Six-Month Evaluation of Extended Wear Soft Contact Lenses Among Armored Troops: Part I: Clinical Findings (Reprint)

By

William G. Bachman
Bruce C. Leibrecht
John K. Crosley
Dudley R. Price
Patrick M. Leas
Gerald A. Bentley

Sensory Research Division

December 1989

Approved for public release; distribution unlimited.
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expeditied if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U. S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Human use

Human subjects participated in these studies after giving their free and informed voluntary consent. Investigators adhered to AR 70-25 and USAMRDC Reg 70-25 on Use of Volunteers in Research.

Reviewed:

BRUCE C. FEBRECHT, Ph.D.
LTC, MS
Director, Sensory Research Division

Released for publication:

J. D. LaMOTHE, Ph.D.
COL, MS
Chairman, Scientific Review Committee

DAVID H. KARNEY
Colonel, MC
Commanding
Six-Month Evaluation of Extended-Wear Soft Contact Lenses Among Armor Troops: Part I, Clinical Findings (U) (Reprint)

William G. Bachman, Bruce C. Leibrecht, John K. Crosley, Dudley R. Price, Patrick M. Leas, and Gerard A. Bentley

This report addresses the clinical aspects of wearing contact lenses in an operational military environment. Male volunteers in an armored division wore extended-wear soft contact lenses (SCLs) or spectacles for up to 6 months, participating fully in their units' normal activities. Seventy-four percent of those successfully fitted with SCLs wore their lenses for the duration of the study, when administrative losses were factored out. More than one-third of the SCL wearers experienced one or more ocular conditions requiring at least a temporary suspension of lens wear. Corneal edema and corneal staining occurred rarely at clinically significant levels. Higher than expected rates of corneal vascularization were most likely influenced by measurement criteria. Relatively frequent conjunctival injection appeared to be largely due to local environmental factors.
Six-Month Evaluation of Extended Wear Soft Contact Lenses among Armor Troops: Part I, Clinical Findings

William G. Bachman, OD, Bruce C. Leibrecht, PhD, John K. Crosley, OD, Dudley R. Price, MD, Patrick M. Leas, OD, and Gerard A. Bentley, OD

ABSTRACT

This report addresses the clinical aspects of wearing contact lenses in an operational military environment. Male volunteers in an armored division wore extended wear soft contact lenses (SCL) or spectacles for up to six months, participating fully in their units' normal activities. Seventy-four percent of those successfully fitted with SCL wore their lenses for the duration of the study when administrative losses were factored out. More than one-third of the SCL wearers experienced one or more ocular conditions requiring at least a temporary suspension of lens wear. Corneal edema and corneal staining occurred rarely at clinically significant levels. High rates of corneal vascularization were influenced by reporting criteria. Relatively frequent conjunctival injection appeared to be largely due to environmental factors.

INTRODUCTION

A large proportion of U.S. Army personnel wear spectacles to correct for ametropia. Reinke estimates the proportion of spectacle wearers to be greater than 48%. Unfortunately, spectacle wearing soldiers frequently face problems when interfacing with military hardware, since spectacles are minimally compatible or outright incompatible with many military systems. Examples of such systems include protective masks, binoculars, weapons sights, night vision goggles, and helmet mounted displays. To make matters worse, rain, dust, sweat, and condensation clinging to spectacle lenses can compound operational problems for ametropic troops.

Contact lenses, especially extended wear lenses, offer an appealing alternative for solving the compatibility and environmental problems faced by spectacle wearing soldiers. A number of investigators have studied contact lens wear among military personnel. As early as 1952, McGandy and Enoch evaluated clinical, environmental, and performance aspects among 10 enlisted soldiers to see several types of contact lenses available at the time. In the years since, military aviators have received the most frequent attention; several researchers used mainly clinical measures with sample sizes ranging from 1 to 55, while one investigator used a retrospective questionnaire among 7 British Army pilots. Some studies have focused on ground troops and reports addressing contact lens wear among...
civilians in extreme environments offer information relevant to military applications. However, the literature furnishes little data from large sample studies combining clinical and survey methodologies with military personnel.

