“-\ o Jf{ Tecknical }eport
v '

CMU/SEI-89-TR-12, .
ESD-89-TR-20

Carnege-Mellon University
Software Engineering Institute

smrmonrat.
.
e A —
bt S W
s —
L

h o
00
i' v
(o)}
§ |
' N A Model Solution for C3I
<|t Message Translation and Validation
l) Charles Plinta
Kenneth Lee
< ‘ Micehael Rissman
December 1989

¢ ¢
«1 TIC
¢ ¢ ‘ SQLECTE m

MAR 15 1990 |

5 50 03 14 018
¢ 90 0

Technical Report

CMU/SEI-89-TR-12
ESD-89-TR-20
December 1989

A Model Solution for C3I
Message Translation and Validation

D'Z)‘f'

D-ist

A-/

By ...

—

Charles Plinta
Kenneth Lee
Michael Rissman

Software Architectures Engineering Project

bt '

AviiieLity Lo

i Avart ameto

L . !
NSsaE])

|
|

Approved for public release.
Distribution unlimited.

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SE! Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information ezchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

N e
Karl H. Shingler
SEl Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1989 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors and other U.S. Government
agancy personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfieid, VA 22161

Use of any trademarks in this report is not intended in any way 1o infringe on the rights of the trademark holder.

VYo

Table of Contents

1. Introduction 1
1.1. Purpose 1
1.2. Intended Audience 1
1.3. Background 2
1.4. Reader’s Guide 2
1.5. Acknowledgments 4

2. The Recurring Problem 5
2.1. Characteristics of the C3I Domain 5
2.2. Messages in the C31 Domain 8
2.2.1. External Message Representation 8
2.2.2. Internal Message Representation 12
2.2.3. User Message Representation 14

2.3. The MTV Recurring Problem 15
3. TV Model Description 17
3.1. Functional Description 17
3.2. Interface Description 18
3.3. Style Characteristics 19
4. MTV Model Description 21
4.1. MTV Problem Analysis 21
4.2. External Representation TV Model 24
4.2.1. Functional Description 24
4.2.2. Interface Description 24

4.3. Universal Representation TV Model 27
4.3.1. Functional Description 27
4.3.2. Interface Description 27

4.4. User Representation TV Model 30
4.4.1. Functional Description 30
4.4.2. Interface Description 30

4.5. Typecaster Model 33

CMU/SEI-89-TR-12

4.6. The MTV Model Description 34
5. MTV Model Solution Overview 37
5.1. Fundamental Concepts 37
5.1.1. Templates 37
5.1.2. Validity Indicators 39
5.1.3. Terminology 40

5.2. List of Parts 41
5.3. Building Plan 43
5.4. Architectural View 44
5.5. Performance Characteristics 46
5.5.1. Discrete Typecaster Measurement 46
5.5.2. Composite Typecaster Measurement 46
5.5.3. EXR Translation and Validation Measurement 46

6. MTV Model Solution Application Description 49
6.1. Foundation Utilities Compilation 49
6.2. Message Analysis 51
6.2.1. Codifying the EXR Description 51
6.2.2. Interfacing the EXR and INR Descriptions 56
6.2.3. Specifying the INR Description 56

6.3. MTV Model Solution Instantiation 60
6.3.1. Discrete Typecaster Template Application 60
6.3.2. Composite Typecaster Template Application 66
6.3.3. External Representation TV Template Application 69
6.3.4. Tying Together the Two Model Solutions 70

7. MTV Model Solution Description 73
7.1. Foundation Type and Constant Definitions 74
7.1.1. Common Casting Types 74

7.2. Typecaster Model Solution 75
7.2.1. Foundation Utilities: Discrete Typecaster Generics 76
7.2.2. Building Blocks: Discrete Typecaster Templates 82
7.2.3. Building Blocks: Composite Typecaster Templates 89

7.3. EXR TV Model Solution 104
7.3.1. Foundation Utilities: Field_Utilities Package 104
7.3.2. Foundation Utilities: ICD_Utilities Generic Package 105
7.3.3. Building Block: Message_ICD Template 106

8. MTV Model Solution Adaptation Description 113
8.1. Replacing Whole Parts of the MTV Model Solution 113
8.2. Enhancement and Extension of the MTV Model Solution 114
8.2.1. EXR TV Model Solution 114
8.2.2. Typecaster Model Solution 115
8.2.2.1. Discrete Typecasters 115
8.2.2.2. Composite Typecasters 116

i ~ CMU/SEI-89-TR-12

8.3. Alternative Packaging Strategies
8.3.1. Packaging Strategy #1: Removing Types from Typecasters
8.3.2. Packaging Strategy #2: Separating Typecaster Functionality
8.3.3. Packaging Strategy #3: Conglomeration of Typecasters

8.4. Mod<l Adaptations Performed to Date

9. Open Issues
9.1. Real-Time Performance
9.2. Limitations
9.3. Testing Philosophy
9.3.1. Discrete Typecaster Testing
9.3.2. Composite Typecaster Testing
9.4. Building Upon the MTV Model Solution — User Scenarios
9.5. Automated Code Generation

References
Appendix A. Definitions

Appendix B. Detailed Description of the Templates
B.1. Format of the Template Descriptions
B.2. Template Naming Conventions
B.3. Discrete Typecaster Templates
B.3.1. Integer Typecaster Template
B.3.2. Integer_Bit Typecaster Template
B.3.3. Math_On_Integer Typecaster Template
B.3.4. Enumeration Typecaster Template
B.3.5. Enumeration_Bit Typecaster Template
B.3.6. Math_On_Enumeration Typecaster Template
B.3.7. String_Map Typecaster Template
B.4. Composite Typecaster Templates
B.4.1. Array Typecaster Template
B.4.2. Private_Array Typecaster Template
B.4.3. Record Typecaster Template
B.4.4. Private_Record Typecaster Template
B.4.5. Wrapper Typecaster Template
B.5. External Representation TV Template
B.5.1. ICD_Message Template

Appendix C. MTV Model Solution Ada Code (bound separately)
C.1. Casting Common Types
C.2. Generic Discrete Typecasters
C.2.1. Integer_Typecaster
C.2.2. Integer_Bit_Typecaster
C.2.3. Math_On_Integer_Typecaster
C.2.4. Enumeration_Typecaster

118
118
121
124

125

127
127
128
129

129
129

130
130

131
133

137
137
139
140
141
143
145
148
151
154
157
160
161
163
166
169
172
175
175

177
178
185
185
201
215
229

CMU/SEI-89-TR-12

iii

C.2.5. Enumeration_Bit_Typecaster 241
C.2.6. Math_On_Enumeration_Typecaster 255
C.2.7. String_Map_Typecaster 269
C.3. Discrete Typecaster Templates 283
C.3.1. Integer Typecaster Template 283
C.3.2. Integer_Bit Typecaster Template 290
C.3.3. Math_On_Integer Typecaster Template 297
C.3.4. Enumeration Typecaster Template 304
C.3.5. Enumeration_Bit Typecaster Template 312
C.3.6. Math_On_Enumeration Typecaster Template 320
C.3.7. String_Map Typecaster Template 327
C.4. Composite Typecaster Templates 334
C.4.1. Record Typecaster Template 334
C.4.2. Private_Record Typecaster Template 352
C.4.3. Array Typecaster Template 374
C.4.4. Private_Array Typecaster Template 388
C.4.5. Wrapper Typecaster Template 406
C.5. Message ICD Template 427
C 6. ICD Utilities and Field Utilities 438
C.6.1. ICD_Utilities 438
C.6.2. Field_Utilities 456
Appendix D. FooBar Message Ada Code (bound separately) 479
D.1. FooBar Discrete Typecasters 480
D.1.1. Reporting Location_Typecaster 480
D.1.2. Direction_Typecaster 487
D.1.3. Hour_Typecaster 494
D.1.4. Minute_Typecaster 501
D.1.5. Julian_Day_Typecaster 508
D.1.6. Status_Typecaster 515
D.1.7. Reporting_Location_Bit_Typecaster - 522
D.1.8. Direction_Bit_Typecaster . 529
D.1.9. Hour_Bit_Typecaster 536
D.1.10. Minute_Bit_Typecaster 543
D.1.11. Julian_Day_Bit_Typecaster 550
D.1.12. Status_Bit_Typecaster 557
D.2. FooBar Composite Typecasters 564
D.2.1. Julian_Date_Time_Record_Typecaster 564
D.2.2. FooBar_Message_Private_Record_Typecaster 577
D.2.3. Julian_Date_Time_Bit_Record_Typecaster 593
D.2.4. FooBar_Message_Bit_Private_Record_Typecaster 606
D.3. FooBar Message ICD Template 622
D.3.1. FooBar_Message_ICD 622
D.3.2. FooBar_Bit_Message_ICD 631
D.4. Miscellaneous Typecasters 640
D.4.1. Scaled_Integer_100_500_Typecaster 640
iv CMU/SEI-89-TR-12

D.4.2. Scaled_Integer_100_1000_Typecaster 647
D.4.3. Barrier_Segment_Array_Typecaster 654
D.4.4. Probability_Private_Array Typecaster 666
D.4.5. Probability_ Wrapper_Typecaster 682
CMU/SEI-89-TR-12 v

CMU/SEI-89-TR-12

List of Figures

Figure 2-1: C3I System Block Diagram 7
Figure 2-2: Example Char-Based EXR Description: FooBar Message 9
Figure 2-3: Example Char-Based EXR: FooBar Message 9
Figure 2-4: Example Bit-Based EXR Description: FooBar Message 11
Figure 2-5: Example Bit-Based EXR: FooBar Message 13
Figure 2-6: Example INR Description: FooBar Message 13
Figure 2-7: Example INR: FooBar Message 13
Figure 2-8: Example USR: FooBar Message 14
Figure 3-1: TV Model Black Box Diagram 18
Figure 3-2: Interface Provided by TV Model (Incomplete Ada PDL) 20
Figure 4-1: Example UNR: FooBar Message 22
Figure 4-2: MTV Model Block Diagram 23
Figure 4-3: EXR TV Model Black Box Diagram 24
Figure 4-4: EXR TV Model Interface (Incomplete Ada PDL) 26
Figure 4-5: UNR TV Model Black Box Diagram 27
Figure 4-6: UNR TV Model Interface (Incomplete Ada PDL) 29
Figure 4-7: USR TV Model Black Box Diagram 30
Figure 4-8: USR TV Model Interface (Incomplete Ada PDL) 32
Figure 4-9: Typecaster Model Black Box Diagram 34
Figure 4-10: Typecaster Model Interface Description (Incomplete Ada 35

PDL)
Figure 5-1: Template Example 38
Figure 5-2: Instantiation of Template Example 39
Figure 5-3: Valid FooBar Message 40
Figure 5-4: MTV Model Solution Contents 42
Figure 5-5: MTV Model Solution Architecture 45
Figure 5-8: Discrete Typecaster Performance Summary 47
Figure 5-7: Composite Typecaster Performance Summary 18
Figure 5-8: EXR Translation and Validation Performance Summary 48
Figure 6-1: MTV Model Solution Software Architecture After Foundation 50
Utilities Are Compiled

CMU/SEI-89-TR-12 vii

Figure 6-2: Variable Length Field Truth Table 52
Figure 6-3: Example Codification of Char-Based EXR Description: 53
FooBar Message i
Figure 6-4: Example Codification of Bit-based EXR Description: 55
FooBar Message
Figure 6-5: Example of EXR and INR Descriptions Where Cutting Is 57
Necessary
Figure 6-6: Example Codification of EXR Description with Repetitive 58
Information and Specification of Cuts
Figure 6-7: Example of EXR and UNR Where Cutting Was Specified 59
Figure 6-8: Discrete Typecaster Template Selection 63
Figure 6-9: Discrete Typecaster Template Selection Examples 64
Figure 6-10: FooBar Message Typecaster Software Architecture After 65
Generation of Discrete Typecasters
Figure 6-11: FooBar Message Typecaster Software Architecture After 68
Generation of Composite Typecasters
Figure 6-12: FooBar Message EXR TV Software Architecture 70
Figure 6-13: FooBar Message MTV Software Architecture 71
Figure 6-14: Example Fragment of an MTV Executive 72
Figure 7-1: Discrete Typecaster Generics 76
Figure 7-2: Discrete Typecaster Generic Package Specification PDL 80
Figure 7-3: Discrete Typecaster Generic Package Body PDL 81
Figure 7-4: Discrete Typecaster Templates 82
Figure 7-5: Discrete Typecaster Template Package Specification PDL 86
Figure 7-6: Discrete Typecaster Template Test PDL (Exhaustive) 87
Figure 7-7: Discrete Typecaster Template Test PDL (Interactive) 88
Figure 7-8: Composite Typecaster Templates 89
Figure 7-9: Composite Typecaster Template Package Spec PDL - Part 1 96
Figure 7-10: Composite Typecaster Template Package Spec PDL - Part 2 97
Figure 7-11: Composite Typecaster Template Package Body PDL - Part 1 98
Figure 7-12: Composite Typecaster Template Package Body PDL - Part 2 99
Figure 7-13: Private Composite Specification PDL 100
Figure 7-14: Private Composite Body PDL 101
Figure 7-15: Composite Typecaster Template, Test PDL for Symbolic 102
Images
Figure 7-16: Composite Typecaster Template, Test PDL for Natural 103
Images
Figure 7-17: Message ICD Template Package Spec PDL 109
Figure 7-18: Message ICD Template Package Body PDL 110
Figure 7-19: Message ICD Template Test PDL 111
Figure 8-1: Typecaster Type Declarations Moved to Individual Packages 119
Figure 8-2: Typecaster Type Declarations Moved to a Single Package 120
viii CMU/SEI-89-TR-12

Gk G N B &N A E A B aE A GE aE I W Ay N S

Figure 8-3: Splitting Typecaster Functionality and Type Declarations 122
Moved to Individual Packages
Figure 8-4: Splitting Typecaster Functionality and Type Declarations 123
Moved to a Single Package
CMU/SEI-89-TR-12 ix

A Model Solution for C3I
Message Translation and Validation

Abstract:

This document describes an artifact, the Message Translation and Validation
(MTV) model solution. The MTV model solution is a general solution, written in
Ada, that can be used in a system required to convert between different message
representations. These message representations can be character-based, bit-
based, and internal (i.e., Ada values).

This document provides designers with enough information to determine whether
this solution is applicable to their particular problem. It gives detailed designers
the information needed to specify solutions to their particular problem using the
MTV model solution. Finally, it describes the MTV model solution in enough detail
to enable a maintainer or adapter to understand the solution.

1. Introduction

1.1. Purpose

The purpose of this document is to describe an artifact, the Message Translation and
Validation (MTV) model solution. The MTV model solution is a general solution, written in
Ada, that can be used in a system when the system must convert between different
representations of a message. These message representations can be character-based,
bit-based, and internal (i.e., Ada values). This document enables designers to determine
whether this solution is applicable to their particular problem and shows detailed designers
how to specify solutions to their particular problem using the MTV model solution. Finally,
it describes the MTV model solution in enough detail to enable a maintainer or adapter to
understand the solution. ;

1.2. Intended Audience

This document was written specifically for developers of software systems in the Command,
Control, Communications, and Intelligence (CEI) domain where there is a need to translate
and validate incoming and outgoing messages. Enough CSI context information is provided
so that developers in other domains, where a need to translate and validate messages also

exists, can understand and use the MTV model solution. !

The authors assume that the reader has some knowledge of the Ada programming
language [Ada 83] because the MTV model solution is implemented using Ada. The early
chapters of the document support designers and therefore require less Ada knowledge than
the later chapters that are targeted for the detailed designers, implementors, maintainers,
and model adapters.

CMU/SEI-89-TR-12

1.3. Background

Work being produced by Software Architectures Engineering (SAE) Project has been
on-going at the Software Engineering Institute (SEI) since 1986 [Leel 88, VanScoy 87, Lee2
89, DIppolito2 89, Lee3 88, Plinta 89, D’Ippolitol 89]. The primary goal of the project is to
encourage the creation and use of canonical design solutions for typical recurring problems in
an application domain. The MTV model solution is one such canonical design solution to the
message translation and validation problem recurring in the C3I domain.

SAE’s involvement in the C3I domain is primarily with the Granite Sentry Program [Goyden
89, GSSDP 89]. The Granite Sentry Program is a phased hardware and software
replacement of the systems in the Cheyenne Mountain Complex of the North American
Aerospace Defense Command (NORAD). The Air Force Electronic Systems Division (ESD) of
Wright Patterson Air Force Base is the contracting office, and Air Force Space Command of
Peterson Air Force Base is the development office. The MTV model solution is being
incorporated into the current phases of the Granite Sentry Program and several other C31
programs.

This document was initiated by the Domain-Specific Software Architectures (DSSA) Project
at the SEI.

1.4. Reader’s Guide

This document is broken into nine chapters and four appendices. Each chapter is targeted to
a different portion of the software systems development audience (i.e., designers, detailed
designers, implementors, maintainers, model adapters). If the audience is not specified, the
chapter or appendix is of general interest.

Chapter 1: Introduction
Defines the purpose of the document, the intended audience, and sets the
context for the work documented in this report.

Chapter 2: The Recurring Problem
Characterizes C3I systems from a message point of view and defines the
MTYV problem found in many C3I systems.

Chapter 3: TV Model Description
Describes the Translation and Validation (TV) model as a black box. It
describes what the TV model does and how to access its capabilities. This
is the model used to solve the message translation and validation
problem.

Chapter 4: MTV Model Description

Analyzes the MTV recurring problem with respect to the TV model.
Instances of the model are generated to solve the problem, and these
ingtances form the MTV model. This chapter is targeted for a designer
responsible for designing the system. The designer needs a pool of models
from which to choose solutions to populate the design space. These
solutions need to be documented such that the system designer can make
educated decisions when selecting particular modeis.

2 CMU/SEI-89-TR-12

Chapter 5: MTV Model Solution Overview
Provides an overview of the MTV model solution. This overview is needed
by the designer to understand, at a high level, the consequences of
choosing this MTV model solution. The overview is also provided for the
detailed designer, implementor, maintainer, and model adapter as an
introduction to the MTV model solution.

Chapter 6: MTV Model Solution Application Description
Describes how to apply the MTV model solution that is described in
Chapter 7 to the message translation and validation requirements of a
particular application. This chapter is targeted for the detailed designers
resporaible for specifying (and actually in this case implementing) all
software for translating and validating messages.

Chapter 7: MTV Model Solution Description

Describes the internals of the MTV model solution and exactly how the
model solution provides the capabilities described in Chapter 4, MTV
Model Description. This chapter is targeted for the maintainer and the
model adapter, that is, those responsible for understanding the
implementation of the system for either maintenance purposes or for the
purpose of adapting the model for use in a particular application for
which the current state of the model solution does not suffice. Adaptation
may be necessary because of efficiency problems (size and speed) or
because of the need for additional functionality.

Chapter 8: MTV Model Solution Adaptation Description
Describes how to adapt the MTV model solution described in Chapter 7.
This chapter is targeted for the model adapter.

Chapter 9: Open Issues
Describes issues that may need to be addressed by the designer and
model adapter.

Appendix A: Definitions
Contains a glossary of the terms and acronyms used throughout the
document. Terms defined in this appendix are bold and italicized the
first time they appear in the document.

Appendix B: Detailed Description of the Templates
A reference manual for MTV model solution application. It describes how
to apply all templates individually in detail. This appendix is targeted for
the detailed designer.

Appendix C: MTV Model Solution Ada Code

Contains the Ada code that comprises the MTV model solution. Appendix
C is self-contained.

Appendix D: FooBar Message Ada Code
Contains examples instances of the MTV model solution. The same
example is used throughout the document. Appendix D is self-contained.

CMU/SEI-89-TR-12 3

1.5. Acknowledgments

We thank Richard D’Ippolito for his help with the organization and layout of the information
in this document. He was instrumental in helping define how models should be documented
and in separating the concerns of the designer, implementor, and maintainer. !

We also thank Doug Resetar, a student from Grove City College who worked with us during
the summer. Doug helped develop and test portions of the Ada code and got the Ada code
into a publishable format. Doug also helped to write Section 7.3 and provided the timing
data found in Section 5.5.

We thank the reviewers for their time, effort, and constructive criticisms that kept the
authors on their toes and helped shape the final publication of this document. People from
the SEI include: Judy Bamberger, Tim Coddington, Richard D'Ippolito, Bob Holibaugh, Stan
Rifken, Jeff Stewart, Roger Van Scoy, and Rob Veltre. People related to the Granite Sentry
Program include Lt. Jordie Harrell of AFSPACECOM and Guy Cox of Martin Marietta.
Other reviewers from industry include Bill Schmidt of SofTech in association with the Rapier
Program and Chuck Williams of CONTEL Federal Systems Division. Finally, we thank
Major Mike Goyden for his willingness to consider and evaluate this model solution for
application on Granite Sentry Phase II.

4 CMU/SEI-89-TR-12

2. The Recurring Problem

This chapter briefly describes the C3I domain, the role of messages in it, and the recurring
message translation and validation problem found in it. This chapter sets the context for the
remainder of the document to discuss the MTV model solution.

2.1. Characteristics of the C31 Domain

A C31 system accepts messages (information) that describe a view of the world as seen by
other systems (sensors, electronic, human, etc.). The C3I system transforms these sensor
views into an internal view. The internal view is used to update the system’s view of the
world. It allows the users to examine a portion of the world view in a manner that is
understandable to them. The C®I system or user can also react to new information and send
information about a particular view of the world back out to other systems. It allows for
interactive entry of messages and correction of errant messages. It allows for the recovery of
journalled messages for analysis purposes, and for the generation of simulation scripts (i.e.,
messages) for training and system testing purposes.

Figure 2-1 is a high-level block diagram of a typical C3I system. The following paragraphs
describe the entities shown Figure 2-1. These entities are italicized in the text.

The Gateway sends/receives messages to/from all systems external to the C3I system. The
Gateway is an interface between the C°I system and all other systems. Messages
(information) are communicated between the systems. The messages enter and leave the C3I
system as external representations of the information whose formats are defined by the other
systems.

The Mission Processor maintains a view of the world based on the views (external
representations) provided by the other systems. This world view is kept in an internal
representation to allow processing of the information based upon the C3I systems mission
requirements. This view is available to other systems via external representations of the
information and to the user via user representations of the information.

CMU/SEI-89-TR-12 5

The User I/F (user interface) provides a window into the Mission Processor’s view of the
world. It presents the information about a user-selectable view in a manner that is
understandable to the user. The user can also add information to the Mission Processor’s
view of the world. The messages enter and leave the User I/F as user representations of the
information whose format is understandable to the user.

Finally, the Journal is a storage device used for "safe” storage of all representations of
messages for recovery, analysis, and testing purposes.

The different representations of a message are discussed in more detail in the next sections.

General system constraints that are normally placed on the described C3I system can be
summarized as follows:

o C3I systems tend to consist of distributed processors upon which the required
functionality must be allocated.

¢ C3 systems tend to have soft real-time processing requirements for processing a
message and getting the information to the user.!

o C31 systems also need to keep journal entries of messages off-line for recovery,
analysis, and simulation purposes.

Timing requirements tend to be on the order of seconds to process a message. The peak load of messages to be
processed per second varies.

6 CMU/SEI-89-TR-12

3
.C’l System

S
Mission
Y | U
Processor
S Ext t Internat User Use ‘>‘ S
n
T ateway R,p,::;:g:lmn Representation| Representation [§ 1/F E
E ‘ A
M S
Ext R
S Internal,
& User
Representations
R—
Journal
Figure 2-1: C®I System Block Diagram
CMU/SEI-89-TR-12

2.2. Messages in the C3I Domain

A message is defined as pieces of related information. Based on the characteristics of
gystems in the C3I domain, messages need to be expressed in three forms:

1. external representation
2. internal representation
3. user representation

Conversion between these forms of a message must be provided. These forms are described
in detail in the following sections.

2.2.1. External Message Representation

An external representation (EXR) of a message is a string.2This representation is received
from (or sent to) systems outside the C3I system being developed. The string is normally
cryptic for the purpose of facilitating fast communications. The string contains multiple
fields, each of which contains the related information in the message. The fields can be
separated by punctuation or be in a fixed position in the string. The fields in the string can
be interpreted as ASCII character strings or bit strings.

An external representation description (EXR description) is a textual description of the
external representation of a message. It defines the size and location of the fields and
punctuation. It also describes the information found in the message and how to interpret the
information. The EXR description is normally defined outside the scope of the C3I system
being developed and becomes part of the requirements levied upon the C3I system. An EXR
description exists for each message that the C3[system is required to process. Figure 2-2 is
an example of a textual EXR description. Note that all fields in this EXR are
character-based. This example will be used throughout the document.

Figure 2-3 is an example of a message described by the EXR description shown in Figure 2-2.

String values a field can contain are called symbolic images. Symbolic images encode
information of a given field. For example, the Direction field shown in Figure 2-2 has a set of
valid symbolic images associated with it: the ASCII characters "N”, "S", "E", and "W". The
meaning or value of the symbolic images is North, South, East, and West.

Other characteristics of fields include recurrence of fields in a message set and possible
varying length fields. Varying length fields result from the field being null (i.e., not present)
or a variable length symbolic image. These characteristics of a field are discussed in detail in
the context of the model solution in Chapter 6.

2A string is defined as a contiguous set of bytes that can be interpreted as ASCII characters or bit streams.

8 CMU/SEI-89-TR-12

FooBar Message Format
Field Field Size | Range of
Number _ Field Name {chars) Values Amplifying Data
1 Reporting Location 3 KJL Andrews AFB
CPP Peterson AFB
MMR Wright Patterson AFB
Field Separator 1 <cr> Carriage Return
2 Direction 1 N North
S South
E East
w West
3 Date/Time Group Julian Date & Time
3 001-366 Julian Day
2 00-23 Hours
2 00-59 Minutes
Field Separater 1 / Slash
4 Status 1 0 Operational
1 Non-Operational
End-of-Message 1 <cr> Carriage Return

Note: If the Status field indicates Non-Operational, then the Date/Time Group field must

have a value indicating January 1 at 12:00 am (i.e., "0010000").

