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Abstract

When exposed to a regular stimulus field, for instance generated by an artificial grammar,
subjects unintentionally learn to respond efficiently to the underlying structure: Miller
(1958) reports that subjects memorize letter strings generated by an artificial grammar

faster than randomly generated strings. Reber (1967) reports that, following rote
memorization of exemplar sentences, subjects efficiently discriminate grammatical from
non-grammatical strings. We explored the hypothesis that the learning process is

chunking and that grammatical knowledge is implicitly encoded in a hierarchical network of
chunks. Grammatical judgments are then based on the degree to which integrated
representations of strings can be built using those chunks. We trained subjects on

exemplar sentences while inducing them to form specific chunks. Their grammatical
knowledge was then tested with a discrimination task. We found that subjects were less

sensitive to grammatical violations that preserved their chunks than to violations that did
not. We derived the theory of competitive chunking (CC) and found that it successfully

reproduces, via computer simulations, both Miller's experimental results and our own In

CC, chunks are hierarchical structures strengthened through application during botm-
up parsing of stimuli. As stimulus redundancy creates overlapping chunks, a str gth-
mediated competition process determines which chunks are created and w apply

during parsing.
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1

Learning Artificial Grammars

with Competitive Chunking

The world is regular, and we are efficient regularity detectors. Some times we are
intentionally looking for structural regularities. Other times, however, we kna"n to respond
to structured stimuli even though we do not suspect an underlying structure. This latter

ability, which we think is best captured by'the phrase unintentional learning, has been
most consistently studied using artificial grammars to generate regular stimulus fields.
Such a grammar is shown in graphic form in Figure 1. In particular, two studies by Miller

(1958) and Reber (1967) demonstrate the basic phenomenon.

Miller reports that subjects can memorize lists of letter strings generated by an artifical
grammar faster than lists of randomly generated strings. While his subjects were kept
intentionally ignorant of the generating principles underlying the two types of lists, they
responded efficiently to the greater inter-string similarity of grammatical strings.

P

/T
Begin V P End

X

Figure 1
State diagram representation of an artificial finite state grammar. This grammar was introduced in

Reber (1967), and was used to generate stimuli in our Experiment 1.

Reber elaborates on Miller's experiment by following the memorization task with a
discrimination task (1967, experiment II). The combination of these two tasks is what we
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henceforth refer to as the Reber task, The general design is as follows: Subjects are first

asked to memorize some letter strings that, unbeknownst to them, are generated by an
artificial grammar. After they have reached some learning criterion, the existence of the

grammar is revealed, and subjects are asked to discriminate grammatical from non-
grammatical strings based on their experience with the memorized grammatical strings.
Reber reports that subjects are able to do so efficiently, even though their ability to

verbalize their knowledge of the underlying grammar is very weak.

As Reber points out, two questions must be answered: (a) What is the form of the

knowledge acquired during memorization that allows the subjects to efficiently

discriminate grammatical from non-grammatical strings, and (b) how was that knowledge

acquired?
Miller proposes that subjects who memorize grammatical lists "group and recode'

them (p.49). Evidently this idea has its roots in an earlier article in which Miller introduces
the idea of chunks (Miller, 1956). However, in both these articles Miller seems to argue
that the formation of chunks is an explicit and intentional recoding process. Reber
reasons that, if this were the learning mechanism, subjects' knowledge of the grammar
would have to be mostly verbalizable. Since his subjects were unable to verbalize their
knowledge, he rejects Miller's hypothesis of recoding and proposes the existence of an

unconscious covariation detection process that yields unverbalizable, abstract
grammatical knowledge.

Our own position, which we propose and defend here, is that the learning mechanism
is some sort of chunking, and that the resulting knowledge on which grammatical
judgments are based is a hierarchical network of chunks that, by virtue of having been

created from grammatical strings, implicitly encodes grammatical constraints.
Our position differs from Miller's mainly because the concept of chunking has evolved

since he introduced it thirty years ago. Whereas Miller (1956) proposes chunking mainly

as a conscious recoding strategy, it is now usually understood to be a general learning
mechanism not necessarily bound to the conscious and intentional realms of cognition
(e.g., Newell, in press). In the absence of a good definition, we like to think of chunking
as our natural, maybe automatic, tendency to process stimuli by parts.

There is a wealth of evidence that chunking is the natural learning process when the
task is to memorize complex nonsense material (e.g., sequences of letters). For

example, the 26 letters of the alphabet seem to be encoded into seven chunks: abcd,
efg, hijk, Imnop, qrst, uvw, and xyz (Klahr, Chase, & Lovelace, 1983). Gestalt principles of
proximity induce subjects to form specific chunks (e.g., Bower & Winzenz, 1969;

Johnson, 1970). But even If no organization exists a priori in the stimuli, subjects Impose



Learning Artificial Grammars with Competitive Chunking

3

their own (e.g., Chase & Ericsson, 1981; Johnson, 1970; Tulving, 1962). A subject's

chunking behavior is often revealed at recall by "transition-error probabilities" (e.g., Bower

& Spnngston, 1970; Johnson, 1970), or "subjective organization" (Tuiving, 1962).

Dulany, Cariston, and Dewey's (1984; 1985) analysis of the Reber task also points to

the crucial role that chunking seems to play in the unintentional learning phenomenon.

They propose that the basic unit of subjects' grammatical knowledge is a small group of

letters; what they call a "feature". In their analysis, subjects base their grammatical

judgments on a dynamically evolving collection of explicit rules of the form: the presence

of this feature implies that the string is (or is not) grammatical. While we agree with Dulany

et al. that features (we call them chunks) are the crucial units of grammatical knowledge,

we disagree that such rules are needed to account for subjects' discrimination behavior.

Hence there is reason to believe that subjects faced with the task of memorizing a

meaningless and long enough string of letters will chunk it into pieces. For example, if a

string to be memorized is TTXVPXVS, a subject may first create the chunks (TTX), (VP),

and (XVS). Then further chunking may proceed until a single chunk encodes the whole

string, at which point the string Is assumed to be memorized. So, for example, the two

following chunks are created in succession: ((TTX) (VP)), and (((TIX) (VP)) (XVS)) which

encodes the whole string. In the process of memorizing the string, the subject has

created five chunks. These chunks are organized in a hierarchy at the bottom of which

are elementary chunks which are the letters themselves. At the next level up are the

word chunks which are made of those elementary chunks. At the top of the hierarchy are

the sentence chunks, which encode a full stimulus. In between the word and sentence

levels are any number of hierarchically organized levels of phrase chunks. Figure 2

represents a portion of what such a hierarchical network of chunks would look like if the

above string, among others, had been chunked as specified above.

In a situation where many strings have to be memorized and they are intrinsically

similar to each other (because of an underlying grammar) the chunks may reveal those

similarities to some degree, thereby both facilitating and constraining further learning. For

example, If the string TTXVPXVS had been memorized as specified above, and the string

VXVPXXXVS had to be memorized next, some the chunks created while memorizing the

former could be used to memorize the latter. Instead of perceiving the new string as just a

sequence of nine letters (nine chunks), a subject may perceive it as a sequence of six

chunks: V X (VP) X X (XVS). Not only does the new string immediately appear less

complex, but this representation also constrains further chunking. The next chunks to be

created would be (VX) and (XX) - which yields a four-chunks representation. The final

representation of that string, once memorized, may then be (((VX) (VP)) ((XX) (XVS))).
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SENTENCES

(((T T X) (V P)) (X V S)) (((V X) (VP)) ((X X) (X V S)))

PHRASES/

((T T X) (V P)) P( X) (V P)) 0( X) (X V S))

WORDS

(T T X) (V P) (X V S) (V X) (X X)

T X V P S

Figure 2
A hierarchical network of chunks that encodes two grammatical sentences from the grammar in

Figure 1: TTXVPXVS, and VXVPXXXVS. The representations of the two sentences overlap where
they share chunks (i.e., (V P) and (X V S)). The network is a multi-level structure. The bottom-

most level is that of elementary chunks, in this case letters. The next level up is that of words. The
next levels up are that of phrases, of which the highest level is that of full sentences.