This study was initiated to assess the safety and utility of soft contact lenses (SCL) when worn by troops in an armored division while performing their normal military duties. In the armor environment, the sighting devices found in tanks and other fighting vehicles provide excellent examples of the interface problems confronting the spectacle wearing soldier. The problems are compounded when the sights must be used in moving vehicles. The specific study objectives were: (1) estimate success rates in wearing selected extended wear contact lenses; (2) determine the impact of extended wear on ocular physiology; (3) evaluate the acceptability of wear and care aspects; and (4) assess the impact on military job performance. This report addresses findings relevant to the first two objectives; a follow-on article (to appear in the July 1989 issue) will present subjective patient responses pertaining to the latter two objectives. Bachman et al. have provided a full account of the study's methods and results.

MATERIALS AND METHODS

Subjects A total of 311 volunteers participated in this study; 215 were fitted with extended wear SCL, while 96 served as spectacle-wearing controls. Ranging in age from 16–43, all were male soldiers stationed at Ford Hood, Texas. Most of the subjects were crew members of tanks, combat vehicles (tracked personnel and weapons carriers), or air defense artillery weapons (antiaircraft missiles or guns).

The 311 subjects resulted from prescreening a large number of health records of ametropic troops. Prescreening was followed by thorough clinical evaluation to identify conditions that would medically contraindicate participation as a subject. These conditions included, but were not limited to, acute and/or subacute inflammations of the anterior segment of the eye; any disease that affected the cornea, conjunctiva, or sclera; corneal hypoesthesia; low tear breakup time or insufficiency; dry eyes; allergy; any systemic disease that might affect the eye or be aggravated by wearing contact lenses; and refractive errors that could not be compensated adequately by available contact lens powers.

Contact Lens Materials At the time this study was initiated, soft contact lenses worn for extended periods of time offered the greatest potential to solve soldier-system interface problems. Three different types of extended wear SCL were used: (1) 71% water content (Permalens XL; CooperVision); (2) 55% water content (Hydrocurve II; Barnes-Hind); and (3) 38.5% water content (CSI T; Sola-Syntex). This mix provided reasonably broad fitting capabilities. The Permalens XL and CSI T lenses were available to correct myopia in 0.50 diopter steps from −0.50 to −8.00 diopters. The Hydrocurve II lens was available in the same myopic corrections, as well as in 0.50 diopter steps to correct hyperopia from +1.00 to +5.00 diopters. Lenses were available in sufficient quantities so that they could be dispensed to the subjects directly from stock. Cleaning solutions, cases, storage materials, and fitting procedures recommended by the respective manufacturer were used.

The SCL subjects were instructed to wear their lenses continuously for a period of 7 days plus or minus 1 day. On the 7th day of continuous wear, the lenses were to be removed 2 hours prior to bedtime, cleaned, and stored in the cases until the following morning. The conservative approach to wearing time minimized physiological risks and interference with the individual's performance of duties. Six months of wearing time were targeted for each subject. To minimize problems related to lens deposits, subjects wore the same lenses no longer than four months, at the end of which the old lenses were replaced with new ones.

Clinical Procedures Following the initial examination, each SCL wearer was fitted with lenses to provide a comfortable, stable acuity of at least 20/25 binocularly. Any volunteer who could not achieve adequate comfort, acuity, and lens stability with any of the three available lenses was eliminated. All subjects began immediately with extended lens wear. Follow-up visits at 24 hours, 7 days, and every 30 days thereafter were scheduled routinely.

Spectacle-wearing subjects received an initial examination similar to the initial exam for SCL participants. Each participant's refractive prescription was verified and a new pair of standard issue spectacles provided, if necessary. Two follow-up exams were scheduled—one 30 days after the first, and another at the end of the study.

RESULTS AND DISCUSSION

The SCL wearers were fit across a period of 14 weeks. The study spanned the months of May through December, with individual participants varying in their starting and ending dates. Consequently, each participant encountered a broad range of climatic conditions. Temperatures ranged from 102°F to 31°F, with conditions generally dry and dusty. Rainfall during the first five months of the test period averaged 1.57 inches per month, while the average during October through December was 4.67 inches per month. Relative humidity generally ranged between 35% and 70%.