Figure 2-2: Example Char-Based EXR Description: FooBar Message

"CPP<cr>E1831407/0<cx>"

Figure 2-3: Exampile Char-Based EXR: FooBar Message

CMU/SEI-89-TR-12

Messages also have associated with them the notion of validity. There are three concepts
involved with message validity:

- intra-field validity The symbolic image in a field is in the range of valid symbolic
images specified in the EXR description for that field. For example,
valid symbolic images for the Direction field show in the EXR
description in Figure 2-2 are the ASCII characters "N", "S", "E",
and "W".

inter-field validity The symbolic images of interdependent fields conform to constraints
that are specified in the EXR description. For example, the note
specified in the EXR description in Figure 2-2 states that if the
Status field is an ASCII character "1", then the Date/Time Group
field must be exactly the following ASCII characters, "0010000". If
not, the message is not valid.
inter-message validity
The message received is not a redundant message or a message
whose time tag is older than a previously received message.?
Figure 2-4 shows an example of an EXR description whose fields are bit-based. Notice that
there are two parts to the description. The first deals with the field information descriptions:
the number of bits a field occupies and the meaning of various bit patterns. The second part
deals with the organization of the fields in the message string (i.e., bit positions). For
example, bits 0-1 of word 1 are the most significant bits of the Julian Day, bits 0-5 of word 2
are the next set of significant bits of the Julian Day, and bit 5 of word 3 is the least
significant bit of the Julian Day. Figure 2-5 shows an example EXR of the bit-based EXR
description in Figure 2-4. The values are the same as in Figure 2-3.

3The model solution described in this document does not address the problem of inter-measage validity. The C°I
system must provide this functionality.

10 CMU/SEI-89-TR-12

&R N R G B A S =R R e

FooBar Bit-Based Message Format
Field Field Size | Range of
Number Field Name (bits) Values Amplifying Data
1 Reporting Location 2 1-3 1 - Andrews AFB
2 - Peterson AFB
3 - Wright Patterson AFB
2 Direction 2 0-3 0 - North
1 - South
2 - East
3 - West
3 Date/Time Group Julian Date & Time
9 001-366 Julian Day
5 00-23 Hours
6 00-59 Minutes
4 Status 1 0-1 0 - Operational
1 - Non-Operational

Note: If the Status field indicates Non-Operational, then the Date/Time Group field must
have a value indicating January 1 at 12:00 am.

Byte Bits
MSB LSB
7 6 5 4 3 2 1 0

e o o e O e e
1 i * * { } { 2 } { 3.day)

1
2 | = * { 3.day }

|
3 | * {3.day) { 3.hour }

I
4 | =* { 3.minute } {4}

* = Bits that have no meaning

Figure 2-4: Example Bit-Based EXR Description: FooBar Message

CMU/SEI-89-TR-12 11

2.2.2. Internal Message Representation

An internal representation (INR) of a message, for the purpose of this solution, is an Ada
typed value. This value is used internal to the C3I system being developed for processing
and analysis purposes. The value is based on the information contained in a message and is
a more natural representation of the information than the EXR. The value is of an Ada
composite type containing elements that group the information in the message. There is at
least one element for each field in the EXR. The types of the elements can be Ada discrete
types or Ada composite types.*

The purpose of the INR is to allow the information to be organized in a manner that is
usable, natural, and efficient to the implementor and not constrained by the format of the
message as specified by the EXR description. It also allows the information in the message
to be processed and analyzed by the C3I system for presentation to the user or to be sent to
other systems.

An internal representation description (INR description) is the set of Ada type
declarations needed to define an internal representation of a message. The Ada types are
defined by the detailed designer and are part of of the detailed design specification. Each
Ada type defines the type for one of the elements. An INR description must exist for each
message to be translated and validated.

Figure 2-6 is an example of an INR description corresponding to the EXR descriptions shown
in Figure 2-2 and Figure 2-4. This example is used throughout the document. Figure 2-7 is
an example the INR described by the INR description in Figure 2-6.

An assumption made by the model solution described in this document is that the INR is
always valid as defined by the Ada types. Once an INR of a message exists, the Ada runtime
(or application) will assure its validity at the intra-field level, and the application will assure
validity at the inter-field and inter-message level.

The descriptions of external message representations and internal message representations
begin to define the initial part of the problem, i.e., being able to convert between the EXRs
and the INRs of a message.

“Types of the elements can also be fized or floating point. The MTV model solution does not address these. See
Chapter 8 for more details on how the solution can be extended.

12 CMU/SEI-89-TR-12

bytel: 00101001
byte2: 00011011
byte3: 00101110
byted: 00001110

Figure 2-5: Example Bit-Based EXR: FooBar Message

-1
type Reporting Location_Type is (Andrews_AFB, Peterson_AFB, Wright_Patterson_AFB);

-2
type Direction_Type is (North, South, East, West);

-3

subtype Julian_Day_Type is Integer range 1 .. 366;
subtype Hour_Type is Integer range 0 .. 23;
subtype Minute_Type is Integer range 0 .. 59;

type Julian_Date_Time_Record_Type is record
Julian_Day : Julian_Day_Type;
Hour : Hour_Type;
Minute : Minute_Type;

end record;

-4
type Status_Type is (Operational, Non_Operational);

type Foobar_Message_Type is record

Reporting_Location : Reporting_Location_Type; -1
Reporting Direction: Direction_Type; -2
Reporting Time : Julian_Date_Time_Record_Type; -3
Reporting_Status : Status_Type; -4

end record ;

Figure 2-6: Example INR Description: FooBar Message

Foobar_Message : Foobar_Message Type :=(
Reporting_Location => Peterson_AFB,
Reporting_Direction=> East,

Reporting Time =>(

Julian_Day => 183,

Hour => 14,

Minute =>17),
Reporting_Status => Operational);

Figure 2-7: Example INR: FooBar Message

CMU/SEI-89-TR-12

2.2.3. User Message Representation

Finally, because information must be presented to the user of a C31 system, and information
must be obtained from the user, we also need a user representation (USR) of the
information. This representation is a user-readable, fixed-length character atring
representation of the information.

The purpose of the USR is to support the presentation of the information in a manner that is
natural to the user and is not constrained by the EXR. The USR supports the interactive
portions of the C31 system requirements. Figure 2-8 is an example of a USR of the message
described by the INR description shown in Figure 2-6.

" Peterson_AFB East 183 14 7 Operational"

Figure 2-8: Example USR: FooBar Message

The USR is derived from the INR. Because of this the USR is broken up into elements, one
for each element of the INR. We call these elements of the USR natural images because
they are more natural representations of the information than those found in the EXR. For
example, the Direction element shown in the INR description in Figure 2-6 has a set of valid
natural images associated with it, the ASCII character strings "North", "South”, " East”,
and " West". The meaning or value of the natural images is North, South, East, and West.

The natural images in the USR are images of the INRs shown in Figure 2-6. Although this
does not look extremely user readable, it is more so than the EXR, which relies on symbolic
images. How the USR in our model solution supports a user interface is described in more
detail in Chapter 7.

The description of the user message representation defines the final part of the problem, i.e.,
being able to convert between the USRs and the INRs of a message.

14 CMU/SEI-89-TR-12

2.3. The MTV Recurring Problem

The different representations of a message described in the previous sections are
representations that a C3I system receives or produces. All three representations are
necessary for the C3I system to function properly.

The recurring problem becomes evident when we realize that all messages that the
application must translate and validate must be representable in these forms.

We can therefore summarize the MTV recurring problem requirements. These are defined in
two parts. The first part contains the functional requirements levied upon a solution, and
the second part contains software engineering requirements placed upon the solution.

To meet the functional requirements imposed by C3I systems in general, a solution must:
1. Support these real-time activities:

a. Translation and validation of external message representations to
internal message representations.

b. Translation of internal message representations to external message
representations. Validation of internal message representations is the
responsibility of the C3I system.

c. Translation and validation of all message representations to support
writing to a journal.
2. Support these non-real-time activities:

a. Generation of external message repfesentat.ions to support simulation
scripts for training purposes.

b. Generation of all message representations to support system testing.

c. Translation and validation of all message representations to support
reading from a journal.

3. Support these interactive activities:

a. Translation and validation of external message representations to
internal message representations (and vice versa) to support manual
entry of information and presentation of invalid information to allow
correction of the invalid information received.

b. Translation and validation of user message representations to internal
message representations (and vice versa) to support manual entry of
information along with presentation of invalid information to allow
correction of the invalid information received. '

To meet the imposed software engineering and implementation requirements a solution
must:

1. Reuse design concepts and implementations (i.e., use a modeling approach).

2. Provide Ada code generation capabilities through the use of Ada generics and
Ada coding templates, and incorporate testing as part of the templates.

3. Use good software engineering practices (e.g., information hiding, abstraction,
separation of concerns).

CMU/SEI-89-TR-12 15

CMU/SEI-89-TR-12

16

SN G O N I A N N e

3. TV Model Description

This chapter describes the Translation and Validation (TV) model as a black box. It
describes what the model does (not how it does it) and how to access the capabilities provided
by the model.

This model is described because it is used to solve the message translation and validation
recurring problem described in Chapter 2. It can also be used to extend the solution or as a
building block to other solutions.

This information allows a designer to evaluate the model in the context of the functional
requirements for which a solution is being sought.

3.1. Functional Description

The TV model provides two abstractions of some information: a primary representation and a
secondary representation. The TV model provides the capability to convert between a
primary and a secondary representation. The conversion entails a real-time validation of the
conversion. The validation is real-time in the sense that if a problem is found, the conversion
process is stopped, and the caller is notified.

The primary representation is a representation of some information upon which the
conversion is based. Objects of a primary representation are assumed to always be valid
therefore no checking of this representation is needed. The secondary representation is
another representation of the same information provided in the primary representation.

The model also supports a diagnostic, non-real-time analysis of the secondary representation.
A diagnostic indicator is returned that supports error detection for secondary representations
of a message.

Figure 3-1 shows a black box diagram of the TV model. The next section describes the
interface shown in the black box in more detail.

CMU/SEI-89-TR-12 17

invalid Rep ’

Primary Rep ’

Secondary Rep
: Secondary Rep >

Validit! Indicator'

Primary Rep

Secondary Rep

Figure 8-1: TV Model Black Box Diagram

3.2. Interface Description

Figure 3-2 shows the interface provided by the TV model expressed as incomplete Ada PDL.5
The parts of the PDL that are | bold, italicized, and boxed | represent those parts of the

model that are adjustable based upon the nature of the primary and secondary
representations. The model exports a primary representation (Primary_Rep) and a
secondary representation (Secondary_Rep). The primary representation is the base
representation from which a mapping to the secondary representation is defined. This
mapping is defined in The_Map. The primary representation description
(Primary_Rep_Descr) describes the format of the primary representation and the secondary
representation description (Secondary_Rep_Descr) describes the format of the secondary
representation. :

The Image function provides the capability to convert from a primary representation to a
secondary representation. Conversely, the Value function provides the capability to convert
from a secondary representation to a primary representation. If either conversion fails, the
Invalid_Representation exception is raised. These operations provide real-time validation
and conversions.

8Ada PDL (Program Deeign Langusge) is provided to show that the TV model is more than a concept. The model
can be specified and implemented in Ada.

18 CMU/SEI-89-TR-12

o G 0 O N A) om O

The Check function provides the capability to check the secondary representation for validity,
based on the legal values specified by the primary representation. The Check function
returns a validity indicator that provides diagnostic support to indicate the invalid fields.
This operation supports non-real-time diagnostic analysis of secondary representations.

3.3. Style Characteristics

The Image and Value functions are complementary translation and validation operations,
and the Check function is a diagnostic analyzer. All functions are independent, separate,
autonomous, and designed to be re-entrant.

The designer has f.cedom in selecting the primary and secondary representations but must
tailor the model to allow translation and validation to occur. An important part of the
tailoring process is specifying a mapping between the two representations. The Value,
Image, and Check functions depend upon this mapping to provide their functionality.

A small set of simple concepts are provided by the model. Once these concepts are
understood, the functionality that the model provides and the means of accessing the
functionality are easily understood.

CMU/SEI-89-TR-12 19

package Secondary Rep TV is

-~ Primary Representation Description and Primary Representation type
Primary Rep_Descr | Note 1

type Primary Rep is |Note2

-- Secondary Representation Description and Secondary Representation type
Secondary Rep_Descr |Note 3

Secondary Rep Width : constant Integer := |Note3

type Secondary Rep is array (1..Secondary_Rep_Width) of Bytes;

-- Mapping between Primary Representation and Secondary Representations
The_Map | Note 4

-- Functions for converting between primary and secondary representations
function Image (Value In : Primary Rep) return Secondary Rep;
function Value (Image In : Secondary Rep) return Primary Rep;

-- Function for checking the validity of a secondary representation
type Validity Indicator is |Note§

function Check (Image In : Secondary Rep) return Validity Indicator;
-- Indicators of a valid or inconsistent secondary representation

Valid_Secondary Rep : constant Validity Indicator := |Note§

InValid_Secondary Rep : constant Validity Indicator := |Note5

Inconsistent_Secondary Rep : constant Validity Indicator := Note$

-- Real-time constraint raised by Value and Image functions
Invalid Representation : exception;

end Secondary Rep TV;

NOTES:

These notes describe the items boxed in the PDL. The items should be tailored by the model adapter to meet
the specific translation and validation requirements imposed by the two different representations.

Note 1: Primary_Rep_Descr describes the element(s) of the primary representation.

Note 2: Primary_Rep is an Ada type used to declare objects to hold primary representations. The
format of the objects is based upon the Primary_Rep_Descr.

Note 3: Secondary_Rep_Descr describes the position of the element(s) of the secondary

representation. Secondary_Rep_Width defines the length of the secondary representation
and must be consistent with the Secondary_Rep_Descr.

Note 4: The_Map defines the one-to-one mapping between primary representations and secondary
representations.
Note §: Validity_Indicator is a type that desacribes the validity indicators: Valid_Secondary_Rep,

InValid_Secondary_Rep, and Inconsistent_Secondary_Rep.

Figure 3-2: Interface Provided by TV Model (Incomplete Ada PDL)

20

CMU/SEI-89-TR-12

SN N R GE S A &N = EE e

4. MTV Model Description

This chapter analyzes the message translation and validation recurring problem (described
in Chapter 2) with the intent of applying the TV mode! (described in Chapter 3) to solve the
problem. The result is a description of the MTV model.

4.1. MTV Problem Analysis

Examination of the functional requirements of the MTV problem indicate that the following
translation and validation relationships must exist in the MTV model:

1. Conversion Dbetween external representations (EXR) and internal
representations (INR) of a message.

2. Conversion between internal representations (INR) and user representations
(USR) of a message.

As a goal, we did not want to tie the detailed designer’s specification of the INR description
(Ada type) directly to the EXR description that is part of the requirements levied upon the
C3I system. Based on further examination of formats of the predefined EXR descriptions and
definitions of INR descriptions proposed by detailed designers, we saw the need to introduce
another message representation, the universal representation (UNR).

A UNR is an intermediate representation of the information in a message. It is a
fixed-length string containing a symbolic image in a predefined place for each field in the
EXR with the punétuation removed. The symbolic images of character-based fields that are
of varying length, null, or optional are expanded to their maximum length and padded with
blanks. The symbolic images of bit-based fields are expanded to a length of multiples of one
byte (i.e., a bit-based field of four bits is expanded to one byte, and a bit-based field of 12 bits
is expanded to two bytes). Also, the symbolic images are cut (rearranged) to match the INR,
if necessary. Figure 4-1 is an example of a UNR of the FooBar message described in Chapter
2,

The introduction of the UNR stems from our desire to eliminate the dependency of the INR
description of a message from the format of the corresponding EXR description. Both
representations should contain the same information, but in their own format. The UNR

CMU/SEI-89-TR-12 21

contains the information as symbolic images as defined by the EXR, but the symbolic images
are in the order defined by the INR.

"CPPE18314070"

Figure 4.1: Example UNR: FooBar Message

Finally, the UNR description is derived from both the EXR description (as shown in Figure
2-2) and the INR description (as shown in Figure 2-6).

Therefore, the MTV model contains three instances of the TV model:

1. External Representation TV Model - Conversion between EXRs and UNRs
of a message.

2. Universal Representation TV Model - Conversion between UNRs and INRs
of a message.

3. User Representation TV Model - Conversion between USRs and INRs of a
message.

Each instance of the TV model is described as a black box, similar to the way the TV model
was described. The description first tells what the TV model instances do (but not how they
do it). Next, it describes how to access the capabilities provided by the TV model instances.
This is done by building upon the incomplete Ada PDL of the TV model.® The adjustable
parts of the TV model are further refined to handle the primary and secondary
representations of the three instances defined.” Those parts of the Ada PDL that still need
to be tailored to instantiate an implementation of the particular model are

bold, italicized, and boxed

The MTV model is formed by integrating the TV model instances. Figure 4-2 shows how the
primary and secondary representations supported by each TV model instance allow the
instances to be integrated to meet the MTV requirements described in Chapter 2.

Finally, conversion between EXRs and INRs; EXRs and USRs; and UNRs and USRs are not
directly supported because they are not part of the required functionality as described in
Chapter 2. Although, the conversions are supported indirectly as a multiple step process.

SAda PDL is provided to show that the TV model is more than a concept. The model can be specified and
implemented in Ada.

"Because the instances are customized, each begins to use predefined common Ada types whose definitions can be
found in the package Casting_Common_Types (CCT) in Appendix Section C.1.

22 CMU/SEI-89-TR-12

MTV Modsl

f
EXR EXR UNR UNR INR USR '
4+r—P TV [¢&—T¥» TV [¢«—F¥ TV [€¢—-
Meciell Mode! Model
.
v v

Figure 4-2: MTV Model Block Diagram

CMU/SEI-89-TR-12

4.2, External Representation TV Model

4.2.1. Functional Description

The EXR TV model provides the capability to convert between the EXR of a message (as
shown in Figure 2-3) and the UNR of a message (as shown in Figure 4-1). The conversion
entails a real-time syntactic check of the message based on the EXR description. For
example: if a field or punctuation is missing, or if a field is the wrong length, the conversion
process is stopped and the caller is notified. The model also supports a diagnostic,
non-real-time syntactic analysis of EXRs. A diagnostic indicator is returned that supports
error detection for EXRs of a message.

Figure 4-3 shows a black box diagram of the EXR TV model. The next section describes the
interface shown in the black box in more detail.

LConstraint_Error g,
Universal Rep 'S
. Exiernal Rep >

i Indi

External Rep

Universal Repk

External Rep

Figure 4-3: EXR TV Model Black Box Diagram

4.2.2. Interface Description

Figure 4-4 shows the interface provided by the EXR TV model expressed in incomplete Ada
PDL. The model is represented as an Ada package, External_Representation_TV. The
package exports the following abstractions.

The EXR_Descr, a codification of the textual description of the EXR of a message (as shown
in Figure 2-2), is supplied by the detailed designer for each message. Figure 6-3 shows an
example of how the textual EXR description of the Foobar message is codified for the model
solution described in this document. This is discussed in more detail in Chapter 6, MTV
Model Solution Application Description. EXRs are stored using the EXR type. UNRs are
stored using the UNR type.

24 CMU/SEI-89-TR-12

The Image function provides the capability to convert, in real-time, from a UNR of a message
to an EXR of a message. Conversely, the Value function provides the capability to convert, in
real-time, from an EXR of a message to a UNR of a message. If either conversion fails, the
Constraint_Error exception is raised.

Finally, the Check function provides the capability to check an EXR of a message for
syntactic correctness based on the EXR description defined in EXR_Descr. In the case of an
invalid EXR, the Check function returns a validity indicator that points to the invalid field.

By definition, the EXR of a message contains fields that are an aggregation of the
information in the message. These fields are accessed by obtaining positional information
with respect to a particular field from the EXR_Descr. The array Cuts is also defined by the
detailed designer and describes how repetitive information in the EXR of a message should
be partitioned to provide a more natural view based on an INR description (as shown in
Figure 2-6). Also, by definition, the UNR of a message contains elements that are an
aggregation of the symbolic images of each of the fields contained in the EXR. These
elements are accessed via a combination of the positional information obtained from the
EXR_Descr and Cuts.

CMU/SEI-89-TR-12 25

with Casting Common_ Types; -- renamed as CCT
package External Representation TV is
== EXTERNAL REPRESENTATION
-- Maximum width of the EXR and string type to it.
EXR_Width : constant Integer := |Note Il

subtype EXR is CCT.Byte_Array (l1..EXR Width):;

-- Describes each field in the message as per the EXR textual description
type Field Names is (Note2));

EXR Descr : array (Field Names) of CCT.Field Description Type := |Note3|;

—= UNIVERSAL REPRESENTATION
-= Width of the UNR and string t to hold it.

UNR_Width : constant Integer := |Noted{|;

type UNR is CCT.Byte String (1..UNR_Width);

-- Describes any reorganization of repetitive information
Cuts : array (Number_Of_Cuts,2) of Field Names := |Note5 |;

-= CONVERSION AND VALIDATION FUNCTIONS
~=- Functions for converting between EXRs and UNRs
function Image (Value_In : in UNR) return EXR;
function Value (Image_ In : in BEXR) return UNR;

-= Function for checking the valxd:.ty of a EXR

procedure Check (Image In in EXR.
Validity Indicator : out Boolean,
Bad Position : out Integer);

-~ Real-time constraint raised by Image and Value functions
Coastraint_ Erzor : exception;
end External Representation TV;

NOTES:
These notes describe the items boxed in the PDL. The items must be tailored by the detailed designer for each
instance of the EXR TV model. There will be one instance for each message.

Note 1: EXR_Width defines the maximum width of the EXR of a particular message.

Note 2: Field_Names is an enumerated type whose literals name the fields as described in the
textual EXR description.

Note 3: EXR_Descr is an array indexed by Field Naomes. Each element of the array describes an

individual field as per the textual EXR deacription. Each element also contains
information regarding the positions of each elemental symbolic image in the UNR.

Note 4. UNR_Width defines the width of the UNR of a particular message.
Note 5: Cuts defines the repetitive fields that are to be reordered. Each cut is defined as a starting
field and stopping field.

Figure 4-4: EXR TV Model Interface (Incomplete Ada PDL)

26 CMU/SEI-89-TR-12

4.3. Universal Representation TV Model

4.3.1. Functional Description

The UNR TV model provides the capability to convert between the UNR of a message (as
shown in Figure 4-1) and the INR of a message (as shown in Figure 2-7). The conversion
entails a real-time validation of the conversion that includes syntactic analysis of the range
of values possible for the elements and checking of any inter-element dependencies. If a
problem is found, the conversion process is stopped, and the caller is notified. The model also
supports a diagnostic, non-real-time syntactic analysis of UNRs. A diagnostic indicator is
returned that supports error detection for UNRs of &« message.

Figure 4-5 shows a black box diagram of the UNR TV model. The next section describes the
interface shown in the black box in more detail.

=4 Constraint Error
’ >

niversal R

Universal Reg'n

Internal Rep|

« | validity Indicatory,

Universal Rep|

Figure 4-5: UNR TV Model Black Box Diagram

4.3.2. Interface Description

Figure 4-6 shows the interface provided by the UNR TV model expressed in incomplete Ada
PDL. The model is represented as an Ada package, Universal_Representation_TV. The
package exports the following abstractions.

The INR type is specified by the detailed designer and is the INR description for a message
(see the FooBar_Message_Type in Figure 2-6). INRs are stored using the INR type. UNRs
are stored using the UNR type.

CMU/SEI-89-TR-12 27

The Image function provides the capability to convert, in real-time, from an INR of a
message to a UNR of a message. Conversely, the Value function provides the capability to
convert, in real-time, from a UNR of a message to an INR of a message. If either conversira
fails, the Constraint_Error exception is raised.

The Check function provides the capability to check, in non-real-time, the UNR of a message
for syntactic correctness based on the legal values specified by the INR description and any
inter-element consistency checks based on the textual EXR description.

In the case of an invalid indication, the Check function returns indicators that point to the
invalid fields. Valid_UNR and Inconsistent_UNR are indicators that specify the validity of
the UNR of a message as analyzed by the Check function. If the Check function returns
something other than the above two indicators, it is assumed to be an Invalid_UNR.

By definition, the INR of a message contains elements that are an aggregation of the
information in the message. These elements are accessed by using named association on the
INR (an Ada composite type). Also, by definition, the UNR of a message contains elements
that are an aggregation of the symbolic images of each field contained in the EXR. These
elements are accessed via UNR_Descr. This array defines the positions in the UNR of each
eiement’s symbolic image. This abstraction also provides access to the results of the Check
function that allows an application to determine the validity of individual elements of a
UNR.

28 CMU/SEI-89-TR-12

with Casting Common Types; -=- renamed as CCT
package Universal Representation TV is

~= INTERNAL REPRESENTATION
type INR is |Notel|;

== UNIVERSAL REPRESENTATION
-= Width of the UNR and string t to hold it.

UNR_Width : constant Integer := |Note2|;
type UNR is CCT.Byte_Array (1..UNR_Width);

-- Elemental symbolic image positional information.
type Element Names is (| Note3 |

UNR_Descr is array (Element Names) of CCT.Position_Type := |Noted |

-- CONVERSION AND VALIDATION FUNCTIONS
-- Functions for converting between UNRs and INRs
function Image (Value_In : in INR) return UNR;
function Value(Image In : in UNR) return INR;

-= Function for checking the validity of a UNR

subtype Validity Indicator is UNR;

function Check (Image In : in UNR) zeturn Validity Indicator;
~=- Indicators of a valid, or inconsistent UNR

Valid UNR : constant Validity Indicator := |Nofe$ |

Inconsistent UNR : constant Validity Indicator := [Notel|;

-- Real-time constraint raised by Image and Value functions
Constraint_ Error : exception;

end Universal Representation TV;

NOTES:

These notes describe the items boxed in the PDL. The items must be tailored by the detailed designer for each
instance of the UNR TV model.