The smaller the number of chunks that are needed to describe a string, the more

familiar that string appears. The crucial variable is not the total number of chunks in the

hierarchical representation of a string, but rather the number of chunks at the top level of

that hierarchical representation, before any new chunks are created. So, for instance, in

the situation where the string TTXVPXVS is already memorized as above, its hierarchical

representation has a single chunk at the top level: (((TTX) (VP)) (XVS)). Hence that string

is maximally familiar.1 On the other hand, the new string VXVPXXXVS may be

represented as V X (VP) X X (XVS) with six chunks at the top level. It is less familiar than a

1Indeed, the original definition of a chunk in Miller (1956) is that of a "familiar" unit of knowledge (p. 93).
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memorized string, but more familiar than it would have been if no word chunk had

transferred to its representation (thus yielding nine chunks at the top level, one per

letter.) We call that crucial number of chunks nchunks. We tentatively define familiarity

as:
I- nchunks (1)

Hence the familiarity of a stimulus ranges from I (maximally familiar) to an asymptotic 0
2

(maximally unfamiliar).
In summary, our hypothesis was that during the memorization task subjects build a

hierarchical network of chunks in which, due to the redundancy inherent in a grammar-

generated set if strings, the representations of the strings overlap where they share

chunks. The familiarity of a string increases with the degree to which an integrated

representation of that string can be built from the existing chunks.

We hypothesized further that the probability that a string is judged grammatical

increases with how familiar it appears given the network of chunks acquired during the

memorization task. Hence, the more existing chunks are preserved in a string, the more

chance it has of being judged grammatical.
In order to test this hypothesis we had to control which chunks subjects created

during the memorization task. Then we could test their grammatical knowledge by
including in the test basically two sorts of non-grammatical strings: strings which violated

the grammar while preserving subjects' chunks, and strings which violated the grammar

without preserving subjects' chunks. Our hypothesis directly predicted that strings of this

this latter sort would appear less familiar, and therefore tend to be rejected more often,

than strings of the earlier sort.
We tested this hypothesis with two analogues to Reber's (1967) experiment. The

basic design of both our experiments was the same. The only significant departure from

the original Reber task design was our addition of experimental conditions in which

subjects were strongly induced to form specific chunks instead of being left to chunk the

strings by themselves. The first experiment tested our hypothesis at the level of word

chunks, and the second tested it at the level of phrase chunks. In each experiment the

non-grammatical strings included in the test either preserved the chunks (words in

Experiment 1, words and phrases in Experiment 2), or did not preserve them (in

Experiment 2, those strings preserved only the words).

2This definition has not been experimentally derived. However, our intuition is that familiarity must be a

rapidly decreasing function of nchunks.
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Experlment 1

Method

Stimulus Materials. The artificial grammar we used to generate the stimulus set is

represented in Figure 1. It is the one used by Reber (1967). There are exactly 34

grammatical strings of length six to eight in this language. We chose 20 of those to be

memorized by subjects. For clarity, we will henceforth reserve the word "sentence" to

refer to grammatical strings as opposed to non-grammatical strings. It is also important to

note that whenever a string is referred to as grammatical or not, it is relative only to the

grammar we used to generate the set of training strings (E's grammar, in Figure 1), not

relative to any of the numerous other grammars which could also have generated that set.

Subjects and Conditions. The subjects were 37 Carnegie-Mellon University

undergraduates, participating as a requirement in an introductory psychology course, and

receiving five dollars.

There were four conditions with ten subjects in one and nine in each of the other

three. Three of the subject groups (Well-structured-I, Well-structured-2, and Badly-

structured) saw sentences in which groups of letters were separated by spaces. Johnson

(1970) demonstrates that the Gestalt principle of spatial proximity is very effective in

biasing subjects toward forming specific chunks. The remaining group of subjects

(Unstructured) saw the same sentences but with no a priori organization into words, just

sequences of letters. These subjects were in the same situation as Miller's (1958) and

Reber's (1967) subjects.

The point of having three different conditions in which the sentences were structured

was to investigate the effects that different structurings would have on subject

performance in both the memorization and judgment tasks. In the two well-structured

conditions, the chunks were designed to make the similarities among the sentences

more apparent than in the unstructured condition. In contrast, in the badly-structured

condition, the chunks were designed to make these similarities more difficult to notice. In

all four conditions, the 20 sentences presented for memorization were the same but for

the change in format.

String format in the well-structured-I condition. Reber (1967) noted that E's

grammar (see Figure 1) can be expressed as the union of five sentence types: (1) T (P)*

TS, (2) T (P)* TX ((X)- I VPX)" VS, (3) T (P) TX ((X)- I VPX)- VPS, (4) V ((X) I VPX)- VS, (5)

V ((X)' I VPX)* VPS. This way of structuring the grammar yields a set of initial, middle, and

final words on which the alternative representation of E's grammar in Figure 3a is based:

initial words are T, and V; middle words are TX, VPX, (P)', and (X)*; final words are TS,

VS, and VPS. A total of nine words.
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String format in the well-structured-2 condition. Another way, among many, of

expressing E's grammar in terms of a set of words is given in Figure 3b (this grammar is
equivalent to E's grammar for all strings of more than four letters). it is based on a total of

11 words: Initial words are T(P)+T, TT, TT(X)+ , VVP, V, and V(X)+; middle words are VP,

and (X)+; final words are S, (X)+VS, and VPS. This particular structuring of E's grammar
has the following two properties: (a) no word is of length larger than three (assuming that
the length of a run is one), and (b) the average length of a sentence, in words, is close to
three when the length in letters is limited to eight (as is the case of the training

sentences). Our choice of the number three is based on its mention as "the largest size

chunk everyone is willing to use" (Johnson, 1970, P. 211).
String format in the badly-structured condition. In contrast with the two well

structured formats, the badly structured format was very unsystematic. It was designed to
have as many words as possible, within the constraint that no sentence (in the
memorization set) should have more than three words. By minimizing the transfer of

words among the sentences this structuring made the similarity of the sentences non-

apparent. The sentences were based on 27 words (versus 9 and 11 in the well-

structured-1 and well-structured-2 conditions respectively): Initial words were T(P)+,

V(X) + , VV, V, T, TTX, TT, VVP, and TPT; middle words were (X)+VP, (X)+V, P(X)+, T(X)+ ,

PTX, VP, XX, VPXV, XVPX, PPPP, and VPX; final words were (X)+VS, PTS, S, VPS, VS,

PS, and TS.
As an example of how the different structurings made the strings look more or less

similar to each other, Table 1 shows how the two strings TPPTXXVS and TPPPTXVS
were differently formatted in each of the four conditions.

