-Overview

3. Motivate-Topic [normal tehavior lower hoist]

4. Explain-Device-Simulation

5. Part-Roles [parts lower hoist]

6. Multiple-Choice-Quiz [part roles lower hoist]

7. Motivate-Topic [operation lower hoist]

8. Cycle-Intro [device subcycles lower hoist]

9. Short-Answer [device subcycles lower hoist]

I

I

75U

10. Explain-Subcycles [device subcycles lower hoist] I
11. Wrap-Up lesson 1

Lesson 2

12. Overview [lesson 2]

13. Predict-Part-State-Changes [device subcycles lower hoist]

14. Summarize-Topic [operation lower hoist]

15. Multiple-Choice-Quiz [operation lower hoist]

16. Summariz' Topic [normal behavior lower hoist]

17. Short-Answer [normal behavior lower hoist]

18. Wrap-Up [lesson 2]

Lesson 3

19. Overview [lesson 3] 1
20. Motivate-Topic [device troubleshooting lower hoist]

21. Explain-Troubleshooting-Strategy [troubleshooting strategy I
weighted split half troubleshooting]

22. Multiple-Choice-Quiz [troubleshooting strategy weighted split
half troubleshooting]

23. Summarize-Topic [troubleshooting strategy ,-ighted split half
troubleshooting] I

24. Demo-Troubleshooting [troubleshooting strategy weighted split
half troubleshooting] 3

25. Monitor-Student-Troubleshooting [case-difficulty 7, wrong-tries-
before-hint 4, prompt-menu no, number-of-cases 2]

26. Course-Wrap-Up U
An explanation of the lesson plans and their differences is given below.

The steps (i.e., procedures) in the first lesson of the first instructional plan

1. Orientation - puts up a greeting for the student.

2. Course-Overview - provides an overview of what will be covered in 3
I
I

* 76

U
3 the lesson.

3. Structure-Overview - provides an overview of the structure of the
lower hoist.

4. Explain-Device-Simulation - explains conventions used in the
STEAMER color graphics display of the lower hoist assembly.
(E.g., red color is used to depict high pressure and yellow color to
depict low pressure.)

5. Cycle-Overview - provides an overview of the six subcycles of the
lower hoist. For each subcycle the major parts affected are
highlighted. Changes to just these parts are pointed out before and

after each subcycle. Many details about changes to other parts are
not mentioned. See Figure A-I for color illustrations showing some
of the steps in this procedure.

6. Motivate-Topic - explains to the student why it is important to
understand how the lower hoist operates normally in order to
perform effective troubleshooting.

7. Motivate-Topic - explains to the student why it is important to
understand the structure of the lower hoist in order to perform
effecti-* e troubleshooting. Note that this is the same procedure as
the previous step, but with different parameters.

8. Part-Identifications-by-Label - highlights and describes each part of
the lower hoist assembly. 9

3 9. Identify-Part-From-Role - asks the student to use the mouse to point
to each lower hoist part after the tutor names it and describes its
function. When a part is not identified correctly the mistake is
pointed out and the correct part is highlighted. The tutor continues
to ask about all parts that were originally misidentified until the
student has identified each part correctly.

3 10. Part-Roles - describes the role of each part in the operation of the
lower hoist. (Part-Identifications-by-Label just describes what each
part is and how it affects those parts immediately connected.)

11. Multiple-Choice-Quiz - asks several questions about the role of the
parts of the lower hoist, to check if the previous step wAS effective.

5 12. Summarize-Topic - indicates that the tutor has finished discussing

I 9Actually, in these scenarios a subset of 8 parts - just those involved in just the first subcycle of
operation - are used. The full set of about 40 parts can be used but then lessons are longer and the
lesson plan generation process is slower, too.

I
I

77 1
I

the structure of the lower hoist.

13. Short-Answer - asks a few questions about the structure of the lower
hoist to check the student's understanding.

14. Motivate-Topic - explains to the student why it is important to
understand the operation of the lower hoist in order to perform
effective troubleshooting. It also indicates a topic shift.

15. Cycle-Intro - provides a brief textual overview of lower hoist
operation. It does not use the device simulation as Cycle-Overview
does.

16. Multiple-Choice-Quiz - quizzes the student over the subcycles of the
lower hoist. 5

17. Wrap-Up - summarizes what was covered in this first lesson and
announces that the lesson is finished.

I
I
3
I
I
I
I
I
I
I
I

3 78

I
C. Blackboards and Knowledge Sources of BB-IP

This appendix describes the blackboards and knowledge sources of BB-IP-2.
The blackboards are discussed first, then the knowledge sources.

C.I. The Blackboards
There are thirteen blackboards used in the BB I implementation of the

Blackboard Instructional Planner and the Lower Hoist Tutor. The four most
relevant to the planner are:

1. Instructional Plan - the tutor's goals, intended activities, and
intended procedures to carry out those activities.

2. Planner Control - the control phase, time remaining, problems
noted during plan execution, diagnoses of pl,-n problems, and plan
edits made.

3. Knowledge Sources - plan refinement operators, the plan executor(Execute Procedure KS), monitoring demons, plan diagnosis
methods, and plan repair methods.

3 4. History - Executed activities and procedures, student questions and
requests, and assessments that have affected the student model.

The next three blackboards provide knowledge required for the student model,1domain expert, and courseware modules (shown in Figure 1-3) of the Lower Hoist
Tutor:

5. Student Model - Inferred cognitive stereotypes, inferred student
aptitude, and an overlay student model consisting of certainty
factors that annotate a (generated) graph of domain-specific skills.

6. Device - Parts breakdown, subcycles of operation, and part state
changes in each subcycle.

7. Curriculum - Generic troubleshooting skills, questions for topics,
and troubleshooting cases for student practice or tutor
demonstration.

Some blackboards are typically present in any BB I application. These generic3 BB 1 blackboards [Garvey 87] are:

8. Control Data - The current agenda, history of events and KSARs
executed.

9. Control Plan - Scheduling heuristics. The scheduler decides how to
rate KSARs based on the contents of this blackboard.

310. Concept - General object taxonomy of BB I objects.
The remaining blackboards are:

11. PLAN Language - A language framework that can be used to

I

79 1
I

express knowledge source actions of the Blackboard Instructional 3
Planner. It provides a useful categorization of kinds of KSAR
actions used in BB-IP. To enhance planner efficiency it is not
currently used to express KSAR actions or for control.

12. Tutoring Domain - A taxonomy of objects in the tutoring domain
(e.g., troubleshooting-case or student-question) tied into BB I's
generic Concept knowledge base. I

13. Simple-Device - A subset of the Device knowledge base. Has only 8
lower hoist parts instead of 42. Used for testing and demonstration 5
purposes.

C.2. The Knowledge Sources I
This section describes the 43 knowledge sources of the Blackboard

Instructional Planner. They are listed in the order in which they are invoked,
assuming top-down planning and complete plan elaboration. This order
approximately corresponds to the control phases shown in Figure 5-3, if they are
read left to right from the top down, and then counterclockwise around the circle.
The plan generation KSes are: I

1. Initialize Planner - determi-2es what the top-level instructional
objective is, how much time is available per lesson, whether lesson
deadlines are preferences or constraints, and whether incremental
planning is desired. When running a demonstration reasonable
defaults are chosen otherwise these questions are asked via menu.
Also computes the set of domain-specific skills by forming a I
cartesian product from the generic skills knowledge base and the
device knowledge base.

2. Meta-Level - changes the control phase when no actions (KSARs)
remain to be performed in the current control phase. Changing the
control phase allows a different set of knowledge sources to trigger.

3. Refine Objectives - determines subordinate instructional objectives I
implied by the top-level instructional objective and adds them.
Essentially, the subtree of domain-specific skills headed by the top-
level instructional objective is copied.

4. Assess Objectives - determines to what degree the instructional
objectives are currently satisfied based on the student model. It I
initializes the student model by giv 4ig a pre-instruction

questionnaire.

5. Propose Topics - proposes topics to cover in order to achieve the I
pending instructional objectives. Each topic implicitly represents a
COVER-TOPIC activity for the instructional plan. g

I
!

S80

3 6. Prioritize Topics - adds attributes to topics within the lesson plan
indicating their priority.

7. Propose Assessment Activities - proposes activities to test the
student's knowledge of the skills being taught.

8. Propose Didactic Activities - proposes practice or exploratory1 activities.

9. Prioritize Activities - adds attributes to activities (other than
COVER-TOPIC activities) indicating their priority.

10. Filter Activities - selects the topics to cover and activities to perform
to achieve the pending instructional objectives. Activities below a
threshold are considered inappropriate or not important enough to
retain.

11. Sequence Activities - imposes a total ordering on those activities
selected for inclusion in the lesson plan. The ordering is determined
by traversing the graph of instructional objectives, taking into
account prerequisite links and partial order links between subtrees in3 the generic skills knowledge base of Figure 3-4.

12. Refine Discourse - critiques and improves the sequence of activities
for the instructional plan. Introductions, overviews, and wrap-ups
are added. MOTIVATE-TOPIC activities are moved to
immediately precede the topic they motivate where necessary.

13. Propose Actions - selects candidate procedures for each activity.
Each such procedure has a set of preconditions that must be satisfied
for it to be a candidate.

