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ABSTRACT

This thesis examines a nontraditional approach to a

manpower planning problem. This approach combines two

operations research methodologies: simulation and

optimization. The combined approach, which is referred to as

SIMOP, models the manpower planning problem as a linear

program and, through simulation techniques, allows the input

data to be random. Based on the experimentation performed in

this study, the average results from the SIMOP model can be

quite different from the result obtained using a traditional

optimization model. Also presented are applications of the

SIMOP model to military manpower planning.
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I. INTRODUCTION

With the tightening of budgetary constraints during this

decade, the Navy has accepted the challenge of meeting its

obligations with limited assets. Throughout the Navy,

programs have been reassessed and streamlined, cut or

otherwise made more economical. While manpower programs are

not exempt from cost reduction efforts, it is essential in

meeting the missions of the U.S. Navy that its fleet be manned

with the proper number and quality of officer and enlisted

personnel. Thus the objective of minimizing manpower costs

must not be attained at the expense of adequate manning.

Rather, cost reductions must be achieved by bringing the

correct mix of personnel into the service.

While many manpower modeling techniques can be applied

to the problem faced by the Navy, this thesis examines a

rather nontraditional approach. Traditionally, problems of

this type have been solved by using optimization techniques

and employing a Markov chain model. This methodology is

addressed by Grinold and Marshall (Ref. 1] and is exemplified

by The Army Manpower Long-Range Planning System [Ref. 2].

Markov chain manpower models typically employ transition

matrices whose elements are assumed to be known and

deterministic. When a Markov chain model is employed within

an optimization program, the program typically minimizes an
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objective function, e.g. total cost, while satisfying

constraints such as filling all job positions with the

necessary personnel.

A. A PROPOSED METHODOLOGY

The core of the model presented in this study consists of

a linear programming model formulated to minimize total cost

subject to two classes of constraints. One allows officers

to be retained & promoted, retained & not promoted, and leave

the service, and the other guarantees that all billet

requirements are fulfilled. Unlike the traditional models in

manpower planning, the data required by this model are allowed

to vary stochastically as random variables.

With random data, a stochastic programming model is often

developed. However, in stochastic programming, one is

generally interested in a single solution which optimizes the

objective function and satisfies the constraints for all

possible values of the random variables. One such solution

does not reflect the true, uncertain nature of the results,

and, moreover, a stochastic programming model of the size and

form considered in this thesis would be quite difficult to

solve. Instead, this study focuses on the behavior of the

optimal solution to the linear programming model as a function

of the random data. It is believed that an analysis of such

behavior provides more useful information to planners. To

2



this end, a simulation approach combined with an optimization

(SIMOP) model is adopted.

In the SIMOP model, one replication of the simulation.

consists of generating a set of (pseudo) random data for the

linear programing model and solving the resulting problem by

the simplex method (see

Figure 1). By performing a
START

sufficient number of S

replications, the solutions
GENERATE

to the linear programming PAND
i NPI 7 ATA

model can be analyzed
SOLVE
L INEAP

statistically. The resulting L GAR

analysis would augment and COLLECT

5TATISTICS

complement the information

already available to, e.g.
YES OPE NO END

nuclear officer personnelL

planners. Figure 1: Flowchart of
While the SIMOP model SIMOP Process

cannot replace current

decision making processes, its value and potential should not

be overlooked. For example, the optimal mix provided by the

model could be used by planners as a basis against which to

compare other possible mixes, or, by varying input parameters,

the consequences of implementing proposed policies could be

studied. Thus, the model provides more than just an optimal

mix which may or may not be desireable based on criteria other

3



than minimum cost. It also provides a feasible solution which

can profitably be used in comparative analyses and a means by

which to explore alternatives.

B. PROBLEM DESCRIPTION AND THESIS OUTLINE

Each year the Navy's nuclear personnel planners must set

target values for the number of entrants from the United

States Naval Academy (USNA), the Naval Reserve Officers

Training Corps (NROTC), and the Nuclear Propulsion Officer

Candidate (NUPOC) program. Ideally, the target values are set

such that

1) all billet requirements will continue to be met

and

2) the total personnel cost to the Navy, including

precommissioning costs and salary, is minimized.

The difficulty in achieving these goals is caused by

uncertainty surrounding future retention and promotion rates.

The following chapters present one approach to dealing with

that uncertainty.

The linear programming model and its implementation in

the General Algebraic Modeling System (GAMS) are described in

the Chapter II. Chapter III details the input data for the

linear programming model and the methods used to generate it.

Appendix B supplements Chapter III where required. The fourth

chapter compares the results from the SIMOP model and the

traditional optimization model and presents a set of

4



applications for the SIMOP model. Conclusions and

recommendations are presented in Chapter V.
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II. MODEL DESCRIPTION

The linear programming (LP) model described in this

chapter minimizes the cost of the entrants into the nuclear

surface warfare officer community for each of the next five

fiscal years. The constraints in the model include a)

(supply) equations which limit the number of officers

commissioned from each source in a fiscal year, b) (demand)

equations which represent the billet requirements for each

year, and c) (flow balance) equations which allow for the

advancement in rank and years of service of the officers. The

next two sections formulate the problem mathematically.

A. MODEL FORMULATION

The formulation of the linear programming model is

presented here in a compact format to introduce the model

without providing a cumbersome level of detail. The

formulation is in a format commonly used at the Naval

Postgraduate School.

Indices

I Accession Source (USNA, NROTC, NUPOC)
J Years of Service (0,1,2,...,24)
K Rank (01,02,...,06)
L Calendar Year (1988 - 2017)

6



Data

1 if an officer with J years of
POSS(J,K,L) = service can be rank K in year L

0 otherwise

BR(K,L) - Number of billets that will require
an officer of rank K in year L

CA(I,L) - Cost of an accession from source I
in year L

CF(I,J,K) - Cost of an officer from source I with
J years of service and rank K

SFC - Cost of shortfall

M(I,L) - Upper bound on the number of accessions
from source I in year L

RNP(I,J,K,L) - Random proportion of officers from
source I with J years of service and of
rank K that will be retained but not
promoted in year L

RAP(I,J,K,L) - Random proportion of officers from
source I with J years of service and of
rank K that will be retained and promoted
in year L

X(I,J,K,1988) - Number of officers from source I with
rank K and J years of service at the
start of the planning period, i.e.,
1988

Variables

X(I,J,K,L) - Number of officers from source I with J
years of service and rank K in year L

SF(K,L) - Number of billets in rank K in year L
that are not filled

7



Formulation

minimize: Z Z CA(I,L).X(I,0,Ol,L) + Z Z SFC.SF(K,L)
I L K L

+ Z Z Z Z CF(I,J,K).X(I,J,K,L)
J K L

subject to:

1) Z Z X(I,J,K,L) + SF(K,L) _ BR(K,L) for all ranks
I JK and years L

2) X(IO,01,L) _< M(I,L) for all sources I
and years L

3) X(I,J+I,K,L+l) = RNP(I,J,K,L) X(I,J,K,L)
for all sources I, years

of service J, years L
and for rank K = 01

4) X(I,J+l,K+l,L+l) = RAP(I,J,K,L) X(I,J,K,L) +
RNP(I,J,K+I,L) X(I,J,K+l,L)

for all sources I, years
of service J, years L

and for rank K > 01

B. DETAILED DESCRIPTION

1. The Objective Function

The cost function which is minimized by the model includes

costs which vary depending on the commissioning source of an

officer. Both precommissioning and postcommissioning costs

are considered; however, as this is not an attempt to do a

detailed cost analysis, costs which are not source dependant

(i.e. bonuses, retirement pay, and pay other than base pay)

are not incorporated into the model. Thus, postcommissioning

costs include only base pay, which must be considered since

officers commissioned from Officer Candidate School (OCS) via

8



the NUPOC program receive credit for pay purposes only for

the years of service prior to commissioning. Precommissioning

costs vary widely between sources and, therefore, must also

be considered.

Shortfall variables, SF(K,L), are included in the model

to ensure problem feasibility. By assigning a high cost to

these variables, they will be positive only when the original

problem is truly infeasible, i.e., when there are not enough

officers to fill all billets.

2. The Constraints

Demand constraints, equation (1), ensure that there is a

sufficient number of officers to fill all billets requiring

a nuclear trained surface warfare officer. As seen in the

Section A and discussed above, shortfall contributes to the

"filling" of billet requirements. In the fleet, there are

insufficient numbers of 04's to fill all 04 billet

requirements, and senior 03's are used to fill 04 billets.

This practice is called "up-detailing" and is frequently used.

Equation (1) as stated in Section A allows no up-detailing.

However, in Chapter IV, several up-detailing policies are

considered, and equation (1) is modified to reflect the change

in policy.