Table 1
Examples of how the same strings were structured differently in the four conditions

Condition

unstructured Nell-structured-1 well-structured-2 badly-structured

TPPTXXVS T PP TX X VS TPPT XXVS TP PTX XVS
TPPPTXVS T PPP TX VS TPPPT XVS TPPP TX VS
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(P)*

Begin End (a)

S I VPS

(X)* I VPX

VIVVP I TT IT(P)+T S I (X)+VS

Begin P MEn(b

V I V(X)+ I TT(X). VPS

Figure 3
Two alternative, word-based, representations of E's grammar (see Figure 1): (a) was used to
structure the sentences of .'s grammar in the well-structured-I condition, and (b) was used to

structure the sentences in the well-structured-2 condition.

The memorization task (training). The 20 sentences chosen for the memorization

task were distributed in 5 sets of 4. Subjects were asked to memorize each set,

numbered 1 through 5, in that order. However, once they had memorized a set they were

told that they did not have to try to remember its sentences anymore, but to just

concentrate on memorizing the sentences in the next set. The sentences in a set were

presented individually for 5 seconds on a computer screen, and in a fixed order. After

viewing the four sentences once (one trial), subjects were asked to reproduce the set by
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writing on a blank card. They had to achieve two correct reproductions in a row before

moving to the next set, without delay. The sets (included in full in the appendix) were

identical in the four conditions, except for the changes in sentence format. The sets were

designed so that four of the five different sentence types of the well-structured-1 format

were represented in each set. Subjects were not informed of the true nature of the

sentences, which were referred to simply as "strings", and the task was presented as a

rote memory experiment.

The discrimination task (testing). Immediately after completing the memorization

task, subjects were told that the twenty sentences they had memorized were all examples

of "good strings"; they would now be asked to judge whether many other strings were
"good" or "bad", based on their experience with the training strings. They were not asked

to give any reasons for their answers, but were given the following general clues about

what could make a string "bad": (1) something may be missing, (2) something may be

extra, and (3) the order of letters in the string may be wrong. As the strings presented in

this task were all in unstructured format, subjects in the three structured conditions were

warned of the format change. All the subjects were tested on the same strings. There

were 228 strings in this task: 82, or 36%, were grammatical (G), and 146, or 64%, were

non-grammatical (NG). Subjects were not told about these proportions. Each string was

presented individually on a computer screen for as long as it took a subject to make a

judgment. No feedback on the correctness of the judgments (with respect to E's

grammar) was given.

Grammatical strings. There were two types of grammatical strings in the test. The

Old-grammatical strings were the 20 sentences which the subjects had just memorized.

The New-grammatical strings were 21 newly generated sentences. Each was presented

twice during the test. The length of the sentences varied from four letters to eight letters.

Non-Grammatical strings. The 146 non-grammatical strings, six to ten letters long

were all different (no repetitions). The words of the well-structured-I format had a special

role in the design of these strings. Specifically, the non-grammatical strings either

preserved or did not preserve these words; a non-grammatical string could either be

parsed using only these words, or some part of it could not be parsed using only these

words. There were five types of non-grammatical strings, two of which preserved the well-

structured- 1 words (all-words strings) and three of which did not (non-words strings).

All-words strings were non-grammatical because they violated the word-order

constraints of the grammar. The violation occurred either at the end of a string or

elsewhere. To generate such a string we first generated a grammatical string, structured

it in terms of well-structured-1 words, and then either deleted a word, added a word, or
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replaced one word with another. If, as a result, the last word of the string was not one of

the three valid final words of the well-structured-1 format, then the string was of the all-

words/bad-final type. Else, it was of the all-words/good-final type.
Non-words strings were of one of three types. The non-words/random type strings

were either completely randomly generated from the five letters of the grammar, or had a

randomly generated middle part framed by valid initial and final words. In the two other

types - non-words/bad-final and non-words/good-final - the strings were generated

as follows: First, a grammatical string was generated and structured in terms of well-

structured-i words. Then, one of these words was made a non-word by simply replacing

one of its letters with another. If the non-word was the last word of the string then the

string was of type non-words/bad-final. Else it was of type non-words/good-final.
It seemed important to explicitly distinguish violations occurring at the end of a string

from violations occurring elsewhere because other researchers have reported that, at

least with a similar grammar, subjects are especially sensible to violations occurring at the

end of a string (e.g., Reber, 1967; Reber & Lewis, 1977). There were 88 strings of type

all-words/good-final, 30 strings of type all-words/bad-final, 8 strings of type non-

words/good-final, 8 strings of type non-words/bad-final, and 12 strings of type non-
3

words/random.

Order of presentation of the test strings. The order of presentation of the test

strings was randomized once with two constraints: (a) that each grammatical string appears

once in the first half, and a second time in the second half of the presentation sequence,

and (b) that an equal number of strings of each non-grammatical type appears in each half

of the presentation sequence. The order of test strings was then the same for every

subject. Subjects were told that the length of a string is not an indication of its
"goodness", although they had only seen strings of lengths six to eight in the

memorization task. They were also warned about the presence of strings they had

already seen (hence "good"), and of the repetition of some strings, but not that only the

"good" strings would appear twice.

Specific Predictions

The memorization task. If, as we hypothesized, subjects in the unstructured

3This striking imbalance in the numbers of strings per types results from the original exploratory nature
of this experiment. When it was designed we had no really precise hypothesis about subjects' behavior in
the Reber task, except that it should reflect some chunking activity. 22 different types of non-grammatical
sirings, generated from 22 possible operations involving initial, middle, and final words, alone or in
combination, were each represented by six to ten strings in the test. Only later, when our theory became
precise enough, did it also become clear that the fundamental tests of it rested in the comparisons of the all-
words vs. non-words types of strings.
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condition chunk the sentences themselves, then they should not be at a significant

disadvantage compared to the subjects in the two well-structured conditions. Hence their

ease of memorizing the twenty exemplar sentences should be comparable to that of

subjects in these well-structured conditions. On the other hand, subjects in the badly-

structured condition should have more difficulty since their sentences are structured so

as to minimize the transfer of chunks among sentences.

The discrimination task. Our general prediction, that subjects would reject more the

strings that did not preserve their chunks than the strings which did preserve them, was

testable only within the well-structured-1 condition since the non-grammatical strings

were especially designed to either preserve or not preserve word chunks acquired by

these subjects. The specific prediction was that subjects in the well-structured-1

condition would reject the strings of type non-words/bad-final more than the strings of

type all-words/bad-final, and would reject the strings of type non-words/good-final more

than the strings of type all-words/good-final.

Results

The memorization task (training). We had intended, before any subject was run, to

look for indirect evidence of chunking in the written protocols of subjects in the

unstructured condition. However, this proved unnecessary; these subjects had a strong

tendency to overtly chunk the training sentences, i.e., to reproduce a sentence as

separate groups of letters (e.g., reproducing TTXXXVS as TT XXX VS), or to write the end

of a sentence before writing its beginning. More precisely, we computed how many of

the 20 training sentences were overtly chunked at least once (on a correct reproduction)

by each subject in this condition. We found that, on average, these subjects overtly

chunked 14.5 of the 20 training sentences, i.e., 72.5%. This does not mean that these

subjects did not chunk the remaining 27.5% of the training sentences, but just that they

did not do so overtly. Such direct evidence of chunking is, for our present purpose, the

crucial result we extracted from the protocols.