14. Filter Actions - selects one procedure for each activity from the
candidates found.

15. Sequence Actions - sequences actions to mirror the sequencing of
I their parent activities.

16. Refine Actions - critiques and improves the instructional plan now
that procedures have been selected.

17. Partition Lessons - decides where to place lesson partitions so the
instructional plan can be interpreted as a sequence of lesson plans.

U The remaining KSes are used to carry out, monitor, and revise the initial
lesson plan. The first is the workhorse of the Blackboard Instructional Planner:

18. Execute Procedure - executes the next procedure step of the current
procedure, or starts the next procedure if the previous is finished.

The next set are monitoring demons that can interrupt execution and record someI
I
I

SII

I

complaint about the performance of the instructional plan. They monitor time and I
instructional objectives:

19. Monitor Time - monitors how well the current plan is adhering to its
time constraints. It triggers if too little or too much time remains in
the current lesson plan.

20. Monitor Activities - monitors student performance between
procedure steps. It triggers if the student is not doing well enoughon the current task over several procedure steps.

21. Monitor Objectives - triggers when assessment given after a 5
presentation activity indicates the student did not learn as expected.
Monitor Objectives is similar to Monitor Activities, but triggers only
after an activity (of any kind) is completed.

22. Monitor Prior Objectives - triggers when assessment indicates an
instructional objective that was previously believed to be satisfied
now no longer appears satisfied.

23. Monitor Future Objectives - triggers when assessment indicates an
instructional objective that was believed unsatisfied now appears
satisfied, and that objective has pending procedures associated with
it.

Once a complaint has been noted about the instructional plan the planner I
switches to the Diagnose control phase shown in Figure 5-3. The knowledge
sources that can trigger in this control phase either make an assumption about the
cause of the plan failure or actively try to diagnose the problem. A diagnosis I
must be made before plan repair is attempted. Here are the diagnosis KSes:

24. Assume Lesson Too Long - assumes that the remaining procedures
cannot be finished in the time remaining.

25. Assume Lesson Too Short - similar, but assumes that too much time
has been allotted for the remaining procedures. I

26. Assume Objectives Not Maintained - as-;ume- that prior instructional
objectives have not been maintained, but should have been. The
particular objectives not maintained are recorded as part of the I
diagnosis.

27. Assume Objectives Satisfied - assumes that pending instructional
objectives have already been satisfied. It records which ones no
longer need to be achieved.

28. Assume Wrong Action Taken - assumes that the reason why an
instructional objective failed was because the wrong procedure wasselected to achieve it. Can only trigger when there was another

I
U

I82

I

choice that was passed over.

29. Assume Wrong Parameters - assumes that the reason the student is
performing poorly on the current task, given by some procedure that
lets a student practice a skill, is because the parameters for that
procedure are set incorrectly. I.e., the tasks are too hard or the help
given is insufficient.

30. Test for Missing Prerequisite - asks the student questions about a
prerequisite skill for the current failed instructional objective. If the
student does not answer most of the questions correctly then a
partial diagnosis of plan failure is recorded. The diagnosis claims
that the problem with the current instructional plan is that the
student forgot or never properly learned that prerequisite skill.

31. Finish Diagnosis - records when the diagnosis appears sufficient to
move on to the plan repair stage.

32. Ask Student - asks the student which of the prerequisite skills of the
current failed instructional objective he thinks he needs help on.

Once the reason for the plan failure has been diagnosed then corrective
action can be taken. These knowledge sources adjust parameters, add or delete
lesson plan steps, or repartition the remaining instructional plan. These are the3 repair KSes:

33. Repair Activities - adjusts the parameters of the current procedure to
be more appropriate to the student's perceived capabilities.

34. Repair Actions - chooses an alternate procedure to achieve a failed
instructional objective.

35. Reachieve Objective - creates a new instructional plan fragment for
a previously achieved instructional objective that has not been
maintained. This plan fragment is elaborated using the plan
generation knowledge sources and then spliced into the main lesson
plan by the Merge Plan Fragments knowledge source.

36. Repair Prerequisites - creates new instructional plan fragments, one
for each prerequisite objective that needs to be reviewed. These are
elaborated using the plan generation knowledge sources and then

spliced into the main lesson plan by the Merge Plan Fragments
knowledge source. This KS is similar to Reachieve Objective, but
also handles prerequisite material not covered in the lessons since
the tutor believed the student knew these based on the pre-3 instruction questionnaire.

37. Omit Redundant Procedures - marks as deleted any procedures
associated with pending instructional objectives that are now

I
I

83

I

believed to be already achieved. i
38. Replan Time - removes the lesson partitions in the remainder of the

instructional plan, then recomputes where they should be placed,
and places them accordingly. This repartitioning effectively
shuffles lesson partitions so that activities can be moved from the
current lesson to the next if there is insufficient time in the current
lesson.

The plan repairs initiated by the knowledge sources above may cause one or
more plan patches to be created. Plan patches are modifications to the existing I
instructional p' a made by adding, deleting, or modifying plan steps. When plan
patches consist of steps to add to the plan there must be some means of
integrating these smaller instructional plans into the main plan. The means of I
integration is provided by two knowledge sources:

39. Merge Plan Fragments - splices review plans into the main
instructional plan, so that they will be executed next once the plan is i
resumed. The remainder of the unexecuted instructional plan
follows the last inserted plan patch.

40. Refine Plan Edits - critiques the resulting plan, adding transitions
where context shifts occur and removing redundant parameters in
at'jacent similar procedures.

Questions and requests are handled in a uniform manner since a question is
simply a request to provide some information. These student interruptions are
handled by two knowledge sources: I

41. Respond Now - which creates plan patches to execute the procedures
that accommodate the student's request(s). These plan patches are
integrated into the main lesson plan by the Merge Plan Fragments U
and Refine Plan Edits knowledge sources.

42. Defer - defers the request until later. This knowledge source canonly trigger if a procedure that would satisfy the student's request
occurs later in the instructional plan.

The last knowledge source is: e

43. Focus Planner - which limits the application of the previous
knowledge sources. It is used in incremental planning to restrict the
plan generation knowledge sources to only act on the next step of I
the lesson plan. It could be used to allow other parts of the plan to
be developed opportunistically but has not been so used.

I
I
Ii

3 84

I

* D. The PLAN Language Framework
The PLAN language framework, shown in Figure D-l, can be used to

specify KS actions and control preferences. A control preference could be
expressed using any PLAN verb such as GENERATE-LESSON-PLAN, which
would match any of the KS actions that are terminal nodes under the
GENERATE-LESSON-PLAN subtree. For example, PARTITION-LESSONS or
PROPOSE-ACTIONS would match but MONITOR-TIME would not.

Rather than step through a sequence of steps expressing these control
preferences' 0 , control phases are used to control the triggering of KSs. These
control phases are shown in Figure 5-3 and described in Section 5. The planner
operates in the same manner either way but the use of control phases is more
efficient since it restricts agenda size and does not require the interpretation of
language framework sentences. Some possibilities for opportunism are also
sacrificed, but this loss appears negligible since BB-IP does not exploit
opportunistic planning anyway.

The chief difference between the PLAN language framework and the earlier
TUTOR language framework (shown in Figure F-2) is the lack of didactic actions
in the newer framework. Instead of having didactic actions, such as MOTIVATE
or EXPLAIN, the PLAN language framework has only planning actions such as
REFINE-OBJECTIVES or EXECUTE-PROCEDURE. Because instructional
plans have a separate representation from BB 1 control plans, the ACT subtree of
the TUTOR language is no longer necessary. Instead, the planning actions under
the PLAN subtree of the TUTOR language framework have now evolved into a
much richer set of planning actions that make up the new PLAN language
framework. Since KSARs no longer represent all possible instructional actions
(both planning and purely didactic) the size of the agenda is considerably reducedI in BB-IP-2 and the new planner is much faster than BB-IP-l.

I
I
I

3 1I°These preferences are called foci in the jargon of BB 1 's control plans [Garvey 87].

I
I

85U

Iwo ' Explin Chaiwit top law~t ut-poy

.9i - WOR

---- owT-#P DA1T-PVOCEOLRESU

'...--REPLR1-T IME
....... SSUME-LESSOI-TOO-SHOPT

R__SSUME-LESSOII- T00-LOIG

/.-RSSUIE-JECTZES-1O7-nRInRIHED

S UMNE-OBJEC71VES-SRTISFIED

'4S-STUDEIT

.R_SS-WROnG-C1Or-rKEI

'....TES1 -POR-fISSIrG-PREREQAJLSO-EPGE-PLRIIJPGENTS
I TXrOI-LESSON

/ -.4~EFrE-DISCOUPSE

~ ROPOSE-TOPICS
1'EIE 1-"EPRIE-LESSOM Pt tLRMlO -------- PIRTZETPC

XOt!TIZE-RCTIV!TIES
_OOS-IDACTIC-ACTIV!TIES

X-IR-AT TES OPS-ASSSITI-CTiITE

EOUEIIC-ACTIVITIES

,.-JIOII!TOOR

~-ACPSE-ACTlIE
,ECUTE-LES509-#t g1O 09 I LOR OR El lEE

I~- O C T R T RI M UE

IDE
C _ C I "

IOR AC Iv :7IES

'.IOITOR OBJECT IVES

ESPOIID-TO-STUENT-INI!TIATI VCEF :.-O

tAM-if-A links fron PA ACHIOII TEACH4

,M 11 D.c 2:35:271 KevWod U L t-USER: UsIn.. d

Figure D-1: The PLAN language framnework

1 86

I

I E. Comparison of SlIP and BB-IP Research

3 This section compares the SIlIP planner architecture and planners
implemented in it to the second version of the Blackboard Instructional Planner
(BB-IP). The SlIP research is research on ITS and planner architectures by
MacMillan and Sleeman [MacMillan 87]. The SLIP research encompasses

" An ITS architecture - called the BLACKBOARD-instructor.