INR is an Ada type that defines the INR description for a particular message. It also is
used to define objects that hold INRs of the information in a particular message.

Note 2 UNR_Width defines the width of the UNR for a particular message.

Note 8 Element_Names is an enumerated type whose literals name the elements described in INR
and UNR_Descr.

Note 4 UNR_Descr is an array indexed by Element_Names. Each element of the array describes
the position of an elemental symbolic image in the UNR.

" Note & The validity indicators Valid_UNR and Inconsistent_UNR sre defined as the aggregation
of the validity indicators of the elemental symbolic images. Elemental symbolic image
validity is defined by the constants CCT.Valid_Symbolic_Image,
CCT.Invalid_Symbolic_Image, and CCT.Inconsistent_Symbolic_Image.

Figure 4-6: UNR TV Model Interface (Incomplete Ada PDL)
CMU/SEI-89-TR-12 29

4.4. User Representation TV Model

4.4.1. Functional Description

The USR TV model provides the capability to convert between the USR of a message (as
shown in Figure 2-8) and the INR of a message (as shown in Figure 2-7). The conversion
entails a real-time validation of the conversion that includes syntactic analysis of the range
of values possible for the elements and checking of any inter-element dependencies. If a
problem is found, the conversion process is stopped, and the caller is notified. The model also
supports a diagnostic, non-real-time syntactic analysis of USRs. A diagnostic indicator is
returned that supports error detection for USR8 of a message.

Figure 4-7 shows a black box diagram of the USR TV model. The next section describes the
interface shown in the black box in more detail.

Constraint Error
>

Internal Rep .
| User Rep >

lidi Indi

Figure 4-7: USR TV Model Black Box Diagram

4.4.2. Interface Description
Figure 4-8 shows the interface provided by the USR TV model expressed in incomplete Ada

PDL. The model is represented as an Ada package, User_Representation_TV. The package
exports the following abstractions.

The INR type is specified by the detailed designer and is the INR description for a message
(see the FooBar_Message_Type in Figure 2-6). INRs are stored using the INR type. USRs
are stored using the USR type.

30 CMU/SEI-89-TR-12

CE U T TE G AN Gm T am e

The Image function provides the capability to convert, in real-time, from an INR of a
message to a USR of a message. Conversely, the Value function provides the capability to
cqnvert, in real-time, from a USR of a message to an INR of a message. If either conversion
fails, the Constraint_Error exception is raised.

The Check function provides the capability to check, in non-real-time, the USR of a message
for syntactic correctness based on the legal values specified by the INR description and any
inter-element consistency checks based on the textual EXR description.

In the case of an invalid indication, the Check function returns indicators that point to the
invalid fields. Valid_USR and Inconsistent_USR are indicators that specify the validity of
the USR of a message as analyzed by the Check function. If the Check function returns
something other than the above two indicators, it is assumed to be an Invalid_USR.

By definition, the INR of a message contains elements that are an aggregation of the
information in the message. These elements are accessed by using named association on the
INR (an Ada composite type). Also, by definition, the USR of a message contains elements
that are an aggregation of the natural images of each element of the INR. These elements
are accessed via USR_Descr. This array defines the positions in the USR of each element’s
natural image. This abstraction also provides access to the results of the Check function that
allows an application to determine the validity of individual elements of a USR.

CMU/SEI-89-TR-12 31

with Casting Common_ Types; == renamed as CCT
package User_ Representation TV is

== INTERNAL REPRESENTATION
type INR is (Notel|;

== USER REPRESENTATION
-=- Width of the USR and string t to hold it.

USR_Width :
type USR is String (1..USR_Width);

-=- Elemental natural ima sitional information.
type Element Names is (I Note 3) ;

USR Descr is array (Element Names) of CCT.Position_Type := |Nofe 4 |;

-= CONVERSION AND VALIDATION FUNCTIONS
-=- Functions for converting between USRs and INRs
furction Image(Value_In : in INR) return USR;
function Value (Image In : in USR) retura INR;

-=- Function for checking the validity of a USR

subtype Validity Indicator is USR;

function Check(Image In : in USR) return Validity Indicator;
-= Indicators of a valid, or inconsistent USR

Valid USR :
Inconsistent USR : constant Validity Indicator := |Note5 |;

-- Real-time constraint raised by Image and Value functions
Constraint_ Error : exception;

end User_ Representation TV;

constant Integer := |Note2 |;

constant Validity Indicator := |Note§

~.

NOTES:

These notes describe the items boxed in the PDL. The items must be tailored by the detailed designer for each

instance of USR TV model.

Note 1 INR is an Ada type that defines the INR description for a particular message. It also is
used to define objects that hold INRs of the information in a particular message.

Note 2 USR_Width defines the width of the USR for a particular message.

Note 8 Element_Names is an enumerated type whose literals name the elements described in INR
and USR_Descr.

Note 4 USR_Descr is an array indexed by Element_Names. Each element of the array describes
the position of a elemental natural image in the USR.

Note & The validity indicators Valid_USR and Inconsistent_USR are defined as the aggregation of

the validity indicators of the elemental natural images. Elemental natural image validity
is defined by the constants CCT.Valid_Natural_Image, CCT.Invalid_Natural_Image, and
CCT.Inconsistent_Natural_Image.

Figure 4-8: USR TV Model Interface (Incomplete Ada PDL)

CMU/SEI-89-TR-12

4.5. Typecaster Model

Upon examination of the three instances of the TV model described in the previous sections
and the message represeniations they deal with, one can see how the pieces fit together to
form the MTV model. Figure 4-2 shows the three instances of the TV model, the message
representations each part supports, and the integration of the instances to form the MTV
model.

Based on our knowledge of the Ada language and results from prototyping, we chose to
combine the UNR TV model and the USR TV model. This combination is possible because
both models perform conversions on INRs. The rationale for this decision is summarized in
the following points:

o If the models were implemented separately, one of the following would have to be
done:

1. The existing Ada packages for both the UNR TV model and the USR TV
model would each have to encapsulate the INR (i.e., Ada type). This
duplication of Ada types would not allow us to fully utilize the strong type
checking provided by the Ada runtime when common types are used.
Reliance on common types and the Ada runtime insures consistent
representations of the information. The duplication of Ada types also
causes a configuration/version management problem.

2. Ada packages would have to be created whose sole purpose would be to
hold the INR (i.e., Ada type). The Ada packages for the UNR TV model
and the USR TV model would "with" the packages, each holding an Ada
type declaration. This solves the problem described in the previous point,
but the additional packages for holding an Ada type and the added
package layering are not necessary and not aesthetically pleasing.

o It seemed natural for the INR to be encapsulated and be the basis of a model.
This model would be capable of producing two images of the information
captured in the INR: the UNR to support the EXR of the information and the
USR to support a user interface.

A BN B &GN B BN = D e .

We call the model resulting from combining the UNR TV model and the USR TV model a
Typecaster. Figure 4-9 shows the results of the combination in the form of a black box
diagram. Figure 4-10 shows the Typecaster model interface expressed in incomplete Ada
PDL. Chapter 7 describes the Typecaster model in more detail.

l CMU/SEI-89-TR-12 33

Constraint Error
4’

] Internal Rep ’

Universal Rep

internal Rep

Valldltx Indlcator.

Internal Rep ’

Universal Rep

User Rep

| user Rep >
;Validitx lndlcator.

internal Rep

User Rep

Figure 4-9: Typecaster Model Black Box Diagram

4.6. The MTV Model Description

The MTV model is based on the EXR TV model and the Typecaster model. The EXR TV
model deals with the abstraction of an EXR of a message, while the Typecasting model deals
with the abstraction of an INR of a message. This separation allows for an independent
analysis of the two representations as long as the interface between the two (UNR) is agreed
upon.

The remaining chapters of this document describe the model solution, how to apply it given a
set of messages, and how to adapt it given that the model solution doesn’t meet a given set of
requirements.

34 CMU/SEI-89-TR-12

N aE e

CE I N =N o B e

with Casting Cocmmon Types; -- renamed as CCT
package Typecaster is
== INTERNAL REPRESENTATION

type INR is |Figure 4-6 Note 1 |;

type Llement_ Names is (Figure 4-6 Note 3) ;

~« UNIVERSAL REPRESENTATION
-=- Width of the UNR and string t to hold it.

UNR_Width : constant Integer := | Figure 4-6 Note 2 |;

subtype UNR is CCT.Byte Array (l1..UNR_Width):;
-- Elemental symbolic image positional information.

UNR_Descr is array (Element Names) of CCT.Position_Type := |Figure 4-6 Note 4 |;

-- Functions for converting between UNRs and INRs
function Image(Value_In : in INR) return UNR;
function Value(Image In : in UNR) return INR;

-- Function for checking the validity of a UNR

subtype UNR_Validity_ Indicator is UNR;

function Check (Image_In : in UNR) return UNR Validity Indicator;
-~ Indicators of a valid, or inconsistent UNR

Valid UNR : constant UNR_Validity Indicator := | Figure 4-6 Note5 |;

Inconsistent UNR : constant UNR_Validity Indicator := | Figure 4-6 Note 5 |;

-~ USER REPRESENTATION
== Width of the USR and string t to hold it.

USR_Width : constant Integer := |Figure 4.8 Note2 ;
subtype USR is String (1..USR _Width):;

== Elemental natural image positional information.
USR Descr is array (Element Names) of CCT.Position_Type := |Figure 4-8 Note 4 |;

-- Functions for converting between USRs and INRs
function Image(Value_In : in INR) return USR;
function Value (Image_In : in USR) return INR;

-=- Function for checking the validity of a USR

subtype USR_Validity Indicator is USR;

function Check (Image In : in USR) return USR_Validity Indicator;
-=- Indicators of a valid, or inconsistent USR

Valid USR : constant USR Validity Indicator := | Figure 4-8 Note 5 |;
Inconsistent_USR : constant USR Validity Indicator := |Figure 48 Note5 |;

-- Real-time constraint raised by Image and Value functions
Constraint Error : exception;
end Typecaster;

Figure 4-10: Typecaster Model Interface Description (Incomplete Ada PDL)

CMU/SEI-89-TR-12 35

ll.-ll-l.llllu-ll-llll.l.l-l-llg

CMU/SEI-89-TR-12

5. MTV Model Solution Overview

This chapter briefly presents the parts of the MTV model solution and how to apply them by
describing the categories of parts availaule and outlining the steps involved to use the parts
to generate code for translating and validating a message. The chapter also describes what
software architecture will result from the application of the MTV model solution and
provides some performance characteristics of the MTV model solution.

This chapter is a road map to the rest of the document.

5.1. Fundamental Concepts

Before proceedirg with an overview of the MTV model solution, a few concepts must be
defined.

5.1.1. Templates

The MTV model solution consists of a set of utilities and Ada coding templates. The Ada
coding templates are provided to guarantee identical instantiations of the MTV model
solution and enhance the probability for reuse. Figure 5-1 shows an example of a template.

A template is a file containing an incomplete (i.e., not fully defined, thus not compilable) Ada
package specification, package body, and test procedure. The package specification captures
the functional interface defined by a model, and the package body implements the
functionality defined by the same model. This is the model solution. The test procedure
tests the functionality provided by a model solution. All templates also contain a header that
identifies the template by name and version number, and lists the engi: .eering points to be
supplied by the user of the template. The instructions for instantiating individual templates
are found in Appendix B.

The incomplete Ada code in the file contains placeholders. Placeholders are embedded in
the Ada code where a general, replaceable piece of information is required to make the
template unique. The templates are instantiated by making a copy of the file and
performing editor substitutions on the placeholders. There are two types of placeholders:

CMU/SEI-89-TR-12 37

1. The first is of the form <Type> or <First>, i.e., a phrase enclosed in brackets.
The entire phrase (including the brackets) must be replaced. For example,
<Type>_Type becomes Hour_Type for all mstances of <Type>_Type in a file
when <Type> is replaced by "Hour".

2. The second form is the double question mark, ??. This form means that some
special action must be taken by the detailed designers, such as supplying a
function body, supplying test cases, or removing some lines from the template,
e.g., the instructions at the beginning of each template.

Replacement of the placeholders affects the package specification, the package body, and the
test procedure. Once the package specification and package body are compiled and linked,
the test procedure allows for canned and/or interactive testing of the instantiated template.
Figure 5-2 shows an instance of the example template shown in Figure 5-1.

—-'***itt********t*ttti*************tttt*t**********t*t*************
--| Template Used : Integer Template, Text-Based, Version 1.0

--1

--| Documentation : CHMU/SEI-89-TR-12

== "A Model Solution for C31 Message Translation and Validation"
--1

--| Engineering Points :

-=1 Package : <Type>_Typecaster

-=1 Integer type to be cast ¢ <Type>_Type

i | First in integer range : <First>

-] Last in integer range : <Last>

-=1 Is symbolic image signed : <Is-signed>

-1 Test procedure : <Type>_ Typecaster_Test

_-I*t****ti*t*t*********t****t*t****tt**t**t****************t****t**
with Integer Typecaster;
package <Type> Typecaster is

subtype <Type>_Type is integer range <First>..<Last>;
package <Type> Tc is new Integer_ Typecaster
(Type_To_Be Cast => <Type>_ Type,
Is_signed => <Is-signed>);
end <Type> Typecaster;
with <Type>_Typecaster:;
procedure <Type>_Typecaster_test is

??Enter test cases
Tast_Cases : array (1..?7?) of Test_Recoxd := (2?);

begin

end <Type>_Typecaster Test :

Figure 5-1: Template Example

38 CMU/SEI-88-TR-12

-_lQtt*ttt**ttQ*t****t*t******t******t**************t******t*t******
--| Template Used : Integer Template, Text-Based, Version 1.0

==

-~| Documentation : CMU/SEI-89-TR-12

- "A Model Solution for C3I Message Translation and Validation"
-=1

--| Engineering Points :

-] Package : Hour_Typecaster

-] Integer type to be cast : Hour_ Type

-1 First in integer range : 0

-1 Last in integer range : 23

- Is symbolic image signed : False

-] Test procedure : Hour_Typecaster_ Test

__'*****t****************t**

with Integer_ Typecaster;
package Hour Typecaster is

subtype Hour Type is integer range 0..23;
package Hour Tc is new Integer Typecaster
(Type_To_Be_ Cast => Hour Type,
Is_signed => False);
end Hour Typecaster;
with Hour Typecaster;
procedure Hour Typecaster test is
Test_Cases : array (1..2) of Test_Record := ("04", "23");
begin

end Hour Typecaster Test ;

Figure 5-2: Instantiation of Template Example

5.1.2. Validity Indicators

The Typecasters’ notion of validity indicators is that each individual primitive element, in
both UNR and USR form, has associated with it a character string indicating whether the
element is valid or invalid (i.e., "V " or "I "). The length of the validity indicator string is
equal to the length of the primitive UNR or USR. Indication of message validity is then
achieved by concatenating the elemental validity indicators. The validity indicators for
elements can then be accessed the same way the elements of the UNR and USR are accessed,
via the UNR description and USR description that define the positions of the elements.
Inter-element inconsistencies are indicated by the character string "? ".

Figure 5-3 shows valid, invalid, and inconsistent representations for UNRs and USRs of a
FooBar message. It also shows the validity indicator associated with each.

CMU/SEI-89-TR-12 39

Valid UNR:
Invalid UNR
Validity Indicator

Inconsistent UNR
Validity Indicator

Valid USR
Validity Indicator

Invalid USR
Validity Indicator

Inconsistent USR
Validity Indicator

Validity Indicator:

"CPPE18314070"
"v vw vvyv

"LEPE60014075"
"I VI vvVvI"

"CPPE18314071"
v v? "

" Peterson AFB East 183 14 7

v

v

v v v

Operational"”

"

" Elgin_AFB East 600 14 7SemiOperational"

v

I

v v I

" Peterson AFB East 183 14 7Non_Operational"

v

?

5.1.3. Terminology

Figure 5-3: Valid FooBar Message

Because of the transition from describing the design to describing the implementation, it is
important to note other terms used to describe the implementation that are synonymous
with terms used to describe the design.

¢ ICD Formatted Message is used interchangeably with EXR.
o Symbolic Image is used interchangeably with UNR.

e Natural Image is used interchangeably with USR.

¢ Ada Value is used interchangeably with INR.

CMU/SEI-89-TR-12

5.2. List of Parts

Figure 5-4 lists the contents of the MTV model solution. The figure lists the source files by
category, what each source file contains, where to find hardcopy listings of the source files in
this document, and finally, if the source file contains a code template, where to find
directions for using (instantiating) the template.® All components listed are necessary to
provide the functionality of the MTV model described in Chapter 4. The components are
grouped into six categories. These categories are listed and briefly described below and are
elaborated upon in Chapter 7.

1. Casting Common Types. An Ada package that contains global type
declarations and constants that are used by the components of the MTV model
solution. This package is analogous to the Ada package Standard. This
package must be compiled into the Ada library for use by other portions of the
MTV model solution. This part of the solution is described in Section 7.1.1, and
the code is presented in Appendix Section C.1.

2. Discrete Typecaster Generics. Ada generic packages that are the
foundation of the Typecaster model solution. These must be compiled into the
Ada library for use by other portions of the MTV model solution. This part of
the solution is described in Section 7.2.1, and the code is presented in Appendix
Section C.2.

3. Discrete Typecaster Templates. Ada coding templates that are the building
blocks of the Typecaster model solution. The templates provide the capability
to perform typecasting on Ada discrete types. Instances of these templates are
layered upon the discrete typecaster generics. This part of the solution is
described in Section 7.2.2, and the code template is presented in Appendix
Section C.3.

4. Composite Typecaster Templates. Ada coding templates that are the
building blocks of the Typecaster model solution. The templates provide the
capability to perform typecasting on Ada composite types. Instances of these
are layered upon instances of both discrete and other composite typecasters.
This part of the solution is described in Section 7.2.3, and the code template is
presented in Appendix Section C.4.

5. ICD Utilities.? Ada packages that are the foundation of the EXR TV model
solution. These must be compiled into the Ada library for use by other portions
of the MTV model solution. This part of the solution is described in Sections
7.3.2 and 7.3.1, and the code is presented in Appendix Sections C.6.1 and C.6.2.

6. External Representation TV Template. An Ada coding template that is
part of the EXR TV model solution. It provides the capability to convert
between EXRs and UNRs. Instances of these are layered upon the ICD
Utilities. This part of the solution is described in Section 7.3.3, and the code
template is presented in Appendix Section C.5.

*If the file does not contain a template (i.e., it containa utilities), the column will be specified as N/A (Not
Applicable).

°ICD stands for Interface Control Document. For the Granite Sentry Program, this document cor.tained the EXR
descriptions for the Granite Sentry message set. The acronym is used in the solution because the solution was
deveioped based mainly on information obtained from the Granite Sentry Program.

CMU/SEI-89-TR-12 41

Code Temp Use
Category & Appendix Appendix
FILE NAME Contents Section Section
Caating Common Types
CCT_ADA package spec C.1 N/A
Discrete Typecaster Generics
INTEGER_TYPECASTER_ADA generic package spec C21 N/A
INTEGER_TYPECASTERADA generic package body cz21 N/A
MATH_ON_INTEGER_TYPECASTER_.ADA generic package spec c23 N/A
MATH_ON_INTEGER_TYPECASTERADA generic package body c23 N/A
INTEGER_BIT_TYPECASTER_ADA generic package spec c22 N/A
INTEGER_BIT_TYPECASTER.ADA generic package body c22 N/A
ENUMERATION_TYPECASTER_ADA generic package spec C24 N/A
ENUMERATION_TYPECASTERADA generic package body C24 N/A
MATH_ON_ENUMERATION_TYPECASTER_.ADA generic package spec c26 N/A
MATH_ON_ENUMERATION_TYPECASTERADA generic package body C26 N/A
ENUMERATION_BIT_TYPECASTER_ADA generic package spec c25 N/A
ENUMERATION_BIT_TYPECASTERADA generic package body C25 N/A
STRING_MAP_TYPECASTER_ADA generic package spec C2.7 N/A
STRING_MAP_TYPECASTERADA generic package body c2.7 N/A
Discrete Typecaster Templates
INTEGER_TEMPLATE_ADA template package spec & test proc c3.1 B.3.1
MATH_ON_INTEGER_TEMPLATE_ADA tempilate package spec & test proc C.3.3 B33
INTEGER_BIT_TEMPLATE_ADA template package spec & test proc C.32 B.3.2
ENUMERATION_TEMPLATE_ADA template package spec & test proc C34 B.3.4
MATH_ON_ENUMERATION_TEMPLATE_ADA template package spec & test proc C36 B.3.6
ENUMERATION_BIT_TEMPLATE_ADA template package spec & test proc C3.5 B.3.5
STRING_MAP_TEMPLATE_ADA template package spec & test proc C.3.7 B.3.7
Composite Typecaster Templates
RECORD_TEMPLATE.ADA template package spec, body, & test proc C4.1 B4.3
PRIVATE_RECORD_TEMPLATE.ADA template package spec, body, & test proc C42 B4.4
ARRAY_TEMPLATEADA template package spec, body, & test proc C43 B4.1
PRIVATE_ARRAY_TEMPLATE.ADA template package spec, body, & test proc C44 B42
WRAPPER_TEMPLATEADA template package spec, body, & test proc C.4.5 B.4.5
ICD Utilities
FIELD_UTILITIES_ADA package spec c62 N/A
FIELD_UTILITIES.ADA package body c.62 N/A
ICD_UTILITIES_.ADA generic package spec Cé6.1 N/A
ICD_UTILITIES.ADA generic package body cs6.1 N/A
External Representation TV Template
MSG_ICD_TEMPLATE.ADA template package spec, body, & test proc Cs5 B.5.1
Figure 5-4: MTV Model Solution Contents
42 CMU/SEI-89-TR-12

5.3. Building Plan

The following are the steps involved in applying the MTV model solution to a set of messages

that need to be translated and validated. These steps are elaborated in Chapter 6.

1. Compile Foundation Utilities. The utilities that form the foundation of the
solution need to be compiled. These include the components in the following
categories: Casting Common Types, Discrete Typecaster Generics, and ICD Utilities.
Section 6.1 describes this step in more detail.

2. Analyze Message. The EXR description for a message needs to be analyzed to
determine how to:

a. Codify the EXR description using the Msg ICD template. The EXR
description needs to be coded in a grammar that describes the characteristics
of each field.

b. Define the INR description based on the information provided by the EXR
description. The Ada types for each field need to be defined.

Section 6.2 describes this step in more detail.

3. Instantiate MTV Model Solution. The building blocks (templates) of the MTV
model solution are used to create an instance of the model solution for a message.

a. Identify and Build the Discrete Typecasters. The discrete typecasters
needed to translate and validate - discrete elements of a message are
identified based on Step 2. Check to see if any instances of them already exist;
some may have been created for other messages. Generate the discrete
typecasters that do not exist using che appropriate discrete typecaster
templates. Run the generated test routines to check the discrete typecasters.
Section 6.3.1 describes how and when to apply the discrete typecaster
templates. Appendix Section B.3 provides the details for applying individual
discrete typecaster templates.

b. Identify and Build Composite Typecasters. The composite typecasters
needed to group discrete and composite elements of the message are identified
based on Step 2. Check to see if any of them already exist; some may have
been created for other messages. Generate the composite typecasters that do
not exist using the appropriate composite typecaster templates. Run the
generated test routines to check the composite typecasters. Section 6.3.2
describes how and when to apply the composite typecaster templates.
Appendix Section B.4 provides the details for applying individual composite
typecaster templates.

c. Build the External Representation TV. The EXR TV for the message is
generated using the MSG_ICD template. The information entered, the field
description array, and the cut array are critical for the proper conversion
between the UNR and the EXR. Run the generated test routine to check the
instance of the EXR TV model solution for the message. Section 6.3.3
describes how and when to apply the MSG_ICD template. Appendix Section
B.5 provides the details for applying the MSG_ICD template.

d. Tie Together the Two Model Solutions. The instances of the Typecaster
model solution and EXR TV model solution for the message must be tied
together. The communication interface between the two model solutions is the
UNR. Section 6.3.4 describes this step in more detaii.

Section 6.3 describes all these steps in more detail.

CMU/SEI-89-TR-12

43

5.4. Architectural View

Figure 5-5 shows the general software architecture that results when the MTV model
solution is applied. The software architecture is shown as Ada packages and the
dependencies among them.10

When the EXR TV model! solution is instantiated for a set of messages, the resulting
architectural components are instances of the Msg_ICD template, one per message, all of
which depend upon the ICD Utilities packages.

The Typecaster portion of the software architecture is based upon the structure of the INR
description (i.e., Ada type). When the Typecaster model solution is instantiated for a
particular message, the resulting architectural components are instances of the discrete
typecaster templates and composite typecaster templates, one for each type used to describe
the INR description of the message. The Typecaster architecture is therefore hierarchical in
nature. The discrete typecasters are dependent upon the discrete typecaster generics. The
composite typecasters are dependent upon both discrete typecaster instances and composite
typecaster instances.

The software architecture for an instance of the MTV model (specifically for the FooBar
message described in Chapter 2) is shown in Figure 6-13. Chapter 7 discusses the software
architecture in more detail.

1°Remember that the MTV model solution is comprised of the EXR TV model solution and the Typecaster model
solution.

44 CMU/SEI-89-TR-12

Typscaster
Modse! Solution

Message
Typecaster

/

i
Composite
Typecasters
—%
Discrete
Typecasters
[i
I
Generic
Discrete
Typecasters
LEGEND
(T Ada packages generated
from templates
Ada utility packages
Ada genaric packages
Ada package dependency
-——’ (itern at tail is dependent
upon item at head))

EXR TV

Mods] Solution

Message_ICD

'

Generic
ICD_Utilities

l

Field_Utilities

Figure 5-5: MTV Model Solution Architecture

CMU/SEI-89-TR-12

45

5.5. Performance Characteristics

Timing performance characteristics of the MTV model solution were measured using the
FooBar message example shown throughout this document.