Supply constraints, equation (2), force the solver to

include no more than the anticipated number of available

candidates in the optimal mix. Since shortfall is included

9



in the demand constraints, no "dummy" variables are required

in the supply constraints to ensure feasibility.

Equality constraints, equations (3) and (4), are used to

advance a group of entrants through ranks and years of

service. Figure 2 depicts the relationships between decision

variables, X(I,J,K,L), in a

network form. The number of

officers in a class I,J,K (a YEAP L YEAP L+1

"class" is a specific I I

combination of rank, years of

service, and commissioning

source) during year L+1 is

determined by the number of

transitions into the class at

the end of year L.
Figure 2: Example of

Transitions into class I,J,K Relationships Between
Decision Variables

can originate from only two

classes: class I,J-l,K-l and

class I,J-,K, since an officer's commissioning source (I) is

constant, his years of service (J) always increment by one,

and his rank (K) either stays the same or is incremented by

one grade. Therefore, the number of officers in class I,J,K

in year L+1 depends on the number of officers in each

originating class in year L and on the probability of

transition from the originating class to class I,J,K.

Equality constraints (3) and (4) represent the transition of

10



officers from zero years of service to twenty-four years of

service (or until they are no longer retained in the nuclear

surface community) and up to the rank of 06.

C. GAMS IMPLEMENTATION

The General Algebraic Modeling System (GAMS) developed

under the direction of Meeraus was selected for the simulation

of the LP model presented above. GAMS possesses two

convenient features essential to this study: looping [Ref.

3:pp. 138-139] and random number generation [Ref. 3:p. 69].

Looping allows a large number of replications to be performed

with a minimum number of program statements. GAMS has two

internal functions (subroutines) to generate uniform and

normal random numbers necessary to generate the stochastic

input data for the model. The listing of the GAMS program is

provided in Appendix A and the significant aspects of GAMS

implementation are discussed below.

1. Variable and Equation Reduction

The LP problem in the form stated above contains many

variables and equations which do not affect the solution to

the model. In an effort to eliminate these inessential parts

and thus improve program efficiency, the dollar operator in

GAMS is utilized.

The variable X is indexed by I, J, K, and L. If all

possible classes (I,J,K,L) are allowed there would be 13,500

11



(3 sources 25 years of service 6 ranks 30 years) X-

variables in the model. Initial variable reduction is

accomplished by considering only the combinations of years of

service (J) and rank (K) which have historically occurred with

regularity. After eliminating X(I,J,K,L) variables with

uncommon or unrealistic combinations of J and K, only 2,790

X-variables remain.

Since only those remaining variables which will interact

with the groups of entrants in years 1989 through 1993 are

required, many combinations of years of service, rank, and

year are also eliminated. For example, a commander with

twenty years of service in 1990 will never compete for a

billet against an officer commissioned in 1989 through 1993.

Thus, this commander is not considered in the model, and

variable X(I,'20','05','1990') is eliminated.

Variable reduction is accomplished in GAMS through the

use of the dollar operator and the table POSS(J,K,L), which

contains a "1" for all combinations of years of service, rank,

and year which are considered in the model (with the exception

of groups of officers who have not completed their first year

of service). Following the variable reduction, only 1,479 X-

variables of the original 13,500 remain.

Similarly, the number of constraint equations generated

by GAMS is reduced by using the dollar operator. As an

example, equation SUPPLY is generated only for years 1988

through 2000 since no officers commissioned after year 2000

12



will interact with those officers in the groups of interest

(entrants during years 1989 through 1993). Following the

equation reduction, only 1,512 equations of the original

13,231 remain.

2. Random Number Generation

The proportion of officers in a class who are retained &

promoted from year to year are shown in Chapter III to be

independent random variables and are modeled as the proportion

parameter, p, of a binomial distribution. When the number of

observations permits approximation by normal random variables,

the GAMS function NORMAL is used to generate the random

proportions prior to solving the LP model. Otherwise, GAMS'

uniform random number generator, the function UNIFORM, is used

in a routine to generate binomial random numbers. Such a

routine may be found in standard textbooks on simulation [Ref.

4] and is described in Section B of the next chapter.

13



III. INPUT DATA

Input data for the model include cost data, billet

requirements, retention and promotion fractions, upper bounds

on the number of entrants available from a commissioning

source, and initial manning levels. The analyses of the raw

data used to derive the model input and the assumptions made

in performing the analyses are described in the following

sections. Where required, detail is provided in Appendix B.

A. BILLET REQUIREMENTS

The approximate number of billets, by rank, to be filled

by nuclear trained surface warfare officers in 1989 was

provided by the Naval Military Personnel Command (NMPC-412N)

from the Billet Master File. Billet requirements for each

rank are assumed to remain constant over time. This

assumption is rational since the billet requirements for 1989

include billets for the two newest Nimitz class nuclear

aircraft carriers, and no decommissioning of nuclear powered

ships can be anticipated before 2017, the last year considered

in the model. The table of billet requirements (by rank and

by year) is contained in the GAMS listing in Appendix A.

14



B. RETENTION AND PROMOTION FRACTIONS

The process of retention and promotion of officers was

modelled as a binomial random process with proportion p being

associated with the probability of an officer being retained

& promoted. One point estimator of p is given by

p = X/n,

where X represents the number of officers retained & promoted

out of n total officers. For values of p such that np and

n(l-p) are both greater than or equal to five, p is

approximately normally distributed with mean

E[p] = E[X/n] = np = p

n

and variance

VARfp] = VAR[X/n] = VAR[X] = npq = pq

n2  n2  n

and random values for p can be generated using a normal random

number generator. When the normal approximation is not

appropriate, random values for p can be generated by

simulating a sequence of Bernoulli trials and dividing the

number of successes by the number of trials.

Note, however, that the variance of p depends on n. In

the linear programming model, n corresponds to the number of

officers eligible for promotion for each combination of rank,

years of service, and year. At the start of each replication

of the simulation, the value of n is unknown, and an estimate

of n is used in the above formula for VAR[p].

15



The following paragraphs describe the estimation of p and

its variance for all combinations of rank, years of service,

and year.

1. Developing the Point Estimator

The Defense Manpower Data Center (DMDC) in Monterey,

California, provided the raw data from which retention and

promotion figures were derived. For years 1978 through 1988,

the social security number, rank, years of service, and

commissioning source were extracted from their main files for

all commissioned naval officers with a surface warfare

designation and an Additional Qualification Designator

signifying completion of nuclear training.

A Fortran program was written to convert the extracted

information into retained & promoted and retained & not

promoted proportions. The program examines data from two

successive years and calculates the fraction of officers from

each class (i.e. with each combination of commissioning

source, years of service and rank) that were retained &

promoted and the fraction retained & not promoted. For

example, the fractions were calculated for Lieutenants from

the NUPOC program with four years of service for years 1978

through 1987. These fractions were saved in output files

which were subsequently imported into STATGRAF, a statistics

and graphics package for the personal computer. Since

retained & promoted fractions and retained & not promoted

16



fractions were analyzed in the same manner, only the analysis

of retained & promoted data is described in the following

paragraphs.

STATGRAF was used to analyze the retention and promotion

fractions and to verify assumptions about the distributions

of the fractions. Initially, the data were graphed on scatter

plots with the ten data points (retained & promoted fractions)

for each class plotted against the year with which the point

is associated. The scatter plots (a typical case is depicted

in Figure 3) reveal little other than that the fractions do

not show a definite trend over time. This lack of dependance

was verified by performing linear regressions (see Figure 4)

on the data with "year" as the independent variable.

Generally poor fits were obtained, and hypothesis testing

based on the "Analysis of Variance for the Full Regression"

table (see Table 1) produced by STATGRAF led to a failure in

almost all cases to support an assumption of a time

dependance.

The independence of successive years' data was further

explored by examining the autocorrelation coefficients for

the series of values. Again, the analysis supported the

assumption that the observed fractions were, for a given

class, independent observations.

17
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Figure 3: Proportion of 03's with 6
Years of Service from USNA that are
Retained and Not Promoted, by Year
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Figure 4: Figure 1 with Regression Line
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TABLE 1. STATGRAF REGRESSION AND
ANALYSIS OF VARIANCE TABLES

Regression Analysis - Linear model: Y - a+bX
................................................................................

Dependent variable: G.N163 Independent variable G.YEAR

Standard T Prob.
Parameter Estimate Error Value Level
................................................................................

Intercept 1.0858 0.740525 1.46626 .18075
Slope -2.92121E-3 8.97062E-3 -0.325642 .75305
................................................................................

Analysis of Variance
................................................................................

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Model .0007040 1 .0007040 .106043 .75305
Error .0531116 8 .0066389

Total (Corr.) .0538156 9

Correlation Coefficient - -0.114376 R-squared - 1.31 percent
Stnd. Error of Eat. - 0.0814797

Following the validation of the assumption of

independence, the ten observations of fraction retained &

promoted were aggregated to provide a single point estimate

of the probability of an officer from the class being retained

& promoted. For ranks 04, 05, and 06, the point estimates

for officers from each of the three sources were pooled

because sufficient data were not available to develop accurate

estimates without further aggregation.