3 * A planner architecture - called the SLIP architecture.

* A planner - implemented by MacMillan in the SlIP architecture.
This planner will be referred to here as the SHP planner.

The term SIP can be confusing since it stands for "Self-Improving Instructional
Planner" even though it refers to an architecture. Furthermore, although the
BLACK.BOARD-instructor architecture provides for a learning component, no
planner was ever implemented in either the SIP or BLACKBOARD-instructor
architecture with such a self-improving capability.

i In contrast to the SLIP research on architectures, the research presented in
this report describes a planner (BB-IP) implemented in the BB1 version 2.1
blackboard architecture. Unlike the SliP research, no claims are made that BB-IP
is a generic planner architecture for all tutors, or that the prototype tutor that it has
been embedded in (the Lower Hoist Tutor) is a generic ITS architecture. But to
allow comparison of the SLP research with the BB-IP research we will use the
term BB-!P architecture to refer to the blackboards, levels, and semantics of
blackboard objects that BB-IP uses in its BB I implementation.

3 The SLIP architecture is basically the BBI architecture (version 1) with the
following additions:

* Predefined levels - for the instructional plan and control plan.

I Predefined knowledge sources - that can be used optionally or not in
building instructional planners.

SDatabase facilities - allowing objects to be retrieved by specifying
constraints they must satisfy.

The articles describing the SUP research [MacMillan 87] and [MacMillan 88] can
be confusing at times since they imply that "SLIP" is not only a, architeuture, but
also a fully implemented planner with the capabilities implied by its name:

In response to these and other deficiencies of instructional planners a generic
system architecture based on the blackboard model was implemented. This
sef-improving instructional planner (SIP) dynamically creates instructional
plans, requests execution of these plans, replans, and improves its planningI

I
I

87U

behavior based on a student's responses to tutoring. ([MacMillan 871, page 17. 5
Italics added here.)

In fact no such sophisticated planner was ever built. What was built was the

modified blackboard architecture described below, along with sufficient U
knowledge sources to run a simple plan generation scenario (the SLP planner).

There are four predefined levels on SUP's instructional plan blackboard:

1. lobjective - instructional objectives.

2. Istrategy - pedagogical strategies.

3. 1procedure - instructional procedures.

4. laction - instructional actions.

The "I" stands for "instructional" in each level name. SLIP's control blackboard is

essentially the control blackboard of BB 1. That blackboard has levels to
represent the current problem and BBI's control plan. This control plan is a
sequence of steps where each step biases the scheduler to favor certain kinds of
knowledge sources. For instance, a control plan could first favor knowledge
sources that act on the lobjective level, then the Istrategy level, then the
Iprocedure level, and finally the laction level. This control plan would result in
top-down plan expansion.

The overall ITS architecture in which SIP was to run was called the
BLACKBOARD-instructor. It is shown in Figure E-1 (this is Fig. 1 of
[MacMillan 87]) and has the following components:

" The planner - the SIP architecture and any planner implemented in
it.

" Student assessor - a program that infers updates to the student model. 3
* Expert model - the domain expert.

" Plan improvement experimenter - a learning element to improve 3
planner performance so planning improves for future students.
(Never imph mented.) U

* Instructional manager - a program that executes actions from the
planner and reports back their success or failure.

Each component runs in its own process and can communicate with other
processes only via messages. This arrangement results in a complicated
multiprocessing architecture where all of the following can happen
simultaneously: I

* The planner refines the instructional plan.

" The student assessor modifies the student model. 5

! I m •

3 88I

3 * The plan improvement experimenter changes the planner's
knowledge base.

I The instructional manager executes an instructional action.

S00*M1 Im o Pan I

Instic rcial Plan"M Expeimmimn'

- i',m . '. Slip PIE

I S aema

5 Ep~Ert MoMe

EM

I

3 Figure E-1: The BLACKBOARD-instructor ITS architecture

Now we .onsider similarities -nd differences between the SUP research and
the BB-IP research. First, we consider the instructional plan representations and
control plan representations of the SIIP architecture and the BB-IP architecture.
Next, we consider how planners built in each architecture are intended to be
integrated with other ITS components. Finally, we consider what was actually
implemented in the SlIP research and the BB-IP research.

3 Comparing the planner architectures, the top levels of the instructional plan
representations are similar but the other levels differ both in semantics and their
implications for planner perform.nce. We consider SIIP's levels and their BB-IP3 counterparts, if any:

e lobjective - This SIIP level corresponds airectly to the instructional
objective level of BB-IP.

*[strategy - SliP's Istrategy levei has no counterpart in BB-IP. Such a
level appears unnecessary. It is ambiguous whether "strategy" inI

I
I

891

U
"Istrategy" refers to tutorial modes of instruction (e.g., expository, U
exploratory, collaborative, case-method, etc.) or to high-level plans,
which is the use of "strategy" in BB I control plans. If the former is
intended it is not clear what is gained by explicitly reasoning about
the mode of instruction; if the latter is intended it appears to be an
unnecessary layer of plan abstraction.

* Iprocedure - corresponds to BB-IP's Activities level since nodes i
posted on this level in SlIP only provide "an abstract specification"
[MacMillan 87] of a procedure and do not represent actions that are

directly executable.

"taction - does not correspond to any BB-IP level.
BB-IP omits this last level since it is not cost-effective to use a blackboard
architecture to implement procedures that are largely algorithmic. No control
reasoning is required so the overhead should be avoided. In fact, planners
implemented in the SUP planner architecture must add control reasoning to
replicate simple programming structures such as conditional tests and loops.

SUP uses the control blackboard of BB I for its control reasoning while BB-
IP provides an additional blackboard called Planner Control for this purpose. U
This latter approach is more efficient and perspicuous, but reduces the ability of

BB-IP to plan opportunistically. It is more efficient since special purpose generic
knowledge sources [Garvey 87] are not needed to sequence through BB I control l
plans, and since BB-IP's use of control phases limits the number of knowledge
sources triggered at any time. It is more perspicuous since the Planner Control
blackboard can be used for making decisions on plan generation, execution, I
monitoring, and replanning while the BB I control blackboard can be used to
monitor the performance of the planner itself. For example, it could detect that a
problem in the plan was not fixed by an earlier patch so a different approach to I
replanning should be used the second time the problem occurs. The BB I control
blackboard could also be used to determine how much time to devote to
diagnosing a problem in the plan.

BB-IP does not provide an ITS shell similar to SliP's BLACKBOARD-
instructor. But since BB-IP is embedded in the Lower Hoist Tutor, as shown in U
Figure 1-3, we can compare how each planner would be embedded in a complete
ITS. The BLACKBOARD-instructor provides the opportunity for parallelism
among its modules at a considerable cost in computational and conceptual i
complexity. Not only must each module be implemented but an interface
language must be defined - since they communicate only via messages - and
synchronization must be ensured. Debugging can be difficult because of timing I
errors such as race conditions. BB-IP takes a much simpler approach. There isonly one process - the planner - and all modules communicate via shared

U
I

* 90

blackboards. Thus they are more tightly interleaved and it would be cumbersome
to separate them into different interacting processes.

Not all of the ITS components of the BLACKBOARD-instructor ITS shell
were ever implemented. The shell, which was implemented, provides a process
for each ITS component module but the programmer must supply the code to run
within the processes. The plan-improvement experimenter module was never
implemented in this sense for any planner built in the SIP planner architecture.
This module was intended to provide the learning element for the planner that
would make it "self-improving" [MacMillan 87].

Now we consider the planners actually implemented. The following have
been implemented in SLIP:

" SlIP planner - this is the default planner that produces the abstract
scenario described in Section 4 of [MacMillan 87]. No domain is
specified; basically a graph structure is grown on the plan blackboard
and then abstract actions executed. No dynamic replanning occurs.

" Instructional scenarios for the 25mm gun - this is a demonstration of
tutor that would teach troubleshooting of common faults of the

25mm gun of the Bradley Fighting Vehicle. Again a simple graph

structure is generated. The instructional plan is quite simple since
most control decisions are made by the plan's actions. These actions
are instructional procedures for presenting the troubleshooting cases
and monitoring student performance.

* Geometric concept demonstration tutor - this is a demonstration tutor
to teach geometric concepts such as rhomboid and trapezoid by
showing examples and nonexamples of the concepts. Mitchell's
version space algorithm [Mitchell 83] was used to represent the
tutor's uncertainty of the student's acquired concept, and also to drive
the selection of examples.

The first planner was implemented by MacMillan; the latter two by the author
using the SlIP architecture.

All of these planners fail to generate customized lesson plans, address time
management, handle student questions, or replan to remedy ineffective
instruction. The current version of BB-IP handles all of these issues as described
in this report. Thus, the BB-IP research addresses issues of plan customization,
adaptive replanning, and mixed-initiative instruction in a planner-based tutor
much more thoroughly than the SIP research. In fact, the SlIP research does not
specifically address the issue of handling unexpected student interruptions at all.
Instead most of the discussion in [MacMillan 871 and [MacMillan 881 focusses on
abstract planning issues - skeletal planning, constraint-based planning,I

I
I

I hierarchical planning, and opportunistic planning - without demonstratingi

precisely how these can be advantageously used to realize plan customization,

~adaptive replanning, or mixed-initiative instruction.