The SCL and spectacle groups were quite comparable in terms of age distribution: in each group, 60% of the participants were age 25 and below. The median age of the spectacle wearers was 23.5 years (range, 18–41), while it was 24.0 years (range, 18–43) for the SCL wearers.

Visual Status The range of uncorrected visual acuity of the two groups was the same, 20/20 to 20/450. However, the mean for the SCL wearers was 20/180, while that of the spectacle wearers was 20/100. This
difference is related directly to spherical refractive errors, which for the SCL wearers ranged from +4.75 diopters to −7.50 diopters, with the mean being 2.18 diopters. For the spectacle wearers, the range was from +7.75 diopters to −6.00 diopters and the mean was −0.51 diopter.

The cylindrical refractive error data for the SCL wearers reflected the imposed limits on correctable cylindrical error allowed for this group. The range was rather narrow, from plano to a high of −1.75 diopters. The spectacle wearers, on the other hand, exhibited a wide range extending to −5.00 diopters. For the SCL wearers the mean cylinder was −0.39 diopters, while the mean for the spectacle wearers was −1.45 diopters.

A summary of the corrected binocular acuities for selected exams is contained in Table 1. Acuities recorded for the SCL wearers’ initial exam were obtained as part of the refraction; the acuities for the remaining exams were recorded through the habitually worn contact lenses. Both the initial and the final exam acuities for the spectacle wearers were obtained as part of a complete eye exam.

During their initial exam, 99% of the SCL wearers were correctable to 20/20 or better. Among the spectacle wearers at the initial exam, 95% were corrected to 20/20 or better. At the 7-day exam, the acuities of the SCL subjects were somewhat reduced. This reduction may have been related to the inability of the soft lenses to fully compensate for allowable astigmatism, initial adjustment to SCL wear, and/or a possible need to change lens parameters.

The improvement in SCL wearers’ acuity noted at the 90-day visit could have been due partially to the attrition of subjects who were having problems with acuity. It was also likely related to progressive adaptation to SCL wear.

A comparison of the final corrected acuities of both groups shows the proportion achieving 20/20 or better was 95% for SCL subjects and 97% for spectacle wearers.

Ocular Physiology Summary data from selected biomicroscopy examinations (initial, 90-day, and final) appear in Table 2. The classification codes are those recommended by the Food and Drug Administration for clinical investigations.

Vascularization. Table 2 shows the percentages of eyes exhibiting vascularization. It is readily apparent that vessel ingrowth increased over the course of the study. The reason for the high rates of vascularization found is the stringent criterion to report any measurable amount of vascularization. Zucarro, Thayer, and Poland in a 5-year study of SCL wearers reported vascularization in only 3% of all followup examinations, but recorded only occurrences of at least 1.5 mm vessel extension inside the limbus. Nilsson and Persson reported no vascularization at all in a 2-year study of extended wear contact lens patients. They defined vascularization as growth greater than 1.25 mm. It appears then that extensions of 1–1.5 mm into the cornea have not been considered significant.

Injection. Table 2 summarizes the percentages of eyes exhibiting injection over the course of the study. The incidence of injection is much higher than found in the studies of Zucarro, Thayer, and Poland. Nilsson and Persson, and Rengstorff et al. The SCL wearing soldiers in this study seemed predisposed to injection, as did their spectacle wearing counterparts. This may have been related to the environment in which they worked and their constant exposure to local irritants, such as dust, wind, smoke and fumes.

Staining. As can be seen in Table 2, the percentage of eyes exhibiting staining of any kind was very low.

Edema. As Table 2 shows, the percentage of eyes exhibiting moderate degrees of microedema or gross edema was very small.

Other Complications. This classification includes observations not discussed above. Table 2 shows the only unusual occurrence was the high incidence of follicular hypertrophy. This is attributed to the endemic occurrence of mild vernal conjunctivitis at the test installation during the study period. The “other” classification in this category includes such observations as papillae, punctuate, blepharitis, and coated lenses.