There were systematic regularities in how many presentations of each set were

necessary for subjects to reach criterion. These results are plotted in Figure 4. An

ANOVA Including the four conditions and the five successive sets revealed a main effect

of condition, F(3, 33) = 8.54, MSe = 14.23, p < .001, and a main effect of set number,

F(4, 132) = 5.52, MSe = 3.81, p < .001. Furthermore, sentence format interacted

significantly with the ease of learning of individual sets, F(12, 132) - 2.13, MSe - 3.81,

p < .025. To check for the effect of presenting the strings in well-structured versus

unstructured format, we did a two conditions by five sets ANOVA in which the conditions
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were unstructured and well-structured (i.e., the well-structured-i and welI-structured-2

subjects were grouped together). We found no significant main effect of condition, F(l,

26) = 1.91, MSe = 15.62, p = .18, or of set number, F(4, 104) = 2.02, MSe = 4.02, p =

.097, and no interaction, F(4, 104) - .46, MSe = 4.02, p -. 76 Hence, we concluded

that the main effect of condition found when the four conditions were included in the

analysis was essentially due to the poorer performance of the subjects in the badly-

structured condition. As predicted, the manipulation of inducing subjects to form specific

chunks in the two well-structured conditions, instead of letting them decide which chunks

to form (unstructured condition), did not yield any significant advantage in the

memorization task

13
--12 --0-- Unstructured

0 - Well-Structured-i
Z 11 -0--- WeI-Structured-2

-Fre Badly-Structured
Z 10 .

0

8

15 7
6

4

E 3
C 2

Set 1 Set 2 Set 3 Set 4 Set 5

Memorization Set

Figure 4
Mean number of presentation trials needed to reach criterion as a function of training set number

(Experiment 1).

The discrimination task (testing). Table 2 contains the mean percentages of strings

correctly classified by the subjects in each condition, and the same data broken down into

correct acceptance of grammatical strings and correct rejection of non-grammatical strings.

A four conditions by two types of strings ANOVA on these data revealed a main effect of

condition, F(3, 33) - 6.42, MSe = 100.11, p < .005, that was caused essentially by the
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poorer performance of the subjects in the badly-structured condition, and a main effect of

the grammatical status of strings, F(1, 33) = 17.05, MS&. 270.90, p < .001, that

reflected the fact that in all conditions the grammatical strings were more accepted than

the non-grammatical strings were rejected. No interaction was revealed, F(3, 33) - .59,
MSe 270.90, p = .63.

Table 2

Mean Dercentages of correct classifications

Condition

W-S-1 W-S-2 U B-S

Percentage of 68.8 74.8 68.9 59.1
correct classifications 5.7 9.0 7.1 7.7

% of grammatical 78.7 83.4 75.7 74.6
strings accepted 5.8 10.8 19.3 16.3

% of non-grammatical 63.5 69.9 65.2 50.3
strings rejected 9.5 16.4 16.6 7.4

Note: The names of the conditions are abrieviated as follows: W-S-1 - well-structured-1; W-S-2 -

well-structured-2; U - unstructured; B-S - badly-structured. The standard deviations from the
means are shown below the means.

More fine grained results are included in Table 3. It shows the mean percentages of

strings rejected in each of the seven types of strings by the subjects in each condition.

Within the well-structured-i condition, both our predictions were verified. These subjects

rejected the non-words/good-final strings significantly more than the all-words/good-final

strings, t(8) - 3.6, p < .01. They also rejected the non-words/bad-final strings

significantly more than the all-words/bad-final strings, t(8) = 2.5, p < .05. In none of the

three other conditions did these same comparisons reveal significant differences.

Another interesting result is that the subjects in the well-structured-1 condition

rejected the all-words/good-final strings more than the new-grammatical strings, 1(8) -

4.7, p < .005. Since the new-grammatical strings were more likely than the all-

words/good-final strings to preserve the phrase chunks of these subjects (in addition to

their word chunks), that difference may indicate that the subjects were also sensitive to
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the preservation of their phrase chunks.

Table 3

Mean percentages of strings rejected in each of the seven string bes.

Condition

String Type W-S-1 W-S-2 U B-S

Old-Grammatjcal 13.9 15.8 18.3 19.7
6.0 12.4 15.2 17.7

New-Grammatical 29.1 17.1 30.4 30.9
7.7 12.3 24.4 18.4

All-words/Good-final 50.1 63.9 56.9 42.2
10.8 19.4 19.0 7.8

Non-words/Good-final 73.6 63.8 54.2 40.3
22.9 32.0 25.0 13.7

All-words/Bad-final 78.5 76.3 78.9 65.2
21.3 22.8 21.1 15.3

Non-words/Bad-final 97.2 82.5 84.7 59.7
5.5 18.8 16.3 21.4

Non-words/Random 95.4 92.5 87.0 73.1
8.4 8.3 11.1 19.5

Note: The names of the conditions are abrieviated as follows: W-S-1 - well-structured-1; W-S-2 -
well-structured-2; U - unstructured; B-S - badly-structured. The standard deviations from the
means are shown below the means.

Discussion

It could have been argued that our main experimental manipulation of presenting the
training sentences already structured, instead of unstructured as in the Miller (1958) and

Reber (1967) experiments, significantly altered the nature of the memorization task. If

that were true, then we could not extend our analysis of the subjects in the well-
structured conditions to the subjects in the unstructured conditions. However, our

results not only confirmed that the subjects in the unstructured conditions chunked the
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sentences themselves, i.e., imposed their own structure, but also that their discrimination

performance matched that of the subjects in the well-structured conditions. Hence, we

are justified in extending our analysis of the subjects in the well-structured-i condition to

the subjects in the well-structured-2 and unstructured conditions. We must, however,

consider the possibility that the subjects in the badly-structured condition may have used

more complex memorization strategies than simple chunking, for the poor structure of

their training sentences made this task more difficult for them than for the other subjects.

Whenever an effect of condition was found, in either the memorization or discrimination

task, it was always due to the poorer performance of these subjects.

Our hypothesis was that subjects chunk the exemplar sentences and then base their

judgments of grammaticality on the degree to which integrated representations of strings
can be built with their chunks. We found accordingly that subjects were more prone to

reject strings which did not preserve their word chunks than strings which did: the

subjects in the well-structured-1 condition rejected the non-words/good-final strings

more than the all-words/good-final strings, and rejected the non-words/bad-final strings

more than the all-words/bad-final strings. Furthermore, there was an indication that the

degree to which the phrase chunks were preserved also affected judgments of

grammaticality: the subjects in the well-structured-i condition rejected the all-

words/good-final strings more than the new-grammatical strings (which are more likely to

preserve phrase chunks).

However, this last difference may alternatively result from the fact that the new-

grammatical strings were repeated while the all-words/good-final strings were not. To

eliminate this altemative explanation we designed our second experiment to test

specifically for the effect of preserving phrase chunks. The basic design was the same as

that of our first experiment. Exemplar sentences were memorized in different formats,

and a discrimination task followed. The difference was that instead of inducing different

groups of subjects to form different word chunks, we induced them to form the same

word chunks but different phrase chunks. Whereas the test strings all preserved the

word chunks of all subjects, they either preserved or did not preserve their phrase

chunks. We predicted that subjects would tend to reject the strings which preserved only

their word chunks more than the strings which preserved both their word chunks and their

phrase chunks.