U
!, I
I, I

I
I
I
I
I
II '
I
I

I
I

3 92

I
F. Comparison of BB-IP-1 and BB-IP-2

The immediate precursor to the current version of BB-IP, and immediate
successor to the SIIP research, is the first version of BB-IP. The first will be
called BB-IP-l and the second BB-IP-2 to avoid confusion. A detailed
comparison between the two is presented to show how deficiencies in BB-IP-I
led to BB-IP-2.

BB-IP-l is directly patterned on PROTEAN [Hayes-Roth 87b], a blackboard
application built using BB I Version 2. PROTEAN determines the three-
dimensional structure of protein molecules based on constraints that include
nuclear magnetic resonance measurements. It uses a language called ACCORD
[Hayes-Roth, et al 87] to represent different possible problem-solving actions.3 An example action in ACCORD might be:

YOKE HELIX-76 TO HELIX-19 WITH CONSTRAINT-SET-22
which would apply the set of constraints called CONSTRAINT-SET-22 to
HELIX-76 and HELIX-19 to restrict their possible locations in three dimensional
space. With this language control plans can be built that control the application of
problem-solving operators (the KSARs). For example, a control plan might be:

1. ANCHOR MOST-CONSTRAINING ALPHA-HELIX

2. ORIENT OBJECT TO ANCHOR

3. YOKE OBJECT-I TO OBJECT-2 WITH CONSTRAINT-SET
This would first pick an object to be considered the origin of the molecule. That
object, called an anchor, must be the alpha-helix whose position is most
constrained. The second step in the control plan determines the possible positions
of all other objects relative to this anchor. The third step applies constraints
between pairs of these objects to further restrict their positions. The problem-
solving action

YOKE HELIX-76 TO HELIX-19 WITH CONSTRAINT-SET-22
would match the third step. Partial matching is defined by a taxonomy of verbs
and objects. The taxonomy of verbs for the ACCORD language is shown in3 Figure F- 1.

Analogously, BB-IP-l is built .. ,er a problem-solving language for
instructional planning problems. This language is called TUTOR and is shown in
Figure F-2. Now BBI control plans are used to express instructional plans rather
than assembly plans. No separate plan representation or execution mechanism is
required since BB I provides these. Furthermore, BB l's explanation mechanisms
can be used to explain why one action (either instructional or planning) is
performed rather than another. An example of a simple instructional plan writtenU

I
I

93

- OORDINAT CEFIN

I
DOCK

-INTEGRTEeNCOPORRTE3

RSSEMBLE /--CONSOLIDRTE

FPEND3

-- POSITIO - YOKE
---E S: THR I C TI

ORIENT

-DEFINE ZNCLUDE

Figure F-I: The ACCORD language framework 3
in TUTOR would be:

1. SELECT LESSON-OBJECTIVE 3
2. MOTIVATE TOPIC

3. OVERVIEW TOPIC 3
4. EXPLAIN TOPIC

5. GIVE-TRUE-FALSE-TEST FOR TOPIC 3
Complete details of BB-IP- 1 and TUTOR are presented in [Murray 89a].

BB-IP-I was the first planner developed in the blackboard architecture in
this research wh se domain was a realistic training application and which
addressed issues of plan generation, mixed initiative instruction, and adaptive
planning. But there was room for considerable improvement. It suffered from
slow operation due to:

" Control reasoning overhead - Many blackboard cycles were required
for the execution of each instructional action. Additional knowledge
sources, called generic control knowledge sources [Garvey 87], must
sequence through the steps in BB I control plans and determine when
each step finishes. These generic control knowledge sources perform
no instructional actions and increase the size of the agenda.

* Agenda size - Many KSARs could be on the agenda at any time. All
possible instructional actions were considered along with different
possible instantiations.

I
I
I

I 94

I

TEC - - 3CM-AS
ERVIEW

3 T(grodmVA1

-RESPOND .OASWER (6 -~ .OiswEXPLANATION

SPOD -.-----.----- SPOO-TOEOUEST --PfU.-N.-TOPIC

3Iigr F-2: The TUTOR lagaeframework

Language framework overhead - The problem-solving language

I TUTOR is large (i.e., has many verbs, objects, and modifiers). TheU TUTOR action sentence of a KS must be partially matched tc, the
current control plan step when that KS is triggered. This matching is

I required to rate the KSARs generated so the scheduler can decideI which one is the most appropriate to execute next.
Other problems with the first planner were its:

I * Overly simplistic plans - such as

1. Present topic
i 2. Assess topic

3. Respond
i* Lack of a realistic testbed - Although the target application is a real

one, the planner itself is disembodied, and its instructional actions1 were only simulated.

I* Overly fine granularity - Some KSAR actions were very fine grainedI and could be immediately executed (e.g., highlighting an icon).
Others were less fine grained and represented actions that might take

i several minutes to perform (e.g., give a multiple choice test orU explain a topic). Because of the overhead of the blackboard system it
was not worthwhile to reason about control for low-level actions.
The overhead is only justified for reasoning about higher-level

actions (eghow to rpianineffective instructional pa)whereU knowledge can be fruitfully applied. Lower-level actions such as
I presenting test qusin onot require the sophisticated application

I
I

I • i i i I I I

95

I
of knowledge. Instead, they should be handled by straightforward
procedural control mechanisms.

BB-IP-2 addressed all these concerns. It operates near real-time. The 51- 3
step instructional plan shown in Appendix B is generated in about 95 seconds.
For most procedures, there is only a small pause of a second or two between
procedure steps. The blackboard cycle time is typically one to two seconds for 3
BB-IP-2 compared to eight to fourteen seconds for BB-IP-I. The improved
performance is due to

* Decreased control reasoning overhead - The number of control 3
knowledge sources has been reduced since control plans no longer
represent instructional plans.

* Smaller agenda size - Typically, 5 or less KSARs are executable at I
an~y time. BB-IP-l would commonly have as many as 15 KSARs
executable.

* Language framework overhead - No language framework is used.

* Improved BBI implementation - CONSing and the use of graphics
during execution has been reduced. I

Other improvements in BB-IP-2 include:
" More sophisticated plan representation - The plan representation is

much richer, it represents plan rationale, lesson partitioning, and
expected time for activities. Plan steps (instructional procedures) can
be sophisticated procedures that may take several minutes to execute
while still being interruptible. I

* More Realistic testbed - The second planner is embedded in the
prototype Lower Hoist Tutor. A STEAMER-based student interface
is coupled with the planner. All instructional actions are
implemented. As the instructional plan is executed tutorial text is
displayed and the STEAMER interface is used for part highlighting,
text display, student input, and selective animation of device parts.

" More Appropriate Action granularity - Use of procedures as plan
steps eliminates the need for control reasoning for simple procedural
control.

Other key differences in the design of the second planner are: 3
" KSes correspond to lesson planning skills. No KSes correspond to

domain instructional actions such as MOTIVATE-TOPIC.

* Emphasis on lesson planning. Control knowledge is now applied at a 3
higher level - at the level of lesson planning and replanning.
Although both planners perform some discourse and some lesson

3
I

3 96

I
planning, BB-IP-1 focuses on discourse planning while BB-IP-2
focuses on lesson planning.

e Plan generation rather than plan selection - BB-IP-l is basically a
skeletal planner that selects discourse plans from a library. The
second version generates lesson plans and uses pre-stored procedures
as higher-level actions to carry out lower level discourse actions.

* Plan patching - BB-IP-2 can patch plans; the first planner did not.

* Separate representation of control plans for the instructional plannerIand control plans for the blackboard system - The lesson plan being
constructed and the control plan that controls how it is being
constructed are both represented as BB I domain blackboards in the
second version.

* Curriculum planning is implemented - BB-IP-2 generates a sequence
of lesson plans whereas BB-IP-1 assumes only a single lesson.

* Time management is addressed - BB-IP-2 estimates the time required
for each of its plan actions (i.e., instructional procedure executions)
and uses these estimates to determine lesson partitions. It also
replans when time runs out. BB-IP-1 assumes an indefinite lesson
length and does not monitor time.

3 Both planners share the following differences with the SUP research:

" Emphasis on the planner not the architecture - the BB-IP-1 and BB-
IP-2 research focussed on exploring how best to implement a
dynamic instructional planner in an existing architecture rather than
implementing a new architecture.

" Shared class of instructional problems - both BB-IP-l and BB-IP-2
are intended for the same class of problems: troubleshooting complex
hydraulic-electronic-mechanical devices, where a mental model is
required for effective troubleshooting and a STEAMER device
simulation is available for this purpose. SlIP is not tailored for any
specific class of instructional problem.

" Lack of multiprocessing - both BB-IP planners eliminate the
multiprocessing used in the BLACKBOARD-instructor.
Instructional planning is difficult enough without having to plan and
act at the same time the student model is updated.

* Lack of a learning element - since the planning problem alone is
difficult enough and should be addressed first. Both BB-IP planners
were adaptive since they improved their performance as the student
model became more refined, but neither had a learning element for
improving planner performance from one student to another.

I
I

97 1
I

References [

[Barr, et al 76] A. Barr, M. Beard, and R. Atkinson.
The Computer as a Tutorial Laboratory.
International Journal of Man-Machine Studies (8):567 - 596,

1976.