Timing measurements were made on a MicroVAX II with 16 megabytes of memory running
Version 5.1 of the VAX/VMS operating system. The code was compiled under VAX Ada
Version 1.5. All of the code was optimized at both compilation and link time.

5.5.1. Discrete Typecaster Measurement

The discrete typecasters were measured in the following manner. All functions exported by
the discrete typecaster (value, image, and check, for both natural and symbolic images) were
addressed individually. Each was called and measured 10,000 times for each discrete value
in the range of valid discrete values to take care of the coarseness of the clock. A running
total was kept for each function exported by the discrete typecaster, and averages were
derived from the total times. It is important to note that the times measure the loop as well
as the function call. The amount added to the total should be negligible.

Performance measurements for discrete typecasters are shown in Figure 5-6. The discrete
typecaster templates (and thus the discrete typecaster generics) from which the discrete
typecaster instances were generated are specified in parenthesis.

5.5.2. Composite Typecaster Measurement

The composite typecasters were measured in the following manner. All functions exported
by the composite typecaster (value, image, and -heck, for both natural and symbolic images)
were addressed individually. Each was called and measured 10,000 times for test cases that
addressed the upper and lower bounds of the discretes they grouped. Again, the calls were
performed 10,000 times to take care of the coarseness of the clock. A running total was kept
for each function exported by the composite typecaster, and averages were derived from the
total times.

Performance measurements for composite typecasters are shown in Figure 5-7. The
composite typecaster templates from which the composite typecaster instances were
generated are implicit in the names of the typecasters.

5.5.3. EXR Translation and Validation Measurement
The EXR Translation and Validation was measured in a fashion similar to the composite
typecasters.

Performance measurements for EXR Translation and Validation are shown in Figure 5-8.

46 CMU/SEI-89-TR-12

|
—

S 0l G & N BN G =

Discrete Typecaster Performance Summary
(Time in milli-seconds)

INR <--> UNR INR <--> USR
Discrete Typecaster Image | Value | Check | Image | Value | Check

Hour_Typecaster 0.93 0.48 0.63 0.59 0.22 0.31
(Integer TCT)

Minute_Typecaster 0.93 0.47 0.63 0.59 0.23 0.31
(Integer TCT)

Julian_Day_Typecaster 0.95 0.51 0.66 0.60 0.26 0.33
(Integer TCT)

Direction_Typecaster 0.16 0.31 0.38 0.27 0.35 0.45
(Enumeration TCT)

Reporting_Location_Typecaster 0.19 0.35 0.44 0.31 0.51 0.62
(Enumeration TCT)

Status_Typecaster 0.28 0.16 0.33 0.29 0.47 0.57
(String Map TCT)

Scaled_Integer_100_500_Typecaster
(Math_On_Integer TCT)

1.22 0.74 0.87

0.58 0.25 0.32

Scaled_Integer_100_1000_Typecaster
(Math_On_Enumeration TCT)

0.32 0.46 0.72

0.60 0.29 0.38

Hour_Bit_Typecaster
(Integer_Bit TCT)

0.30 0.32 0.51

0.56 0.21 0.31

Minute_Bit_Typecaster
(Integer_Bit TCT)

0.30 0.32 0.51

0.57 0.21 0.32

Julian_Day_Bit_Typecaster
(Integer_Bit TCT)

031 *043| *0.60

0.56 0.26 0.33

Direction_Bit_Typecaster
(Enumeration_Bit TCT)

0.35 0.34 0.53

0.29 0.35 0.46

Reporting Location_Bit_Typecaster
{(Enumeration_Bit TCT)

0.32 0.34 0.52

0.31 0.51 0.61

Status_Bit_Typecaster
(Enumeration_Bit TCT)

0.33 0.35 0.51

0.31 0.48 0.58

Notes: * = Timing measurements were performed on code that was not optimized because

of compiler problems with optimized code.

TCT = Typecaster Template

Figure 5-6: Discrete Typecaster Performance Summary

CMU/SEI-89-TR-12

47

Composite Typecaster Performance Su_;mary

(Time in milli-seconds)

INR <-> UNR — INR<->USR

Composite Typecaster Image | Value | Check | Image | Value | Check
Julian_Date_Time_ 2.98 1.71 1.92 1.88 0.94 1.02
Record_Typecaster
FooBar_Message_ 4.17 3.18 3.44 3.03 2.91 3.01
Private_Record_Typecaster
Julian_Date_Time_Bit_ 1.20 1.25 1.49 1.76 0.93 1.02
Record_Typecaster
FooBar_Message_Bit_ 2.61 291 3.34 295 2.93 3.04
Private_Record_Typecaster
Probability_ 0.93 1.08 0.74 0.62 0.50 0.56
Wrapper_Typecaster
Probability_ 6.77 9.19 6.66 5.58 4.76 4.75
Private_Array_Typecaster

Figure 5-7: Composite Typecaster Performance Summary

EXR Translation and Validation Performarice Summary
(Time in milli-seconds)
EXR <--> UNR
ICD Typecaster Extract | Construct| Check
FooBar_Message_ICD 2.13 3.47 2.50
FooBar_Bit_Message_ICD 3.11 4.93 3.49

Figure 5-8: EXR Translation and Validation Performance Summary

CMU/SEI-89-TR-12

6. MTV Model Solution Application Description

This chapter describes how to apply the components of the MTV model solution, introduced
in Chapter 5, to generate Ada code that translates and validates messages, as described in
Chapter 4. This chapter is targeted for a detailed designer and/or implementor.

6.1. Foundation Utilities Compilation

Before the Ada software for translating and validating a specific message can be compiled,
tested, and used, the following sets of utilities must be compiled and placed in an Ada
library.

The file CCT_ADA, listed in Figure 5-4 under the category Casting Common Types,
contains the Ada package Casting_Common_Types (CCT). The package contains global type
declarations and constants that are used by the components of the MTV model solution. This
package is synonymous with the Ada package Standard. This is the first package that must
be compiled. Detailed designers will reference this package during the application of the
MTYV model solution. They may need type information and will need to find the names of
predefined constants to apply the solution.

The files listed in Figure 5-4 under the category Discrete Typecaster Generics contain
either an Ada generic package specification or an Ada generic package body. These packages
are the foundation of the Typecaster model solution and are used by other portions of the
MTV model solution. Detailed designers do not need to concern themselves with these
packages other than compiling them into the Ada library. The generic package specifications
and bodies must be compiled in the order the files are listed in Figure 5-4. Finally, the files
listed in Figure 5-4 under the category ICD Utilities contain Ada packages. These are the
foundation of the EXR TV model solution and are used by other portions of the MTV model
solution. Detailed designers do not need to concern themselves with these packages other
than compiling them into the Ada library. The package specifications and bodies must be
compiled in the order the files are listed in Figure 5-4.

Figure 6-1 shows the software architecture of the MTV model solution after the foundation
utilities have been compiled.

CMU/SEI-89-TR-12 49

N
Lo
ijaEE. iopsecedi] = 1o)) m
misevedhy = o) m
3]
{peey 18 wey vodn
L 1u6puadep 6 e} 18 o)) «fm———— %
Aouepuedep ebeyoed epy m M
T 3)
sebevoed speued epy m .W.
-
£S
soBexoed Anan epy <
25
ES
soejdwial woy) .
pojessueb sebexoed ep &L
. v J) -
anaoMNn g0
28
235
T T §
eBuyoud opeuen) (eBexoug ojreuep) -on._ﬂﬂﬂﬂdw_u .w °
_oh..._nu..o::.s::m 21" Hg 1e8e3u) = ﬂ
“{eBexoeq ojieuen) (eBanong opieuep) ﬁ W m
Jl1 uofisiswnu3l uo yrepy o1 180U U0 Yiep oBexoeg 51ieusD) =
~a Pl _ seiNIN~ Ao} -
ebenougd opeuen oBexoeg opeusp Bexoug opeuey 3
91 uopnesewnuy o1 dew Buing 91" 1e8eju) m
m

siojes00di) ajsi98|Q ojiuey SR @D

6.2. Message Analysis

The requirements for translating and validating messages are expressed in the form of
textual EXR descriptions!! (as shown in Figure 2-2 and Figure 2-4). To apply the MTV
model solution, detailed designers must analyze the EXR descriptions with the MTV model
solution in mind.

Because the MTV model solution separates the concept of an EXR and an INR, the
descriptions for these two must be codified separately, but an interface (UNR) between the
two must exist.)2 How to codify the EXR description is described first. Second, a description
of how to specify the transformation of the ordering from that of the EXR to that of the
desired INR is provided (i.e., through the UNR). These first two analysis steps are used to
instantiate the Msg ICD template discussed in Section 6.3.3. Finally, how to specify the INR
description (i.e., the Ada types) is described. This last analysis step is used to instantiate the
typecaster templates discussed in Sections 6.3.1 and 6.3.2.

6.2.1. Codifying the EXR Description

Detailed designers should first make sure that the EXR description can be codified given the
Fields data structure supplied by the Msg_ICD Template. The definition of the Fields data
structure is the main step in instantiating the Msg_ICD template as described in Section
6.3.3.

Fields is an array where each element contains the description of a field (both its EXR and
UNR). Two types of fields are possible: character-based and bit-based. The elements of the
array are variant records where the variant part differs based on whether the field is
character-based or bit-based.

The following information is required to describe a character-based field:

Base The discriminant for the variant record that describes a field. It
specifies whether the field is character-based or bit-based. Values
are of the type CCT.Base_Type.13

Can_Be_Last A boolean that indicates whether the field can be the last field in
the EXR. This must be set True for at least one character-based
field. The end of message punctuation marker and the length of the
message are used to determine wt.»n *he end of message has been
reached.

Position Describes the position of the symbolic image of this field in the
UNR. This information is derived by the software and does not need
to be specified by the detailed designers. Values are of the type
CCT.Position_Type.

11The message EXR descriptions were contained in the ICD (Interface Control Document) for the Granite Sentry
Program.

2Note that the form of each representation is different but the message information content captured by both
representations must be the same.

13CCT refers to the Ada package Casting_Common_Types. See Appendix Section C.1.

CMU/SEI-89-TR-12 51

Width

Element_Size

Null_Possible

Odd

Separator

Specifies whether the field is single, repetitive, or echoed. A single
field appears once in a message. A repetitive field repeats itself
consecutively in a message. An echoed field has the value of the
field repeated with no more information content. Values are of the
type CCT.Field_Types.

An integer that specifies the number of characters in the field. For
fields that are varying length, repetitive, or echoed, it specifies the
maximum number of characters in the field.

An integer that specifies the number of characters contained in
each element in the field. If the kind of field is single, then
Element_Size is equal to Width. If the kind of field is repetitive,
then Element_Size is equal to the Width divided by the number of
times the element is repeated. If the kind of field is echoed, then
Element_Size is equal to the Width divided by the number of times
the element is echoed.

A boolean that specifies whether the field can have a null value, i.e.,
no character physically present.

Specifies whether the field can have possible widths other than that
specified by Width and Null_Possible. If true, then a list of integers
specifying the alternate widths must be provided. Values are of the
type CCT.Odd_Description.

Specifies the punctuation found at the end of a field. Values are of
the type CCT.Little_String_Type. Also, constants are defined that
specify several common punctuation marks, including a constant for
specifying when no punctuation will be present in a EXR of a
message. These can be found in the package CCT.

Figure 6-3 shows how Fields should be defined based on the EXR description for the FooBar
message in Figure 2-2. Note that this information does not need to be entered yet. The
framework of this description has been captured in the Msg ICD template (shown in
Appendix Section C.5). Using the Msg_ICD template is discussed in Section 6.3.3.

Because of the different possibilities related to the specification of Null_Possible and
Odd_Possible, the truth table in Figure 6-2 enumerates the different possibilities and their
meaning. It is assumed that a fields has a maximum length n, specified by Width in the

description.
Null_Possible=> Odd=>(Possible=>) Meaning

True True, Variable length string (0, (i, iy, ... i,,,), or n)
Odd_Lengths=> (i}, i,, ... i,,,)

True False Variable length string (0 or r)

False True, Variable length string ((i,, iy, ... i,,,), or n)
Odd__Lengths=> (iI’ i2, e i"‘_)

False False Fixed length string (n)

Figure 6-2: Variable Length Field Truth Table
52 CMU/SEI-89-TR-12

type Field_Names is (Reporting_Location, Direction, Date_Time_Group, Status);

Fields : Ied_Util.Deacription_Array :=
(Reporting Location =>
(Can_Be_Last => False,
Position => (0,0), - Filled in at elaboration time
Base => Cct.Char_Field,
Kind => Cet.Single,
Width => 3,
Element_Size => 3,
Null_Possible => False,
0Odd => (Possible => False),
Separator => Cct.Cr
)’
Direction =>
(Can_Be_Last => False,
Position => (0,0), — Filled in at elaboration time
Base => Cct.Char_Field,
Kind => Cct.Single,
Width => 1,
Element_Size => 1,
Null_Possible => False,
0Odd => (Possible => False),
Separator => Cct.No_Punctuation
)
Date_Time_Group =>
(Can_Be_Last => Faise,
Position => (0,0), - Filled in at elaboration time
Base => Cct.Char_Field,
Kind => Cct.Single,
Width => 7,
Element_Size => 7,
Null_Possible => False,
Odd => (Possible => Falase),
Separator => Cct.Slash
)l
Status =>
(Can_Be_Last => True,
Position => (0,0), - Filled in ot elaboration time
Base => Cct.Char_Field,
Kind => Cct.Single,
Width=> 1,
Element_Size => 1,
Null_Poesible => Faise,
Odd => (Posaible => False),
Separator => Cct.No_Punctuation
)
)

EO_Text : constant Cct.Little_String_Type := Cct.CR;

Figure 6-3: Example Codification of Char-Based EXR Description:
FooBar Message

CMU/SEI-89-TR-12

The following information is required to describe a bit-based field:

Base The discriminant for the variant record that describes a field. It
specifies whether the field is character-based or bit-based. Values
are of the type CCT.Base_Type.l¢

Can_Be_Last A boolean that indicates whether the field can be the last field in
the EXR. This must be set True for at least one bit-based field. The
end of message punctuation marker and the length of the message
are used to determine when the end of message has been reached.

Position Describes the position of the symbeolic image of this field in the
UNR. This information is derived by the software and does not need
to be specified by the detailed designers. Values are of the type
CCT.Position_Type.

Number_Of_Bytes An integer specifying the number of bytes that the field spans.

Byte_Positions Specifies the byte number, and start and stop bits within that byte,
for each byte that the field spans. Byte numbers are in the range
1..n, and bits are numbered 0..7, zero being the least significant bit.
Values are of the type CCT.Byte_Position_Record.

Figure 6-4 shows how Ficids is defined based on the bit-based EXR description for the
FooBar message in Figure 2-4. Note that field three, Date_Time_Group, is described in three
parts and not one part as in the text-based example, to extract each piece of information
individually; each piece must be allocated to its own string.

Finally, EO_Text is of the type CCT.Little_String, and should specify the end-of-message
punctuation marker for both character-based and bit-based messages. Possible
end-of-message punctuation markers are defined in CCT, including one for specifying when
no end-of-message marker will be present.

Also, the solution does handle messages that contain both character-based and bit-based
fields, but care should be taken when describing the fields using the Fields array. When
describing the fields, note that bit-based fields are expected to be in specific byte and bit
locations and that character-based fields can be defined as varying length. This dynamic
characteristic of character-based field descriptions could potentially conflict with the static
bit-based descriptions.

4CCT refers to the Ada package Casting_Common_Types. See Appendix Section C.1.

54 CMU/SEI-89-TI}-12

type Field_Names is
(Reporting_Location, Direction, Date_Time_Group_Day,
Date_Time_Group_Hour, Date_Time_Group_Minute, Status);

Fields : Ied_Util. Description_Array :=
(Reporting_Location => (
Can_Be_Last => False,
Position => (0,0), - Filled in at elaboration time
Base => Cct.Bit_Field,
External_Format => (Number_Of_Bytes => 1, Byte_Positions => (
1 => (Byte_Number => 1, Bit_Position => (

Start => 4,
Stop => 5))))),
Direction => (
Can_Be_Last => False,
Position => (0,0), -~ Filled in at elaboration time

Base => Cct.Bit_Field,
External_Format => (Number_Of_Bytes => 1, Byte_Positions => (
1 => (Byte_Number => 1, Bit_Position => (
Start => 2,
Stop => 3)1)),
Date_Time_Group_Day => (
Can_Be_Last => False,
Position => (0,0), — Filled in at elaboration time
Base => Cct.Bit_Field,
External_Format => (Number_Of_Bytes => 3, Byte_Positions => (
1 => (Byte_Number => 1, Bit_Position => (
Start => 0,
Stop => 1)),
2 => (Byte_Number => 2, Bit_Position => (
Start => 0,
Stop => 5)),
3 => (Byte_Number => 3, Bit_Position => (
Start => 5,
Stop => 5))))),
Date_Time_Group_Hour => (
Can_Be_Last => False,
Position => (0,0), - Filled in at elaboration time
Base => Cct.Bit_Field,
External_Format => (Number_Of_Bytes => 1, Byte_Positions => (
1 => (Byte_Number => 3, Bit_Position => (
Start => 0,
Stop => 4))))),
Date_Time_Group_Minute => (
Can_Be_Last => False,
Position => (0,0), -- Filled in at elchoration time
Base => Cct.Bit_Field,
External_Format => (Number_Of_Bytes => 1, Byte_Poaitions => (
1 => (Byte_Number => 4, Bit_Position => (

Start => 1,
Stop => 6))))),
Status => (
Can_Be_Last => False,
Position => (0,0), - Filled in at elaboration time

Base => Cct.Bit_Field,
External_Format => (Number_Of_Bytes => 1, Byte_Positions => (
1 => (Byte_Number => 4. Bit_Position => (
Start => 0,
Stop => 0))))));

EO_Text : constant Cct.Little_String_Type := Cct.No_Punctuation;

Figure 6-4: Example Codification of Bit-based EXR Description:
FooBar Message

CMU/SEI-8-TR-12

6.2.2. Interfacing the EXR and INR Descriptions

If the ordering and grouping of the information in the EXR description is a natural and
acceptable one, then proceed to Section 6.2.3 and define the INR description (Ada type). If,
however, the ordering of information is not appropriate, cutting (i.e., reordering) may be
necessary.

For example, suppose the EXR description contained the field descriptions shown in Figure
6-5, that is, there are eight pieces of information grouped in each field. The goal, though,
was to represent the information with the INR description containing the Ada types, also
shown in Figure 6-5 — that is, as an array where each element of the array contains
information from fields four, five, and six.

Cuts is an array where each element contains the names of the first and last fields to cut. To
cut information is to reorder related repetitive information from the order specified in the
EXR description to a more natural order, as specified by the INR description.

The initial step is to specify the Fields. Figure 6-6 shows how a repetitive field is specified.
The next step is to specify the Cuts array, also shown in Figure 6-6. The information in the
Cuts array specifies the fields where cutting is to start and stop. The definition of the Cuts
data structure is a step in instantiating the Msg_ICD template as described in Section 6.3.3.

Finally, Figure 6-7 shows the EXR and the UNR of the information after it has been cut.
Note that the information in the UNR has been reordered to match that of the INR.

6.2.3. Specifying the INR Description

After it is determined that the textual EXR description can be codified, the INR description
must be specified, i.e., the Ada types necessary to represent the information in the message
must be specified. These Ada types are the basis for instantiating the typecaster templates
described in Sections 6.3.1 and 6.3.2.

Although the two representations are separate, they are still related with respect to the
information they represent. Therefore, to specify the INR description, one must start by
identifying the primitive elements of the fields (fields that can be represented with discrete
values) in the EXR. In the EXR description shown in Figure 2-2, fields one, two, and four are
primitive (i.e., they cannot be broken dowm further). Field three, Date_Time_Group,
however, is not primitive but has three elements that are in primitive form.

Once the primitive elements are identified, the Ada discrete types of these elements must be
specified based on the "meaning” (or amplifying data) specified for the element, not based on
the symbolic information expected in the EXR:

¢ Primitive fields whose meaning can be represented by integers should be defined
as a subtype of integer whose range is defined according to the "Range of Values”
specified in the EXR description (see Figure 2-2).

o Primitive fields whose meaning can be represented by enui - . -ations should be
defined as an enumeration whose range is defined according - the "Amplifying
Data” specified in the EXR description (see Figure 2-2).

56 CMU/SEI-89-TR-12

Partial Message Format
Field Field Size | Range of
Number Field Name (chars) Values Amplifying Data
4 Detection Confidence 8 asaaaaaa |TheDCin each 7.5deg
(DC) radar barrier segment
reported in sequence.
Values are:
H= ngh
M = Medium
L =Low
N =None
Field Separator 1 <cr> Carriage Return
5 Probability of Detect 16 nnnnnnnn | The PD in each 7.5 deg
(PD) nnnnnnnn | radar barrier segment
Values are 00..99
Field Separator 1 <cr> Carriage Return
6 Barrier Segment 16 anananan |The BSin each 7.5 deg
(BS) anananan |degree radar segment
Letter is start range:
A=100 F=600
B=200 G=700
C=300 H=800
D=400 I=900
E=500 J=1000
Number is barrier width
1..5 = 100..500
End of Message 1 <cr> Carriage Return

type Detection_Confidence_Type is (High, Medium, Low, None);
subtype Integer_0_99_Type is Integer range 0..99;
subtype Scaled_Integer_100_1000_Type is Integer range 100..1000;
subtype Scaled_Integer_100_500_Type is Integer range 100..500;

type Barrier_Segment_Record_Type is record
Detection_Confidence : Detection_Confidence_Type;

Probability_Of_Detection

: Integer_0_99_Type;

: Scaled_Integer_100_1000_Type;
: Scaled_Integer_100_500_Type;
end Barrier_Segment_Record_Type;

Barrier_Segments_Array_Type is array (1..8) of Barrier_Segment_Record_Type;

Figure 6-5: Example of EXR and INR Descriptions Where Cutting Is Necessary

CMU/SEI-89-TR-12

57

type Field_Names is
(... Detection_Confidence, Probability_Of_Detect, Barrier_Segment);

Fields : Icd_Util. Description_Array :=
(Detection_Confidence =>
(Can_Be_Last => False,
Position => (0,0), - Filled in at elaboration time
Base => Cct.Char_Field,
Kind => Cct.Rapetitive,
Width => 8,
Element_Size => 1,
Null_Possible => False,
Odd => (Possible => Faiss),
Separator => Cct.Cr
)v
Probability_Of_Detect =>
(Can_Be_Last => False,
Position => (0,0), — Filled in at elaboration time
Base => Cct.Char_Field,
Kind => Cct.Repetitive,
Width => 18,
Element_Size => 2,
Null_Posgible => False,
Odd => (Possible => False),
Separator => Cet.Cr
)
Barrier_Seyment =>
(Can_Be_Last x> True,
Position => (0,0), -- Filled in at elaboration time
Base => Cct.Char_Field,
Kind => Cct.Repetitive,
Width => 186,
Element_Size => 2,
Null_Possible => False,
0Odd => (Possible => False),
Separator => Cet.Cr

Cutas : Ied_Util.Cut_Array :=
(1 => (Start => Detection_Confidencs,
Stop => Barrier_Segment)
%

Figure 8-86: Example Codification of EXR Description with Repetitive Information

and Specification of Cuts

58

CMU/SEI-89-TR-12

External Representation

|FPialdd | | Field 5 | | Field 6 |
"aaaaaaaa nnnanannnnnnnnnn anananananananan'
" HMLNHMLN<cx>1122334455667788<cr>AlB2C3D4ES5F5G5H5<cx>"

Universal Representation

| Barrier Segments_ Array Type |
I I
Barrier_Segment_ Record Type }
! | |
"annanannanannanannanannanannanannanannan’
"H11A1M22B2L33B3N44D4HS55E5M66FS5L77G5N88HS "

Figure 68-7: Example of EXR and UNR Where Cutting Was Specified

While specifying the discrete Ada types, keep in mind that the character string images of the
integer ranges and enumeration literals selected to represent the information (i.e., natural
images) are the basis for the USR. Chapter 8 contains a discussion of this constraint.

After all Ada discrete types are defined for a message, the discrete types should be grouped
using composite types (arrays and records) as follows:

¢ Physically related elements (i.e., represented by the same Ada type) can be
grouped using an array type, for example, a list of 8 Barrier Segments, as shown
in Figure 6-5.

» Logically related elements can be grouped using a record type, for example, a
grouping of information pertaining to a Julian Day, as shown in Figure 2-6.

* Elements that are of varying length or can possibly be null are grouped using a
variant record type, where the variant specifies whether the field is present or
not.

» Finally, clements relaied by inter-element dependencies (as defined in the EXR
description) are grouped using the appropriate composite type (record or array)
and will be declared as a private type. The Ada private type is the mechanism
used to preserve the validity of the internal representation based upon
inter-element dependencies.

The ordering of the information in the INR description of the message must be preserved as
per the EXR description and any cutting that is to be performed. See Chapter 8 for a
discussion of this constraint.

After the discrete grouping is complete, group both composite types and discrete types using
composite types. The same rules defined above can be applied here. This discrete/composite
grouping continues until the composite for the message (usually a record) is defined. Figure
2-6 shows the INR description resulting from the analysis of the EXR description for the
FooBar message shown in Figure 2-2,

CMU/SEI-89-TR-12 59

6.3. MTV Model Solution Instantiation

The analysis of the message representations as defined in the previous section is the basis
for creating an instance of the MTV model solution. The results of the analysis drives the
detailed designers’ choice of available building blocks (templates) and defines how the
choices are to be instantiated.