Servan-Schrelbar and Anderson

16

Initial Middle Final
word word word

M3----I End

Begin
IM2
12 MEnd

M2
F2

Figure 5
The grammar used to generate sentences in Experiment 2. Each of the nine symbols could be

instantiated by two two-letter words. (for instance, I1 could be either FK or MV.)

Experiment 2
Method

Stimulus Materials. For this experiment we created a grammar of a different kind, one
more immediately defined in terms of word sequences than in terms of letter sequences.
The grammar we designed is depicted in Figure 5. Each of the nine symbols in the figure
could be instantiated by two different words. The 18 possible words were meaningless
pairs of consonants (e.g., FK). There were three sorts of words, as there are three sorts
of symbols in the figure: initial words (11, 12, 13), middle words (Ml, M2, M3), and final
words (Fl, F2, F3). Every one of the 64 possible sentences was three words long. Each
was made of an initial word, followed by a middle word, followed by a final word. The
possible sentences could be classified into four types. Sentences of type 1 instantiated
(11 M1 Fl], sentences of type 2 instantiated [12 M2 F21, sentences of type 1/3 instantiated
either [11 Ml F31 or [11 M3 F1] or [13 M1 F1], and sentences of type 2/3 instantiated either
[12 M2 F3j or [12 M3 F21 or [13 M2 F2]. Note that sentence types 1/3 and 2/3 could be
viewed as one-word distortions of the prototype sentence types 1 and 2 respectively.
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Subjects and Conditions. There were two experimental conditions - initial-middle

and middle-final - and a control condition. As in Experiment 1, they differed in the way
sentences were presented during the memorization task. Subjects were 38 Carnegie-
Mellon University undergraduates participating for credit in an introductory psychology

course, and receiving three dollars. There were 14 subjects in condition initial-middle, 12
in condition middle-final, and 12 in the control condition.

The memorization task (training). Sentence presentation was manipulated in the two
experimental conditions to induce specific phrase-chunkings of sentences. In condition
initial-middle, we wanted subjects to chunk sentences as ((Initial Middle) Final) structures,
whereas in condition middle-final, we wanted subjects to chunk sentences as (Initial

(Middle Final)) structures. As in the first experiment, we used spacing between words to
induce the first-order (word) chunking. The new problem was to find some mode of
presentation which would get subjects to chunk the desired phrases. Our solution was to
first present only the desired phrase, and then the whole sentence. For instance, to get
initial-middle subjects to chunk the initial and middle words of FK TM KS together, we first

4
presented FK TM HI. Only after they had memorized that did we present the whole
sentence. Hence they had no choice as to which phrases to chunk. In that case, the
sentence would end up being memorized as ((FK TM) KS). in contrast, middle-final

subjects first had to memorize \\ TM KS before they could memorize the whole sentence.
Hence their representation of the sentence would be (FK (TM KS)). Finally, control
subjects were left to decide for themselves how to chunk the sentences (like the
unstructured condition subjects in Experiment 1). They always saw complete sentences
on the memorization trials.

The 48 sentences of types 1/3 and 2/3 were presented in the memorization task (The
16 sentences of type 1 and 2 were reserved for the discrimination task.) They were
distributed in 16 sets of 3 sentences each. The distribution of sentences among sets
was different In each condition, but there were always 9 different words per set, so that
every subject saw all 18 words every two sets. As in Experiment 1, the sentences of a set

were presented individually for 5 seconds on a computer screen. After having seen the 3
sentences of a set, subjects were asked to type them back using the computer's
keyboard. The protocols were recorded directly by the experiment's program. Whereas
control subjects saw complete sentences on every trial, experimental subjects only saw
two words per sentence until they could correctly reproduce that. Only then did the full-
sentence trials begin for a specific set. One correct reproduction of three full sentences

4Subjects were told that "//" was simply a place-holder for a future word.
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was required before moving to the next set. As in Experiment 1, subjects were not

informed of the true (grammatical) nature of the sentences, which were referred to simply

as "strings", and the task was presented as a rote memory experiment.

The discrimination task (testing). Immediately after having mastered the sixteenth

training set, subjects were told that they had just seen 48 "good" strings, and that they

would now have to try to discriminate between new "good" strings and "bad" strings.

They were told that the good strings would be those In which the three words seemed to

"fit well together".

Grammatical sentences. The grammatical sentences in the test were the 16

sentences of types 1 and 2. Note that although the specific three word combinations

which those sentences represent had not been seen during the training, every pairwise

combination of words in such sentences had been seen twice during training (in two

different sentences). Thus, the three words in a type I or 2 sentence would presumably

seem to "fit well together". Since none of these strings had been seen during training,

they were collectively referred to as new-grammatical. Each was repeated once.

Non-grammatical strings. These strings were designed to contain non-grammatical

word pairs. There were three types of such strings: replace-initial, replace-middle, and

replace-final. To build one of these strings, we took a type 1 or type 2 sentence (new-

grammatical) and simply replaced one of the words with another of the same sort, but

which had never occurred with the other two in the memorized sentences. So, for

instance, to build a replace-initial string we took for example a type 1 string and replaced

the initial I1 word with an initial 12 word. The resulting string instantiated [12 M1 F1], where

the initial word had never occurred with any of the other two words in the memorized

sentences. Replace-middle and replace-final strings were built similarly, by replacing

middle or final words. All the 48 possible replace-initial, replace-middle, and replace-final

strings were included in the test (16 in each type). Thus, the subjects were to judge 80

strings (16x2 grammatical and 48 non-grammatical).

Specific predictions

Given this specific experimental design, and our general prediction that subjects will

tend to reject the strings that do not preserve their chunks more than the strings that do,

we predicted that initial-middle subjects would tend to reject replace-initial and replace-

middle strings more than replace-final strings (which preserved their initial-middle phrase

chunks). In contrast, we predicted that middle-final subjects would tend to reject replace-

middle and replace-final strings more than replace-initial strings (which preserved their

middle-final phrase chunks).
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Figure 6
Mean number of presentation trials needed to reach criterion as a function of training set number

(Experiment 2).

Results

The memorization task (training). The learning curves of the three subject groups

are plotted in Figure 6. The only significant effect was that of trial number, F(1 5, 525) =

29.75, MSe . 1.44, p < .0001 . Apparently, forcing the experimental subjects tc

process the sentences by parts made them neither significantly slower nor faster than the

control subjects to memorize the sentences.

The discrimination task (testing). Table 4 contains the mean percentages of strings

rejected in each of the four types of strings by the subjects in each condition. A three

conditions by four types of strings ANOVA revealed a main effect of string type, F(3,
105) = 12.87, MSe = 4.82, p < .0001, due to the lower rejection level, across

conditions, of the new-grammatical strings compared to the non-grammatical strings.

There was also a main effect of condition, F(2, 35) = 3.62, MSe = 15.97, p < .05, due to

the initial-middle subjects' overall higher rejection of non-grammatical strings. Finally,

these factors interacted significantly, F(6, 105) = 4.13, MSe = 4.82, p < .001,

suggesting that subjects in different conditions reacted differently to different types of

non-grammatical strings, as expected.
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Table 4

Mean percentages of strings rejected in each of the four string types.

Condition

String Type Initial-Middle Middle-Final Control

New-grammatical 37.7 36.5 37.8
12.6 11.9 10.0

Replace-Initial 67.9 38.6 48.5
19.0 18.4 18.3

Replace-Middle 65.6 52.6 50.0
22.7 19.1 16.0

Replace-Final 50.9 53.2 39.1
21.6 19.7 11.3

Note: The standard deviations from the means are shown below the means.