Pooling of 04, 05, and 06 data is justified by the fact

that differences in precommissioning programs of officers have

very little impact on retention and promotion. figures at the

04 and higher levels since these officers have received

considerable amounts of identical training and similar

experience since commissioning. Attempts to statistically

justify the pooling using hypothesis tests of equal means were

20



unsuccessful due to a lack of data, particularly for the

officers from the NUPOC program. The final point estimate for

each source and combination of years of service and rank was

assigned to a parameter in GAMS labeled RAPMEAN(I,J,K). All

values of RAPMEAN(I,J,K) and RNPMEAN(I,J,K) were derived in

the manner described except those discussed in the next

section.

2. Exceptions

The values assigned to RAPMEAN and RNPMEAN for 03's with

eight or nine years of service are weighted averages of the

values of the estimates for the c1fice-s from each of the

three sources. The estimates for the officers from each

source were pooled since only cwo yea-s of representative data

were available. Following 1985, a shift in policy resulted

in the majority of promotions from 03 to 04 occurring

following nine years of service, rather than eight. Thus,

only 1986 and 1987 values were used in obtaining a point

estimate representative of current promotion policy, and the

estimates for the officers from each source were aggregated

to provide a single estimate with a reasonable degree of

accuracy.

3. Variance Estimation

The variance of the estimator p is given by

p(l-p)

n

21



and is estimated by

n

As previously mentioned, no a priori knowledge of n exists.

To produce a reasonable estimate of the variance of p, it is

assumed that the actual number of trials (officers to be

considered for retention and promotion) will be considerably

less than the number, say n', used to calculate p. In fact,

it is assumed that the number of trials will be one-tenth the

number of trials used in calculating p, since ten years of

data were included. There is no reason to believe that n'/lO

represents the mean of the distribution of n, but it should

be much closer to the mean than is n'. Thus, the problem of

underestimating the variance of p is resolved by using

p(l-p)

(n'/lO)

rather than
p (l-p)

n'

as the estimator.

C. COSTS

1. Precommissioning Cost

The cost of producing a commissioned officer was analyzed

for each commissioning source. Since data were provided

independently by personnel representing each source, the

ability to compare the data in detail is questionable.
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However, since the costs of the three sources are so

different, and no detailed cost analysis of the output was

done, minor problems with the cost data had little effect on

the results. The cost data for the NUPOC program was most

questionable, since liaison officers at the program office

were unable to provide historical data, but did provide rough

estimates of various program ad"'nistrative costs.

The estimate of the NUPOC program cost was combined with

the historical cost data for Officer Candidate School (OCS),

which NUPOC candidates must attend, to provide the

precommissioning cost for the NUPOC program. In addition to

OCS costs, the candidates' pay and an "admin" cost were

estimated. The method used to estimate the cost of an entrant

from the NUPOC program is described in Appendix B.

The historical data for the USNA, NROTC, and OCS were

converted to constant 1988 dollars for analysis. The costs

were plotted versus year, and simple linear regression

analysis was performed. For each set of data, no real growth

in cost is evident. (See Appendix B for ANOVA tables and

regression plots.) Therefore, program costs were modeled as

constants, equal to the mean value of their historical costs

expressed in 1988 dollars.
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2. Postcommissioning Cost

Since the model requires only costs that vary depending

on the commissioning source of an officer, postcommissioning

cost consists only of an annualized base pay calculated from

the 1988 monthly base pay table. The only difference in the

postcommissioning costs of officers from the three sources is

due to NUPOC officers being credited for pay purposes for

their years in the NUPOC program prior to commissioning. For

example, an 03 from the NUPOC (two year) program with five

years of service is paid as an 03 with seven years of service,

making NUPOC officers more costly, after commissioning, than

USNA or NROTC officers. A description of the methods used to

calculate annual costs is given in Appendix B.

D. OTHER INPUT DATA

1. Upper Bound on Accessions

The number of entrants from a commissioning source (I) in

a year (L) is limited in the linear program by the supply

constraints, equation (2), to be less than or equal to the

maximum allowable number of accessions, denoted as M(I,L) in

the model. Values assigned to M(I,L) can be varied in order

to analyze the effects of changing recruiting quotas or

commissioning source size. The initial values, M(I,'1988'),

were set equal to the number of entrants from each source, I,
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in 1988. Growth, shrinkage, or stability in a commissioning

source's size can also be modelled by controlling M(I,L).

2. Initial Manning Levels

The number of officers from each commissioning source in

each rank and with less than seven years of service in 1988,

was treated as input data since these officers will

potentially compete for the same billets as the officers who

will enter the program during 1989 through 1993. These data

were taken from the files provided by DMDC and are included

in the GAMS program listing in Appendix A.
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IV. DEMONSTRATION OF MODEL APPLICATIONS

This chapter illustrates the effect and applications of

the simulation/optimization (SIMOP) model. The first section

demonstrates the difference between the solutions from the

SIMOP model and the traditional (deterministic) optimization

model in which all random inputs are replaced by the sample

means (point estimates). The remaining sections give examples

illustrating possible statistical output analyses. This set

of examples is meant to motivate typical analysis involved in

decision making and is by no means a complete demonstration

of all possible uses of the model. The mean number of

entrants from each source for each run of the model is listed

in Appendix C.

A. RANDOM VERSUS DETERMINISTIC INPUT

In this section, the total program cost from the SIMOP

runs are contrasted with the total program cost obtained from

the deterministic optimization model. In the optimization

model, the inputs for the proportions of officers retained &

promoted (RAP) and retained & not promoted (RNP) are assumed

deterministic and taken to be the point estimates of the true

values. The resulting linear program was solved to obtain a

minimum total cost of $94.6M. The corresponding SIMOP model

was run twice with 150 replications per run. The results from
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these two runs are summarized in the form of 95% confidence

intervals for the total program cost and tabulated, with the

result for the optimization (fixed input) model, in Table 2.

TABLE 2.
COMPARISON OF RANDOM RUNS VS.
RUN WITH DETERMINISTIC INPUT

95% Confidence Interval Mean
Run Total

Lower Bound Upper Bound Cost

Random 1 86.5M 91.7M 89.1M
Random 2 86.4M 88.7M 87.6M

Fixed Total Cost = 94.6M

The confidence intervals are calculated based on the

assumption that the "random" total program cost generated by

the SIMOP model is from a normal population. This assumption

is confirmed using the Kolmogorov-Smirnov goodness-of-fit

test. The frequency histogram of the total program cost from

the model is depicted in Figure 5 and verifies visually the

result of the Kolmogorov-Smirnov test.

From Table 2, it is clear that neither of the two

confidence intervals include the total program cost from the

deterministic optimization model. A statistical test leads

to the rejection of the hypothesis that the mean total program

cost from the SIMOP model is equal to the total program cost

from the deterministic model (at level a = 0.05).
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It is common knowledge that if X,, X, ... , X. are random

variables, independent or otherwise, then

E[CIX, + CX 2 +. .. + CX,] = CE[X,] + C2E[X2 ] +...+ CE[X,].

Based on this result and the fact that both the objective

function and the constraints are linear functions of random

variables, one might be led to believe that solving the

deterministic optimization model using the point estimates

would produce a solution which is approximately the mean of

the output from the SIMOP model. However, the results

summarized in Table 2 empirically demonstrate otherwise. This

is true since, in linear programming, the optimal objective

function value varies in a piece-wise linear fashion with

respect to the values of the available resources and the

coefficients defining the constraints.

B. UP-DETAILING POLICY

A set of five runs, with thirty replications per run, was

performed to demonstrate the use of the model for comparing

various up-detailing policies. As mentioned in Chapter II,

there are insufficient numbers of 04 officers in the fleet to

fill all 04 billets. In order to fill all 04 billets, up-

detailing is employed. Up-detailing normally involves filling

billets with officers of rank lower than is specified for the

billets. For example, some 04 billets may be filled by senior

03s. In this section, the SIMOP model is used to examine the

effect on the total program cost of five different up-
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detailing policies. The policies examined may or may not

represent acceptable up-detailing policies, but suffice as

examples.

Policy 1: No up-detailing is allowed.

Policy 2: 03s with nine years of service are used
to fill 04 billets.

Policy 3: 03s with eight or nine years of service
are used to fill 04 billets.

Policy 4: Half of 03s with eight years of service and
three-quarters of 03s with nine years of service
are used to fill 04 billets.

Policy 5: Half of 03s with eight years of service and
all 03s with nine years of service are used to fill
04 billets.