Suspension of Lens Wear. In accordance with accepted clinical practice and the terms of the approved research protocol, SCL wear was suspended tempo-

TABLE 1

Corrected Acuity (Binocular) at Selected Examinations

<table>
<thead>
<tr>
<th>Visual Acuity</th>
<th>SCL Wearers</th>
<th>Spectacle Wearers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial (n = 215)</td>
<td>7-day (n = 176)</td>
</tr>
<tr>
<td>20/20 or better</td>
<td>99%</td>
<td>90%</td>
</tr>
<tr>
<td>20/25</td>
<td>1%</td>
<td>8%</td>
</tr>
<tr>
<td>20/30</td>
<td>0</td>
<td>1%</td>
</tr>
<tr>
<td>20/40 or poorer</td>
<td>0</td>
<td>1%</td>
</tr>
</tbody>
</table>

164
TABLE 2
Percentage of Eyes Exhibiting Biomicroscopy Classifications (SCL Wearers)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Initial (n = 430)</th>
<th>90-day (n = 236)</th>
<th>Final (n = 240)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VASCULARIZATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingrowth, 1 quadrant</td>
<td>16%</td>
<td>28%</td>
<td>24%</td>
</tr>
<tr>
<td>Ingrowth, >1 quadrant</td>
<td>4%</td>
<td>20%</td>
<td>33%</td>
</tr>
<tr>
<td>Continuing growth, <2 mm</td>
<td>—</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Continuing growth, >2 mm</td>
<td>—</td>
<td><1%</td>
<td>—</td>
</tr>
<tr>
<td>INJECTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild congestion</td>
<td>28%</td>
<td>51%</td>
<td>31%</td>
</tr>
<tr>
<td>Severe congestion</td>
<td>6%</td>
<td>12%</td>
<td>20%</td>
</tr>
<tr>
<td>Hyperemia</td>
<td>—</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>STAINING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal stippling</td>
<td>1%</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>Superficial punctate</td>
<td>—</td>
<td>3%</td>
<td><1%</td>
</tr>
<tr>
<td>Epithelial abrasions</td>
<td>—</td>
<td><1%</td>
<td>—</td>
</tr>
<tr>
<td>EDEMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slight, localized</td>
<td>2%</td>
<td>4%</td>
<td>13%</td>
</tr>
<tr>
<td>Slight, generalized</td>
<td>—</td>
<td><1%</td>
<td>2%</td>
</tr>
<tr>
<td>Moderate, localized</td>
<td>—</td>
<td>—</td>
<td>1%</td>
</tr>
<tr>
<td>Moderate, generalized</td>
<td>—</td>
<td>—</td>
<td>2%</td>
</tr>
<tr>
<td>Vertical striae</td>
<td>—</td>
<td><1%</td>
<td>—</td>
</tr>
<tr>
<td>OTHER COMPLICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased sebaceous secretion</td>
<td>3%</td>
<td>—</td>
<td><1%</td>
</tr>
<tr>
<td>Follicular hypertrophy</td>
<td>10%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Other (see text)</td>
<td>9%</td>
<td><1%</td>
<td>5%</td>
</tr>
</tbody>
</table>

*Includes some cases of suspension that were deferred for disposition until the final exam.

rarily when ocular complications developed. At least one period of suspended wear occurred for 69 SCL wearers (42% of the average census) during the course of the study. The various conditions resulting in suspended SCL wear are presented in Table 3. Some individuals were suspended more than once (none more than three times), resulting in 87 cases. The most common cause of suspension was inflammation of some segment of the anterior portion of the eye or ocular adnexa, accounting for 41 percent of the total number of suspensions. Abrasions, staining, and epithelial defects of the cornea collectively accounted for 29% of the total number of suspensions.

Attrition Ocular conditions that posed unacceptable jeopardy to the SCL wearers occurred occasionally, necessitating removal of subjects from the study. In addition, a number of SCL wearers were discontinued before the end of the study due to administrative circumstances or self-withdrawal. The cases of attrition are listed in Table 4 according to the nature of the cause. A total of 64 SCL subjects failed to complete the study for administrative or personal reasons.
The number of SCL participants failing to complete the study for medically-related reasons was 40. This figure was compared to the census at the start of the study, excluding those subjects who eventually withdrew for nonmedical reasons, to yield a six-month attrition rate of 26%. Three conditions—discomfort, dissatisfaction with acuity, and giant papillary conjunctivitis—accounted for 68% of the cases of medically-related attrition.