Our two predictions were verified in the data. First, the initial-middle subjects rejected

the replace-initial and replace-middle strings significantly more than the replace-final

strings, t(13) = 2.9, p < .025, and t13) = 2.5, p < .05, respectively. Second, the
middle-final subjects rejected the replace-middle and replace-final strings significantly

more than the replace-initial strings, t(11) = 2.7, p < .025, and t(11) = 3.1, p < .025,

respectively.

It appeared also that the control subjects behaved more like the initial-middle subjects

than like the middle-final subjects. They rejected the replace-middle strings significantly

more than the replace-final strings, t(11) = 2.7, p < .025, and they had a tendency to

reject the replace-initial strings more than the replace-final strings, t(11) = 2.0, p = .068.

Discussion

The results of Experiment 1 showed that subjects were more willing to classify as

"good" the strings that preserved their word chunks than the strings that did not. The

results of Experiment 2 demonstrated further that among the strings that preserved

subjects' word chunks, those that also preserved subjects' phrase chunks were

preferred.

Interestingly, the behavior of the subjects who were left to impose their own phrase

structure on the sentences was very similar to the behavior of the subjects who were
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induced to form (initial-word middle-word) phrases. This may be due to a natural bias,

given that usual reading is left to right, toward forming such phrases.

If such a bias was real, then it may also explain why the initial-middle subjects were

better discriminators than the middle-final or control subjects; the training in the initial-

middle condition may have reinforced the natural tendency to form (initial-word middle-

word) phrases, whereas the training in the middle-final condition may have fought against

it. Hence, the initial-middle subjects may have been made additionally sensitive to non-

preservation of their phrase chunks.

General Discussion

The results of our two experiments together provided strong support for our

hypothesis that the main learning process in the Reber-task was some sort of chunking,

and that grammatical discrimination was based on the degree to which integrated

representations of strings could be built from the collection of learned chunks. This

encouraged us to formulate a precise theory of the processes involved, both for learning

and discrimination. We call it Competitive Chunking (CC). In the rest of this article we first

describe the theory and then report two simulations of the experimental results of Miller

(1958) and our own results from Experiment 1.

The theory of competitive chunking

In CC, chunks are hierarchical structures which components are chunks themselves.

Chunks are used to parse stimuli bottom-up. The basis of the parsing process is the

match-compete-apply cycle: all the chunks which match the current representation of a

stimulus are retrieved. If two matching chunks overlap, then they become competitors.

All the possible sets of non-overlapping matching chunks are formed and put in

competition with each other. The competition yields a single winning set of chunks that is

applied to the stimulus, changing its representation, and the cycle is complete. On the

next cycle, chunks must match the new representation of the stimulus. The cycle is

repeated until no chunk enters the competition. A number of cycle executions make up a

parsing episode, the outcome of which is a hierarchical representation of the stimulus in

terms of chunks. The crucial variable is the number of chunks at the top level of that

hierarchical representation: nchunks. The value of nchunks is a measure of how

integrated the representation of a stimulus is, and that translates into how familiar it is

perceived to be (recall equation 1).

An example helps make clear the parsing process. Suppose that the set of existing

chunks is:

{(F B), (F B I), (C I A), (I C), (I A), ((F B I) (C I A))}
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Now suppose that the following stimulus is presented:

FBICIA

Then the following four sets of chunks would compete against each other:

{(FB),(CIA)), {(FB),(IC),(IA)),{(FBI),(CIA)j, and{(FBI),(IA)J

If the second set wins the competition, then the representation of the stimulus becomes:

(F B) (I C) (I A)
None of the existing chunks match this new representation, hence the parsing episode is

complete. In that case, nchunks = 3. However, if the third set had won the competition,

then the representation of the stimulus would have become:

(F B I (C IA)
Then a single set of one chunk would have entered the competition:

{ ((F B I) (C I A)) )

The stimulus representation then would have become:

((F B I) (C I A))

In that case nchunks = 1, which is its minimum value.

The outcome of a parsing episode is used to guide the creation of new chunks. If a

parsing episode yields a value of nchunks that is more than 1, then possible new chunks

are proposed which build on the current representation of the stimulus. For example, in

the case where the outcome was (F B) (I C) (I A), two possible new chunks would be

proposed for creation: ((F B) (I C)) and ((I C) (I A)). These two candidates would compete

and the winner would become a new chunk.

When the stimuli are unstructured strings of letters, candidate new chunks are

generated with the following constraints: (a) word chunks can contain at most three

letters, except if they encode runs, (b) phrase chunks can contain at most two words or

phrases, and (c) the sub-chunks of a chunk must be adjacent. When the stimuli are

structured strings (as in the three structured conditions of Experiment 1), the first

constraint Is relaxed to accept the given words.

Every chunk has a strength which reflects how often and recently it has applied in

the past. The strength of a chunk increases by one unit every time the chunk is created,

applied, or re-created. Strength decays with time. The decay function is the same one

that ACT* (Anderson, 1983) proposes for declarative memory traces. At any point in time,

the strength S of a chunk is the sum of the successive individual decayed strengthenings

of that chunk:

S = T d (2)

where Ti is the time elapsed since the ith strengthening, and d is the decay parameter (0
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<d< 1).

Strength mediates the competition process both for parsing and learning: the

probability that a matching chunk, or a candidate new chunk, enters a competition is a

function of the average strength of its immediate sub-chunks, i.e., its support. This

probability is given by:

1 -e- csupport

1 + e- c support

where c is the competition parameter (c E ]0, +oo[), which determines the steepness of

5
the probability curve. Figure 7 plots this function for different valub, of c.
Furthermore, the chunks that win competitions are those with largest support when the

competition is for creation, and those with largest strength when the competition is for

parsing.
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Figure 7
A matching chunk's probability of entering a competition as a function of its support (defined as the

average strength of its immediate sub-chunks).

5The reader may recognize that this function is a sigmoid that is inflected at 0 and which values are
bound between an asymptotic -1 and an asymptotic +1. However, we are considering only its positive part,
since sub-strength is always positive.
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An exception: since elementary chunks do not have any sub-chunks, both their

strengths and supports are assumed to be constant and very large (in our simulations we

set both at 10).

In each of the two simulations we report below, we made additional assumptions in

order to extract from the single outcome of the parsing process - the value of nchunks

- data in the same form as those collected from human subjects. For the simulation of

Miller (1958) we had to transform the value of nchunks into an act of recall. In the

simulation of our Experiment 1 we had to transform the value of nchunks into an act of

rejection. A common simplifying assumption to both simulations was that made about

time. We increased time by one unit after each parsing episode (i.e., the presentation of

one string). Also, the simulations were allowed to create only one new chunk per parsing

episode.

Miller-CC: a simulation of Miller's (1958) experimental results

Miller (1958) examines the effect of a stimulus field's redundancy, or lack thereof, on

recall. Subjects were asked to memorize and free-recall a list of strings of letters. There

were two kinds of lists. Language lists (L) were made of strings generated by the same

simple finite state grammar. Random lists (R) were made of randomly generated strings

(using the same letters as the grammar). A list was presented one string at a time (a few

seconds each), and afterwards a subject was asked to free-recall all the strings he/she

could. The dependent variable was the number of strings correctly recalled after each of

ten successive presentations of a list.