For each of the five policies, a run of the SIMOP model

with thirty replications was conducted and the resulting

confidence intervals on total program cost are given in Table

3. Note that only thirty replications were performed since

for samples of this size the sample standard deviation will

be very close to the standard deviation of the population, and

thus the Central Limit Theorem prevails (Ref. 5:p. 210].
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TABLE 3.
CONFIDENCE INTERVALS ON TOTAL COST
FOR DIFFERENT UP-DETAILING POLICIES

95% Confidence Interval Mean
Run Total

Lower Bound Upper Bound Cost

Policy 1 115.9M 127.4M 121.7M
Policy 2 95.OM 105.9M 100.5M
Policy 3 78.3M 87.6M 83.OM
Policy 4 87.6M 98.6M 93.1M
Policy 5 84.6M 94.9M 89.8M

From Table 3, it may be hypothesized, for example, that

Policy 4 result l.a a lower mean total cost than does Policy

2. Through tnt use of common statistical hypothesis testing,

this typer of hypothesis can be tested. For this example, one

would reject (at level a = 0.05) the null hypothesis that the

mean total cost for Policies 2 and 4 are equal and conclude

that the total program cost is lower when Policy 4 is used.

For the purpose of demonstrating possible uses of the

model, up-detailing policy number four is assumed for the

remaining examples.

C. CONFIDENCE INTERVAL ON TOTAL COST

This section demonstrates the ability to estimate the

total cost for a policy over the next five fiscal years within

a specified level of accuracy. This type of analysis may be

required, for example, in five year budget planning. For this
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demonstration, a confidence interval half-width of $2.5M and

confidence level of 98% were arbitrarily chosen. Thus the

planner can be sure that the true mean (for this model) lies

within a $5M range with probability 0.98. Given an estimate

of variance, the required number of replications is

approximated by

(z0M) 2.n = (z') a2

A
2

where n = the required number of replications,

z0.9= the standard normal value associated

with the 98h percentile,

A = the interval half-width,

and = an estimate of variance.

This method of approximating the required number of

replications (i.e. assuming that the confidence interval

statistic has a normal distribution) is often recommended by

statisticians when n is greater than or equal to thirty. It

is justified by the presumption that for large samples, a2

will be close to a2 and thus the Central Limit Theorem

prevails [Ref. 5:pp. 240-241].

For this case, 2 was assigned the sample variance

obtained from a run with thirty replications. The confidence

interval on total cost and the confidence interval half-width

are ($86.5M, 91.7M) and $2.6M, respectively. Note that due

to having estimated the variance, and thus the required number

of runs, this interval is slightly larger than was originally
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desired. If necessary, the interval could be made smaller by

performing additional replications and pooling the new results

with those previously obtained.

D. NUPOC PROGRAM COST

As noted in Section C of Chapter III, the cost of the

NUPOC program, excluding OCS costs, was not as accurately

determined as the costs of the other programs. To examine the

sensitivity of the total cost to changes in cost of the NUPOC

program, three runs, each of thirty replications, were

performed. The first run assumes that the cost of the NUPOC

program is as obtained in Section C of Chapter III, which is

referred to as the "original cost" (OC). The second run

assumes that the NUPOC program costs only half the original

cost (3 OC), and the third assumes that it costs twice the

original cost (2 OC). Table 4 provides the confidence

intervals for the three runs.

TABLE 4.
CONFIDENCE INTERVALS ON TOTAL COST
FOR VARYING NUPOC PROGRAM COSTS

95% Confidence Interval Mean
Run Total

Lower Bound Upper Bound Cost

OC 86.6M 97.3M 92.OM
OC 87.6M 98.7M 93.2M
2 OC 89.OM 100.8M 94.9M
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Let M,, A., and A, denote the mean total program cost when

the NUPOC program costs half the original cost, the original

cost, and twice the original cost, respectively. The

following hypothesis test was conducted at level a = 0.05:

H: p, A ,
H1: Ph jo t

The test resulted in a failure to reject the null hypothesis.

Since Ph :5 A 5,, the above test is sufficient to show that

there is no statistically significant difference among the

three means. Thus, for this example, total cost is relatively

insensitive to NUPOC program cost within the range examined.

Therefore, a planner might conclude that effort would be

better spent attempting to reduce cost in areas other than the

NUPOC precommissioning program.

E. EFFECTS OF SOURCE SIZE

To demonstrate the use of the model to explore program

policies concerning commissioning source size, the model was

run with the maximum number of entrants from the NROTC program

held constant at thirty-five. Because the entrants to the

nuclear trained surface warfare officer community from the

USNA or NROTC programs come from a "general" pool of officer

candidates in these programs, the number of entrants from

these programs may not be controlled as well as the community
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manpower planners might like. For this example, assume that

the number of entrants from the NROTC program is proportional

to the total size of the NROTC program, and that the

"controller" of the NROTC program has frozen the size of the

program due to budgetary constraints.

The question then is, "What effect will freezing the

maximum number of entrants from the NROTC program (at 35 for

this example) have on total cost?" The results of this run

were compared with the base run in which each of the three

source programs were allowed to grow. The comparison is

summarized in Table 5.

TABLE 5.
CONFIDENCE INTERVALS ON TOTAL COST
FOR DIFFERENT NROTC PROGRAM SIZES

95% Confidence Interval Mean
Run Total

Lower Bound Upper Bound Cost

Base 87.6M 98.7M 93.2M
Only 35 94.2M 106.3M 100.3M

Again, a hypothesis test was conducted at level a = 0.05,

H0: Mb = A36

H,: b <  A38

where Ab and p denote the mean total cost of the base run and

the run in which the maximum number of entrants from the NROTC

program is 35, respectively. For this test, the null

hypothesis is rejected, and a manpower planner could conclude
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that the total cost would be higher if the number of entrants

from the NROTC program were restricted to thirty-five.
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V. CONCUJSION AND RECOMMENDATIONS

A. CONCLUSION

This thesis examines a nontraditional approach to a

manpower planning problem. This approach combines two

operations research methodologies: simulation and

optimization. The combined approach, which is referred to as

SIMOP, models the manpower planning problem as a linear

program and, through simulation techniques, allows the input

data to be random. As discussed in Chapter I, either a linear

programming model with deterministic data or a Markov Chain

model with known transition probabilities has been considered

in many manpower studies. Because the expected value of the

sum of random variables is equal to the sum of expected

values, it can be mistakenly concluded that the result from

the deterministic linear programming model approximates the

one from SIMOP. However, the experiments in Chapter IV

empirically indicate that the relationship between the

coefficients defining the constraints and the corresponding

optimal solution is nonlinear. In addition, the difference

between the solutions from SIMOP and the optimization model

is statistically significant. Several examples in Chapter IV

also demonstrate that the SIMOP process is a viable

alternative in manpower studies.
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B. FURTHER STUDIES RECOMMENDED

1. Additional Modeling Efforts

In this study, the base runs allowed the source programs

to grow by fifteen percent each year, and it was assumed that

all candidates who entered the program successfully completed

all training requirements and a first year of duty. A more

realistic model would incorporate the anticipated number of

volunteers from each source and allow for 1) the screening

of applicants from the sources, 2) attrition prior to

commissioning, and 3) attrition in the training pipeline.

In addition, further work in modeling the retention and

promotion rates is recommended. Bunn addresses Bayesian

updating with continuous prior distributions and the

relationship between the Binomial and Beta Distributions [Ref.

6]. The suitability of the Beta Binomial Distribution in the

modeling of the promotion and retention of officers merits

further investigation.

2. Critical Values of Retention and Promotion

The number of entrants from a source in a given year

varied widely depending on whether or not it was the

"preferred" source (i.e. depending on the combined effects of

cost and retention and promotion rates). Hypothetically,

there are critical stages in career development and critical

values of promotion and retention rates that will determine
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whether or not the source is the preferred source. An in-

depth sensitivity analysis is suggested in order to identify

these critical values. Knowledge of the critical values in

question might serve to better mold future retention and

promotion policies and goals.

3. Use of Elasticity of Supply and Variable Bonus

Given a measure of the elasticity of supply for entrants

to the nuclear trained surface warfare officer community, the

model could be used to determine proper levels at which to set

a variable (by source) accession bonus. Consider the

following example. Assume that USNA officers are more cost

effective than either NROTC or NUPOC officers, but the

anticipated availability of volunteers from the USNA are less

than the desired number of entrants. Given the elasticity of

supply for the USNA graduates, it would be possible to

determine the accession bonus (for the USNA graduates) that

would induce the~esired number of USNA volunteers. However,

the USNA officers would now cost more due to the added bonus

cost, and the desired number of entrants from the USNA will

have changed. This problem could be solved by modifying the

model from this study and solving it as a nonlinear program.