As described in Chapter 5, there are two parts to the MTV model solution:

¢ Typecaster model solution
¢ EXR TV model solution

The templates that comprise the Typecaster model solution fall into two categories: discrete
typecasters and composite typecasters. These templates are described in Sections 6.3.1 and
6.3.2. The EXR TV model solution is captured in one template, the Msg_ICD template. This
i8 discussed in Section 6.3.3.

6.3.1. Discrete Typecaster Template Application

Once the INR description is defined (as described in Section 6.2.3), the first of two steps must
be taken to create an instance of the Typecaster model solution. The first step in creating an
instance of the Typecaster model solution involves generating the appropriate discrete
typecasters for the discrete types defined by the INR description for a message. The discrete
typecasters are generated by selecting from one of the seven discrete typecaster templates
provided by the Typecaster model solution. The names and descriptions of when to use them
are listed below. Also shown is an example of the conversions that result when the
functionality of the discrete typecaster template is used. It is of the form:

symbolic image <--> value <> natural image

60 CMU/SEI-898-TR-12

1. Integer Typecaster Template. Use when converting between symbolic
images that are character strings representing integers (zero padded and either
signed or unsigned) and INRs that are mteger values. Natural images, by
definition, are character stnngs based upon images of the INR.18
Example: "01" <--> 1 <-->" 1"

2. Math_On_Integer Typecaster Template. Use when converting between
symbolic images that are character strings representing integers (zero padded
and either signed or unsigned) and INRs that are scaled integer values.
Natu.lr‘al images, by definition, are character strings based upon images of the
INR.

Example: "1" <--> 100 <--> " 100"

3. Enumeration Typecaster Template. Use when converting between
symbolic images that are character strings that can be represented as
enumeration literals and INRs that are discrete values. Natural images, by

definition, are character strings based upon images of the INR."”
Example: "N" <--> North <--> "North"

4. Math_On_Enumeration Typecaster Template. Use when converting
between symbolic images that are character strings that can be represenbed as
enumeration literals and INRs that are scaled integer values. Natural images,
by definition, are character stnngs based upon images of the INR.'

Example: "A" <--> 100 <--> " 100"

5. String Map Typecaster Template. Use when converting between symbolic
images that are character strings and INRs that are discrete values where the
relationship between the two representations is not supported by other
character-based discrete typecaster templates. More specifically, use when:

¢ The symbolic images are Ada key words.
Example: "do” <-> DO_Air_Force_Base <--> "DO_Air_Force_Base"

e The symbolic images represent integers but the INR desired is an
enumeration type.
Example: "0" <--> Operational <--> " Operational”

» The symbolic images are case sensitive.

Example: "N" <--> North <--> " North"
"n" <--> No_Direction <--> "No_Direction”

Also note that the String Map typecaster can be used in the place of all
character-based discrete typecasters templates. Natural images, by definition,
are character strings based upon images of the INR."

6. Integer_Bit Typecaster Template. Use when converting between symbolic
images that are bit strings representing integers and INRs that are integer
values, Natural images, by definition, are character strings based upon images
of the INR."

Example: 00001001 <--> 9 <--> " 9"

7. Enumeration_Bit Typecaster Template. Use when converting between
symbolic images that are bit strings representing enumeration literals and
INRs that are enumeration values. Natura] images, by definition, are character
strings based upon images of the INR."

Example: 00000001 <--> South <--> "South”

%The natural image of discrete Ada types is defined using the ‘image attribute defined by the Ads language.

CMU/SEI-89-TR-12 61

The choice of a discrete typecaster template is dependent upon the answers to the following
two questions:

1. What is the desired INR description (Ada type)?

2. What is the nature of the symbolic image as a string (bit, alphanumeric
character, or numeric character)?
The table shown in Figure 6-8 describes which typecaster template to choose based on
answers to the two questions. The rows of the table describe the nature of the symbolic
image as a string. The columns describe the INR description (Ada type) selected to represent
this information.

For example, the symbolic images of the Directions field shown in Figure 2-2 are the
characters "N", "S", "E", and "W". The information in the Direction field is represented as
the Direction_Type enumeration type as shown in Figure 2-6, i.e.,

type Direction Type is (North, South, East, West);

Therefore, upon examining the discrete typecaster template selection table shown in Figure
6-8, one should choose either the Enumeration typecaster template or the String Map
typecaster template. Before making a choice, the detailed designers should examine the
details involved in applying each possible discrete typecaster template. More detailed
descriptions of when to use each discrete typecaster template are found in Appendix Section
B.3.

Once a selection is made, the detailed designers create an instance of the discrete typecaster
template chosen by making a copy of the template in a new (empty) file and making the
appropriate editor substitutions. The substitutions are based on placeholders located
throughout the template. The placeholders are listed in the header comments at the
beginning of the template. Some templates also use the "??" placeholder for special
instructions, for example, replacement rather than substitution, and code fragment selection.
The "??" placeholder is never listed in the header comments, but one should always search for
it. The "??" placeholders should be located and replaced with the appropriate information as
described by the instructions found with the "??", After the instructions are followed, the
instructions must be removed. If the instruction lines are not removed, the file will not
compile. This insures that all special instructions are examined. More detailed descriptions
of how to instantiate each discrete typecaster template are in Appendix Section B.3.

After the template is instantiated, the file that contains a typecaster package specification
and a test procedure can be compiled, and the test procedure can be linked and run. The test
procedure performs two types of testing. First, it performs exhaustive testing on the
typecaster operations based on the range of possible discrete values specified by the INR
description (discrete Ada type). Second, it performs interactive testing, allowing the detailed
designers to enter valid and invalid forms of the different representations. (i.e., symbolic
images, natural images, and values).

62 CMU/SEI-89-TR-12

Symbolic
Images Internal Representations
Integer Enumeration 1 Scaled Integer
Numeric
Char String Integer TCT String_ Map TCT Math_On_Integer TCT
AlphaNumeric
Char String Enumeration TCT Enumeration TCT Math_On_Enumeration TCT
Any
Char String String Map TCT String_Map TCT String_Map TCT
Bit String
Integer_Bit TCT Enumeration_Bit TCT Not Available®
Note:

TCT = Typecaster Template
* = This fuactionality was not necessary for Granite Sentry Phase II,
although it could be easily implemented.

Figure 6-8: Discrete Typecaster Template Selection

CMU/SEI-89-TR-12 63

Figure 6-9 shows examples of discrete typecaster template selection based on symbolic

images and Ada types.1®

) Discrete Typecaster

Symbolic Image Internal Representation Template Selection
"00"-"15" Integer range 0..15 Integer TCT
"00"-"15" (North..NorthNorthWest) String Map TCT
"00"-"15" Integer range 0..1500 Math_On_Integer TCT
"NNN"-"NNW" Integer range 0..15 Enumeration TCT
"NNN"-"NNW" (North..NorthNorthWest) Enumeration TCT
"NNN"-"NNW" Integer range 0..1500 Math_On_Enumeration TCT
00000000-00001111 Integer range 0..15 Integer_Bit TCT
00000000-00001111 (North..NorthNorthWest) Enumeration_Bit TCT
00000000-00001111 Integer range 0..1500 Not Available

Note: TCT = Typecaster Template

Figure 6-9: Discrete Typecaster Template Selection Examples

Figure 6-10 shows the typecaster software architecture of the FooBar message defined in
Figure 2-2 after the discrete typecasters have been generated. At the bottom of the
architecture, the foundation of the Typecaster model solution, are the discrete typecaster
generics. Above these are the instances of the discrete typecaster templates, each dependent
upon a discrete typecaster generic. The instances of the discrete typecaster templates also
show (in parenthesis) which discrete typecaster template was used to generate them.

Finally, before proceeding, detailed designers should study the FooBar message example
using Figure 2-2, Figure 2-6, and Figure 6-10 with the goal of understanding why specific
templates were chosen, and become familiar with the discrete template descriptions found in
Appendix Section B.3.

$Note that the String Map typecaster template could be chosen for all character-based symbolic image
possibilities.

64 CMU/SEI-89-TR-12

Disorsts Typscesisrs

Jullan_Day_TC
(Integer TC

Status_TC Direction_TC
(String Ma TCT)] HEnumeration TCT)

Reporting_Location_TC

Hour_TC
{Integer TCT)

y

Integer TCT)

Minute_TC (Enumeration TCT)

y v

Integer_TC String_Map_TC Enumeration_TC
Generic Package) Generic Package Genetio Package

Math_On_Integer_TC
(Genaric Package)

Math_on_Enumaration_TC
(Generic Package)

integer_Bit_TC Enumontlon_Bll_Tcl
(Generic Packagoe)

(Generic Package)

LEGEND

f

from templates

o

Ada package dependency
.__> (itemn at tail is dependent

upon item at head)

TC = Typecaster

TCT = Typecaster Template)

Ada packages generated

Ada utility packages

Ada generic packages

~

Dlecreote

Qenerle

Typocasters

Figure 6-10: FooBar Message Typecaster Software Architecture

After Generation of Discrete Typecasters

CMU/SEI-89-TR-12

6.3.2. Composite Typecaster Template Application

Once the necessary discrete typecasters for a message have been instantiated, detailed
designers can proceed to the second step in creating an instance of the Typecaster model
solution. This second step involves generating the appropriate typecasters for the composite
types defined by the INR description for a message and building these from the bottom of the
composite type hierarchy to the top, the top being the type for the message. The composite
typecasters are generated by selecting from one of the five composite typecaster templates
provided by the Typecaster model solution. The names and descriptions of when to use them
are listed below:

1. Record Typecaster Template. Use when the INR description is a record.

2. Private_Record Typecaster Template. Use when the INR description is a
record and inter-ciement dependencies exist (as defined in the textual EXR
description).

3. Array Typecaster Template. Use when the INR description is an array.

4. Private_Array Typecaster Template. Use when the INR descripticn is an
array and inter-element dependencies exist (as defined in the textual EXR
description).

5. Wrapper Typecaster Template. Use when the INR description is a variant
record where the discriminant indicates whether the information exists or not,
as defined by the EXR description, i.e., a field that can be null.
More detailed descriptions of when to use each composite typecaster template are found in
Appendix Section B.4.

Once a selection is made, the detailed designers create an instance of the composite
typecaster template chosen by making a copy of the template in a new (empty) file and
making the appropriate editor substitutions. The substitutions are based on placeholders
located throughout the template. The placeholders are listed in the header comments at the
beginning of the template. All templates also use the "??" placeholder for special
instructions, for example, replacement rather than substitution, and code fragment selection.
The "??" placeholder is never listed in the header comments, but one should always search for
it. The "?7?" placeholders should be located and replaced with the appropriate information as
is described by the instructions found with the "??". After the instructions are followed, the
instructions must be removed. If the instruction lines are not removed, the-file will not
compile. This insures that all special instructions are examined. More detailed descriptions
of how to instantiate each composite typecaster template are found in Appendix Section B.4.

After the template is instantiated, the file that contains a typecaster package specification,
body, and a test procedure can be compiled and the test procedure can be linked and run.
The test procedure performs canned testing based upon valid and invalid symbolic images
entered by the detailed designers during template instantiation.

Figure 6-11 shows the typecaster software architecture of the FooBar message defined in
Figure 2-2 after the composite typecasters have been generated. Notice that the instances of
the composite typecuster templates needed for the FooBar message are dependent upon both

66 CMU/SEI-89-TR-12

discrete and composite typecasters. The instances of the composite typecaster templatés also
show (in parenthesis) which composite typecaster template was used to generate them.

After all composite typecasters have been generated, the detailed designers have an instance
of the Typecaster model solution. This is one of two parts of the MTV model solution. The
other part, the EXR TV model solution is discussed in Section 6.3.3.

As a review, the natural image of the message is the USR. The symbolic image of the
message is the UNR. This representation is the interface between the EXR TV model
solution and the Typecaster model solution. At this point one can proceed with the
generation of an instance of the EXR TV model solution.

Finally, before proceeding, detailed designers should study the FooBar message example
using Figure 2-2, Figure 2-6, and Figure 6-11 with the goal of understanding why specific
templates were chosen, together with the composite template descriptions found in Appendix
Section B.4.

CMU/SEI-89-TR-12 67

Typecaster

Modael

Solutieon

ooBar_Message_Private_Record_TQ
Private Record TCT)

Jullan_Daste_TIime_Record_TC

(Record TCT)

Compoaltis
Typscestore

Direction_TC

Enumeration TCT

Julian_Day_TC Status_TC
({Integer TCT) {String M.lp TCY)
q
Hour_TC Minute_TC
(Integer TC integer TCT

Reporting_Location_TC
(Enumeration TCT)

islecret®
Typecasters

®
Integer_TC String_Map_TC Enumeration_TC E @
Generic Package Generic Package Generic Package g :
R
Math_On_integer_TC Math_on_Enumeration_7C @
(Genaric Package) (Generic Package) o g '
- 2
integer_BIt_TC [Enumontlon_all_Tc 2 E
(Gensric Package) (Generic Package 6
LEGEND
T Ada packages gonoratocn
from templates
Ada utility packages
Ada generic packages
Alda packaq; d:.pondency
— (lom at tai ndent
SJDOC\ item at hoa‘:)'
TC = Typecaster
_ TCT « Typecaster Template J
Figure 6-11: FooBar Message Typecaster Software Architecture
After Generation of Composite Typeca:r :'rs
68 CMU/SEI-89-TR-12

6.3.3. External Representation TV Template Application

After producing an instance of the Typecaster model solution for a message, an instance of
the EXR TV model solution for the same message can be created. The EXR TV model
solution is captured in one template, the Msg_ICD template. It provides the capability to
convert between the EXR and UNR of a message. The UNR is the interface between the
Typecaster model and the EXR TV model.

Instantiation of the Msg_ICD template requires the definition of the Fields and the Cuts
data structures. These are the results of message analysis and are described in Sections
6.2.1 and 6.2.2.

Detailed designers create an instance of the Msg_ICD template by making a copy of the
template in a new (empty) file and making the appropriate editor substitutions. The
substitutions are based on placeholders located throughout the template. The placeholders
are listed in the header comments at the beginning of the template. This template also uses
the "??" placeholder for special instructions, for example, replacement rather than
substitution, and code fragment selection. The "??" placeholder is never listed in the header
comments, but one should always search for it. The "??" placeholders should be located and
replaced with the appropriate information as is described by the instructions found with the
"??". After the instructions are followed, the instructions must be removed. If the
instruction lines are not removed, the file will not compile. This insures that all special
instructions are examined. More d:tailed descriptions of how to instantiate the Msg_ICD
template are found in Appendix Section B.5.

After the template is instantiated, the file that contains a Msg_ICD package specification,
body, and a test procedure can be compiled and the test procedure can be linked and run.
The test procedure performs canned testing based upon the valid and invaiid EXR entered by
detailed designers during template instantiation.

Figure 6-12 shows the EXR TV software architecture of the FooBar message defined in
Figure 2-2 after an instance of the Msg_ICD template has been generated.

The detailed designer does not need to create an instance of the Msg _ICD template if the
EXR and the UNR are the same, i.e., a fixed-length, character-based string with punctuation
removed, or a fixed-length, bit-based string with at most one field present in each byte of
information.

At this point instances of both model solutions that comprise the MTV model solution exists.
The UNR, or symbolic image, is the interface between the EXR TV model solution and the
Typecaster model solution. What remains is to tie the two solutions together.

Finally, before proceeding, it is recommended that the FooBar message example using Figure
2-2, Figure 6-3, and Figure 6-12 be studied with the goal of understanding how to use the
Msg_ICD template described in Appendix Section B.5 to codify an EXR description.

CMU/SEI-89-TR-12 69

BXR TV
Modael Solutleon

ooBar_Message_ICD
Msg ICD Template)

\ 4
ICD_Utilities
(Generic Package

v
Fleld_Utilities

(Package)

LEGEND

r Ada packages gemb?
from templates

Ada Wity packages

Ada genaeric packages

Ada package dependency

_’ (item at ail is dependent

upon iem at head)

TC = Typecaster

_TCT - Typecaster Tempiate)

Figure 6-12: FooBar Message EXR TV Software Architecture

6.3.4. Tying Together the Two Model Solutions

Figure 6-13 shows the software architecture resulting from applying the MTV model solution
to the the FooBar message. Notice that the instance of the EXR TV model solution is
separate from the instance of the Typecaster model solution.

Now that the two model solutions have been generated and tested for a particular message,
the two solutions need to be tied together. This part of the MTV solution must be coded

manually.l?

The detailed designers must generate an executive that makes the appropriate calis to the
two model solutions based on the message type and the direction that the information is
flowing (i.e., INR to EXR or vice versa). The interface between the two model solutions is the
UNR. The Ada code fragment in Figure 6-14 ghows a portion of an example executive.

Although & template for this 1a feasible, one is not supplied wath this solution.

70

CMU/SEI-89-TR-12

sJejesaedi

®31028(Q

sieissoadA)

sie)e398dA

sjeuey

®}0198|Q

eysodwoy

(eBexong oue
21 Mg uofiese

uen)
wnuy

eBexoed 9j.eueyn)
21 ug 1eBeu)

l?u«!.o-a ojleuen)

O4 Uopjeiewnu3z uo Ylew

~

(eBexnoeg 2p0uepn)
D4 JeBaiujT U0 Yien

\

obeyoed O)ieusr)
21 uojiwiewnusy

(121 uopesewnu3)
01 uojjes07 Bujuodey

eBeyoey opeusp
94 dew Buins

ebeyoeg opeuepn)
21 1eBoju) a

\t

.—.o.—.co:a;E::w
91 uopdesag

o1 smus

- {101 1ebeuy} 101 Jebejug
o1 enuIn J1 inoy
{121 den ac_:mm {101 iebejy

91 Aeg ueyinp

(101 piodey)

D) piooey ew)j ejeq usynr

(LO1 piodey eiealid

D17 P10d0Y 018A|1d eBussep 18g00

VeIIN|eE

1epowW

2038B960dAN

j eleidwe) soisedadAl = 191)
19sed0dhL = 9y
(peay 1e wey uvodn

1UBPUBdEP Si 18] 18 WAN) e

Kouapuadap ebexoed epy

sabeyoed oueusb epy

sebeyoed Aiynn epy

sajeidwe) woyy
peiesouab sabexord epy L

N—
N3O

(e0exoud)
SO LI{IN PLotd

a

(eBuxdoegd oueuen)
senINN"aol

[

(s1ejdwe) (O} bew
Aol eBessep segooy

vopnies (PO
AL ¥

Figure 6-13: FooBar Message MTV Software Architecture

71

CMU/SEI-89-TR-12

type Message_Idsis (..., Foobar, ...);

Id: Message_Ids;

A_Moessage : Cct.Byte_Array;

Ied : Cetled_Message_Type;
begin

Get_Next_External_Message(A_Message);

- identify the message (Id) and
— store it for translation and validation (Icd)
Message_[d(A_Message, Id, Icd);

case Idis

when Foobar =>

declare
External_Rep : FooBar_Message_Icd.External_Rep := Icd;
Universal_Rep : FooBar_Message_Record_Typecaster.Universal_Rep;
Internal_Rep : FooBar_Message_Record_Typecaster.Foobar_Type;
User_Rep : FooBar_Message_Record_Typecaster. User_Rep;

Universal_Rep := FooBar_Message_Icd.Extract(External_Rep);
Internal_Rep := FooBar_Message_Record_Typecaster.Value(Universal_Rep);

~ process the Internal_Rep
User_Rep := FooBar_Message_Record_Typecaster.Image(Internal_Rep);
end ;
end case ;
Figure 6-14: Example Fragment of an MTV Executive
72 CMU/SEI-89-TR-12

7. MTV Model Solution Description

This chapter describes the implementation of the MTV model solution and how the model
solution provides the capabilities described in Chapter 4. This chapter is targeted for the
maintainer and the model adapter, i.e., the people responsible for understanding the
implementation of the model for:

¢ Integration purposes, i.e., integrating instances of the model solution into an
application.

* Maintenance purposes, i.e., fixing errors or enhancing an application,

¢ Adaptation purposes, i.e., modifying the model solution for use in a particular
application for which the current state of the model solution does not suffice due
to efficiency reasons (size and speed) or possibly the need for additional
functionality.

Fundamental Concepts

Ada packages are used for abstraction purposes, i.e., the encapsulation of data type and
operations on the data type.

Ada generic packages are used when multiple instances of an abstraction are needed and the
common information shared by instances of the abstraction (that makes each instance
unique) can be formally generalized using generic formal parameters.

Ada package templates are used when Ada generic packages are not powerful enough, i.e.,
one cannot formally specify, using generic formal parameters, the common information that
is shared by instances of an abstraction. Ada package templates are also used to ease the
use (hide the use) of Ada generics and encapsulate the objects, types, and operations needed
to instantiate the generics. The templates, in general, also facilitate testing by containing
test drivers.

One key to the success of the MTV model solution is the consistent instantiation of the
Typecaster model for each category of parts or templates described briefly in Chapter 5.

CMU/SEI-89-TR-12 73

7.1. Foundatiion Type and Constant Definitions

7.1.1. Common Casting Types .

All packages in the MTV model solution are dependent upon the types and constant
declarations defined in the package Casting_Common_Types (CCT). The types and constants
provide a consistent view of common information used throughout the model solution from
the foundation utilities through the templates. They are the foundation upon which the
MTV model solution is built.}® See Appendix Section C.1 for the complete listing of the CCT'

package.

There are three sections of the package that are divided by comment lines. They are:
1. Definitions used by the Typecaster model solution.
2. Definitions used by the EXR TV model solution.
3. Definitions used by both Typecaster and EXR TV model solutions.

Typecaster Type and Constant Definitions
This section of the CCT package specification contains the following definitions that support
the Typecaster model solution:

¢ The maximum length of the symbolic images and natural images (i.e., UNR and
USR). These parameters can be adjusted based on the message set.

o Constant string declarations upon which all validity indicators, defined in the
typecasters, are based (both symbolic image validity indicators and natural
image validity indicators). The use of these constant string declarations insures
validity indicator consistency across all typecasters.

EXR TV Type and Constant Definitions
This section of the CCT package specification contains the following definitions that support
the EXR TV model solution:

e The maximum length of an ICD message, i.e., EXR. This parameter can be
adjusted to different message set requirements.

e A type for holding ICD messages, i.e., a record that has as ita elements a string
and an integer indicating the length of the EXR.

e Constant string declarations that define common punctuation found in EXRs.
Others can be added to support different message set requirements.

e Type definitions that support field extraction utilities.

¢ Type definitions that support the Fields data structure found in the
ICD_Message template. This data structure is defined by the template
instantiator and contains the codification of the EXR description for a message.
Fields supports conversion between EXRs and UNRs.

18This package should be considered synonymous to the package Standard supplied by Ada.

74 CMU/SEI-89-TR-12

Typecaster & EXR TV Type and Constant Defiritions
This section of the CCT package specification contains the following definitions that support
both the Typecaster and EXR TV model solutions:

» The notion of a string (Byte_Array) as an array of unsigned bytes. The symbolic
image (UNR) is defined using this form.

¢ The concept of a position that has the attributes start and stop. The position of
fields in the EXR and elements in the UNR and USR are expressed using this
concept.

7.2. Typecaster Model Solution
This section discusses the various parts of the Typecaster model solution. The categories of
parts that make up the Typecaster model solution, as discussed in Chapter 5, are:

» discrete typecaster generics

o discrete typecaster templates

e composite typecaster templates

Because the typecasters are all based upon the Typecaster model, and the implementations
of individual parts within a category are similar, each part will not be examined individuaily.
Instead, general solutions for each category will be examined.

For each category, the Ada PDL for the specification, body, and test procedure, where they
exist, will be presented. Those portions of the PDL that differ from typecaster to typecaster
in a category will be | bold, italicized, and boxed | How the abstractions (provided by a

category of typecasters) are implemented is then discussed. Items to be examined include:
¢ what abstractions are provided
¢ what the package exports to provide the abstractions
¢ what is imported and inherited to support the abstractions

¢ how the abstractions are provided

Individual typecasters (either generics, templates or instances) can be examined in detail in
the appendices of this document.

CMU/SEI-89-TR-12 75

7.2.1. Foundation Utilities: Discrete Typecaster Generics

These are utility packages upon which the Typecaster model solution is built. This is shown
abstractly in Figure 5-5 and via example in Figure 6-1. All discrete typecaster generics are
Ada generic packages based upon the Typecaster model described in Chapter 4.

Their implementations must be understood when modifications or enhancements to the
model solution are necessary. The Ada code for each discrete typecaster generic is shown in
Appendix Section C.2.

Each discrete typecaster generic has a template associated with it that provides an
"interface” for instantiating the generic. The template also includes a test procedure for
testing particular instances of the discrete typecaster generic. Figure 7-1 shows the
association of discrete typecaster generics to discrete typecaster templates and also lists the
Appendix Section in which each discrete typecaster generic can be found. The discrete
typecaster templates are discussed in the next section.

The job of the discrete typecaster generics is to provide a mapping between symbolic images
or natural images, and typed discrete Ada values. The existence of a discrete typecaster
generic (and thus a discrete typecaster template) is driven by the characteristics of the
symbolic image and the desired INR. This is shown in Figure 6-8. If a relationship exists
between symbolic images and values that is not represented in Figure 6-8, other discrete
typecaster generics and corresponding templates need to be generated. This is discussed
further in Chapter 8.