[Brecht 89] B. J. Brecht, G. I. McCala, J. E. Greer. i
Planning the Content of Instruction.
In Proceedings of the 4th International Conference on Al and

Education, pages 32 - 41. lOS, Springfield, VA., May, I1989.

[Breuker 87) J. Breuker, R. Winkels, and J. Sandberg.
A Shell for Intelligent Help Systems. I
In Proceedings of the 1Oth International Joint Conference on

Artificial Intelligence, pages 167 - 173. August, 1987. 3
[Brown 75] J. S. Brown, R. R. Burton, and A. G. Bell.

SOPHIE: a Step towards a Reactive Learning Environment.
International Journal of Man-Machine Studies 7:675 - 696, I

1975.

[Burton and Brown 79]
R. R. Burton, and J. S. Brown.
An Investigation of Computer Coaching for Informal Learning

Activities.
International Journal of Man-Machine Studies (11):5 - 24,

1979.

[Carbonell 70] J. R. Carbonell.
Mixed-Initiative Man-Computer Instructional Dialogues.
PhD thesis, Massachusetts Institute of Technology, 1970.

[Carr and Goldstein 77] 3
B. Can', and I. P. Goldstein.
Overlays: a Theory of Modeling for Computer-aided

Instruction.
Technical Report Al Lab Memo 406, Massachusetts Institute

of Technology, 1977.

[Chandrasekaran 89]
B. Chandrasekaran.
Editor's Note.
Blackboard Architectures and Applications.
Academic Press, Inc., Boston, MA, 1989, pages v - vi.

I
i
I

* 98

I
[Clancey 79] W. Clancey.

Tutoring Rules for guiding a case method dialogue.
International Journal of Man-Machine Studies (11):25 - 49,1 1979.

[Clancey 87] W. Clancey.
Knowledge-based Tutoring.
The MIT Press, 1987.

[Corkill 87] Daniel D. Corkill, Kevin Q. Gallagher, and Philip M. Johnson.
Achieving Flexibility, Efficiency, and Generality in

Blackboard Architectures.
In Proceedings of the Sixth National Conference on Artificial

Intelligence, pages 18 - 23. University of Massachusetts,
Morgan Kaufmann Publishers, Inc., Los Altos, CA., July,
1987.

[Derry 88] S. J. Derry, L. Hawkes, U. Zeigler.
A Plan-based Opportunistic Architecture for Intelligent

Tutoring.
In Proceedings, ITS-88. Montreal, Canada, June, 1988.

[Erman, et al 80] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy.
The Hearsay-1 Speech-understanding System: Integrating

Knowledge to Resolve Uncertainty.
Computing Surveys (12):213 - 253, 1980.

[Feigenbaum 881 E. Feigenbaum.
Foreword.
Blackboard Systems.
Addison-Wesley Publishing Company, Menlo Park, CA, 1988,

pages v - vii.

[Fikes and Nilsson 71]
R. E. Fikes, and N. J. Nilsson.
STRIPS: a New Approach to the Application of Theorem

Proving to Problem Solving.3 Artificial Intelligence 2:189-208, 1971.

[Garvey 87] A. Garvey, M. Hewett, M. V. Johnson Jr., R. Schulman and
B. Hayes-Roth.
BBI User Manual - Common LISP Version 2.0.
Technical Report KSL-86-61, Stanford Knowledge Systems

Laboratory, August, 1987.I
I
I
I

993

I
[Hayes-Roth 84] B. Hayes-Roth.

BBJ: An Architecture for Blackboard Systems that Control,
Explain, and Learn about their own Behavior.

Technical Report HPP 84-16, Knowledge Systems Laboratory,
Stanford University, 1984.

[Hayes-Roth 85] B. Hayes-Roth.
A Blackboard Architecture for Control. I
Artificial Intelligence 26(3):251 - 321, 1985.

[Hayes-Roth 87a] B. Hayes-Roth.
Blackboard Systems.
Encyclopedia of Artificial Intelligence.
Wiley-lnterscience Publication, New York, 1987, pages 73 -

80.

[Hayes-Roth 87b] B. Hayes-Roth, B. Buchanan, 0. Lichtarge, M. Hewett,
R. Altman, J. Brinkley, C. Cornelius, B. Duncan, and
0. Jardetzky.
PROTEAN: Deriving Protein Structure from Constraints.
Blackboard Systems.
Addison-Wesley, 1987.

[Hayes-Roth, et al 87]
B. Hayes-Roth, A. Garvey, M. V. Johnson, and M. Hewett. i
A Modular and Layered Environment for Reasoning about

Action.
Technical Report KSL 86-38, Stanford University, April, 1987.

[HoUan 84] J. D. Hollan, E. L. Hutchins, and L. Weitzman.
STEAMER: an interactive inspectable simulation-based

training system. I
AI Magazine 5(2):15 - 27, 1984.

[Johnson 85] W. L. Johnson.
Intention-Based Diagnosis of Errors in Novice Programs.
PhD thesis, Yale, May, 1985.

[Joyce 86] B. R. Joyce and M. Weil. 3
Models of Teaching.
Prentice Hall, Englewood Cliffs, NJ., 1986.

[Lesgold 88] A. Lesgold, S. Lajoie, M. Bunzo, and G. Eggan.
SHERLOCK: A Coached Practice Environment for an

Electronics Troubleshooting Job.
Technical Report, Learning Research and Development Center, I

University of Pittsburgh, Pittsburgh, Pennsylvania, March,
1988.

I
I

1 100

I
[MacMillan 87] S. A. Macmillan, and D. H. Sleeman.

An Architecture for a Self-improving Instructional Planner for
Intelligent Tutoring Systems.5 Computational Intelligence 3(1):17 - 27, 1987.

[MacMillan 88] S. A. Macmillan, D. Emme, M. Berkowitz.
Instructional Planners: Lessons Learned.
Intelligent Tutoring Systems: Lessons Learned.
Lawrence Erlbaum Associates, Inc., 1988.

[Mitchell 83] T. M. Mitchell, P. E. Utgoff, R. Banerji.
Learning by Experimentation: Acquiring and Refining

Problem-solving Heuristics.
Machine Learning.
Tioga Publishing Company, 1983.

[Moore 89] J. D. Moore and W. R. Swartout.
A Reactive Approach to Explanation.
In Eleventh International Joint Conference on Artificial

Intelligence, pages 1504 - 1510. Morgan Kaufmann
Publishers, Inc., Los Altos, CA., August, 1989.

[Murray 88a] W. R. Murray.
Control for Intelligent Tutoring Systems: A Comparison of

Blackboard Architectures and Discourse Management
Networks.

Technical Report R-6267, FMC Corporation, September, 1988.
To appear in Machine-Mediated Learning 3(1), 1990.

[Murray 88b] W. R. Murray.
Automatic Program Debugging for Intelligent Tutoring

Systems.
Pitman Publishing, London, 19F8.

[Murray 88c] W. R. Murray.
Dynamic Instructional Planning in the BBI Blackboard

Architecture.
Technical Report R-6168, FMC Corporation, August, 1988.

[Murray 89aj W. R. Murray.
Dynamic Instructional Planning in the BB 1 Blackboard

Architecture.
Blackboard Architectures and Applications.
Academic Press, Inc., 1989, pages 455 - 480.I

I
I
I

[Murray 89b] W. R. Murray.
Control for Intelligent Tutoring Systems: a Blackboard-based

Dynamic Instructional Planner.
In Proceedings of the 4th International Conference on A! and 5

Education, pages 150 - 168. IOS, Springfield, VA., May,
1989.

Reprinted in Al Communications, Vol. 2, No. 2, June 1989. 3
[Murray 89c] W. R. Murray.

Control for Intelligent Tutoring Systems: a Blackboard-based
Dynamic Instructional Planner. l

Al Communications 2(2):41 - 57, June, 1989.
First appeared in Proceedings of the 4th International

Conference on Al and Education, May, 1989.

[Nirenburg 89] S. Nirenburg, V. Lesser, and E. Nyberg.
A Reactive Approach to Explanation.
In Eleventh International Joint Conference on Artificial I

Intelligence, pages 1524 - 1530. Morgan Kaufmann
Publishers, Inc., Los Altos, CA., August, 1989.

[Papert 801 S. Papert.
Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, New York, 1980. 3

[Peachey 86] D. R. Peachey, and G. I. McCalla.
Using Planning Techniques in Intelligent Tutoring Systems.
International Journal of Man-Machine Studies 24:77 - 98,

1986.

[Reimann 891 P. Reimann.
Modeling Scientific Discovery Learning Processes with i

Adaptive Production Systems.
In Proceedings of the 4th International Conference on Al and

Education, pages 218 - 227. IOS, Springfield, VA., May, I
1989.

[Reiser 851 B. Reiser, J. Anderson, and R. Farrell.
Dynamic Student Modelling in an Intelligent Tutor for Lisp

Programming.
In Proceedings of the Ninth International Joint Conference on

Artificial Intelligence, pages 8 - 14. 1985. I
[Rich 79] E. Rich.

User Modeling via Stereotypes.
Cognitive Science 3:355 - 366, 1979.

I
I
I

1 102

I
[Russell 851 S. Russell.

The Compleat Guide to MRS.
Technical Report KSL-85-12, Stanford Knowledge Systems5 Laboratory, June, 1985.