This type of program is inherently more difficult to solve,

but would provide very useful data if future shortages of

volunteers were anticipated.
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APPENDIX A: GAMS PROGRAM LISTING

$OFFSYMLIST OFFSYMXREF
OPTIONS DECIMALS-2, LIMCOL=0, LIMROW-0, SOLPRINT-OFF;

SETS
I source /USNA,NROTC,NUPOC/
J years of service /0*24/
K military rank /01*06/
L year /1988*2017/
NITER dummy set /11*1100/
NLOOP number of runs /NI*N150/

*DATA
TABLE POSS(J,K,L) * 1 if years of service J, rank K and year L

* are compatible
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

0.01
1.01 1 1 1 1 1 1 1 1 1 1 1
2.02 1 1 i 1 1 1 1 1 1 1 1
3.02 1 1 1 1 1 1 1 1 1 1 1
4.03 1 1 1 1 1 1 1 1 1 1 1
5.03 1 1 1 1 1 1 1 1 1 1 1
6.03 1 1 1 1 1 1 1 1 1 1 1
7.03 1 1 1 1 1 1 1 1 1 1
8.03 1 1 1 1 1 1 1 1 1
8.04 1 1 1 1 1 1 1 1 1
9.03 1 1 1 1 1 1 1 1
9.04 1 1 1 1 1 1 1 1
10.04 1 1 1 1 1 1 1
11.04 1 1 1 1 1 1
12.04 1 1 1 1 1
13.04 1 1 1 1
14.04 1 1 1
15.04 1 1
15.05 1
16.05
17.05
18.05
19.05
19.06
20.05
20.06
21.05
21.06
22.06
23.06
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24.06
+ 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0.01
1.01 1 1 1
2.02 1 1 1 1
3.02 1 1 1 1 1
4.03 1 1 1 1 1 1
5.03 1 1 1 1 1 1 1
6.03 1 1 1 1 1 1 1 1
7.03 1 1 1 1 1 1 1 1 1
8.03 1 1 1 1 1 1 1 1 1
8.04 1 1 1 1 1 1 1 1 1 1
9.03 1 1 1 1 1 1 1 1 1 1
9.04 1 1 1 1 1 1 1 1 1 1

10.04 1 1 1 1 1 1 1 1 1 1 1
11.04 1 1 1 1 1 1 1 1 1 1 1
12.04 1 1 1 1 1 1 1 1 1 1 1
13.04 1 1 1 1 1 1 1 1 1 1 1
14.04 1 1 1 1 1 1 1 1 1 1 1
15.04 1 1 1 1 1 1 1 1 1 1 1
15-05 1 1 1 1 1 1 1 1 1 1 1
16.05 1 1 1 1 1 1 1 1 1 1 1
17.05 1 1 1 1 1 1 1 1 1 1
18.05 1 1 1 1 1 1 1 1 1
19.05 1 1 1 1 1 1 1 1
19.06 1 1 1 1 1 1 1
20.05 1 1 1 1 1 1 1
20.06 1 1 1 1 1 1
21.05 1 1 1 1 1 1
21.06 1 1 1 1 1
22.06 1 1 1 1
23.06 1 1 1
24.06 1 1
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+ 2010 2011 2012 2013 2014 2015 2016 2017
0.01
1.01
2.02
3.02
4.03
5.03
6.03
7.03
8.03
8.04
9.03
9.04

10.04
11.04 1
12.04 1 1
13.04 1 1 1
14.04 1 1 1 1
15.04 1 1 1 1
15.05 1 1 1 1 1
16.05 1 1 1 1 1
17.05 1 1 1 1 1 1
18.05 1 1 1 1 1 1 1
19.05 1 1 1 1 1 1 1
19.06 1 1 1 1 1 1 1
20.05 1 1 1 1 1 1 1
20.06 1 1 1 1 1 1 1
21.05 1 1 1 1 1 1 1
21.06 1 1 1 1 1 1 1 1
22.06 1 1 1 1 1 1 1 1
23.06 1 1 1 1 1 1 1 1
24.06 1 1 1 1 1 1 1 1
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TABLE BR(K,L) * number of rank K billets to be filled in year L
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

01 23 23 23 23 23
02 ill ill ill ill ill11

03 61 61 61 61 61 61
04 97 97
05
06

+ 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
01
02
03 61 61 61 61
04 97 97 97 97 97 97 97 97 97 97
05 35 35 35 35 35
06 20
+ 2009 2010 2011 2012 2013 2014 2015 2016 2017
01
02
03
04
05 35 35 35 35 35 35
06 20 20 20 20 20 20 20 20 20;

PARAMETERS BR12(L), * number of 01 and 02 billets to be filled

• in year L

BR3(L), * number of 03 billets to be filled in year L
BR4(L), * number of 04 billets to be filled in year L
BR5(L), * number of 05 billets to be filled in year L
BR6(L); * number of 06 billets to be filled in year L

BR12(L) = BR('01',L) + BR('02',L);
BR3(L) = BR('03',L);
BR4(L) = BR('04',L);
BR5(L) = BR('05',L);
BR6(L) = BR('06',L);

PARAMETERS NUPOC3, * proportion of NUPOC candidates who enter
NUPOC2, * the program with three (NUPOC3), two (NUPOC2),
NUPOC1, * or one (NUPOCI) year of college remaining or
NUPOCO; * after graduation from college (NUPOCO)

NUPOC3 = 0.000;
NUPOC2 = 0.333;
NUPOCI = 0.333;
NUPOCO = 0.333;
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PARAMETERS E3, * monthly base pay for E3 with less than 2
* years of service

E4, * monthly base pay for E4 with less than 2
* years of service

ES, * monthly base pay for E5 with less than 2
* years of service

E52, * monthly base pay for E5 with more than 2
* years of service

ADMIN; * estimated administrative cost of a
• NUPOC commissionee

E3 - 814.20;
E4 = 864.30;
E5 - 926.70;
E52 - 1008.60;
ADMIN = 5000.00;

PARAMETER OCSCOST; * cost of the OCS commissioning program
OCSCOST = 18590;

PARAMETER PRECOST(I,L); * cost of an officer from source I
* in year L

PRECOST('USNA',L) = 162581;
PRECOST('NROTC',L) = 53995;
PRECOST('NUPOC',L) = NUPOC2*(12*E3 + 12*E4 + 5*E52)

+ NUPOC1*(12*E4 + 5*E5) + NUPOCO*(5*E5) + ADMIN + OCSCOST;
PRECOST(I,L) = PRECOST(I,L)/1000;
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TABLE MOCOST(J,K) * monthly base pay for rank K and years of

* service J

01 02 03 04 05 06
0 1339
1 1339
2 1394 1685
3 1685 2024
4 2092 2339
5 2092 2339
6 2451
7 2451
8 2539 2629
9 2539 2629

10 2676 2809
11 2676 2809
12 2966
13 2966
14 2472
15 2472 3284
16 3238 3530
17 3238 3530
18 3328 3732 4160
19 3732 4160
20 3845 4250
21 3845 4250
22 3979 4497
23 3979 4497
24 4497

PARAMETER POSTCOST(I,J,K); * cost of an officer from source I,
• with rank K and J years of service

POSTCOST(I,J,K) = MOCOST(J,K);
POSTCOST('NUPOC',J,K)$(ORD(J) LE 23)

= NUPOC2*POSTCOST('NUPOC',J+2,K)
+ NUPOC1*POSTCOST('NUPOC',J+1,K)
+ NUPOCO*POSTCOST('NUPOC',J,K);

POSTCOST('NUPOC','23','06') = 4497;
POSTCOST('NUPOC','24','06') = NUPOC2*4877 + (1-NUPOC2)*4497;
POSTCOST(I,J,K) = (12*POSTCOST(I,J,K)/1.041)/1000;

PARAMETER M(I,L); * maximum number of entrants form source
* I in year L

M('USNA','1988') = 45;
M('NROTC','1988') - 31;
M('NUPOC','1988') = 35;
LOOP(L$(ORD(L) LT 14), M(I,L+1) = MIN(250, 1.15*M(I,L)); );

PARAMETER RNPMEAN(I,J,K) * point estimate of proportion of
* officers in class I,J,K that is