Appendix

Discrete Typecaster Generic Section Discrete Typecaster Template
Integer_Typecaster cz2l1 Integer Typecaster Template
Math_On_Integer_Typecaster cz23 Math_On_Integer Typecaster Template
Enumeration_Typecaster C.24 Enumeration Typecaster Template
Math_On_Enumeration_Typecaster | C.2.6 Math_On_Enumeration Typecaster Template
String_Map_Typecaster Cc27 String_Map Typecaster Template
Integer_Bit_Typecaster C22 Integer_Bit Typecaster Template
Enumeration_Bit_Typecaster C25 Enumeration_Bit Typecaster Template

Figure 7-1: Discrete Typecaster Generics

Figure 7-2 shows the package specification PDL for a discrete typecaster generic. Figure 7-3
shows the package body PDL for a discrete typecaster generic. All discrete typecaster
eneric specifications and bodies are identical except where the PDL is
fbold, italicized, and boxed

76 CMU/SEI-89-TR-12

The discrete typecaster generics provide the following abstract capabilities:
e Convert from a symbolic image to typed discrete Ada value.
. Convert-from a typed discrete Ada value to a symbolic image.
¢ Check a symbolic image for validity (i.e., can it be converted to a value?).
¢ Convert from a natural image to typed discrete Ada value.
¢ Convert from a typed discrete Ada value to a natural image.
e Check a natural image for validity (i.e., can it be converted to a value?).

» Exception is raised if conversion from a symbolic image or natural image to a
value fails.

¢ Typed discrete Ada values are always valid (enforced by the Ada runtime) and
can always be converted to a symbolic image or a natural image.

These abstractions make up the Typecaster model described in Chapter 4.

Two pieces of information are needed to instantiate a particular discrete typecaster generic.
The first is the Type_To_Be_Cast. This is an Ada type that is the INR of the information.
The second piece of information is The_Map. This defines the mapping between symbolic
images and values. This mapping information is expressed differently among discrete
generic typecasters. For example, the Integer_Typecaster (see Appendix Section C.2.1) has
no The_Map because the mapping from symbolic images to values is implicit.}® The
Enumeration_Typecaster (see Appendix Section C.2.4), on the other hand, defines The_Map
as an Ada enumeration type where the enumeration literals are the symbolic images, and
the mapping between a symbolic image and value is defined via positional correspondence of
the values defined by the two discrete types. For more information on how The_Map is
defined for individual discrete typecaster generics, see the Ada generic code in Appendix
Section C.2. For more information on specifying the mapping, see the directions for
instantiating individual discrete typecaster templates in Appendix Section B.3.

Based upon Type_To_Be_Cast, The_Map, and some information obtained from the package
Casting_Common_Types, all discrete typecaster generics provide the abstract functionality
described above. The remainder of this section discusses how the functionality is provided
(i.e., implemented).

The Symbolic_Image_Width is defined as an integer constant. Its value is based upon
information about the symbolic images provided in The_Map, whether it is implicit or
explicitly defined. Symbolic_Image, the type used to hold a symbolic image, is defined as an
array of bytes of length Symbolic_Image_Width. The type that defines an array of bytes
comes from CCT.Byte_Array. This promotes consistency among the discrete typecaster
generics.

Similarly, the Natural_Image_Width is defined as an integer constant. Its value is based on

®The mapping is implicit because Ada provids 'Image and Value functiona.

CMU/SEI-89-TR-12 77

the size of the image of an Ada value as defined by the Ada ’Image and Ada 'Width
attributes. Natural_Image, the type used to hold a natural image, is defined as a character
string of length Natural_Image_Width. The type that defines a character string comes from
Standard.String. This promotes consistency among the discrete typecaster generics.

Two Value functions exist that provide the capability to convert from a symbolic image or
natural image to a value. The basic underlying algorithms for both Value functions are
shown in Figure 7-3. All symbolic image Value functions are implemented slightly
differently. The algorithm involves first interpreting the symbolic image bytes as a character
string or integer based on whether the discrete typecaster generic is character-based or
bit-based. This interpreted resu’* is then used in conjunction with The_Map to obtain the
desired value of the symbolic image. Conversely, all natural image Value functions are
exactly the same. The algorithm involves using the Ada Value attribute as the mapping
function to obtain the desired value of the natural image. Finally, the Value functions are
implemented so that the exception Constraint_Error is raised by the Ada runtime when
either conversion fails.

Two Image functions exist that provide the capability to convert from a value to a symbolic
image or natural image. The basic underlying algorithms for both Image functions are
shown in Figure 7-3. All symbolic image Image functions are implemented slightly
differently. The algorithm involves using The_Map to obtain either a character string or
integer symbolic image, based on whether the discrete typecaster generic is character-based
or bit-based. The result of the mapping is converted to an array of bytes. All natural image
Image functions are very similar. The algorithm involves using the Ada Tmage attribute as
the mapping function to ouiain the desired character string of the value. This character
string is then left padded with spaces, as necessary, to fill in the fixed-length natural image.
Finally, because of the strong typing provided by Ada, the solution agsumes that values are
always valid, therefore, the Image function should never fail.

Two Check functions exist that provide the capability to check the validity of a symbolic
image or a natural image. The basic underlying algorithms for both Check functions are
shown in Figure 7-3. The Check functions are implemented exactly the same, but return
different results based on whether they are checking symbolic images or natural images.
The algorithm involves calling the appropriate Value function to see if conversion is possible.
If no Constraint_Error is raised, then the conversion was made, implying that the image is
valid. Either the Valid_Symbolic_Image or Valid_Natural_Image indicator is returned,
depending upon the Check function. If a Constraint_Error is raised, then the conversion was
not made, implying that the image is not valid. Either the Invalid_Symbolic_Image or
Invalid_Natural_Image indicator is returned, devending upon the Check function.

The validity indicators returned by the Check functions are defined as Symbolic_Image or
Natural_Image constants. Their value is based on the validity indicators defined in
Casting_Common_Types that are named the same. The validity indicators defined in the
discrete typecaster generics slice the validity indicators defined in Casting_Common_Types
based on the size of the symbolic image and natural image. Basing the validity indicators for

78 CMU/SEI-89-TR-12

the discrete typecaster generics on those found in Casting_Common_Types promotes
consistency across all typecasters. The advantages of having the validity indicators the same
size as the images will become evident when the composite templates are discussed in
Section 7.2.3.

The Image and Value functions are inlined for efficiency reasons.

Finally, when the generic is instantiated, the mapping is checked to ensure it is completely
specified (one-to-one). That is, for every element in the domain (values), there is a
corresponding element in the range (symbolic images), and vice versa. The mapping between
values and uatural images is assumed to be complete (one-to-one) as specified by the Ada
Tmage and "Value attributes.

CMU/SEI-89-TR-12 79

with Casting Common Types;
generic
-=- Internal Representation

type Type_To_Be_Cast is | generic formal parameter for discrete Ada type |;

-- Mapping from symbolic images to values of type to be cast
The_Map...;

package | Generic | Typecaster is

package CCT renames Casting Common_Types;

-- Universal Representation
-- Symbolic image size and string to hold it.

Symbolic_Image Width : constant Integer := |based on The Map |;

subtype Symbolic_Image is CCT.Byte Array(l..Symbolic_Image_Width);

-- Functions for converting between a symbolic image and a value.
-- Alsc a function for checking the validity of a symbolic image.
function Value (Image_In : Symbolic_Image) return Type To_Be_Cast;
function Image (Value_In : Type To_Be Cast) return Symbolic_Image;
function Check (Image_In : Symbolic_Image) return Symbolic_Image;

-- Symbolic image validity indicators returned by Check function
Valid_Symbolic_Image : constant Symbolic_Image :=
CCT.Valid Symbolic_Image(l..Symbolic_ Image Width);
Invalid_Symbolic_Image : constant Symbolic_Image :=
CCT.Invalid_Symbolic_Image (l..Symbolic_Image Width);

-- User Representation
-- Natural image size and string to hold it.
Natural Image Width : constant Integer := Type_To_Be Cast’width;
subtype Natural Image is String(l..Natural Image Width);

-- Functions for converting between a natural image and a value.
-- Also a function for checking the validity of a natural image.
function Value (Image_In : Natural Image) return Type To Be Cast;
function Image (Value In : Type_To_Be_Cast) return Natural Image;
function Check (Image_In : Natural Image) return Natural Image;

-- Natural image validity indicators returned by Check function

Valid Natural Image : constant Natural Image :=
CCT.Valid Natural Image(l..Natural Image Width);
Invalid | Natural _Image : constant Natural Image :=

CCT. Invalid | Natural Image (1..Natural Image Width):

~- Real-Time constraint raised by Image and Value functions
Constraint Error : Exception;
ragma inline (Value, Image);
end | Generic | Typecaster;

Figure 7-2: Discrete Typecaster Generic Package Specification PDL

80 CMU/SEI-89-TR-12

G om N

with Unchecked Conversion;
package body | Generic | Typecaster is

-- raplace * in the PDL based on the results of the condition below
if the generic typecaster is character-based then *=STRING
elsif the generic typecaster is bit-based then *-INTEGER

Bytes To * is new Unchecked Conversion (Symbolic_Image, *);}
* To_Bytes is new Unchecked Conversion (*, Symbolic_Image);}

function Value (Image In : Symbolic_Image) return Type To_Be_Cast is
The_SI : * := Bytes_ To_*(Image In);

begin
return | Mapping (The_Map, The_SI);

end Value;

function Image (Value In : Type To Be Cast) return Symbolic_Image is
The_SI : * := |_Mapping(The_Map, Value In);

begin
return * To Bytes (The SI):
end Image;

function Check (Image In : Symbolic_Image) retu:n Symbolic_Image is
Dummy : Type_ To_ Be Cast := Value(Image In);
begin
return Valid Symbolic_Image;
exception when Constraint_ Error => return Invalid Symbolic_Image;
end Check;

function Value (Image_In : Natural Image) return Type To_Be_Cast is
begin

return Type_To_Be_Cast’Value (Image In);
end Value;

function Image (Value In : Type_To_Be Cast) return Natural Image is
begin
return | Slice of CCT.Blank_Strinﬂ & Type_To_Be_Cast’'Image (Value_In);

end Value;

function Check (Image_In : Natural Image) return Natural Image is
Dummy : Type_To_Be_ Cast := Value (Image_In);
begin
return Valid Natural_ Image;
exception when Constraint_ Error => return Invalid Natural Image;
end Check;
begin
Ensure definition of mapping is complete

end | Generic | Typecaster;

Figure 7-3: Discrete Typecaster Generic Package Body PDL

CMU/SEI-89-TR-12 81

7.2.2. Building Blocks: Discrete Typecaster Templates

Discrete typecaster templates are the initial building blocks of the Typecaster model
solution. They form the first layer of the solution (software architecture) on top of the
discrete typecaster generics. This is shown abstractly in Figure §-5 and via example in
Figure 6-10. All discrete typecaster templates contain an Ada package template based upon
the Typecaster model described in Chapter 4 and a test procedure for testing instances of the
discrete typecaster template. The Ada code for the discrete typecaster templates is shown in
Appendix Section C.3.

As mentioned in the previous section, each discrete typecaster template has a generic
associated with it. The template exists for a number of reasons:

s The discrete typecaster templates contain an Ada package that has placeholders
for the definition of the discrete type to be cast and any symbolic image mapping
information needed to instantiate the discrete typecaster generics.20

¢ The templates provide an "interface” for instantiating the corresponding discrete
typecaster generics.

o The template facilitates testing of particular instances of the discrete typecaster
generics.

Figure 7-1 shows the association of discrete typecaster generics to discrete typecaster
templates. Figure 7-4 lists the discrete typecaster templates and the appendix sections
where the code templates can be found. Also included in Figure 7-4 are the name of an
example instance of each discrete typecaster template and the appendix sections where the
example code can be found.

|

Appendix Appendix

Discrete Typecaster Template Section Example Instance Section !

Integer Typecaster Template C3.1 Hour_Typecaster D.13 1

Math_On_Integer Typecaster Template C3.3 Scaled_Integer_100_500_Typecaster D4.1 \

Enumeration Typecaster Template C.34 Direction_Typecaster D.1.2 1

Math_On_Er _ eration Typecaster Temps. ¢ | C.3.6 Scaled_Integer_100_1000_Typecaster | D.4.2 ‘
String_Map recaster Template C.3.7 Status_Typecaster D.16

Integer_Bit Typecaster Template C.3.2 Julian_Day_Bit_Typecaster D.1.11

Enumeration_Bit Typecaster Template C3.5 Direction_Bit_Typecaster D.18

Figure 7-4: Discrete Typecaster Templates

Figure 7-5 shows the discrete <Type>_Typecaster package specification PDL. This is the first
of two separate code modules found in all discrete typecaster templates., All
<Type>_Typecaster package specifications found in the discrete typecaster templates are
identical except where the PDL is | bold, italicizea, and boxed

2An alternative to ‘nis packaging approach is described in Chapter 8.

82 CMU/SEI-89-TR-12

The discrete <Type>_Typecaster packages provide the following abstract capabilities:2! ‘
¢ Convert from a symbolic image to typed discrete Ada value.
« Convert from a typed discrete Ada value to a symbolic image.
¢ Check a symbolic image for validity (i.e., can it be converted to a value?).
¢ Convert from a natural image to typed discrete Ada value.
¢ Convert from a typed discrete Ada value to a natural image.
© Check a natural image for validity (i.e., can it be converted to a value?).

¢ An exception is raised if conversion from a symbolic image or natural image to a
value fails.

o Typed discrete Ada values are always valid (enforced by the Ada runtime) and
can always be converted to a symbolic image or a natural image.

These abstractions make up the Typecaster model described in Chapter 4.

Two pieces of iniormation must be provided to instantiate a particular discrete typecaster
template. The first is the type to be cast, <Type>_Type. This is a discrete Ada type that is
the INR of the information. The second piece of information is The_Map. This information
defines the mapping between symbolic images and values, and resides in the
<Type>_Typecaster package. This information is expressed differently depending upon the
discrete typecaster template chosen. For example, the Hour_Typecaster package (see
Appendix Section D.1.3) has no The_Map because the mapping from symbolic images to
values is implicit via the Ada Tmage and 'Value attributes. The Direction_Typecaster
package (see Appendix Section D.1.2), on the other hand, defines The_Map as an Ada
enumeration type where the enumeration literals are the symbolic images, and the mapping
between a symbolic image and value is defined via positional correspondence of the values
defined by the two discrete types. For more information on how The_Map is defined for
individual discrete typecaster templates, see the discreie typecaster templates in Appendix
Section C.3. For more information on specifying the mapping, see the directions for
instantiating individual discrete typecaster templates in Appendix Section B.3.

Based upon the definitions provided for <Type>_Type and The_Map, all <Type>_Typecaster
packages in the templates instantiate their corresponding discrete typecaster generic. These
<Type>_Typecaster packages provide (i.e., implement) the abstract functionality described
above by renaming all types, constants, and functions exported by the instantiation of the
discrete typecaster generic. That is, the <Type>_Typecaster packages inherit the
functionality provided by the instances of the discrete typecaster generics.

Figures 7-6 and 7-7 show the PDL for the exhaustive and interactive portions of the
<Type>_Typecaster_Test procedure. This is the second of two separate code modules found in
all discrete typecaster templates. The test procedures are very similar. The parts that vary
most deal with the I/O portions of the test procedure. To signify those parts of the test
procedures that deal with communication with the tester, the PDL is bolded.

2INote that these are the same as those that described the discrete typecaster generics in the previous section.

CMU/SEI-89-TR-12 83

The test procedure, <Type>_Typecaster_Test, tests the instance of the <Type>_Typecaster
package generated during template instantiation. Since each <Type>_Typecaster package is
. based on a discrete typecaster generic and these can be instantiated with discrete types only,
the first portion of the test tests the functionality provided by the typecaster packages based
on the finite range of values the discrete type can assume.

For each possible discrete value, the following steps are performed first for symbolic images
and then for natural images, and any test case failures are reported to the tester:

1. Apply Image function, i.e., convert the value to an image.

2. Apply Check function, i.e., check the image for validity.

3. If Check function indicates an invalid image then the typecaster has failed.

4. Apply Value function, i.e., convert the image back to a value.

5. If Value function raises a constraint error then the typecaster has failed.

6. Also, if the discrete value from Step 1 is not the same value that results in Step
4 then the typecaster has failed.

But exhaustive testing only performs testing of typecaster functionality based on valid
symbolic images, natural images, and values. There is also a need to test typecaster
functionality based on invalid symbolic images, natural images, and values, and to make
sure the mapping specified when the template was instantiated is correct. This testing is
provided through interactive testing.

Because the typecasters perform translation and validation based on the relationship
between either symbolic images and values, or natural images and values, the interactive
testing is broken up into two parts. The first part tests translation and validation between
tester-supplied values and symbolic images. The second part tests translation and validation
between tester-supplied values and natural images.

The following steps are performed for each of the two testing parts described above:
1. Prompt tester for image.
2. Apply Check function, i.e., check the image for validity.
3. Notify tester of image validity.
4. Apply Value function, i.e., convert the image to a value.
5. Show tester value of image.
6. If Value function raises a constraint error then notify tester of image invalidity.
7. Prompt tester for value.
8. Apply Image function, i.e., convert the value to an image.
9. Show tester image of value,
10. If tester types *Z at anv prompt, exit the test.

84 CMU/SEI-89-TR-12

This form of interactive testing allows the tester to enter invalid symbolic and natural
images to test the functionality of the typecasters based on invalid images. The tester can
ensure that the typecaster truly treats them as invalid based on the information returned by
the test routine in the form of error messages and the presentation of the results of the
Check function. The tester can also use interactive testing to ensure the mapping used to
instantiate the typecaster was specified properly by entering valid values and images and
examining the results.

CMU/SEI-89-TR-12 86

with | Generic | Typecaster; -- The corresponding generic typecaster

package <Type> Typecaster is
-- Internal Repiresentation & Internal Representation Description

-~ Type to be cast .
type <Type>_Type is [—?__?—;
-- Symbolic image (universal representation) mapping information
<Type>_Map ?? |;

-- Instantiation of typecaster appropriate for this template
<Type>_TC is new | Generic | Typecaster (<Type>_Type, |<Type>_Map);

-=- Universa. Rep.esantation
-- Symbolic image size and string to heold it.

Symbolic_ Image Width : Integer renames <Type>_ TC.Symbolic_ Image Width;

subtype Symbolic_Image is <Type> TC.Symbolic_Image;

-~ Functions for converting between a symbolic image and a value.

-~ Also a function for checking the validity of a symbolic image.

function Value(Image_In : Symbolic_Image) return <Type>_Type
renames <Type> TC.Value;

function Image(Value_ In : <Type> Type) return Symbolic Image
renames <Type> TC.Image;

function Check (Image_ In : Symbolic_ Image) return Symbolic Image
renames <Type> TC.Check;

-~ Symbolic image validity indicators returned by Check function
Valid Symbolic Image : renames <Type> TC.Valid Symbolic_Image;
Invalid Symbolic_Image : renames <Type> TC.Invalid_Symbolic_Image;

-=- User Representation
-~ Natural image size and string to hold it.
Natural Image Width : Integer renames <Type> TC.Natural Image Width;
subtype Natural Image is <Type> TC.Natural Image;

-- Functions for converting between a natural image and a value.

-~ Also a function for checking the validity of a natural image.

function Value (Image_ In : Natural Image) return <Type>_ Type
renames <Type>_ TC.Value;

function Image(Value In : <Type> Type) return Natural Image
renames <Type> TC.Image:

function Check (Image In : Natural Image) return Natural Image
renames <Type>_ TC.Check;

-- Natural image validity indicators returned by Check function
Valid_Natural Image : renames <Type> TC.Valid Natural Image;
Invalid Natural Image : renames <Type> TC. Invalzd Natural Image;

~- Real-Time constraint raised by Image and Value functions
Constraint_ Error : Exception:
~ud <Typs>_ Typecaster;

Figure 7-5: Discrete Typecaster Template Package Specification PDL

86 CMU/SEI-89-TR-12

with <Type> Typecaster;

with Unchecked Conversion;

with Casting Common Types;

with Text IO;

procedure <Type> Typecaster Test is
begin

-- Exhaustive Testing Loop: loop through range of discrete values
for Value in <Type> Typecaster.<Type> Type’'First ..
<Type>_ Typecaster.<Type>_ Type’ Last loop
begin
~- Symbolic Image Testing

Test_SI := <Type>_ Typecaster.Image (Value);

Check_SI := <Type>_Typecaster.Check (Test SI);

if Test_SI /= <Type>_Typecaster.Valid Symbolic_Image then

Notify tester symbolic image exhaustive testing FAILED .
end if;

Test_Value := <Type> Typecaster.Value (Test_SI);
if Test Value /= Value then

Notify tester symbolic image exhaustive testing FAILED.
end if;

~- Natural Image Testing
Test NI := <Type> Typecaster.Image (Value);
Check NI := <Type> Typecaster.Check (Test NI);
if Test NI /= <Type> Typecaster.Valid Symbolic_Image then
Notify tester natural image exhaustive testing FATLED.
end if;

Test_Value := <Type> Typeca. . :.Value(Test NI);
if Test Value /= Value the:
Notify tester natural image <’ ustive testing FAILED .

end if;
exception
when Constraint_Error =
Errors := True;

if raised during symbolic image testing then
Notify tester symbolic image exhaustive testing FAILED.
elsif raised during natural image testing then
Notify tester natural image exhaustive testing FATLED .
end if;
end;

end loop;
if Errors occurred then

Notify tester exhaustive testing completed unsuccessfully.
else

Notify tester exhaustive testing completed successfully.
end if;

Figure 7-6: Discrete Typecaster Template Test PDL (Exhaustive)

CMU/SEI-89-TR-12

87

~- Interactive Testing Loop
loop
begin

~= Symbolic Image Testing
Prompt tester for character string or integer symbolic image, Test_SI.
Convert Test_ SI to CCT.Byte Array.
Check_SI := <'.l‘ype> Typecaster.Chack (Test_SI);
Show tester validity indicator, Check_SI, returned by Check function.
Test Value := <Type> Typecaster. Value(Tcst SI);
Show tester value, Test _Value, returned by Value function.

Prompt tester for a value, Test Value.

Test_ SI := <Type> Typecaster.lmage (Test Value);

Interpret Test SI as character string or integexr.

Show tester symbolic image, Test_SI, returned by Image function.

-~ Natural Image Testing
Prompt tester for character string natural image, Test NI.
Check_NI := <Type> Typecaster.Check (Test_ NI);
Show tester validity indicator, Check NI, returned by Check function.
Test_Value :x <Type> Typecaster. Vhluo(reat_yx),
Show tester value, Test Value, returned by Value function.

Prompt tester for a value, Test_Value.
Test NI := <Type> Typecaster.Image (Test_ Value);
Show tester natural image, Test NI, returned by Image function.

exception
when Constraint_ Error | Data Error =>
Notify tester of invalid input.
when Eand_Error =>
Notify tester testing complete.
exit;
whean Others =>
Notify tester unknown failure has occurred.
exit;
end;
end loop;

end <Type>_ Typecaster Test;

Figure 7-7: Discrete Typecaster Template Test PDL (Interactive)

88 CMU/SEI-89-TR-12

Gl S i G N iy 0 = e e

7.2.3. Building Blocks: Composite Typecaster Templates

Composite typecaster templates are the expansion building blocks of the Typecaster model
solution. They form the remaining layers of the solution (software architecture) and can be
built upon instances of discrete typecaster templates or other instances of composite
typecasier templates. This is shown abstractly in Figure 5-5 and via example in Figure 6-11.
All composite typecaster templates contain an Ada package specification and body template
based upon the Typecaster model described in Chapter 4, and a test procedure for testing

instances of the composite typecaster template.

The Ada code for the composite typecaster templates is shown in Appendix Section C.4.

The composite typecaster provides a mapping between symbolic images or natural images
and typed composite Ada values. To provide this mapping, composite typecasters use the
functionality provided by typecasters previously created for the elements of the composite.
The composite typecaster template exists for a number of reasons:

» To allow the designer to group both discrete and composite typecasters (and thus
their symbolic images, natural images, values, and validity indicators) in a
manner consistent with the EXR description.22 The composite typecasters are
therefore dependent upon other typecasters.

¢ Ada generic formal parameters cannot be of an Ada composite type. Thus, we
created our own "generics” in the form of code templates. These templates both
automate the production of code and perpetuate the consistencies from the

discrete typecasters.

e The template facilitates testing of particular instances of the composite

typecaster templates.

Figure 7-8 lists the composite typecaster templates and the appendix sections where the code
templates can be found. Also inciuded in Figure 7-8 are the name of an example instance of
each composite typecaster template and the appendix sections where the example code can

be found.
Appendix Appendix
Composite Typecaster Template | Section Example Instance Section
Record Typecaster Template c4.1 Julian_Date_Time_Record_Typecaster D.21
Private_Record Typecaster Template | C.4.2 FooBar_Message_Private_Record_Typecaster D.2.2
Array Typecaster Template C43 Barrier_Segment_Array_Typecaster D4.3
Private_Array Typecaster Template | C.4.4 Probability_Private_Array_Typecaster D44
Wrapper Typecaster Template C4.5 Probability_Wrapper_Typecaster D45
Figure 7-8: Composite Typecaster Templates

“This grouping continues until all symbolic images are grouped and are in an order compatible with the UNR
expected by the EXR TV model solution for a particular message.

CMU/SEI-89-TR-12

89

Figures 7-9 and 7-10 show the composite <Type>_Composite_Typecaster package

specification PDL. Figures 7-11 and 7-12 show the composite
<Type>_Composite_Typecaster package body PDL. These are the first two of three separate
code modules found in all composite typecaster templates. All

<Type> Composite_Typecaster package specifications and bodies found in the composite
typecaster templates are identical except where the PDL is Lbold, italicized, and boxed

The composite <Type>_Composite_Typecaster packages provide the following abstract
capabilities:23

o Convert from a symbolic image to typed composite Ada value.

* Convert from a typed composite Ada value to a symbolic image.

¢ Check a symbolic image for validity (i.e., can it be converted to a value?).

¢ Convert from a natural image to a typed composite Ada value.

¢ Convert from a typed composite Ada value to a natural image.

¢ Check a natural image for validity (i.e., can it be converted to a value?).

¢ An exception is raised if conversion from a symbolic image or natural image to a
value fails.