Suspension and attrition both reflect the occurrence of ocular complications. Accordingly, a comprehensive picture of ocular complications can be obtained by combining the data for suspension and attrition. A total of 79 SCL subjects developed at least one ocular complication. This translates into a proportion equal to 47% when the average census across the entire study is used for computation. In other words, on a six-month equivalent basis, 47% of those wearing SCL developed one or more ocular condition(s) requiring at least a short suspension of SCL wear.

The rate of occurrence of ocular complications declined as the study progressed. The trend for both suspension-precipitating complications and total complications can be seen in Table 5, where rates are based on average monthly census figures. A similar declining trend has been noted elsewhere in the literature and may be related to progressive attrition of complication-prone subjects as cumulative SCL wearing time increases.

Among the spectacle wearers, 16 subjects were discontinued for administrative and personal reasons. No ocular complications or cases of medically-related attrition occurred among the spectacle wearers. It should be noted the spectacle wearing participants were not examined as often as the SCL wearers.

SCL Wear Success Rates. Those SCL participants at the end of the study who had not been removed for medical reasons were defined as medically successful SCL wearers. However, those SCL participants, who were discontinued for administrative or personal reasons, can be labelled neither medically unsuccessful nor successful. Consequently, nonmedical attritions should be factored out when computing success rates for this study. Of the 215 SCL subjects who started the study, a total of 151 remained in the study to a definitive disposition. Of these, 111 (74%) successfully completed the study. In other words, when nonmedical attritions were factored out, three out of every four SCL wearers reached the end of the study without being discontinued for medically-related reasons. This six-month rate was somewhat artificially constrained by the limited types and parameters of SCL used. On the other hand, the rate may have been elevated by the well-motivated participants.
TABLE 5
Monthly Rates of Ocular Complications among SCL Wearers

<table>
<thead>
<tr>
<th>Day</th>
<th>Average Census</th>
<th>SCL Wear Suspensions</th>
<th>Total Ocular Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Rate</td>
<td>Number</td>
</tr>
<tr>
<td>1-30</td>
<td>208</td>
<td>27</td>
<td>37</td>
</tr>
<tr>
<td>31-60</td>
<td>194</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>61-90</td>
<td>180.5</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>91-120</td>
<td>162.5</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>121-150</td>
<td>141.5</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>151-180</td>
<td>125.5</td>
<td>7</td>
<td>13*</td>
</tr>
<tr>
<td>-180</td>
<td>--</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

*Includes several cases of suspension which were deferred for final disposition until the end of the study.

CONCLUSIONS

Because of methodological limitations, the results of this study should be generalized with caution. The major findings obtained in the armor environment support the following conclusions.

1. When SCL wearers discontinued for administrative reasons were factored out, 74% of those fitted successfully completed the study.
2. More than one-third of the SCL wearers experienced one or more ocular conditions requiring at least a temporary suspension of SCL wear.
3. Both corneal edema and corneal staining occurred rarely at clinically significant levels.
4. Conjunctival vascularization occurred frequently. This was influenced by stringent classification criteria.
5. Conjunctival injection was common, apparently due largely to environmental factors.

Acknowledgments

Special thanks go to the 2ID Armor Brigade, Fort Hood, Texas, for providing various participants and administrative support. The U.S. Army Training and Doctrine Command's Combined Arms Test Activity, Fort Hood, Texas, provided invaluable support in planning and conducting the entire study. We thank Lt. Terry Glover serving as project officer for Stephen Risk and Dr. Kenneth Felton provided invaluable clinical support. We thank Mr. Carolyn Johnson, Miss Jimmie Henderson for data typing, and Staff Sergeant Nollon Patena and Sergeant Rose's technical support.

References

Volume 16, Number 6 June 1989
Clinical Implications

This observational study focused on the success rate and ocular physiological response associated with the extended wearing of soft contact lenses (SCL) by armor troops over the course of six months. Reported results indicate that a significant number of people (74%) completing the study were able to tolerate the extended wear of the study's SCL and that a substantial number of SCL wearers (better than 40%) did develop periodic problems that required at least temporary suspension of SCL wear.