/USNA . 0.01 1.000 * retained & not promoted
NROTC. 0.01 1.000
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NUPOC. 0.01 1.0WO
USNA . 2.02 0.941
NROTC. 2.02 0.976
NUPOC. 2.02 0.928
USNA . 4.03 0.622
NROTC. 4.03 0.640
NUPOC. 4.03 0.528
USNA . 5.03 0.748
NROTC. 5.03 0.798
NUPOC. 5.03 0.741
USNA . 6.03 0.865
NROTC. 6.03 0.794
NUPOC. 6.03 0.813
USNA . 7.03 0.746
NROTC. 7.03 0.778
NUPOC. 7.03 0.526
USNA . 8.03 0.754
NROTC. 8.03 0.754
NUPOC. 8.03 0.754
USNA . 8.04 1.000
NROTC. 8.04 1.000
NUPOC. 8.04 1.000
USNA . 9.04 0.942
NROTC. 9.04 0.942
NUPOC. 9.04 0.942
USNA .10.04 0.884
NROTC.10.04 0.884
NUPOC.10.04 0.884
USNA .11.04 0.938
NROTC.11.04 0.938
NUPOC.11.04 0.938
USNA .12.04 0.933
NROTC.12.04 0.933
NUPOC.12.04 0.933
USNA .13.04 0.775
NROTC.13.04 0.775
NUPOC.13.04 0.775
USNA .14.04 0.125
NROTC.14.04 0.125
NUPOC.14.04 0.125
USNA .15*16.05 1.000
NROTC.15*16.05 1.000
NUPOC.15*16.05 1.000
USNA .17.05 0.955
NROTC.17.05 0.955
NUPOC.17.05 0.955
USNA .18.05 0.875
NROTC.18.05 0.875
NUPOC.18.05 0.875
USNA .19.05 0.710
NROTC.19.05 0.710
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NUPOC.19.05 0.710
USNA .20.05 0.167
NROTC.20.05 0.167
NUPOC.20.05 0.167
USNA .19*20.06 1.000
NROTC.19*20.06 1.000
NUPOC.19*20.06 1.000
USNA .21.06 0.975
NROTC.21.06 0.975
NUPOC.21.06 0.975
USNA .22.06 0.976
NROTC.22.06 0.976
NUPOC.22.06 0.976
USNA .23.06 0.957
NROTC.23.06 0.957
NUPOC.23.06 0.957/;

PARAMETER RAPMEAN(I,J,K) * point estimate of proportion of
* officers in class I,J,K that is

/USNA . 1.01 0.937 * retained & promoted
NROTC. 1.01 0.961
NUPOC. 1.01 0.907
USNA . 3.02 0.840
NROTC. 3.02 0.734
NUPOC. 3.02 0.355
USNA . 7.03 0.094
NROTC. 7.03 0.093
NUPOC. 7.03 0.158
USNA . 8.03 0.158
NROTC. 8.03 0.158
NUPOC. 8.03 0.158
USNA . 9.03 0.893
NROTC. 9.03 0.893
NUPOC. 9.03 0.893
USNA .14.04 0.806
NROTC.14.04 0.806
NUPOC.14.04 0.806
USNA .15.04 0.125
NROTC.15.04 0.125
NUPOC.15.04 0.125
USNA .18.05 0.078
NROTC.18.05 0.078
NUPOC.18.05 0.078
USNA .19.05 0.161
NROTC.19.05 0.161
NUPOC.19.05 0.161
USNA .20.05 0.738
NROTC.20.05 0.738
NUPOC.20.05 0.738
USNA .21.05 0.500
NROTC.21.05 0.500
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NUPOC.21.05 0.500/;

PARAMETER N(I,J,K) * number of officers ii, cidss I,J,K
/USNA . 1.01 143 * from 1978 to 1987
NROTC. 1.01 176
NUPOC. 1.01 144
USNA . 2.02 239
NROTC. 2.02 208
NUPOC. 2.02 165
USNA . 3.02 282
NROTC. 3.02 263
NUPOC. 3.02 107
USNA . 4.03 296
NROTC. 4.03 175
NUPOC. 4.03 53
USNA . 5.03 194
NROTC. 5.03 109
NUPOC. 5.03 27
USNA . 6.03 141
NROTC. 6.03 68
NUPOC. 6.03 16
USNA . 7.03 138
NROTC. 7.03 54
NUPOC. 7.03 19
USNA . 8.03 57
NROTC. 8.03 57
NUPOC. 8.03 57
USNA . 9.03 28
NROTC. 9.03 28
NUPOC. 9.03 28
USNA . 8.04 19
NROTC. 8.04 19
NUPOC. 8.04 19
USNA . 9.04 121
NROTC. 9.04 121
NUPOC. 9.04 121
USNA .10.04 138
NROTC.10.04 138
NUPOC.10.04 138
USNA .11.04 113
NROTC.11.04 113
NUPOC.11.04 113
USNA .12.04 90
NROTC.12.04 90
NUPOC.12.04 90
USNA .13.04 89
NROTC.13.04 89
NUPOC.13.04 89
USNA .14.04 72
NROTC.14.04 72
NUPOC.14.04 72
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USNA .15.04 8
NROTC.15.04 8
NUP0C.15.04 8
USNA .15.05 60
NROTC.15.05 60
NUPOC.15.05 60
USNA .16.05 67
NROTC.16.05 67
NUPOC.16.05 67
USNA .17.05 66
NROTC.17.05 66
NUPOC.17.05 66
USNA .18.05 64
NROTC.18.05 64
NUPOC.18.05 64
USNA .19.05 62
NROTC.19.05 62
NUPOC.19.05 62
USNA .20.05 42
NROTC.20.05 42
NUPOC.20.05 42
USNA .21.05 6
NROTC.21.05 6
NUPOC.21.05 6
USNA .19.06 6
NROTC.19.06 6
NUPOC.19.06 6
USNA .20.06 16
NROTC.20.06 16
NUPOC.20.06 16
USNA .21.06 40
NROTC.21.06 40
NUPOC.21.06 40
USNA .22.06 41
NROTC.22.06 41
NUPOC.22.06 41
USNA .23.06 47
NROTC.23.06 47
NUPOC.23.06 47
USNA .24.06 37
NROTC.24.06 37
NUPOC.24.06 37/;

PARAMETERS NPQA(I,J,K), NPQN(I,J,K); *parameter to determine mode
NPQAIJ,)SN(,J,* of random number generation

N(I,J,K)*MIN(RAPMEAN(I,J,K),1.RAPMEAN(IJK
NPQN(I.,J,K)$N(I,J,K) =

N(1,J,K)*MIN(RNPMEAN(I,J,K),1-RNPMEAN(IJK
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PARAMETER VARN(I,J,K), VARA(I,J,K); * variance of the point estimates
VARN(I,J,K)$(NPQN(I,J,K) GT 4.90)

= RNPMEAN(I,J,K)*(l-RNPMEAN(I,J,K))/N(I,J,K);
VARA(I,J,K)$(NPQA(I,J,K) GT 4.90)

= RAPMEAN(I,J,K)*(I-RAPMEAN(I,J,K))/N(I,J,K);

PARAMETERS RAP(I,J,K,L), RNP(I,J,K,L); * the random proportions
RAP(I,J,K,L) = 0.0;
RNP(I,J,K,L) - 0.0;

PARAMETER SFCOST; * cost of shortfall
SFCOST = 10000;

PARAMETERS YI, Y2; * counters
YI = 0;
Y2 - 0;

PARAMETERS ALLCOST(NLOOP,L), * collects total cost for each year
* after each run

XUSNA(NLOOP,L), * collects number of entrants from USNA
XNROTC(NLOOP,L), * collects number of entrants from NROTC
XNUPOC(NLOOP,L); * collects number of entrants from NUPOC

PARAMETERS EXCESS12(NLOOP,L), XSAVE12(L), XSVAR12(L), * collect
EXCESS3(NLOOP,L), XSAVE3(L), XSVAR3(L), * statistics

EXCESS4(NLOOP,L), XSAVE4(L), XSVAR4(L), * on number of
EXCESS5(NLOOP,L), XSAVE5(L), XSVAR5(L), * entrants from
EXCESS6(NLOOP,L), XSAVE6(L), XSVAR6(L), * each source
XUSNAAVE(L), XUSNAVAR(L), * and on amount
XNROTAVE(L), XNROTVAR(L), * of excess for
XNUPOAVE(L), XNUPOVAR(L); * each run