[Russell 88a] D. M. Russell.
IDE: The Interpreter.
Intelligent Tutoring Systems: Lessons Learned.
Lawrence Erlbaun Associates, Inc., 1988.

[Russell 88b] D. M. Russell, T. P. Moran, and D. S. Jordan.
The Instructional-Design Environment.
Intelligent Tutoring Systems: Lessons Learned.
Lawrence Erlbaum Associates, Inc., 1988.

[Sacerdoti 77] E. D. Sacerdoti.
A Structure for Plans and Behavior.
Elsevier North-Holland, 1977.

[Shute 86] V. Shute and R. Glaser.
An Intelligent Tutoring System for Exploring Principles of

Economics.
Technical Report, Learning Research and Development Center,

University of Pittsburgh, Pittsburgh, Pennsylvania, 1986.

[Stansfield 76] J. C. Stansfield, B. Carr, and I. P. Goldstein.
Wumpus Advisor I.- a First Implementation of a Program that

Tutors Logical and Probabilistic Reasoning Skills.
Technical Report AI Lab Memo 381, Massachusetts Institute

of Technology, 1976.

[Stevens and Collins 77]
A. L Stevens, and A. Collins.
The Goal Structure of a Socratic Tutor.
In Proceedings of the National ACM Conference, pages 256 -

263. Association for Computing Machinery, 1977.

[Towne 89] Douglas M. Towne, Allen Munro, Quentin A. Pizzini, David
S. Surmon, and James Wogulis.
ONR Final Report: Intelligent Maintenance Training

Technology.
Technical Report Technical Report No. 113, Behavioral

Technology Laboratories, University of Southern
California, September, 1989.I

I
I
I

103 1
I

[Wilkins 84] D. E. Wilkins.
Domain-independent Planning: Representation and Plan

Generation.
Artificial Intelligence 22(3):269 - 301, 1984. 3

[Wilkins 85] D. E. Wilkins.
Recovering from Execution Errors in SIPE.
Computational Intelligence 1:33 - 45, 1985.

[Wilkins 88] D. E. Wilkins.
Practical Planning.
Morgan Kaufmann Publishers, Inc., San Mateo, CA., 1988.

[Woolf 87] B. P. Woolf.
Representing Complex Knowledge in an Intelligent Machine I

Tutor.

Computational Intelligence 3(1):45 - 55, 1987.

[Woolf, et al 84] B. P. Woolf, and D. D. McDonald. i
Building a Computer Tutor: Design Issues.
IEEE Computer 17(9):61 - 73, 1984.

I
I
I
I
I
I
I

I
I

IONR Distrbution list - j

I
Personnel Analysis Division, Dr. Stephen J. Andriole, Chairman
AF/MPXA Department of Information Systems
5C360, The Pentagon and Systems Engineering
Washington, DC 20330 George Mason UniversityI' 4400 University Drive
Air Force Human Resources Lab Fairfax, VA 22030

AFHRL/MPD
Brooks, AFB, TX 78235 Dr. Patricia Baggett
AFOSR, School of EducationAFOSR,610 E. University, Rmn 1302D
Life Sciences Directorate University of Michigan

Boiling Air Force Base UnnvArbof Michigan
Washington, DC 20332 Ann Arbor, MI 48109-1259

c DDr. Eva L. Baker
Technical Director, ARI UCLA Center for the Study5001 Eisenhower Avenue of EvaluationAlexandria, VA 22333 145 Moore Hall

3 Technical Director, University of California
Army Human Engineering Lab Los Angeles, CA 90024
ATTN: SLCHE-D Dr. Meryl S. Baker
Aberdeen Proving Ground Navy Personnel R&D CenterMD 21005-5001 San Diego, CA 92152-6800

Dr. Beth Adelson Prof. Dott. Bruno G. Bara
Department of Computer Science Unita di ricerca di
Tufts University Intelligenza Artificiale
Medford, MA 02155 Universita di Milano
Dr. Robert Ahlers 20122 Milano - via F. Sforza 23
Code N711 ITALY
Human Factors Laboratory Dr. Gautam Biswas
Naval Training Systems Center Department of Computer Science
Orlando, FL 32813 Box 1688, Station B

I Technical Director Vanderbilt University
Air Force Human Resources Lab. Nashville, TN 37235
Brooks AFB, TX 78236-5601 Dr. John Black

Dr. John R. Anderson Teachers College, Box 8
Department of Psychology Columbia University
Carnegie-Mellon University 525 West 120th Street
Schenley Park New York, NY 10027
Pittsburgh, PA 15213I

U
I
I

ONR Distribution List -2

I
Dr. Deborah A. Boehm-Davis Dr.'Joanne Capper, Director U
Department of Psychology Center for Research into Practice
George Mason University 1718 Connecticut Ave., N.W.
4400 University Drive Washington, DC 20009
Fairfax, VA 22030 D

Dr. Jeff Bonar Carnegie-Mellon University
Learning R&D Center Department of Psychology IUniversity of Pittsburgh Pittsburgh, PA 15213Pittsburgh, PA 15260 D J M. Carroll

Dr. David Bowers IBM Watson Research Center
Rensis Likert Associates User Interface Institute
3001 S. State Street P.O. Box 704
Ann Arbor, MI 48104-7352 Yorktown Heights, NY 10598 n
Dr. Robert Breaux Director, Manpower Program
Code 7B Center for Naval Analyses iNaval Training Systems Center 4401 Ford AvenueOrlando, FL 32813-7100 P.O. Box 16268

Dr. John S. Brown Alexandria, VA 22302-0268 U
XEROX Palo Alto Research Center for Personnel
Center Security Research
3333 Coyote Road Suite E, Bldg. 455 U
Palo Alto, CA 94304 99 Pacific Street

Dr. John T. Bruer Monterey, CA 93940-2481

James S. McDonnell Foundation Professor Chu Tien-Chen I
1034 So. Brentwood Blvd., Ste. 1610 Mathematics Department
St. Louis, MO 63117 National Taiwan University

Dr. Bruce Buchanan Taipei, TAIWAN
Computer Science Department Dr. Michelene Chi
Stanford University Learning R & D Center I
Stanford, CA 94305 University of Pittsburgh

3939 O'Hara Street
Lt. Col. Hugh Bums Pittsburgh, PA 15260AFHRL/IDI3
Brooks AFB, TX 78235 Dr. Raymond E. Christal

Assistant for Long Range Rqmts. UES LAMP Science AdvisorAssstat or on RageRqms.AFHRL/MOEL

CNO Executive Panel (Op-OOK) Brooks AFB, TX 78235

4401 Ford Avenue
Alexandria, VA 22302-0268 3

U
I
I

SONR Distribution List - 3

I
3 Dr. William Clancey Defense Technical Info. Ctr.

Institute for Research Attn: TC
on Learning Cameron Station, Bldg. 5
3333 Coyote Hill Road Alexandria, VA 22314
Palo Alto, CA 94304 (12 copies)

Dr. Allan M. Collins Deputy Dir. Military PersonnelBolt Beranek & Newman, Inc. Policy Division10 Moulton Street Office of the DCNO (MPT)
Cambridge, MA 02238 (Op-13B)
Dr. Stanley Collyer Department of the Navy
Office of Naval Technology Washington, DC 20370-2000
Code 222 Deputy Director Total Force800 N. Quincy Street Training & Education DivisionArlington, VA 22217-5000 Office of the DCNO (MPT)

Dr. Albert T. Corbett (Op-I 1B)
Department of Psychology Department of the Navy
Carnegie-Mellon University Washington, DC 20370-2000
Pittsburgh, PA 15213 Head, Leadership Branch

Naval Military Personnel CommandChief of Micaval perans Attn: LCDR E. Marits, NMPC-621
hfOfP avl9peaton Department of the Navy

Pentagon Washington, DC 20370-5620
Washington, DC 20350-2000 Head, Military Compensation

Brian Dallman Policy BranchBria DalmanOffice of the DCNO (MPT)
Training Technology Branch Offc 3t) DC 23000

3400 TCHTW/TTGXC (Op-134)

ILowry AB, CO 80230-5000 Department of the NavyLowr AFB CO 02305000Washington, DC 20370-2000

Dr. Robert B. Davis Dr. Andrea di Sessa
Curriculum Laboratory University of California
(Education) School of Education
University of Illinois Tolman Hall3 Urbana, IL 61801 Berkeley, CA 94720

Chief, Survey & Market ERIC Facility-Acquisitions
Analysis Division 4350 East-West Hwy, Suite 1100
Defense Manpower Data Center Bethesda, MD 20814-4475
1600 Wilson Blvd., #400
Arlington, VA 22209-2593 Dr. Martha Evans

Dept. of Computer Science
Illinois Institute of Technology
Chicago, IL 60616I

I
I

I
ONR Distribution List - 4 i

Dr. Marshall J. Farr, Consultant Eric Gaussens I
Cognitive & Instructional Sciences Research & Development Dept.
2520 North Vernon Street Framentec S.A.
Arlington, VA 22207 Tour Fiat Cedex 16 I

Paris la DefenseDr. Paul Feltovich F. 92084

Southern Illinois Univ. France

School of Medicine F

P.O. Box 3926 Dr. Dedre Gentner
Springfield, IL 62708 University of Illinois

Dr. Gerhard Fischer Department of Psychology

University of Colorado 603 E. Daniel St.