* Typed composite Ada values are always valid (enforced by the Ada runtime) and
can always be converted to a symbolic image or a natural image.

¢ Provide the positions of the elemental images within the composite image (for
both symbolic and natural images).

* Provide the positions of the validity indicators for each elemental image within
the validity indicator for the composite image (for both symbolic and natural
images).

These abstractions make up the Typecaster model described in Chapter 4.

To instantiate a particular composite typecaster template, some information must be
provided. The first is the name of the Ada composite type to be cast,
<Type>_Composite_Type. This is a composite Ada type that is the INR of the information.
The next piece of information is the names of the types, <T1>_Type..<Th>_Type that the
composite type <Type>_Composite_Type groups. These types (that are grouped by the
composite typecaster being defined) must already be defined in the typecasters
<T1>_Typecaster..<Tn>_Typecaster because the <Type>_Composite_Type inherits the types
it groups from the corresponding typecasters. Finally, the names of the elements
<E1>..<En> must be provided. These names are used to define:

¢ The elements of the composite type <Type>_Composite_Type. These represent
objects of the types <TI> Type.<Tn>_Type that are inherited from the
typecasters <T1>_Typecaster..<Tn>_Typecaster,

*3Note that these are basically the same as described in the previous two sections that described the discrete
typecaster generics, and templates with the addition of some capabilities to handle elemental image positions.

90 CMU/SEI-89-TR-12

eThe names of the elements specified in the discrete type
<Type>_Element_Names. These names are used tc access:

*Elements of the Symbolic_Image. These correspond to the
Symbolic_Images inherited from the typecasters
<T1>_Typecaster..<Tn>_Typecaster via the Image function.

+ Elements of the Natural_Image. These correspond to the Natural_Images
inherited from the typecasters <T1>_Typecaster..<Tn>_Typecaster via the
Image function.

* Elemental validity indicators corresponding to the Symbolic_Image. These
correspond to the validity indicators inherited from the typecasters
<T1>_Typecaster..<Tn>_Typecaster via the Check function.

* Elemental validity indicators corresponding to the Natural_Image. These
correspond to the validity indicators inherited from the typecasters
<T1>_Typecaster..<Tn>_Typecaster via the Check function.

This information is expressed differently depending upon the composite typecaster template
chosen. For example, creating the Julian_Date_Time_Record_Typecaster package (see
Appendix Section D.2.1) involves supplying the names of all elements, and also the types of
all elements grouped by the Ada record. On the other hand, the
Barrier_Segment_Array_Typecaster package (see Appendix Section D.4.3) involves supplying
first and last elements (i.e., an integer range) and only one type, the type of the elements
grouped by the array. For more information on individual composite typecaster templates,
see the composite typecaster templates in Appendix Section C.4. For more information on
instantiating individual composite typecaster templates see Appendix Section B.4.

Based upon the composite type <Type>_<Composite>_Type, the names of the elements
<E1>..<En>, the elemental typecasters <T1>_Typecaster..<Tn>_Typecaster that are grouped,
and some information obtained from the package Casting_Common_Types, all composite
typecaster templates provide the abstract functionality described above. The next thing to
discuss is how the functionality is provided (i.e., implemented).

The Symbolic_Image_Width is defined as an integer constant. Its value is based on the sum
of the Symbolic_Image_Widths inherited from the elemental typecasters,
<T1>_Typecaster..<Tn>_Typecaster. Symbolic_Image, the type used to hold a symbalic
image, is defined as an array of bytes of length Symbolic_Image_Width. The type that
defines an array of bytes comes from CCT.Byte_Array. This promotes consistency among the
typecasters.

Similarly, the Natural_Image_Width is defined as an integer constant. Its value is based on
the sum of the Natural Image_Widths inherited from the elemental typecasters
<T1>_Typecaster..<Tn>_Typecaster. Natural_Image, the type used to hold a natural image,
is defined and a character string of length Natural_Image_Width. The type that defines a
character string comes from Standard.String. This promotes consistency among the
typecasters.

The_Symbolic_Image_Positions is defined as a constant array that holds the starting and

CMU/SEI-89-TR-12 91

stopping positions of the elemental symbolic images and is accessed using the names of the
elements specified by the discrete type <Type>_Element_Names. The starting and stopping
positions of the elemental symbolic images are based on the progressive summing of the
Symbolic_Image_Widths inherited from the elemental typecasters
<T1>_Typecaster..<Tn>_Typecaster. The type that defines an array of positions comes from
CCT.Position_Array. This promotes congistency among the typecasters.

Similarly, The_Natural_Image_Positions is defined as a constant array that holds the
starting and stopping positions of the elemental natural images and is accessed using the
names of the elements specified by the discrete type <Type>_Element_Names. The starting
and stopping positions of the elemental natural images are based upon the progressive
summing of the Natural Image Widths inherited from the elemental typecasters
<T1>_Typecaster..<Tn>_Typecaster. The type that defines an array of positions comes from
CCT.Position_Array. This promotes consistency among the typecasters.

Two Value functions exist that provide the capability to convert from a symbolic image or
natural image t~» a composite value. The basic underlying algorithm for the symbolic image
Value function is shown in Figure 7-11, and the algorithm for the natural image Value
function is shown in Figure 7-12. Both algorithms work the same and can be summarized as
follows: For each element <En>, slice the elemental image out of the composite image using
the known positions of the elemental images. Convert this image slice to a value using the
Value function inherited from the elemental typecaster and assign the value to the element
of the composite type. Finally, if any call to an elemental typecaster Value function results
in the Constraint_Error exception being raised, the exception is propagated out.

Two Image functions exist that provide the capability to convert from a composite value to a
symbolic image or natural image. The basic underlying algorithm for the symbolic image
Image function is shown in Figure 7-11, and the algorithm for the natural image Image
function is shown in Figure 7-12. Both algorithms work the same and can be summarized as
follows: For each element <En> of the composite type, convert the value to an image using
the Image function inherited from the elemental typecaster., Assign the elemental image to a
slice of the composite image using the known positions of the elemental images. Finally,
because of the strong typing provided by Ada, the solution assumes that values are always
valid, therefore the Image function should never fail.

Two Check functions exist that provide the capability to check the validity of a symbolic
image or a natural image. The basic underlying algorithm for the symbolic image Check
function is shown in Figure 7-11, and the algorithm for the natural image Check function is
shown in Figure 7-12. Both algorithms work the same and can be summarized as follows:
Attempt to convert the image to a value using the composite Value function. If no
Constraint_Error is raised, then the image is valid so return a valid image indicator. If a
Constraint_Error is raised, handle it. This implies the image is invalid and th~ invalid
image indicator must be built from the elemental validity indicators. This is done via the
following steps: For each element <En>, slice the elemental image out of the composite
image using the known positions of the elemental images. Obtain a validity indicator for the

92 CMU/SEI-89-TR-12

CE 8 i G Ow A SN = am e

elemental image by apolying the Check function inherited from the elemental typecaster.
Place the elemental validity indicator in the composite validity indicator, again using the
known positions of the elemental images.

The validity indicators returned by the Check functions are defined as Symbolic_Image or
Natural_Image constants. The composite valid image indicators Valid_Symbolic_Image and
Valid_Natural_Image are defined as the concatenation of the elemental valid image
indicators inherited from the elemental typecasters <TI>_Typecaster..<Tn>_Typecaster.
Invalid image indicators are not defined, but instead they are built. They are built by
concatenating the validity indicators for each elemental image. See the description of the
Check function above for more details.

Finally, Image and Value functions are inlined for efficiency reasons.

The private composite typecasting templates provide additional capabilities to enforce
inter-element dependencies imposed by the textual EXR description. Figure 7-13 shows the
parts of the PDL of the package specification portion of the
<Type>_Private_Composite_Typecaster template that are needed to provide the additional
capabilities.

The <Type>_Private_Composite_Typecaster packages provide the following additional
capabilities:
» Convert composite values from an accessible form whose data are available to

the application to a protected form where inter-element dependencies are
checked and preserved.

o Convert composite values from a protected form where inter-element
dependencies are checked and preserved to an accessible form whose data are
available to the application.

To instantiate a particular private composite typecaster template, one must provide the body
of the function Is_Consistent. This function must provide the inter-element consistency
checking based upon the textual EXR description.

The following are the additional constants, types, and functions defined in the private
composite typecaster templates.

<Type>_Public_Composite_Type is the Ada composite type to be cast.
<Type>_Private_Composite_Type is the private version of the
<Type>_Public_Composite_Type. Its purpose is to encapsulate and hide the information
from the application and maintain data integrity, i.e., ensure inter-element consistency.

Inconsistent_Symbolic_Image is defined as a Symbolic_Image constant. It is used to hold the
indicator returned by the Check function when inter-element inconsistencies in the symbolic
image are detected. Its value is defined by CCT.Inconsistent_Symbolic_Image and its width
i8 Symbolic_Image_Width.

CMU/SEI-89-TR-12 93

Inconsistent_Natural_Image is defined as a Natural_Image constant. It is used to hold the
indicator returned by the Check function when inter-element inconsistencies in the natural
image are detected. Its value is defined by CCT.Inconsistent_Natural_Image and its width is
Natural_Image_Width.

The Make_Public function provides the capability to convert from a value of type
Private_Composite_Type to a value of type Public_Composite_Type, that is, to convert
from the protected form to the accessible form. The basic underlying algorithm is to do an
explicit type conversion from the private type to the public type.

The Make_Private function provides the capability to convert from a value of type
Public_Composite_Type to a value of type Private_Composite_Type, that is, to convert
from the accessible form to the pro‘ected form. The basic underlying algorithm is to first do
an explicit type conversion to get the Private_Composite_Type value and then check the
inter-element dependencies via the Is_Consistent function. If the elements are not consistent
then a Constraint_Error is raised.

The basic underlying algorithms involved in these functions are shown in Figure 7-14.

Figures 7-15 and 7-16 show the PDL for the cymbolic image and natural image portions of
the <Type>_Typecaster_Test procedure. This ie the third of three separate code modules
found in all composite typecaster templates. The test procedures are very similar. The parts
that vary most deal with the I/O portions of the test procedure. To signify those parts of the
test procedures that deal with communicaticn with the tester, the PDL is bolded.

The test procedure, <Type>_Composite_Typecaster_Test, tests the instance of the
<Type>_Composite_Typecaster package generated during template instantiation. It uses
predefined test cases based on symbolic images specified by the detailed designer when the
instance of the template was created. The detailed designer also specifies whether each
symbolic image test case is valid or invalid, so the test routine can determine if the expected
results were obtained. The entire range of functionality of the typecaster is tested based on
the symbolic image test cases. This type of testing is consicered canned testing.

Because the typecasters perform translatior and validation based on the relationship
between either symbolic images and values, or natural images and values, the canned
testing is broken up into two parts. The first part tests translation and validation between
the predefined test symbolic image and value. The second part tests translation and
validation between the resulting value and natural image.

The following steps are performed for canned testing:

1. Apply Check function to predefined test symbolic image, i.e., check the image
for validity.

2. Apply Value function to predefined symbolic image, i.e., convert the image to a
value.

3. If Value function raises a constraint error and the test case was specified as
valid, then notify tester of symbolic image test case failure.

94 CMU/SEI-89-TR-12

4. Apply Image function, i.e., convert the value to a symbolic image. |

5.If the resulting symbolic image is not the predefined test symbolic image
started with (i.e., from Step 1), then notify tester of symbolic image test case
failure.

6. -»pply Image function to value from Ster 2, i.e., convert the value to a natural
image.

7. Apply Check function, i.e., check the natural image for validiiy.

8. Apply Value function, i.e., convert the natural image to a value.

9. If the resulting value is not the value started with (i.e., from Step 6), then notify
tester of natural image test case failure.

10. If Value function raises a constraint error and the test case was specified as
valid, then notify tester of natural image test case failure.

This form of canned testing allows testing based on valid or invalid symbolic images. It
allows testing of valid natural images but does not allow testing of invalid natural images.
The specification of the validity of each individual test case allows the test procedure to pass,
even though the typecaster may fail because of an invalid test case.

CMU/SEI-89-TR-12 95

__.__——4—

with Casting Common Types;
--Obtain access to the appropriate discrete or composite typecasters

with <T1>_Typecaster; ... with <T'n>_Typecaster;
package <Type> | Composite | Typecaster is

package CCT renames Casting Common_Types:
-= Internal Representation & Internal Representation Description

Based on the elements <El1>..<En> and

type <Type> | Composite _'!.‘ype is | their associated types <TI>_Type.<I'n>_Type |;

-- Names of the clmnﬁs
type <Type>_ Element Names is i<E1> <Euﬂ;

-- Universal Representation and Universal Representation Description
-- Symbolic image size and string to hold it.
Symbolic Image Width : constant Integer :=
<T1>_Typecaster.Symbolic_Image Width +
<T2>_Typecaster.Symbolic_Image_Width +

<Tn>_Typecaster.Symbolic_Image_Width;
subtype Symbolic_Image is CCT.Byte Array(l..Symbolic_Image Width);

-- Functions for converting between a symbolic image and a value.
-- Also a function for checking the validity of a symbolic image.
function Value (Image In : Symbolic_ Image) return <Type>_ Type;
function Image(Value_In : <Type> Type) return Symbolic_Image;
function Check (Image_Ia : Symbolic_Image) return Symbolic Image;

-- Symbolic image validity indicators returned by Check function
Valid Symbolic Image : constant Symbolic Image :=

<T1>_Typecaster.Valid_Symbolic_Image &
<T2>_Typecaster.Valid_Symbolic_Image &

:T:»_Typecacter. Valid_Symbolic_Image;

Inconsistent_Symbolic_Image : constant Symbolic_Image :=
CCT.Inconsistent Symbolic Image(l..Symbolic_Image Width):;

-- Pointers to the position of each elemental symbolic image
The_Symbolic_Image Positions : constant
CCT.Position Array (<Type> Elament Names) :=
(<EI1> => (Start =>0 + 1,
Stop => 0 + <EI>_Typecaster.Symbolic_Image_Width),
<E2> => (Start => The_Symbolic_Image_Positions(<EI1>) + 1,
Stop => The_Symbolic_Image_Positions(<E1>) +
<E2>_Typecaster.Symbolic_Image_Width),

<En> => (Start => The_Symbolic_Image_Positions(<En-1>) + I,
Stop => The_Symbolic_Image_Positions(<En-1>) +
<En>_Typecaster.Symbolic_Image_Width));

Figure 7-9: Composite Typecaster Template Package Spec PDL - Part 1

96 CMU/SEI-89-TR-12

-~ User Representation and User Representation Description
-- Natural image size and string to hold it
Natural Image Width : constant Integer :=
<T'1>_Typecaster Natural_Image_Width + ‘
<T2>_Typecaster Natural_Image_Width +

<Tn>_Typecaster Natural_Image_Width;
subtype Natural Image is CCT.Byte Array(l..Natural Image Width);

-- Functions for converting between a natural image and a value.
-- Also a function for checking the validity of a natural image.
function Value (Image In : Natural Image) return <Type> Type;
function Image (Value In : <Type>_ Type) return Natural Image;
function Check (Image In : Natural Image) return Natural Image;

-- Natural image validity indicators returned by Check function
Valid Natural Image : constant Natural Image :=

<T1>_Typecaster.Valid_Natural Image &
<TI'2>_Typecaster.Valid_Natural Image &

<T'n>_Typecaster.Valid_Natural Image;

Inconsistent Natural Image : constant Natural Image :=
CCT.Inconsistent Natural Image (1..Natural Image_ Width);

-- Pointers to the position of each elemental natural image
The_Natural Image Positions : constant
CCT.Position Array(<Type> Element Names) :=

(<EI> => (Start => 0 + 1,
Stop => 0 + <E1>_Typecaster Natural_Image_Width),
<E2> => (Start => The_Natural_Image_Positions(<E1>) + 1,
Stop => The_Natural Image_Positions(<E1>) +
<E2>_Typecaster Natural_Image_Width),

<En> => (Start => The_Natural_Image_Positions(<En-1>) + 1,
Stop => The_Natural_Image_Positions(<En-1>) +
<En>_Typecaster.Natural_Image_Width));

-- Reaal-Time constraint raised by Value function
Constraint_Error : Exception;
pPragma inline (Value, Image);

end <Type> | Composite L’l‘ypecaster;

Figure 7-10: Composite Typecaster Template Package Spec PDL - Part 2

CMU/SEI-89-TR-12

package body <Type> | Composite ;Typecaste: is
function Value (Image In : Symbolic_Image) return <Type> Type is
Return Value : <Type>_ Type; '
begin
<EI> of Return_Value = <T1>_Typecaster.Value(
Image_In(The_Symbolic_Image_Positions(<E1>).Start ..
The_Symbolic_Image_Positions(<E1>).Stop));

:En> of Reiurn_Value := <Tn>_Typecaster.Value(
Image_In(The_Symbolic_Image_Positions(<En>).Start ..
The_Symbolic_Image_Positions(<En>).Stop));

return Retu:n_Value ;
end Value;

function Image (Value_In : <Type> Type) return Symbolic_Image is
Return Image : Symbolic_Image;
begin
Return_Image(The_Symbolic_Image_Positions(<E1>).Start ..
The_Symbolic_Image_Positions(<E1>).Stop) =
<T1>_Typecaster.Image(<E1l> of Value_In);

.I.!.eturn_lmage(The_Symbolic_ImaggPocitions(<En>).Start ..
The_Symbolic_Image_Positions(<En>).Stop) :=
<Tn>_Typecaster.Image(<En> of Value_In);

return Return_ Image;
end Image;

function Check (Image In : Symbolic_ Image) return Symbolic_Image is
Return Check : Symbolic Image;

Return Value : <Type>_ | Composite | Type;

begin
Return Value := Value (Image In):
return Valid Symbolic_Image;
exception
when Constraint Error =>

Return_Check(The_Symbolic_Image_Positions(<E1>).Start ..
The_Symbolic_Image_Positions(<E1>).Stop) =

The_Symbolic_Image_Positions(<E1>).Staop));

Return_Check(The_Symbolic_Image_Positions(<En>).Start ..
The_Symbolic_Image_Positions(<En>).Stop) :=

The_Symbolic_Image_Positions(<En>).Stop));

<T1>_Typecaster.Check(Image_In(The_Symbolic_Image_Positions(<E1>).Start ..

<Tn>_Typecaster.Check(Image_In(The_Symbolic_Image_Positions(<En>).Start ..

return Check_Image;
end Check;

Figure 7-11: Composite Typecaster Template Package Body PDL - Part 1

98 CMU/SEI-89-TR-12

&8 B O &G G & =S a am e

function Value (Image In : Natural Image) return <Type> Type is
Return Value : <Type> Type;
begin
<EI> of Return_Value = <T1>_Typecaster.Value(
Image_In(The_Natural_Image_Positions(<EI1>).Start ..
The_Natural_Image_Positions(<E1>).Stop));

'<...En> of Rzturn_Value := <Tn>_Typecaster. Vaiue(
Image_In(The_Natural Image_Positions(<En>).Start ..
| The_Natural_Image_Positions(<En>).Stop));

return Return Value;
end Value;

function Image (Value_In : <Type> Type) return Natural Image is
Return Image : Natural Image;
begin
Return_Image(The_Natural_Image_Positions(<E1>).Start ..
The_Natural_Image_Positions(<EI1>).Stop) :=
<T1>_Typecaster.Image(<E1> of Value_In);

;t.etum_Image(The_Natural_Image_PositionakEn>).Start "
The_Natural_Image_Posgitions(<En>).Stop) =
<Tn>_Typecaster.Image(<En> of Value_In);

return Return_Image;
end Image;

function Check (Image In : Natural Image) return Natural Image is
Return Check : Natural Image;

Return Value : <Type> | Composite | Type;

begin
Return Value := Value (Image In);
return Valid Natural Image;
exception
when Constraint Error =>

Return_Check(The_Natural_Image_Positions(<E1>).Start ..
The_Natural_Image_Positions(<E1>).Stop) =

<T1>_Typecaster.Check(Image_In(The_Natural_Image_Positions(<E1>).Start ..

The_Natural_Image_Positions(<E1>).Stop));

Return_Check(The_Natural_Image_Positions(<En>).Start..
The_Natural_Image_Positions(<En>).Stop) =
<Tn>_Typecaster.Check(Image_In(The_Natural_Image_ Positions(<En>).Start ..
The_Natural_Image_Positions(<En>).Stop));

return Check_Image;
end Check;

end <Type> Typecastar;

Figure 7-12: Composite Typecaster Template Package Body PDL - Part 2

CMU/SEI-89-TR-12 99

package <Type>_ Private | Composite

e

Typecaster is

-- Internal Representation & Internal Representation Description
type <Type>_Privatem_Typo is private; .

type <Type>_ Public_| Composite

Based on the elements <E1>..<En>
and their associated
Type is |types <T'1>_Type..<Tn>_Type ;

-- Symbolic image validity indicators returned by Check function
Inconsistent Symbolic Image :
CCT.Inconsistent Symbolic_Image (l..Symbolic_Image_Width);

Inconsistent Natural Image :

Constant Symbolic_Image :=

Constant Natural Image :=

CCT.Inconsistent Natural Image(l..Natural Image_Width);

-- Functions for converting between the <Type> Private_| Composite | Type

-- and the <'rypo>_PublicJ

Composite | Type types.

function Make Public (Private_Value_ In: <Type>_Private Composite | Type) ;
function Make_Private (Public_Value_In: <Type>_Public Composite &_'rype);

pPrivate
type

<Type>_ Private_| Composite

<Type>_Public l Composite | Type;

end <Type> Private_| Composite | Typecaster;

Type is new

Figure 7-13: Private Composite Specification PDL

100

CMU/SEI-89-TR-12

package <Type> Private_| Composite | Typecaster body is

function Is_Consistent (Value_In: <Type> Private_| Composite | Type)

return Boolean is
begin
The inter-element dependencies of the composite type are checked
here. If an inconsistency is found false is returned, otherwise true is
returned.

end Is_Consistent;

function Make_ Public (Private Value_In : <Type> Private_| Composite | Type)
return <Type>_ Public_| Composite l_'rype is
begin
return <Type>_ Public_| Composite | Type (Private Value_In);
end Make Public;

function Make Private (Public_Value In : in <Type> Public ‘Compoaite | Type)

return <Type> Private Type is

Private_Value : <Type>_ Private {Compoeite | Type;
begin ‘
Private_Value := <Type> Private_| Composite | Type (Public_Value_In);

if Is_Consistent (Private Value) then
return Private_Value;
else
raise Constraint_ Error;
end if;
end Make Private;

end <Type>_Private_| Composite l_'.l‘ypecasf.er :

Figure 7-14: Private Composite Body PDL

CMU/SEI-89-TR-12 101

with <Type> ‘ Composite Frypccaster ;

with Unchecked Conversion;
with Casting_Coumon_Types;
with Text IO;

procedure <Type> iCompocite | Typecaster_Test is

N : integer := ?7?; -- number of test cases

type Test_Case_Type is

record
Test_Image : <Type>_| Composite | Typecaster.Symbolic Image;
Valid : Boolean;

end record;

Test_Cases : array(l. .N) of Test_Case Type :=
(1=> (Test_Image => "?°?",
Valid = ?2?7),

N=> (Test_Image => "?2",
Valid => ??));
begin

-=- Canned Testing Loop
for I in Test_Cases'First .. Test Cases’Last loop

-- Symbolic Image Testing

begin
-=- start symbolic image testing with the test symbolic image
Check_SI := <Type>_Typecaster.Check (Test_Cases (I).Test_Image);
Test_Value SI := <Type> Typecaster.Value (Test_Cases (I).Test_Image);
Test_SI := <Type> Typecaster.Image(Test_Value_SI);

-= if symbolic image we started with is not what we have now, FAIL
if Test_SI /= Test Cases(I).Test_Image then

raise Unknown_Symbolic_Failure;
end if;

exception
when Constraint_ Error =>
if Teat_Cases (I).Valid then
Notify tester a valid test case has failed in symbolic image testing
Show tester Test_Cases (I) .Test_Image that failed
Show tester validity indicator Check_sSI
end if;
when Unknown_Symbolic_ Failure =>
Notify tester an unknown failure has occurred in symbolic image testing
Show tester Test_Cases (I) .Test_Image that failed
end;

Figure 7-15: Composite Typecaster Template, Test PDL for Symbolic Images

102 CMU/SEI-89-TR-12

-- Natural Image Testing
begin .
-~ start natural image testing with value from symbolic image testing
Test NI := <Type> Typecaster.Image (Test_ Value SI);

Check NI := <Type>_Typecaster. Check (Test_ NI):

Test_Value NI := <Type> Typecaster.Value(Test NI);

-= if value we started with is not what we have now, FAIL
if Test_Value NI /= Test Value_SI then

raise Unknown_ Natural Failure;
end if;

exception
when Constraint Error =>
if Test_ Cases(I).Valid then
Notify tester a valid test case has failed in natural image testing
Show tester Test Cases (I).Test_Image that failed
Show tester validity indicator Check NI
end if;)
when Unknown Natural Failure =>
Notify tester an unknown failure has occurred in natural image testing
Show tester Test Cases(I).Test Image that failed
end;
end loop;

if Errors occurred then

Notify tester canned testing completed unsuccessfully
else

Notify tester canned testing completed successfully
end if;

end <Type> | Composgite | Typecaster_Test;

Figure 7-16: Composite Typecaster Template, Test PDL for Natural Images

CMU/SEI-89-TR-12 103

A —————

7.3. EXR TV Model Solution

The EXR TV model provides the functionality described in Chapter 4. In this section the
acronym ICD (i.e., Interface Control Document) is used in the same context as EXR
descriptions. An ICD contains textual EXR descriptions, and ICD formatted messages are
EXRs.

7.3.1. Foundation Utilities: Field_Utilities Package
The Field_Utilities package provides the capability to convert between an EXR and a UNR of
a field (of a message). The following functionality is provided:

» Extract a character or bit-based field from an EXR, based upon the EXR
description, and insert it into a UNR.