*VARIABLES
POSITIVE VARIABLE X(I,J,K,L), SF12(L), * the decision variables

SF3(L), SF4(L), SF5(L), SF6(L); * for number of officers
* in a class in year L

* and amount of shortfall

FREE VARIABLE TOTAL; * the variable to
• minimize

X.UP(I,J,K,L)$(POSS(J,K,L)) - 450; * upper bounds for the
X.UP(I,'0','Oi',L)$(ORD(L) LT 14) - 450; * decision variables
SF12.UP(L)$(BR12(L)) = 200;
SF3.UP(L)$(BR3(L)) = 200;
SF4.UP(L)$(BR4(L)) - 200;
SF5.UP(L)$(BR5(L)) - 200;
SF6.UP(L)$(BR6(L)) - 200;
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*ASSIGNMENT OF 1988 VALUES TO X
X.FX(I,J,K,'1988')S(ORD(J) GT 1) = 0;
X.FX('USNA' ,'0','01','1988') -=45;
X.FX('NROTC' , '0','01' ,'1988') - 31;
X.FX('NUPOC' , '0','01' ,'1988') - 35;
X.FX('USNA' ,'1','01','1988') -=45;
X.FX('NROTC', '1','Ol', '1988') - 31;
X.FX('NUPOC' ,'1','01' ,'1988') - 35;
X.FX('USNA' ,'2','02','1988') - 41;
X.FX('NROTC' ,'2','02' ,'1988') - 30;
X.FX('NUPOC' ,'2','02' ,'1988') - 31;
X.FX('USNA' ,'3','02','1988') - 32;
X.FX('NROTC','3','02','1988') - 29;
X.FX('NUPOC' ,'3' ,'02',t'1988') - 52;
X.FX('USNA' ,'4','03','1988') - 23;
X.FX('NROTC','4','03','1988') - 41;
X.FX('NUPOC' ,'4', '03','1988') . 21;
X.FX('USNA' ,'5','03','1988') = 31;
X.FX('NROTC', '5' ,'03' ,'1988') = 18;
X.FX('NUPOC' ,'5' ,'03' ,'1988') - 4;
X.FX('USNA' ,'6','03','1988') = 18;
X.FX('NROTC' ,'6' ,'03', '1988') = 25;
X.FX('NUPOC' ,'6','03', '1988') = 6;

EQUATIONS *declaration of the equations
083
DEMAND 12(L)
DEMAND3(L)
DEMAND4(L)
DEMAND5(L)
DEMAND6(L)
SUPPLY(I,L)
NEXT01(I,J,K,L)
NEXTO2O6(I,J,K,L);

OBJ. * the objective function
TOTAL =E= SUM((I,L)$(PRECOST(I,L) GT 0),

PRECOST(I, L)*X( I, '0','01',L))
+ SUM((I,J,K,L)$(POSS(J,K,L) AND (ORD(J) GT 1)),
POSTCOST(I,J,K)*X(I,J,K,L))

+ SFCOST*(SUM((L)$8R12(L), SF12(L)) + SUM((L)$BR3(L),
SF3(L)) + SUM((L)$BR4(L), SF4(L)) + SUM((L)$BR4(L),
SF5(L)) + SUM((L)$BR6(L), SF6(L)));

OEMAND12(L)$(BR12(L)).. * demand for Ols and 02s
SUM((I,J), X(I,J,'01',L)$POSS(J,'01',L)
+ X(I,J,'02',L)$POSS(J,'02',L)) + SF12(L) -G- BR12(L);

DEMAND3(L)$(8R3(L)).. * demand for 03s
SUM((I,J)$(ORD(J) LT 9), X(I,J, '03' ,L)$POSS(J, '03' ,L))
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+ SUM((I), .5*X(I, '8' ,'03' ,L)$POSS('8' ,'03' ,L)
+ .25*X(I,'9','03',L)$POSS('9','03',L)) + SF3(L) =G. BR3(L);

DEMAND4(L)$(BR4(L)).. * demand for 04s
SUM((I), .5*X(I, '8', '03',L)$POSS('8' ,'03' ,L)
+ .75*X(I, '9', '03',L)$POSS('9', '03',L))
+ SUM((I,J), X(I,J,'04',L)$POSS(J,'04',L)) + SF4(L) -G- BR4(L);

DEMAND5(L)S(BR5(L)).. *demand for 05s
SUM((I,J), X(I,J,'05',L)$POSS(J,'05',L)) + SF5(L) -G- BR5(L);

DEMAND6(L)$(BR6(L)).. * demand for 06s
SUM((I,J), X(I,J,'06',L)$POSS(J,'06',L)) + SF6(L) -G- BR6(L);

SUPPLY(I,L)$(ORD(L) LT 14).. * supply limitations for
* each source

X(I,'O','O1',L) =L= M(I,L);

NEXTO1(I,J+1,K,L+1)$((ORD(K) EQ 1) AND (POSS(J+1,K,L+1)))..
" converts Ols in year L
" to Ols in year L+1

X(I,J+1,K,L+1) =E- RNP(I,J,K,L) * X(I,J,K,L);

NEXTO2O6(I,J+1,K+1,L+1)$POSS(J+1,K+1,L+1).. * converts officers from
" year L to officers in
" year L+I

X(I,J+1,K+1,L+1) -E= RAP(I,J,K,L) * X(I,J,K,L) +
RNP(I,J,K+1,L) * X(I,J,K+1,L);
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MODEL MANPOWER /ALL/;

LOOP(NLOOP, *for each replication of the model
*perform the following

*random number generation using the normal approximation (truncated)
RAP(I,J,K,L)$(VARA(I,J,K) AND POSS(J,K,L)) -

MAX(MIN(NORMAL(RAPMEAN(I,J,K), SQRT(VARA(I,J,K))), 1.0), 0.0);
RNP(I,J,K,L)$(VARN(I,J,K) AND POSS(J,K,L))

MAX(MIN(NORMAL(RNPMEAN(I,J,K), SQRT(VARN(I,J,K))), 1.0), 0.0);

" random number generation using the convolution method
LOOP(I,

LOOP(J,
LOOP(CK,

LOOP(L$(POSS(J,K,L)),
Yi = 0;
Y2 = 0;
LOOP(NITER$
((ORD(NITER) LE ROUND(N(I,J,K)/10)) AND

(VARA(I,J,K) EQ 0)),
Y1 = Y1 + i$(UNIFORM(0,1) LE RAPMEAN(I,J,K));

RAP(I,J,K,L)$(YI) = YI/ROUND(N(I.,J,K)/10);
LOOP(NITER$((ORD(NITER) LE ROUND(N(I,J,K)/10))

AND (VARN(I,J,K) EQ 0) AND (RNPMEAN(I,J,K) NE 1.0)),
Y2 = Y2 + 1$(UNIFORM(0,1) LE RNPMEAN(I,J,K));

RNP(I,J,K,L)$(Y2) = Y2/ROUND(N(I,J,K)/10);

" handling of special cases
RNP(I,J,K,L)$((RNPMEAN(I,J,K) EQ 1.0) AND POSS(J,K,L))= 1.000;
RNP(I,'O','O1',L)$(ORD(L) LT 14) - 1.000;

" the solve command
SOLVE MANPOWER USING LP MINIMIZING TOTAL;

" collection of statistics
ALLCOST(NLOOP,L) - SUM((I)$(PRECOST(I,L) GT 0),

PRECST(I,L)*X.L(I,'0' ,'O1' ,L))
+ SUM((I,J,K)$(POSS(J,K,L) AND (ORD(J) GT 1)),

POSTCOST(I,J,K)*X.L(I,J,K,L))
+ SFCOST*(SF12.L(L) + SF3.L(L) + SF4.L(L) +

SF5.L(L) + SF6.L(L));
EXCESS12(NLOOP,L) =DEMAND12.L(L) - BR12(L);
EXCESS3(NLOOP,L) =DEMAND3.L(L) - 8R3(L);

* EXCESS4(NLOOP,L) =DEMAND4.L(L) - BR4(L);
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EXCESS5(NLOOP,L) = DEMAND5.L(L) - BR5(L);
EXCESS6(NLOOP,L) = DEMAND6.L(L) - BR6(L);
XSAVE12(L) =XSAVE12(L) + EXCESS12(NLOOP,L);
XSAVE3(L) =XSAVE3(L) + EXCESS3(NLOOP,L);
XSAVE4(L) =XSAVE4(L) + EXCESS4(NLOOP,L);
XSAVE5(L) =XSAVE5(L) + EXCESS5(NLOOP,L);
XSAVE6(L) =XSAVE6(L) + EXCESS6(NLOOP,L);
XUSNA(NLOOP,L)$(ORD(L) LE 6) -X.L('USNA',FO1,'O1',L);
XUSNAAVE(L)S(ORD(L) LE 6) - XUSNAAVE(L) + XUSNA(NLOOP,L);
XNRQTC(NLOOP,L)$(ORD(L) LE 6) - X.L('NROTC','O','Ol',L);
XNROTAVE(L)$(ORD(L) LE 6) - XNROTAVE(L) + XNROTC(NLOOP,L);
XNUPOC(NLOOP,L)$(ORD(L) LE 6) = X.L('NUPOC','O','O1',L);
XNUPOAVE(L)$(ORD(L) LE 6) - XNUPOAVE(L) + XNUPOC(NLOOP,L);

*calculation of averages
XSAVE12(L) =XSAVE12(L)/CARD(NLOOP);
XSAVE3(L) =XSAVE3(L)/CARD(NLOOP);
XSAVE4(L) =XSAVE4(L)/CARD(NLOOP);
XSAVE5(L) =XSAVE5(L)/CARD(NLOOP);
XSAVE6(L) =XSAVE6(L)/CARD(NLOOP);