Department of Computer Science Champaign, IL 61820

Boulder, CO 80309 Dr. Meg Gerrard
Psychology DepartmentDr. Kenneth D. Forbus Iowa State University

University of Illinois Ia e i versit

Department of Computer Science Ames, IA 50010

1304 West Springfield Avenue Dr. Robert Glaser
Urbana, IL 61801 Learning Research &

Dr. Barbara A. Fox Development Center

University of Colorado University of Pittsburgh

Department of Linguistics 3939 O'Hara Street

Boulder, CO 80309 Pittsburgh, PA 15260

Dr. Sam Glucksberg
Dr. John R. Frederiksen Department of PsychologyBBN Laboratories Princeton University l

10 Moulton Street Princeton niv0r5i0

Cambridge, MA 02238 Princeton, NJ 08540

Dr. Michael Friendly Prof. Clark Glymour

Psychology Department Dept. of Philosophy
Yo g Unie art t Carnegie-Mellon University

York University Pittsburgh, PA 15213
Toronto ONT
CANADA M3J IP3 Dr. Sherrie Gott

Julie A. Gadsden AF,7RL/MOMJ

Information Technology Brooks AFB, TX 78235-5601

Applications Division Dr. T. Govindaraj
Admiralty Research Establishment Georgia Institute of
Portsdown, Portsmouth P06 4AA Technology
UNITED KINGDOM School of Industrial

and Systems Engineering i
Atlanta, GA 30332-0205

I
l
i

I ONR Distribution List - 5

I
Dr. Jordan Grafman Dr. Ed Hutchins
Neuropsychology Section Intelligent Systems Group
Medical Neurology Institute for
Branch-NINCDS Cognitive Science (C-015)Building 10, Room 5C416 UCSD
Bethesda, MD 20892 La Jolla, CA 92093

Dr. James G. Greeno Dr. Janet Jackson
School of Education Rijksuniversiteit Groningen
Stanford University Biologisch Centrum, Vleugel D
Room 311 Kerklaan 30, 9751 NN Haren
Stanford, CA 94305 The NETHERLANDS

Dr. Henry M. Halff Dr. Claude Janvier
Halff Resources, Inc. Universite' du Quebec a Montreal
4918 33rd Road, North P.O. Box 8888, succ: A"
Arlington, VA 22207 Montreal, Quebec H3C 3P8

I Dr. Bruce W. Hamill CANADA

Research Center Dr. Robin Jeffries
The Johns Hopkins University Hewlett-Packard Laboratories, 3L
Applied Physics Laboratory P.O. Box 10490
Johns Hopkins Road Palo Alto, CA 94303-0971
Laurel, MD 20707 Prof. David W. Johnson

Dr. Barbara Hayes-Roth Cooperative Learning Center
Knowledge Systems Laboratory University of Minnesota
Stanford University 150 Pillsbury Dr., S.E.701 Welch Road Minneapolis, MN 55455
Palo Alto, CA 94304 Dr. Marcel Just

Dr. James Hollan Carnegie-Mellon University
NPRDC, UCSD Department of Psychology
Code 501 Schenley Park

I San Diego, CA 92152 Pittsburgh, PA 15213

Dr. Keith Holyoak Dr. Daniel Kahneman
Department of Psychology Department of Psychology
University of California University of California
Los Angeles, CA 90024 Berkeley, CA 94720

Ms. Julia S. Hough Dr. Milton S. Katz
Lawrence Erlbaum Associates European Science Coordination
110 W. Harvey Street Office
Philadelphia, PA 19144 U.S. Army Research Institute

Box 65
FPO New York 09510-1500I

I
I

ONR Distribution List - 6 I

Dr. Wendy Kellogg Dr. Robert W. Lawler I
IBM T. J. Watson Research Ctr. Matthews 118
P.O. Box 704 Purdue University
Yorktown Heights, NY 10598 West Lafayette, IN 47907 I
Dr. Jeffery L. Kennington Dr. Alan M. Lesgold
School of Engineering & Learning R&D Center
Applied Sciences University of Pittsburgh
Southern Methodist University Pittsburgh, PA 15260
Dallas, TX 75275 Dr. Jim Levin

Dr. David Kieras Department of
Technical Communication Program Educational Psychology
TIDAL Bldg., 2360 Bonisteel Blvd. 210 Education Building
University of Michigan 1310 South Sixth Street
Ann Arbor, MI 48109-2108 Champaign, IL 61820-6990

Dr. Janet L. Kolodner Dr. John Levine n

Georgia Institute of Technology Learning R&D Center
School of Information & University of Pittsburgh
Computer Science Pittsburgh, PA 15260 I
Atlanta, GA 30332 Dr. Clayton Lewis

Dr. Kenneth Kotovsky University of Colorado
Community College of Department of Computer Science
Allegheny County Campus Box 430
808 Ridge Avenue Boulder, CO 80309
Pittsburgh, PA 15212 Science and Technology Division I
Dr. Benjamin Kuipers Library of Congress
University of Texas at Austin Washington, DC 20540
Department of Computer Sciences Vein M. Malec
Taylor Hall 2.124 Vem M. 52Austin, Texas 78712 NPRDC, Code 52•

San Diego, CA 92152-6800 I
Dr. Jill Larkin Dr. Jane Main

Carnegie-Mellon University Mail Code EF
Department of Psychology NASA Johnson Space Center I
Pittsburgh, PA 15213 Houston, TX 77058

Commander J.M. LaRocco D
Naval School of Health Sciences Dr. William L. Maloy
National Naval Medical Center Naval Education and TrainingBldg. 141 Program Support Activity

g DC 20814-5033 Code 047Washington, DBuilding 2435
Pensacola, FL 32509-5000 I

I
I

U ONR Distribution List - 7

I
3 Dr. Elaine Marsh Dr. Judy Moracco

Naval Center for Applied Research Code CEL-MP53
in Artificial Intelligence Washington Navy Yard
Naval Research Laboratory Bldg. 200
Code 5510 Washington, DC 20374
Washington, DC 20375-5000 Dr. Randy Mumaw
Dr. Sandra P. Marshall Training Research Division
Dept. of Psychology HumRRO
San Diego State University 1100 S. Washington
San Diego, CA 92182 Alexandria, VA 22314

Dr. Manton M. Matthews Dr. Allen Munro
Department of Computer Science Behavioral Technology
University of South Carolina Laboratories - USC
Columbia, SC 29208 1845 S. Elena Ave., 4th Floor
Dr. Joseph C. McLachlan Redondo Beach, CA 90277

Code 52 Deputy Technical Director
Navy Personnel R&D Center NPRDC Code OA
San Diego, CA 92152-6800 San Diego, CA 92152-6800

Dr. James McMichael Director, Human Factors
Technical Director & Organizational Systems Lab,
Navy Personnel R&D Center NPRDC (Code 07)
San Diego, CA 92152-6800 San Diego, CA 92152-6800

Dr. Barbara Means Director, Manpower and Personnel
SRI International Laboratory,
333 Ravenswood Avenue NPRDC (Code 06)
Menlo Park, CA 94025 San Diego, CA 92152-6800

Prof. George A. Miller Director, Training Laboratory,
Dept. of Psychology NPRDC (Code 05)
Princeton University San Diego, CA 92152-6800
Princeton, NJ 08544 Head, Fleet Liaison Dept.
Dr. James R. Miller NPRDC (Code 31)
MCC San Diego, CA 92152-6800
3500 W. Balcones Center Dr. Head, Human Factors Dept.

Austin, TX 78759 NPRDC (Code 4 1)

Dr. William Montague San Diego, CA 92152-6800
NPRDC Code 13 Head, Manpower Systems Dept.
San Diego, CA 92152-6800 NPRDC (Code 61)

San Diego, CA 92152-6800

I
I

I
ONR Distribution List - 8 I

Head, Personnel Systems Dept. Director, Recreational Svcs. Dept. i
NPRDC (Code 62) Naval Military Personnel Command
San Diego, CA 92152-6800 (N-651C)1300 Wilson Blvd., Room 932Head, Testing Systems Dept. Arlington, VA 22209

NPRDC (Code 63)

San Diego, CA 92152-6800 Chairman, Department of
Administrative Sciences I

Head, Training Systems Dept. Code 54
NPRDC (Code 52) Naval Postgraduate School

San Diego, CA 92152-6800 Monterey, CA 93943-5100
Head, Training Tech. Dept. Chairman, Department of
NPRDC (Code 51) Operations Research
San Diego, CA 92152-6800 Code 55
Library Naval Postgraduate School
NPRDC Monterey, CA 93943-5100 I
Code P201 L Commanding Officer,
San Diego, CA 92152-6800 Naval Research Laboratory 3
Spec. Asst. for Research, Experi- Code 2627
mental & Academic Programs, Washington, DC 20390
NTTC (Code 016) Deputy Director Manpower, iNAS Memphis (75) Personnel and Training Div.
Millington, TN 38054 Naval Sea Systems Command

Assistant Chief of Staff Attn: Code CEL-MP63
for Research, Development, Washington, DC 20362
Test, and Evaluation Head, Human Factors Laboratory
Naval Education and Naval Training Systems Ctr.
Training Command (N-5) Code 71
NAS Pensacola, FL 32508 Orlando, FL 32813-7100

Director, Instructional Dvlpmt. Library
and Educational Pgm. Support Dept. Naval Training Systems Center
Naval Education & Training Pgm. Orlando, FL 32813
Management Support Activity
(NETPMSA) Library
Pensacola, FL 32509 Naval War College