The medically related reasons for suspension of SCL wear were generally of a serious nature, reminding us that the application of the extended wearing of the SCL does offer significant ocular risks along with potential benefits. The impact of lens care system and patient compliance on the study results were not reported. Care system and compliance issues prompt the thought that disposable SCL for extended wear (a modality not available at the time that this study was conducted) may improve the success rate for a patient population such as those in armor troops.

I must agree with the authors that the results of the study should be generalized with caution due to limitations in various areas of the study methodology.

Chris Snyder, OD
School of Optometry
The University of Alabama, Birmingham
Birmingham, AL 35294

About the Authors

William G. Bachman received the Doctor of Optometry degree from Southern College of Optometry and the Master of Science in Physiological Optics from the University of Alabama, Birmingham. He recently retired after serving 20 years in the Army as both a clinician and a researcher, particularly in the area of contact lenses. He is currently an Assistant Professor at the School of Optometry, University of Missouri, St. Louis.

Bruce C. Leibrecht holds a PhD in Experimental Psychology from Michigan State University. He has served as a Research Psychologist with the U.S. Army Medical Research and Development Command since 1969. He is currently Director of the Sensory Research Division of the U.S. Army Aeromedical Research Laboratory, a position he has held since 1981. Having been active in several areas of biomedical research, he is the author of a number of published scientific articles.
Initial distribution

Commander
U.S. Army Natick Research and Development Center
ATTN: Documents Librarian
Natick, MA 01760

Naval Submarine Medical Research Laboratory
Medical Library, Naval Sub Base
Box 900
Groton, CT 06340

Commander/Director
U.S. Army Combat Surveillance & Target Acquisition Lab
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Commander
Naval Air Development Center
Biophysics Lab
ATTN: G. Kydd
Code 60B1
Warminster, PA 18974

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer
Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20014

Under Secretary of Defense for Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301

Commander
U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

U.S. Army Avionics Research and Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

U.S. Army Research and Development Support Activity
Fort Monmouth, NJ 07703

Chief, Benet Weapons Laboratory
LCWSL, USA ARADCOM
ATTN: DRDAR-LCB-TL
Watervliet Arsenal, NY 12189

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 6021 (Mr. Brindle)
Warminster, PA 18974

Commanding Officer
Harry G. Armstrong Aerospace Medical Research Laboratory
Wright-Patterson Air Force Base, OH 45433

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001
<table>
<thead>
<tr>
<th>Address</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director
Walter Reed Army Institute
of Research
Washington, DC 20307-5100</td>
<td>Commander
U.S. Army Institute
of Dental Research
Walter Reed Army Medical Center
Washington, DC 20307-5300</td>
</tr>
<tr>
<td>HQ DA (DASG-PSP-0)
5109 Leesburg Pike
Falls Church, VA 22041-3258</td>
<td>Naval Air Systems Command
Technical Air Library 950D
Rm 278, Jefferson Plaza II
Department of the Navy
Washington, DC 20361</td>
</tr>
<tr>
<td>Naval Research
Laboratory Library
Code 1433
Washington, DC 20375</td>
<td>Naval Research Laboratory Library
Shock and Vibration Information Center, Code 5804
Washington, DC 20375</td>
</tr>
<tr>
<td>Harry Diamond Laboratories
ATTN: Technical Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197</td>
<td>Director
U.S. Army Human Engineering Laboratory
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005-5001</td>
</tr>
<tr>
<td>U.S. Army Materiel Systems Analysis Agency
ATTN: Reports Processing
Aberdeen Proving Ground
MD 21005-5017</td>
<td>Commander
U.S. Army Test and Evaluation Command
ATTN: AMSTE-AD-H
Aberdeen Proving Ground, MD 21005-5055</td>
</tr>
<tr>
<td>U.S. Army Ordnance Center and School Library
Building 3071
Aberdeen Proving Ground, MD 21005-5201</td>
<td>Director
U.S. Army Ballistic Research Laboratory
ATTN: DRXBR-OP-ST Tech Reports
Aberdeen Proving Ground, MD 21005-5066</td>
</tr>
<tr>
<td>U.S. Army Environmental Hygiene Agency
Building E2100
Aberdeen Proving Ground, MD 21010</td>
<td>Commander
U.S. Army Medical Research Institute of Chemical Defense
ATTN: SGRD-UV-AO
Aberdeen Proving Ground, MD 21010-5425</td>
</tr>
<tr>
<td>Technical Library
Chemical Research and Development Center
Aberdeen Proving Ground, MD 21010-5423</td>
<td>Commander
U.S. Army Medical Research and Development Command
ATTN: SGRD-RMS (Ms. Madigan)
Fort Detrick, Frederick, MD 21701</td>
</tr>
</tbody>
</table>
AFAMRL/HEX
Wright-Patterson AFB, OH 45433