There were two L-lists, Li and L2, among which 18 strings generated from the

grammar were evenly distributed (nine strings per list). There were also two R-lists, R1

and R2, with nine randomly generated strings in each. Subjects went through ten trials
6

on one one of these lists. Subjects in condition L studied Li or L2, while subjects in

condition R studied Ri or R2. Table 5 contains the the four lists used by Miller, and

Figure 8 plots the recall performance of Miller's subjects. Evidently, a redundant stimulus

field (L1 or L2) facilitated recall compared to a non-redundant stimulus field (R1 or R2).
In the simulation it was necessary to transform the outcome of the parsing process -

the value of nchunks - into an act of recall. The assumption we made was that a string is

recalled if and only if nchunks = 1 at the end of the parsing episode. The lists we used for

the simulation are those in Table 5, and 40 simulated subjects were run in each condition

6 The actual experiment had subjects study a second list after the first. Here we are mostly interested in
the data obtained with the first list, so no more mention will be made of the second list.
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(20 simulated subjects per list).
Table 5

Lists of strings used in Miller (1958). and the Miller-CC simulation

Redundant strings Random strings

Li L2 RI R2

SSXG NNSG GNSX NXGS
NNXSG NNSXG NSGXN GNXSG
SXSXG SXXSG XGSSN SXNGG
SSXNSG NNXSXG SXNNGN GGSNXG
SXXXSG NNXXSG XGSXXS NSGNGX
NNSXNSG NNXXSXG GSXXGNS NGSXXNS
SXSXNSG NNXXXSG NSXXGSG NGXXGGN
SXXXSXG SSXNSXG SGXGGNN SXGXGNS

SXXXXSG SSXNXSG XXGNSGG XGSNGXG

Note: Reproduced with permission from Miller (1958).
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Figure 8
Mean number of strings correctly recalled by Miller's subjects on successive trials.

Reproduced with permission from Miller (1958).
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Many different values were tried for the two parameters c and d. Miller-CC always had

an easier time learning the redundant L-lists than the non-redundant R-lists. Even when

the decay parameter was set extremely close to 0 (no decay), and the competition

parameter was set to a large value so that every matching chunk was sure to compete, the

simple fact that less words were needed to encode the L-stdngs than to encode the R-

strings, because of the redundancy in the L-lists, let the simulation learn the L-lists faster

than the R-lists (see Figure 9a). However, a more interesting aspect of the data was more

difficult to reproduce: the increase in the apparent advantage of the L-lists on successive

trials. We found that this aspect of the data was reproduced qualitatively well when c - d -

.5 (see Figure 9b).
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Figure 9
Mean number of strings correctly "recalled" by simulated subjects on successive trials:

(a) when c - 10 and d - 0, (b) when c - .5 and d - .5.

The redundancy in the L-lists is at the word level. Small groups of letters in the L-

strings are shared by many L-strings. For instance, the 18 redundant strings in the L-lists

of Table 5 all end with one of three triplets: XSG, SXG, or NSG. In contrast, only one final

triplet is shared by two of the 18 non-redundant strings in the R-lists. Because they were

in general more redundant, the words chunked in the L-strings accumulated more

strength more rapidly than the words chunked in the R-strings. This, in turn, made the

phrases chunked in the L-strings easier to learn and more reliably applicable than the

phrases chunked in the R-strings. Hence the former were able to start to accumulate

strength sooner, and to accumulate it more reliably than the latter. In the same manner,
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stronger phrases chunked in the L-strings made it possible to learn entire L-strings

sooner and to apply them more reliably. The strength construct and the way that it

mediates parsing and learning made it possible to transfer the word-level advantage of
redundancy in the L-lists to the phrase level and finally to the sentence level, eventhough

the phrases and entire strings in the L-lists are no more redundant than the phrases and
entire strings in the R-lists.

Reber-CC: a simulation of the results of our Experiment 1
There were 15 simulated subjects in each of our four conditions. They created

chunks during the memorization task. Whereas our human subjects had to attain a
criterion of two consecutive reproductions of a set before moving to the next, the
simulated subjects had to "recall" (i.e., nchunks =1) the four strings of a set on the same

trial once. During the discrimination task the formation of new chunks was turned off, but

the strengthening and decay processes continued to operate.
To get the simulated subjects to produce discrimination data in the same form as the

human subjects, we had to transform the value of nchunks into a rejection act. The

assumption we made was that the probability that a string would be rejected increased
with the value of nchunks. The lower the value of nchunks was, the more familiar a string

appeared and the lower the probability that it would be rejected was. The simulated
subjects actually accepted or rejected test strings with these probabilities. The probability
function was the simple sigmoid:

1 (4)1+ e n - nchunks

where the inflection point n was computed, on each individual discrimination trial, as the

average value of nchunks on the previous twenty trials. Hence the same value of
nchunks yielded different probabilities of rejecting a test string depending on the average
value of nchunks for the few previous test strings. This means that the simulated subjects

based their judgments not on how absolutely familiar a string appeared to them, but on
how familiar it appeared to them relative to the average familiarity of the previous few

strings. Figure 10 plots the rejection-probability function for different values of n.
Another assumption we made was that any string of letters implicitly includes

extremity markers that signal the beginning and ending of that string. In the simulation we
made these markers explicit in the representation of a string. Hence the representation of

a string like T T X V P S was actually "begin T T X V P S end". These extremity markers
were treated exactly like any single letter as elementary chunks. This assumption was
important because It helped explain why subjects are apparently more sensible to
grammatical violations occurring at the extremities of a string than to those occurring in the
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7

middle of a string (Reber, 1967). Those strings that have extreme groups of letters

unmatched by extreme chunks can not integrate the extremity symbols in their chunked

representations and hence yield increased nchunks, which increases the probability that

they are rejected.

1.0

0.9

.2 0.8

± 0.7 n=1 n=3 n=5

0.6

Q 0.5

=' 0.4

I 0.3

U. 0.2C.

0.1

0.0 . . . ... . .
1 2 3 4 5 6 7 8 9 10

nchunks

Figure 10
Probability that a string will be rejected as a function of nchunks. The sigmoid is inflected at point

[n. .5] where n is computed on each trial as the average value of nchunks in the previous few trials.

The values of c and d that we used for the Reber-CC simulation were the same ones

that yielded a good qualitative match to the data in the Miller-CC simulation: c = d = .5.

The simulated data are plotted with the human data in Figure 11. Although the simulation

was more or less successful in certain conditions and on certain types of strings, across all

conditions and all types of strings the best linear fit of the simulated data to the human

7 The set of test strings we used in experiment I did not allow us to test systematically for subjects'
sensibility to violations occurring at the beginning of a string, although it allowed us to test systematically
for enhanced sensibility to violations occurring at the end of a string. Given the grammar used In that
experiment, and the format of choice for structuring and generating the non-grammatical strings (see Figure
3a), the two possible initial words were unfortunately reduced to a single letter each. This contrasted with
the richness of the final words.



Learning Artificial Grammars with Competitive Chunking

29

data had an intercept of 4.0, a slope of .95, and an r-squared of .874.

(a) Condition: (b) Condition:
Wellstructured-I Well-structured-2

Od UData DOd N Data

New Smuatlon New E3 Simulation

W:NG "///,'///,: J'/.'A= N/G

a..