XUSNAAVE(L)$(ORD(L) LE 6) = XUSNAAVE(L)/CARD(NLOOP);
XNROTAVE(L)$(ORD(L) LE 6) - XNROTAVE(L)/CARD(NLOOP);
XNUPOAVE(L)$(ORD(L) LE 6) = XNUPQAVE(L)/CARD(NLOOP);

*calculation of variances
XSVAR12(L) =SUM(NLOOP, SQR(EXCESS12(NLOOP,L) -

XSAVE12(L)))/(CARD(NLOOP)-1);
XSVAR3(L) =SUM(NLOOP, SQR(EXCESS3(NLOOP,L)-

XSAVE3(L)))/(CARD(NLOOP)-1);
XSVAR4(L) =SUM(NLOOP, SQR(EXCESS4(NLOOP,L) -

XSAVE4(L)) )/(CARO(NLOOP)-I);
XSVAR5(L) =SUM(NLOOP, SQR(EXCESS5(NLOOP,L) -

XSAVE5(L)))/(CARD(NLOOP)-l);
XSVAR6(L) =SUM(NLOOP, SQR(EXCESS6(NLOOP,L)

XSAVE6(L)))/(CARD(NLOOP)-1);
XUSNAVAR(L)$(ORD(L) LE 6) - SUM(NLOOP, SQR(XUSNA(NLOOP,L)

XUSNAAVE(L)))/(CARD(NLOOP)-1);
XNROTVAR(L)$(ORD(L) LE 6) = SUM(NLQOP, SQR(XNRQTC(NLOOP,L)

XNROTAVE(L)))/(CARD(NLOOP)-1);
XNUPOVAR(L)$(ORD(L) LE 6) = SUM(NLOOP, SQR(XNUPOC(NLOOP,L)-

XNUPQAVE(L)))/(CARD(NLOOP)-l);

*display results
DISPLAY ALLCOST, etc.;
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APPENDIX B: COST DETERMINATIONS

A. POSTCOMMISSIONING COSTS

Postcommissioning Costs for officers from the USNA and

NROTC were determined by converting the 1989 monthly base pay

to an annual figure. The annual figure was converted to the

1988 equivalent pay by dividing by 1.041 thus removing the

effects of the 4.1% pay raise for 1989. Since officers from

the NUPOC program receive credit for pay purposes for their

time spent in the program (e.g. an 02 with three years of

service who entered the program one year prior to

commissioning gets paid as an 02 with four years of service),

it was necessary to calculate their cost separately.

The NUPOC program is available to college students with

one, two, or three years of school remaining, or to college

graduates. The pay a candidate receives and the pay an

officer from the NUPOC program receives depends on when in his

education he joined the NUPOC program. Because no information

was available on when candidates are likely to enter the

program, an equal likelihood was assumed for two year, one

year, and graduate entries. (An oversight led to the

assignment of zero likelihood that candidates will enter with

three years of college remaining.) Thus the postcommissioning

cost of an officer from the NUPOC program was assumed to be
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the average of the annualized pays for three groups: officers

who entered the program two years prior to graduation,

officers who entered one year prior to graduation, and

officers who entered after graduation from college.

B. PRECONHISSIONING COSTS

Precommissioning costs for the USNA, OCS, and NROTC

programs were based on averages over the data available since

regression analysis showed statistically insignificant trends

(real dollar changes) with respect to time or provided poor

models of the data. For example, for USNA cost, a downward

trend is indicated by the regression plot, but one would fail

to reject (at level a = 0.05) the hypothesis that the slope

of the regression line is zero. Regression plots and

associated regression and analysis of variance (ANOVA) tables

for each analysis are shown on the pages following this

section. The cost of OCS was summed with other NUPOC program

costs to obtain a final NUPOC precommissioning cost.

Other NUPOC program costs included candidate pay and

administrative costs. Candidate pay, as noted in the previous

section, depends on when, in relation to graduation, a

candidate enters the program. An average value of the total

costs for each of the three cases considered (candidate enters

with two years or one year of college remaining or after

graduation) was used to represent the candidate pay portion

of NUPOC program cost. The administrative cost, which
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includes costs for travel for interviews, ship visits, and

paperwork, was estimated to be five thousand dollars per

commissionee.

5
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TABLE 6. REGRESSION AND ANOVA
TABLES FOR USNA COST VS TIME

Regression Analysis - Linear model: Y - a+bX

Dependent variable: USNA.COST Independent variable: USNA.YEAR
................................................................................

Standard T Prob.
Parameter Estimate Error Value Level
................................................................................

Intercept 348586 83077 4.19594 .00406
Slope -2214.35 988.545 -2.24001 .06008
................................................................................

Analysis of Variance
................................................................................

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Model 2.9420E0008 1 2.9420E0008 5.018E0000 .06008
Error 4.1043E0008 7 5.8633E0007
................................................................................

Total (Corr.) 7.0463E0008 8

Cc:relation Coefficient = -0.64616 R-squared - 41.75 percent
S=d. Error of Est. - 7657.24

TABLE 7. REGRESSION AND ANOVA
TABLES FOR NROTC COST VS TIME

Regrassion Analysis - Linear model: Y - a+bX
................................................................................

Dependent variable: NROTC.COST Independent variable: NROTC.YEAR

Standard T Prob.
Parameter Estimate Error Value Level
................................................................................

Intercept 21770.6 76842.7 0.283314 .79536
Slope 374.7 893.399 0.419409 .70314

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Model 1404000.9 1 1404000.9 0 .70314
Error 23944878 3 7981626
................................................................................

Total (Corr.) 25348879 4

Correlation Coefficient - 0.235345 R-squared - 5.54 percent
Stnd. Error of Est. - 2825.18
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TABLE 8. REGRESSION AND ANOVA
TABLES FOR OCS COST VS TIME

Regression Analysis - Linear model: Y - a+bX
................................................................................

Dependent variable: OCS.COST Independent variable: OCS.YEAR
---------------------..---------------------------------------------------------

Standard T Prob.
Parameter Estimate Error Value Level
................................................................................

Intercept -19327.6 52147.1 -0.370636 .73553
Slope 440.9 606.28 0.727222 .51970
................................................................................

Analysis of Variance

Source Sum of Squares Df Mean Square F-Ratio Prob. Level
Model 1943928.1 1 1943928.1 1 .51970
Error 11027261 3 3675754
................................................................................

Total (Corr.) 12971189 4

Correlation Coefficient - 0.387124 R-squared - 14.99 percent
Stnd. Error of Est. - 1917.23
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APPENDIX C: TABLE OF ACCESSIONS
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TABLE 9. ACCESSIONS BY SOURCE AND BY YEAR

YEAR
RUN NAME SOURCE

1989 1990 1991 1992 1993

USNA 22.46 28.34 35.44 31.09 10.96
BASE NROTC 28.84 36.50 42.05 44.52 37.17
(OC) NUPOC 14.76 25.02 26.02 19.22 10.22

USNA 24.17 35.76 46.95 51.63 23.45
ONLY 35 NROTC 28.48 28.09 28.93 27.10 22.88

NUPOC 14.92 28.97 29.97 26.42 14.54

USNA 22.46 27.81 34.69 29.34 10.91
* OC NROTC 28.69 36.50 40.93 44.52 36.83

NUPOC 15.02 27.84 26.62 23.04 10.97

USNA 23.13 28.96 36.63 32.11 11.41
2 * OC NROTC 28.06 37.93 42.43 44.50 38.68

NUPOC 13.42 21.17 24.84 16.34 8.73

USNA 46.53 54.85 58.85 48.64 25.05
POLICY 1 NROTC 34.57 36.90 42.08 48.32 39.68

NUPOC 29.52 44.46 40.81 38.77 21.08

USNA 29.11 42.07 37.95 30.55 15.88
POLICY 2 NROTC 31.21 36.90 38.83 43.07 48.07

NUPOC 13.88 28.24 31.94 23.07 13.94

USNA 17.02 14.57 26.45 26.86 14.75
POLICY I NROTC 22.75 32.07 36.19 40.59 42.37

NUPOC 7.35 15.55 23.55 12.87 9.96

USNA 21.29 25.84 32.90 29.22 12.94
POLICY 5 NROTC 25.77 35.83 39.49 42.00 37.46

NUPOC 11.81 20.74 23.77 14.78 9.39

USNA 19.66 28.93 29.76 25.36 12.68
RANDOM 1 NROTC 23.67 34.40 37.75 40.08 35.87

NUPOC 14.82 22.98 22.00 20.40 23.27

USNA 6.12 19.59 42.15 15.27 2.55
RANDOM 2 NROTC 32.56 40.25 46.19 52.96 54.60

NUPOC 9.92 19.11 28.40 27.43 22.84

USNA 2.10 59.51 61.16 32.06 0.00
FIXED NROTC 35.65 41.00 47.15 54.22 62.35

NUPOC 0.00 0.00 0.00 0.00 0.00
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