University of Michigan
NASA Center of Excellence in Man-Systems Research
ATTN: R. G. Snyder, Director
Ann Arbor, MI 48109

John A. Dellinger,
Southwest Research Institute
P. O. Box 28510
San Antonio, TX 78284

Product Manager
Aviation Life Support Equipment
ATTN: AMCPM-ALSE
4300 Goodfellow Blvd.
St. Louis, MO 63120-1798

Commander
U.S. Army Aviation Systems Command
ATTN: AMSAV-ED
4300 Goodfellow Blvd
St. Louis, MO 63120

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70189

U.S. Army Field Artillery School
ATTN: Library
Snow Hall, Room 14
Fort Sill, OK 73503

Commander
U.S. Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

U.S. Air Force Institute of Technology (AFIT/LDEE)
Building 640, Area B
Wright-Patterson AFB, OH 45433

Henry L. Taylor
Director, Institute of Aviation
University of Illinois-Willard Airport
Savoy, IL 61874

COL Craig L. Urbauer, Chief
Office of Army Surgeon General
National Guard Bureau
Washington, DC 50310-2500

Commander
U.S. Army Aviation Systems Command
ATTN: SGRD-UAX-AL (MAJ Lacy)
4300 Goodfellow Blvd., Bldg 105
St. Louis, MO 63120

U.S. Army Aviation Systems Command
Library and Information Center Branch
ATTN: AMSAV-DIL
4300 Goodfellow Blvd
St. Louis, MO 63120

Federal Aviation Administration
Civil Aeromedical Institute
CAMI Library AAC 64D1
P.O. Box 25082
Oklahoma City, OK 73125

Commander
U.S. Army Academy of Health Sciences
ATTN: Library
Fort Sam Houston, TX 78234

Commander
U.S. Army Institute of Surgical Research
ATTN: SGRD-USM (Jan Duke)
Fort Sam Houston, TX 78234-6200
Director of Professional Services
AFMSC/GSP
Brooks Air Force Base, TX 78235

U.S. Air Force School of Aerospace Medicine
Strughold Aeromedical Library
Documents Section, USAFSAM/TSK-4
Brooks Air Force Base, TX 78235

Dr. Diane Damos
Department of Human Factors
ISSM, USC
Los Angeles, CA 90089-0021

U.S. Army Dugway Proving Ground
Technical Library
Bldg 5330
Dugway, UT 84022

U.S. Army White Sands
Missile Range
Technical Library Division
White Sands Missile Range, NM 88002

U.S. Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

U.S. Army Aviation Engineering
Flight Activity
ATTN: SAVTE-M (Tech Lib)
Stop 217
Edwards Air Force Base, CA 93523-5000

Ms. Sandra G. Hart
Ames Research Center
MS 239-5
Moffett Field, CA 94035

AFFTC Technical Library
6520 TESTG/ENXL
Edwards Air Force Base, CAL 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

Commander
Letterman Army Institute of Research
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129

Aeromechanics Laboratory
U.S. Army Research and Technical Labs
Ames Research Center,
M/S 215-1
Moffett Field, CA 94035

Mr. Frank J. Stagnaro, ME
Rush Franklin Publishing
300 Orchard City Drive
Campbell, CA 95008

Sixth U.S. Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Commander
U.S. Army Aeromedical Center
Fort Rucker, AL 36362

Commander
U.S. Army Medical Materiel Development Activity
Fort Detrick, Frederick, MD 21701-5009