NtR~ NbR- 7//////////J/// NB

0 102030 40 506070 8090100 0 102030405060708090100
mean percentage of string* rejected mean percentage of strings refected

(C) CondMton: (d) Conditon:
Unstructured Badly-structured

Old Data Data

New 0 ,, 0 Simulation New E3 Simulaon

A/G A /G / # . ..> .; ".V ....

o. NONI

A/B 4"M,.. ' B-"t/

N/R N,.',...... =N

0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
mean percentage of string* rejected mean percentage of strings rejected

Figure 11
Human and simulated data in the discrimination task of Experiment 1: (a) in the well-structured-1

condition, (b) in the well-structured-2 condition, (c) in the unstructured condition, and (d) in the
badly-structured condition. The names of the string types are abreviated as follows: Old - old-

grammatical; New - now-grammatical; A/G - all-words/good-final; N/G - non-words/good-final;
A/B - all-words/bad-final; N/B - non-words/bad-final: N/R - non-words/random.

Conclusion
The results of our two experiments demonstrated the important role that some sort of

chunking process played in the Reber task. We built a precise theory of such a process

called Competitive Chunking (CC). We found that, given a particular pair of values for its

competition and decay parameters, CC was able to reproduce the important aspects of

Miller's (1958) experiment on the effect of redundancy on free-recall: namely that the

advantage of a redundant stimulus field increases with successive free-recall trials. Using
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that same pair of values for its two parameters, and an additional process assumption for

making grammatical judgments based on the output of its parsing process, CC was also

able to capture 87 percent of the variance in the discrimination data of our Experiment 1

- a Reber task analogue.

Our theory Is the most precise and complete theory of unintentional learning in the

Reber task to date. It Is a theory of (a) the learning process, (b) the representation of

grammatical (i.e., structured) information, and (c) the grammatical discrimination process.

The key to our success was our choice to focus primarily on the learning process. Once

we had a precise theory of the learning process the theories of grammatical
representation and grammatical discrimination naturally followed. That is because a

learning process puts absolute constraints on the representation of what is learned, and

that In turn puts important constraints on how the representation can be used. The

reverse is not true however. Different types of representations, yielded by different types

of learning processes, could yield the same discrimination data. Hence trying, as previous

investigators have (Reber, 1967; Reber and Lewis, 1977; Dulany et al.; 1984), to derive

the representation and learning processes from the discrimination data - the opposite of
the route we took - could only yield mixed results.

These other investigators, however, have come to one important conclusion that we

agree with: that the basic unit of grammatical knowledge in the Reber task is a small group

of letters. Reber and Lewis (1977) called it a bigram or tngram covariation pattern, Dulany

et al. (1984) called it a feature, and, following Miller (1958), we called it a (word) chunk. We

went further and showed how these basic units of grammatical knowledge could be

combined to form higher level (phrase) chunks that encode even more grammatical

constraints.

In our view a subject's representation of grammatical constraints is in no way explicit.

All that a subject acquires, by chunking the exemplar sentences, is a hierarchical network

of chunks in which the representations of the exemplars overlap where they share

chunks (see Figure 2). Grammatical constraints are implicit in this representation since the

chunks were formed from grammatical sentences, and a competitive bottom-up parsing
process must use these chunks to yield hierarchical representations of strings which are

more or less integrated. The more integrated a representation is, the more familiar a string

appears, but also the less chance there is that It violates important grammatical

constraints.

It is interesting to compare our account with Dulany et al.'s. They tried to assess

subjects' knowledge by asking them to explicitly mark the part of a test string that made

them grammatical or non-grammatical. Subjects were supposed to underline a piece of a
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string If they accepted it, or cross out a piece of a string if they rejected it. Dulany et al.

considered each mark as a manifestation of a conscious rule of the form: The presence

of this group of letters implies that this string is (or is not) grammatical. They found that

the rules thus reported predicted subjects' discrimination behavior, although each was of

limited scope and imperfect validity. They take this as evidence that such rules (a) exist,

and (b) are not forced justifications of judgments based on more abstract representations.

Our theory, of course, denies both points. Reber-CC was able to simulate the

discrimination behavior of our subjects without recourse to any explict rules of the form

proposed by Dulany et al. Our theory is at an advantage, however, because it accounts

not only for the discrimination behavior but also for the learning by chunking behavior in

the memorization task. In contrast, Dulany et al. offer no precise account of either the

learning process, or the representation of the memorized exemplars. Thus the question

becomes: on what basis would Reber-CC mark strings that It accepts or rejects such that

these marks could be interpretted by Dulany et al. as explicit rules that predict subjects'

discrimination behavior? We note that Reber-CC was never guaranteed to always reject or

always accept the same string. The probability that a string was accepted really depended

on how familiar It appeared relative to how familiar the previous few strings appeared. If t
decided to accept a string it may decide to justify that by underlining the strongest chunk.

If It decided to reject that same string, it may decide to justify it by crossing out a few

adjacent letters in two adjacent chunks that are not integrated in a larger chunk.

There are striking similarities between our experiments and the language learning

experiments of Morgan, Meier, & Newport (1987). Like us, those researchers studied the

learning of a small artificial grammar, and induced some subjects to .l, -,e the stimuli in

specific ways. However there is an Important difference betweer - ies. Whereas

their subjects were instructed to look for regularities in order tc ' e underlying

language, ours were kept ignorant of the existence of an underh ,e and were

asked merely to memorize exemplar sentences. Reber, Kassin, Lewis, & Cantor (1980)
have shown that explicit instructions to look for structure significantly after the outcome of

the learning process. In our view, t must necessarily alter the learning process itself.

Hence, despite their similarities, our study and Morgan et al.'s are probably not very

relevant to each other. We want to make clear that although our study focussed on the

learning of a simple grammatical system the theory we derived from it makes no strong

claims about natural language learning. The domain of relevance of CC Is more likely to be

that of perceptual categorization, as typically studied using semantically poor stimuli (e.g.,

Posner & Keele, 1968).
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Appendix

The five successive training sets used in Experiment 1. On each of the four conditions

Condition

unstructured well-structured-i weII-structured-2 badly-structured

TPPPTS T PPP TS TPPPT S TPP PTS
VXXXXVPS vxxxx vPs vXXXX VIs vxxxxvP s
TPPTXV/PS T PP TXVPS TPPT XVPS TP PTX VPS

VxVPVS vVxxvs VvPxvs vxv PS

TTXXXVS T TX XXVS TXXXVS T TXX XVS
TTXVPS T TX VPS TTX VPS TTXVP S
VVPxxvs v vP X vs VVP xxvs vvP xxvs

TPPrXXVS TPP TX XVS TPPT XXVS TP PTX XVS
VXVPxvPS vX vPx vPS vx V~P IS vx VPxvPS
TPPPPTS T PPPP TS TPPPPT S T PPPP TS
VXXVPxvs vxx vPx vs vxxVP xvs vxx VPxvs

TTXVPXVS T TX VPX VS TTX VP XVS TT XVPX VS
VVPxxvPS v vP X VPS vvPxx vPS vvPxx VPS
VXXXXVS vXXX~mvs V)OOVS VXXX XVS
TTXXVPS T TX XVPS TXX VPS T TX VSPS

TPTXXVPS T PTX XVPS TPT XX VPS TPrXX VPS
VVPxxxvs v vPx xxvs VP xxxvs v Px xxvs
TPPPTXVS T PPP TX VS TPPPT XVS TPPP TXVS
VVPxvPS v V~P IS ~vP VIS wVPxvP s