Technical Director Newport, RI 02940 3
Naval Health Research Center Commanding Officer
P.O. Box 85122 Navy Personnel R&D Ctr.
San Diego, CA 92138-9174 San Diego, CA 92152-6800

I
I
I

I ONR Distribution List - 9

I
Technical Director Office of Naval Research,
Navy Personnel R&D Center Code 1142CS
San Diego, CA 92152-6800 800 N. Quincy StreetI Arlington, VA 22217-5000
Director, Research & Analysis Div. (6 Copies)
Navy Recruiting Command

(Code 223) Office of Naval Research,
4015 Wilson Blvd., Room 215 Code 1142PS
Arlington, VA 22203-1991 800 N. Quincy Street

Dr. Donald A. Norman (C-015) Arlington, VA 22217-5000

Institute for Cognitive Science Biological Intelligence
University of California Code 1142BI
La Jolla, CA 92093 Office of Naval Research

Special Assistant for Marine Arlington, VA 22217-5000

Corps Matters, Cognitive Science
ONR Code OOMC Code 1142CS
800 N. Quincy St. Office of Naval Research
Arlington, VA 22217-5000 Arlington, VA 22217-5000

Chairman, MPT R&D Committee Director, Cognitive &
Office of the Chief of Neural Sciences (Code 1142)
Naval Research Office of Naval Research3 Code 222 Arlington, VA 22217-5000
Arlington, VA 22217-5000 Director, Life Sciences

Director, Biological/Human Code 114
Factors Division (Code 125) Office of Naval Research
Office of the Chief of Arlington, VA 22217-5000
Naval Research

,VA 22217-5000 Director Research Programs
Office of Naval Research

Director, Navy Family Support Pgm Code 11
Office of the DCNO (MPT) (Op-156) Arlington, VA 22217-5000
1300 Wilson Blvd., Room 828
Arlington, VA 22209 MathematicsCode 111lIMA

Office of Naval Research, Office of Naval Research
Code 1142 Arlington, VA 22217-5000
800 N. Quincy St. Psychologist
Arlington, VA 22217-5000 Office of Naval Research

Office of Naval Research, Branch Office, London
Code 1142BI Box 39
800 N. Quincy Street FPO New York, NY 09510
Arlington, VA 22217-5000

I
I
I

ONR Distribution List - io I

Psychologist Dr. Tjeerd Plomp I
Office of Naval Research Twente University of Technology
Detachment Department of Education
1030 E. Green Street P.O. Box 217
Pasadena, CA 91106-2485 7500 AE ENSCHEDE

Dr. Harold F. O'Neil, Jr. THE NETHERLANDS

School of Education - WPH 801 Dr. Martha Poison
Department of Educational Department of Psychology
Psychology & Technology University of Colorado
University of Southern California Boulder, CO 80309-0345
Los Angeles, CA 90089-0031 Dr. Steven E. Poltrock

Dr. Judith Orasanu MCC 3
Basic Research Office 3500 West Balcones Center Dr.
Army Research Institute Austin, TX 78759-6509
5001 Eisenhower Avenue
Alexandria, VA 22333 Dr. Harry E. Pople

University of Pittsburgh
Military Assistant for Training and Decision Systems Laboratory
Personnel Technology, 1360 Scaife Hall
OUSD (R & E) Pittsburgh, PA 15261
Room 3D 129, The Pentagon
Washington, DC 20301-3080 Dr. Joseph Psotka n

ATTN: PERI-IC

Assistant for Manpower and Training Army Research Institute
Office of the CNO (Op-987H) 5001 Eisenhower Ave.
5D772, The Pentagon Alexandria, VA 22333-5600
Washington, DC 20350 Mr. Paul S. Rau

Head, Manpower, Personnel, Code U-33
and Training Branch Naval Surface Weapons Center I
Office of the CNO (Op-813) White Oak Laboratory
4A478, The Pentagon Silver Spring, MD 20903
Washington, DC 20350-1000 Dr. Steve Reder

Dr. Douglas Pearce Northwest Regional
1133 Sheppard W Educational Laboratory I
Box 2000 400 Lindsay Bldg.
Downsview, Ontario 710 S.W. Second Ave.
CANADA M3M 3B9 Portland, OR 97204 3
Office of the Deputy Assistant
Secretary of the Navy
Manpower & Reserve Affairs I
5D800, The Pentagon
Washington, DC 20350-1000

I
I

I ONR Distribution List - I I

I

Dr. James A. Reggia Dr. Eduardo Salas
University of Maryland Human Factors Division
School of Medicine Code 712
Department of Neurology Naval Training Systems Ctr.
22 South Greene Street Orlando, FL 32813-7100
Baltimore, MD 21201 Dr. Walter Schneider

Dr. J. Wesley Regian Learning R&D Center
AFHRL/IDI University of Pittsburgh
Brooks AFB, TX 78235 3939 O'Hara Street

Dr. Fred Reif Pittsburgh, PA 15260

Physics Department Dr. Janet W. Schofield
University of California 816 LRDC Building
Berkeley, CA 94720 University of Pittsburgh

3939 O'Hara Street
Dr. Brian Reiser Pittsburgh, PA 15260
Department of Psychology Pittsbrgh, P A2
Green Hall Dr. Miriam Schustack
Princeton University Code 52
Princeton, NJ 08540 Navy Personnel R & D Center

Dr. Gilbert Ricard San Diego, CA 92152-6800

Mail Stop K02-14 Dr. Judith W. Segal
Grumman Aircraft Systems OERI
Bethpage, NY 11787 555 New Jersey Ave., NW

Dr. J. Jeffrey Richardson Washington, DC 20208

Center for Applied Al Dr. Colleen M. Seifert
College of Business Institute for Cognitive Science
University of Colorado Mail Code C-015
Boulder, CO 80309-0419 University of California, San Diego

Dr. Linda G. Roberts La Jolla, CA 92093

Science, Education, and Dr. Ben Shneiderman
Transportation Program Dept. of Computer Science
Office of Technology Assessment University of Maryland
Congress of the United States College Park, MD 20742
Washington, DC 20510 Dr. Randall Shumaker

Dr. William B. Rouse Naval Research Laboratory
Search Technology, Inc. Code 5510
4725 Peachtree Comers Circle 4555 Overlook Avenue, S.W.
Suite 200 Washington, DC 20375-50003 Norcross, GA 30092

I
I
I

ONR Distribution List - 12 I

Dr. Edward E. Smith Dr. Kikumi Tatsuoka
Department of Psychology CERL
University of Michigan 252 Engineering Research
330 Packard Road Laboratory I
Ann Arbor, MI 48103 103 S. Mathews Avenue

Program Director Urbana, IL 61801 i

Manpower Reearch & Dr. Perry W. Thomdyke
Advisory Services FMC Corporation
Smithsonian Institution Central Engineering Labs
801 N. Pitt St., Suite 120 1205 Coleman Avenue, Box 580
Alexandria, VA 22314-1713 Santa Clara, CA 95052

Dr. Al Smode Dr. Martin A. Tolcott
Naval Training Systems Ctr. 3001 Veazey Ten'., N.W.
Code 71 Apt. 1617
Orlando, FL 32813-7100 Washington, DC 20008 3
Dr. Elliot Soloway Douglas M. Towne
Yale University University of Southern California
Computer Science Department Behavioral T.,nnoiogy Laboratories
P.O. Box 2158 250 N Haroor Drive, Suite #309
New Haven, CT 06520 Atedondo Beach, CA. 90277

Dr. Richard C. Sorensen Headquarters, U. S. Marine Corps
Navy Personnel R&D Center Code MPI-2t,'
San Diego, CA 92152-6800 Washington, DC 20380

Dr. Kathryn T. Spoehr Dr. Jerry Vogt
Brown University Navy Personnel R&D Center
Department of Psychology Code 51 i
Providence, RI 02912 San Diego, CA 92152-6800

Dr. Kurt Steuck Dr. Ralph Wachter
AFHRL/IDI JHU-APL I
Brooks AFB Johns Hopkins Road
San Antonio, TX 78235-5601 Laurel, MD 20707

Dr. Albert Stevens Dr. Keith T. Wescourt
Bolt Beranek & Newman, Inc. FMC Corporation
10 Moulton St. Central Engineering Labs
Cambridge, MA 02238 1205 Coleman Ave., Box 580

Dr. John Tangney Santa Clara, CA 95052

AFOSR/NL, Bldg. 410 Dr. Barbara White I
Boiling AFB, DC 20332-6448 BBN Laboratories

10 Moulton Street
Cambridge, MA 02238 3

I
I

I ONR Distribution List - 13

U
Dr. Kent E. Williams
Inst. for Simulation and Training
University of Central Florida
P.O. Box 25000
Orlando, FL 32816-0544

Dr. Robert A. Wisher
U.S. Army Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

Dr. Martin F. Wiskoff
Defense Manpower Data Center
550 Camino El Estero
Suite 200
Monterey, CA 93943-3231

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
Code 51
San Diego, CA 92152-6800

Dr. Masoud Yazdani
Dept. of Computer Science
University of Exeter
Prince of Wales Road
Exeter EX44PT
ENGLAND

Dr. Joseph L. Young
National Science Foundation
Room 320
1800 G Street, N.W.
Washington, DC 20550

I
I
I
I
I
I