» Extract an element from a UNR and insert it into a character or bit-based field
in an EXR, based upon an EXR description.

» Convert from an EXR ordering of information to a UNR ordering of information.,
¢ Convert from a UNR ordering of information to an EXR ordering of information.

e Check an EXR at the indicated position for a specified separator based on an
EXR description.

» Check an EXR at the indicated position for an end-of-message indicator.

The procedure Extract_Field_Image_From_ICD provides the capability to extract
character-based or bit-based fields from EXRs and insert them into UNRs. This is
accomplished by slicing the field out of the appropriate positions of the EXR based upon the
EXR description of the field, and inserting it into the appropriate elemental slice of the UNR
based upon the UNR description.

The procedure Insert_Field_Image_Into_ ICD provides the capability to extract
character-based or bit-based elements from UNRs and insert them into EXRs. This is
accomplished by slicing the elemental symbolic image out of the UNR, based on the UNR
description, and inserting it into the appropriate field positions of the EXR, based upon the
EXR description of the field.

The procedure Put_Array_Image_In_Element_Order provides the capability to rearrange
selected fields in a symbolic image from a field-ordered to an element-ordered orientation.
The procedure is passed the symbolic image in field-order, the number of elements in each
field, and the size of the elements in each field. The reordering is accomplished in two loops.
An inner loop extracts, one at a time, an elemental image from each field in the symbolic
image and inserts it into an element-ordered symbolic image. The outer loop iterates until
all of the field-ordered elements have been extracted and placed in the element-ordered
symbolic image.

The procedure Put_Array_Image_In_Field_Order provides the capability to rearrange
selected fields in a symbolic image from an element-ordered to a field-ordered orientation.
The procedure is passed the symbolic image in elemental-order, the number of elements in

104 CMU/SEI-89-TR-12

each field, and the size of the elements in each field. The reordering is accomplished in two
loops. An inner loop extracts one at a time an elemental image for each field in the symbolic
image and inserts it into a field-ordered symbolic image. The outer loop iterates until all of
the element-ordered elements have been extracted and placed in the field-ordered symbolic
image.

The function Separator_Is_In_Position checks an EXR at the indicated position for a
specified separator based on an EXR description.

The function EO_Text_Is_Valid checks an EXR at the indicated position for a specified
separator based on an EXR description. It checks to see if the end of the EXR has been
reached and also checks if the indicated Eo_Text marker for the EXR is at the indicated
position.

7.3.2. Foundation Utilities: ICD_Utilities Generic Package
The ICD_Utilities generic package provides the capability to convert between an EXR and a
UNR of a message. The following functionality is provided:

¢ Construct an EXR of a message from a UNR.

o Construct a UNR of a message from an EXR while checking the EXR for
syntactic validity based on the EXR description.

¢ Check an EXR of a message for validity based upon the EXR description.

The function Construct_ICD constructs an EXR from a UNR (symbolic image). This is
accomplished by making any necessary cuts to the UNR and then inserting the UNR of each
field into the EXR one at a time based upon the EXR and UNR descriptions. After all of the
fields have been inserted into the EXR, an end-of-text marker i= added.

The function Extract_Universal_Image constructs the UNR (symbolic image) from an EXR.
This is accomplished by extracting each field one at a time from the EXR and inserting it
into a UNR based on the EXR and UNR descriptions. Once the last field has been extracted,
and if the the end of the EXR has been reached, then any necessary cuts are performed. If
end of text has not been reached, then a Constraint_Error is explicitly raised.

The procedure Check_ICD checks an EXR to see if it is syntactically valid based on the EXR
description stored in Fields. This is accomplished by calling the Extract_Universal_Image
function. If the UNR is extracted from the EXR with no problems, then it is valid. If,
however, a Constraint_Error is raised, then each field of the EXR is reprocessed individually
until the invalid field in the EXR is located. A pointer indicating where the bad field is
located represents the validity indicator and is returned.

CMU/SEI-89-TR-12 106

7.3.3. Building Block: Message_ICD Template

This is the building block for the EXR Translation and Validation model solution. The
Message_ICD template contains an Ada package specification and body based upon the EXR
Translation and Validation model! described in Chapter 4, and a test procedure for testing
instances of the Message_ICD template.

The Ada code for the message ICD template is shown in Appendix Section C.5.

The Message_ICD template provides a mapping between the EXRs and UNRs of a message.
The Message_ICD template exists for a number of reasons:

¢ To facilitate the generation of code to convert between EXRs and UNRs.

¢ To aid the designers in codifying the EXR of a message in a form expected by the
model solution.

» To facilitate the testing of instances of the Message_ICD template.

Two example instances of the Message ICD template exist. These are the
FooBar_Message_ICD, found in Appendix Section D.3.1 and the FooBar_Bit_Message_ICD,
found in Appendix Section D.3.2.

Figure 7-17 shows the <Msg_Id>_ICD Ada package specification template PDL. Figure 7-18
shows the <Msg_Id>_ICD Ada package body template PDL. These are two of three separate
code modules found in the Message_ICD template.

The <Msg_Id>_ICD packages provide the following abstract capabilities:
e Convert from an EXR to a UNR of a message.
o Convert from a UNR to an EXR of a message.
s Check an EXR for syntactic validity based upon the EXR description.
e An exception is raised if conversion from an EXR to UNR fails.
» Provide descriptions of the fields within the EXR of a message.
» Provide positions of the elements within the UNR of a message.

The abstractions make up the EXR TV model described in Chapter 4.

To instantiate the Message_ICD template, some information must be provided. The first is
the name of the message. This is used to name the package, <Msg_Id>_ICD. The next piece
of information is names of the fields, <NI>..<Nn>, taken from textual EXR description,
followed by the width of the symbolic image, <Symbolic_Image_Width>. Last is the number
of cuts, Number_Of_Cuts, that need to be performed on a message.

The Symbolic_Image_Width is defined as an integer constant. Its value is based on the
textual EXR description of the message, with all of the separators stripped out.
Symbolic_Image (UNR) is the type used to hold a symbolic image and is defined as an array
of bytes of length Symbolic_Image_Width. The type that defines an array of bytes comes
from CCT.Byte_Array.

108 CMU/SEI-89-TR-12

S GBS O N 0 = G e

EXRs are stored using the CCT.Icd_Message_Type type. CCT.Icd_Message_Type is a record
that consists of a string for holding the EXR of the message and an integer for holding the
message length.

The EXR description is captured formally in Fields. Fields i8 of type
Icd_Util.Description_Array and consists of an array of records, each of which describes one
field. Fields is indexed by the field names that are enumerated in the Field_Names type,
given by <NI1>..<Nn>. The symbolic image description (UNR description) is also captured
formally in Fields. This description is based on the EXR description, where punctuation has
been stripped out and varying length fields padded to their maximum width.

Eo_Text is defined as a constant of type CCT.Little_String_Type, and represents the
end-of-text marker for an EXR of a message. Some predefined values can be found in CCT.

Cuts is defined as a variable of type ICD_Util.Cut_Array, and it holds the starting and
stopping positions of the cuts that need to be made to a message. The information for
defining Cuts is obtained by examining the textual EXR description and the INR selected.

The function Construct_Icd provides the capability to convert from a symbolic image to an
EXR. The basic underlying algorithm is to first perform any cuts that need to be made to the
element-ordered symbolic image. After the cuts have been made, the elements are then
extracted from the field-ordered symbolic image and inserted into the EXR one at a time.
After all the elements have been inserted into the message, the end-of-text marker is added
to the end of the message and the EXR is returned.

The function Extract_Universal_Image provides the capability to convert from an EXR to a
symbolic image. The basic underlying algorithm is to extract the fields from the EXR and
insert them into a field-ordered symbolic image. When the current field being processed can
be the last field and the end-of-text marker is found, then any cuts that need to be done are
performed. Following the completion of the cuts the element-ordered symbolic image is
returned.

The procedure Check_Icd provides the capability to check an EXR for syntactic validity based
upon the EXK description in Fields. The basic underlying algorithm is to pass the EXR to
the Extract_Universal_Image to check if a symbolic image can be extracted from it. If the
EXR does not contain a valid symbolic image, a Constraint_Error is trapped and the EXR is
parsed to find the position in the message where the error occurs. The status of the message
and the position where the message goes bad are reported back by the procedure.

Figure 7-19 shows the PDL for the <Msg_Id>_ICD_Test procedure. This i the third of three
separate code modules found in the Message_ICD template. The I/O portions of the code that
deal with notifying the tester of some error with the test are bolded.

The test procedure, <Msg Id>_ICD_Test, tests the instance of the <Msg_Id>_ICD package
generated during template instantiation. It uses predefined test cases based on EXRs
specified by the detailed designer when the instance of the template was created. The

CMU/SEI-89-TR-12 107

detailed designer also specifies whether each EXR test case is valid or invalid, and if invalid,
also specifies the position where the message is invalid, so that the test routine can
determine if the expected results were obtained. The entire range of functionality provided
by the EXR TV for the message is tested based on the EXR test cases. This type of testing is
considered canned testing.

The following steps are performed for canned testing:
1. Apply Check_ICD procedure to predefined test EXR, i.e., check the EXR for
validity.
2.If Check_ICD procedure reports the validity as not equal to the specified
validity of the test case, or if the test case is invalid and the specified bad

position is not equal to the returned bad position, then notify the tester of EXR
test case failure.

3. Apply the Extract_Universal_Image function to predefined test EXR, i.e.,
convert the EXR to a symbolic image.

4. If Extract_Universal_Image function raises a constraint error then notify the
tester of EXR test case failure.

5. Apply the Construct_ICD function to the symbolic image from Step 3, i.e.,
convert the symbolic image to an EXR.

6. If the resulting EXR is not equal to the original EXR test case, then notify the
tester of EXR test case failure,

This form of canned testing allows testing based on a valid or invalid EXR. The specification
of the validity of each individual test case allows the test procedure to pass even though the
EXR TV may fail because of an invalid test case.

These templates are used by the detailed designer to build an instance of the EXR TV model
solution for a particular message. The implementation the template provides must be
understood when modifications or enhancements to the model solution are necessary.

108 CMU/SEI-89-TR-12

& N B O O &N . E aE Eae

with Casting Common_Types;
with ICD Utilities;

pa:kage <Msg Id> ICD is
piickage Cct renames Casting Common Types;
S_mboli. Image Width : constant Integer := <Symbolic_Image Width>;

~=- Names of the fields
type Field Names is (<N1>, <N2>, ...):;

Number Of Cuts : constant Integer := <Number Of Cuts>;

-- To obtain operations to convert between the UNR (symbolic image)
~- and the EXR (ICD format) of a message.
package ICD_Util is new ICD_Utilities(

Symbolic_Image Width => Symbolic_Image Width,

Field Names => Field Names,

Number Of Cuts => Number Of Cuts);

subtype Symbolic_ Image is ICD_Util.Symbolic_Image;

-=- End of text marker.
Eo_Text : constant Cct.Little_String Type := CCT.<EOT>;

Fields : ICD _Util.Description_ Array := rBased on the textual EXR description ;

-- Pointers to the cut positions for the ICD message

Based on info given in the textual EXR
Cuts : ICD_Util.Cut_Array := |description and the INR description |

-- Functions for converting between a UNR (symbolic image) and
-- an EXR (ICD formatted message).
-= Also a procedure for checking the wvalidity or an EXR.
function Construct_ICD (Universal Image : in Symbolic_Image)
return Cct.lcd Messz ye Type;
function Extract_Universal Image (Icd : in Cct.Icd Message Type)
return Symbolic_Image;
procedure Check Icd(Icd : in Cct.Icd Message Type;
Icd Id Ok : out Boolean;
Bad_Position : out Integer);

pragma inline (Construct_Icd, Extract_Universal Image);

end <Msg_Id> ICD;

Figure 7-17: Message ICD Template Package Spec PDL

CMU/SEI-89-TR-12 109

package body <Msg_ Id> ICD is

function Construct_Icd (Universal Image : in Symbolic_Image)
return Cct.Icd Message Type is
begin
return ICD Util.Construct_ Iecd (
Universal Image => Universal Image,
Fields => rields,
Cuts => Cuts,
Eo_Text => Eo_Text);
end Construct_Icd;

function Extract_Universal Image (Icd : in Cct.Icd Message Type)

return Symbolic Image is
begin
return ICD_Util.Extract_Universal Image (
Ied => Icd,
Fields => Fields,
Cuts => Cuts,
Eo_Text => Eo_Text):
end Extract_Universal Image;

procedure Check_Icd (Icd : Cct.Icd Message_Type;
Icd Is Ok : out Boolean;
Bad_Position : out Integer) is
begin
ICD_Util.Check_Icd (
Iecd => Icd,
Fields => Fields,
Cuts => Cuts,
Eo_Text => Eo_Text,
Icd Is_Ok => ch_Is_pk,
Bad Position => Bad_Position);
end Check_Icd;

begin
ICD_Util.Initialize(rields, Cuts, Symbolic_Image_ Width);

end <Msg_ Id> ICD;

Figure 7-18: Message ICD Template Package Body PDL

110 CMU/SEI-89-TR-12

with <Msg Id> Icd;
with Text_ Io;
with Casting Commuon Types;
with Unchecked Conversion;
Procedure <Msg_Id>_ Icd Test is
package Cct renames Casting Common Types;
package Byte_Io is new Text lo.Integer_ Io(Cct.Byte):

type Test_ Case_ Type is record

Test_Icd : Cct.Icd Message Type;
Bad_Position: Integer;
valid : Boolean;

end record;

N : Integer := <Number Of Test_Cases>;
Test_Cases : array (1..N) of Test_Case Type := | Test case descriptions];

begin
~=- Canned Testing Loop: loop through test cases
for I in Test_Cases’'First .. Test_Cases’Last loop
begin
<Msg_Id> Icd.Check Icd(Test_Cases(I).Test Icd,
Resulting Check,
Position Pointer);

If Test Case(I).Valid /= Resulting Check then
raise Unknown Error;
elsif not Test_ Cases(I).Valid then
if Test_Cases (I).Bad Position /= Position_Pointer then
raise Unknown_ Error;
end if;
else
Test_UI := <Msg_Id> Icd.Extract Universal Image(
Test_Cases (I) .Test_Icd);
Resulting Icd := <Msg_Id> Icd.Construct_Icd(Test UI):
if Resulting Icd /= Test_ Cases(I).Test_Icd then
raise Unknown Failure;
end if;
end if;

exception
when Unknown Erroxr =>
if Test Cases(I).Valid then
Notify tester a valid test case has failed
Show tester Test Cases (I).Test_Icd that failed
end if;
when others =>
Notify tester a test case bas failed and for an unknown reason
Show tester Test Cases (I) .Test_Icd that failed
end;
end loop;
end <Msg_Id> Icd Test;

Figure 7-19: Message ICD Template Test PDL

CMU/SEI-89-TR-12 111

o

CMU/SEI-89-TR-12

112

8. MTV Model Solution Adaptation Description

This chapter discusses issues related to enhancing or modifying the MTV model solution.
Three classes of modifications are addressed:

e Section 8.1 addresses whole-scale replacement of either the EXR TV or the
Typecaster model solution.

¢ Section 8.2 addresses enhancement and extension of either the EXR TV or the
Typecaster model solution.

¢ Section 8.3 addresses alternative software architectures (i.e., reorganization of
component parts) for the Typecaster model solution.

This chapter is targeted for the maintainer and model adapter. It is expected that the
maintainer and adapter have read Chapters 1 through 7, thus sufficiently understanding:

e what concepts are embodied in and provided by the model
¢ how to apply the model solution
¢ how the model is implemented

8.1. Replacing Whole Parts of the MTV Model Solution

It is important to remember that the MTV model solution consists of two parts:
1. the EXR TV model
2. the Typecaster model

These two models share a common interface, the UNR. Because of this common interface,
either model solution can be replaced with another solution as long as the interface stays the
same.

Therefore, if a table-driven parsing approach is better suited to the EXRs found in a message
set or the table-driven approach shows better performance based upon the message set, then
the EXR TV model solution could be replaced with a table-driven solution provided the
table-driven solution can supply UNRs to the Typecaster model solution.

CMU/SEI-89-TR-12 113

8.2. Enhancement and Extension of the MTV Model
Solution

The following are suggested enhencements and extensions to each of the two major parts of
the MTV model solution: the EXR TV model solution and the Typecaster model solution.
Extensions to the model solution are modifications made to enlarge the scope of applicability
of the model solution. The modifications usually entail adding new components (generics
and/or templates) in a style compatible with existing components. The components are
added to increase the scope of applicability of the model solution, thus enabling it to be used
to translate and validate messages that the original solution could not. Enhancements to the
model solution are modifications made to improve the performance of the model solution.
The modifications usually entail modifying the algorithms or the interface to access the
functionality provided. @ The algorithms or interface are changed to increase the
attractiveness of the model solution. Examples of why these changes might be made include:
increased speed, decreased size, increased usability and understandability, etc.

8.2.1. EXR TV Model Solution

If new field types are found in a message set that cannot be defined using the
CCT.Field_Description_Type, and thus the field cannot be described by the instantiator of
the Msg ICD template, modifications to the types used to define the elements in the
CCT.Field_Description_Type may be necessary. These type definitions are also found in CCT
and they include Base_Type, Field_Types, Odd_Description, etc. There may also be the need
to add new elements to the CCT. Field_Description_Type. Any of these modifications also
require modification of the ICD_Utilities generic package, and possibly the Field_Ultilities
package. These are packages where parsing decisions are made based on the description of
the field.

Another issue pertaining to the EXR TV model solution that was mentioned in a previous
chapter is the fact that the only reordering of information from the EXR format to the order
defined by the INR is via cutting. If the ordering constraint is not acceptable, then another
type of information movement can be specified and added to the solution. This would involve
moving information from an EXR order to an INR order. The mapping could be specified by
placing the field names in an array in the desired INR order, similar to the way Cuts is
defined, and would require modifying the parsing algorithm in the ICD_Utilities generic
package to initiate the move similar to the way cutting is initiated. The utilities for
performing movement would be added to the Field_Utilities package, as are the utilities for
performing cutting.

114 CMU/SEI-89-TR-12

8.2.2. Typecaster Model Solution
The enhancements and extensions for discrete and composite typecasters are discussed
separately below.

8.2.2.1. Discrete Typzcasters

The two issues of extension and enhancement are discussed for the discrete typecasters. The
first issue deals with why a developer would want to extend the discrete typecaster portion of
the solution and some suggestions on how to extend it. The second issue deals with general
enhancements to the discrete portion of the Typecaster model solution.

If conversion requirements exist between the types of fields in the message (EXR) and the
desired scalar Ada types (INR) that are not handled by the solution as is shown in Figure
6-8, then new discrete typecaster generics and the corresponding discrete typecaster
templates need to be developed. This should be done to allow the Typecaster model solution
to be applicable to a wider variety of EXR and INR relationships. For example, if a message
set has fields that represent fixed point numbers, then a Fixed_Point_Typecaster generic
package and template must be generated. This example is used to describe the modification
process.

The interface provided by all discrete typecasters is the same. How the interface is
implemented is what changes from one discrete typecaster generic to the next. Section 7.2.1
(specifically Figures 7-2 and 7-3) describes the portions of the discrete typecaster generics
that are different from generic to generic and need to be customized based on the type and
the mapping information. The following is a high-level description of the steps that must be
taken to add a new discrete typecaster generic:

1. Start by making a copy of an existing discrete typecaster generic (e.g., the
Enumeration_Typecaster) and rename it Fixed_Point_Typecaster.

2. Modify the generic formal parameter to capture the possible range of fixed-point
types and the types and/or objects needed to perform the mapping between
symbolic images and values. That is, the INR and UNR should be defined.

3. Preserve the generic package specification interface with an exception for how
the length of the symbolic image is determined.

4. Modify the bodies of the functions for converting between symbolic images and
values to reflect the mapping functions chosen.

5. Preserve the bodies of the functions for converting between natural images and
values since these are based upon the Ada "Image and 'Value functions.

Next, the model adapter needs to create a new template that instantiates the new
Fixed_Point_Typecaster generic package. Section 7.2.2 (specifically Figures 7-5, 7-6, and 7-7)
describes the portions of the discrete typecaster templates that are different from one
discrete typecaster template to the next, and need to be customized based on the tvpe and
mapping information. The following is a high-level description of the steps that must be
taken to add a new discrete typecaster template:

1. Start with an existing discrete typecaster template (e.g., the Enumeration
Typecaster Template) and rename it.

CMU/SEI-89-TR-12 115

2. Define placeholders based upon the generic formal parameters needed by the
generic at instantiation time. These placeholders provide an interface for
instantiating the generic and thus specify the Ada type and the mapping
between values and symbolic images. Placeholders are inserted into the
package specification at the appropriate places and the remainder of the
package specification stays the same.

3. Distribute placeholders throughout the test procedure. This mainly involves
adding code to instantiate a different I/O package for performing I/O operations
on the Ada type defined.

4. Test the new typecaster thoroughly before release for use.

The second issue deals with a general enhancement to all discrete typecasters that allows
greater flexibility for specifying the natural images.

The Ada language supplies the Tmage and 'Value functions for converting between strings
and Ada values. The MTV model solution uses these functions, by default, as the mapping
functions for natural images. The authors assumed that the implementors of C3I systems
would specify the discrete Ada types (INR) in a more natural fashion, (i.e.,, using more
meaningful names) than is represented in the EXR. For example, the Direction field of the
Foobar message is represented in the EXR by the symbolic images N, E, S, and W, whereas it
is represented in the INR by the Ada type:
type Direction_Type is (North, South, East, West).

Therefore, the solution assumes that the INR specified by the developer and mapping
function chosen by the solution for natural images (i.e., USR) is appropriate.

If this is not the case, then there is a need to specify a mapping function for conversion
between natural images and Ada values. The mapping can be achieved in a manner similar
to the way the mapping between symbolic images and Ada values is achieved. Modifications
to all discrete typecaster generic packages and templates would be necessary. This also
raises alternative packaging considerations that are discussed in Section 8.3.

8.2.2.2. Composite Typecasters

The two issues of extension and enhancement are discussed for the composite typecasters.
The first issue deals with why a developer would want to extend the composite typecaster
portion of the solution and some suggestions on how to extend it. The second issue deals
with general enhancements to the composite portion of the Typecaster model solution.

If a new logical grouping of fields in a message (EXR) is desired that is not currently
available with the existing composite typecasters, then new composite typecaster templates
need to be developed. This should be done to allow the Typecaster model solution to be
applicable to a wider variety of logical groupings of information.

The interface provided by all composite typecasters is exactly the same. How the interface is
implemented is what changes from one composite typecaster to the next. Section 7.2.3
(specifically Figures 7-9, 7-10, 7-11, 7-12, 7-15, and 7-16) describes the portions of the
composite typecasters that are variable and need to be customized based on a new logical
grouping.

116 CMU/SEI-89-TR-12

An example of a general enhancement to the composite portion of the Typecaster model
solution would be to simplify the access to elements within the symbolic images and natural
images. Currently, the developer must wuse the position arrays,
The_Symbolic_Image_Positions and The_Natural_Image_Positions, and the name of the
element defined in the enumeration type, <Type>_Element_Names, to obtain the slice of the
symbolic or natural image in which the element resides. For example, to obtain the natural
image of the reporting location from the natural image of the Foobar message, the following
command is issued:

Rep Loc NI :=

FooBar NI (The Natural Image Positions (Reporting lLocation) .Start..
The_Natural Image Positions (Reporting Location) .Stop);

This can be tedious if done often, so enhancing the composite portion of the Typecaster model
solution to include the procedures Get_Element, Set_Element, and Element Length may be
desirable. This would result in the following code for accessing a natural image element.:

Rep_Loc NI := Get_ Element (FooBar NI, Reporting Location);

Also note that the same function can be used to access the validity indicator corresponding to
the natural image element:

Rep_Loc VI := Get_ Element (FooBar_ VI, Reporting Location);

If this enhancement of the Typecaster model is desirable, all composite typecasters must be
modified, but the modifications are the same for all:

1. Add the functions Get_Element, Set_Element, and Element_Length to the
composite typecaster package specifications.

2. Move the position arrays, The_Symbolic_Image_Positions and
The_Natural_Image_Positions to the composite typecaster package bodies to
account for the new procedural interface added above and thus to hide the
slicing concept.

3. Add the implementations of the functions Get_Element, Set_Element, and
Element_Length to the package bodies. These implementations should use the
position arrays.

4. Modify the test procedures to include testing of the new functionality.

CMU/SEI-89-TR-12 117

8.3. Alternative Packaging Strategies

Based on feedback from reviewers and users of the MTV model solution, some discussion on
other packaging strategies is in order. These strategies affect only the Typecaster model
solution. The changes focus on the best way to either package the use of the foundation
utilities, or package the functionality found in the foundation utilities. That is, the generics
do not change, but how the templates group instances of generics and other templates does
change. Each packaging strategy is shown graphically in figures based on a portion of the
FooBar message. The figures show the software architecture that will result if the new
packaging strategy is applied. Figure 6-13 shows the current software architecture of the
FooBar message and can be used as a point of reference.

8.3.1. Packaging Strategy #1: Removing Types from Typecasters

The first packaging strategy is based upon removing the Ada types and mapping information
from the typecaster packages. There are two possible approaches:
1. Move the type declarations (INR) and mapping information (UNR <--> INR)

from the typecaster packages into individual packages, one package for each
type declaration and its corresponding mapping information. See Figure 8-1.

2. Move all type declarations and mapping information for a particular message
from the typecaster packages into a single package. See Figure 8-2.

Both approaches allow other portions of the application to access the types without accessing
the typecaster functionality. The first approach has the advantage of allowing other
operations on the type to be defined and located in the package with the type, e.g., an
imaginary arithmetic type may have some operations defined for imaginary arithmetic. The
second approach has the advantage of having all types and mapping information about the
message being present in a single place. This may make comprehension of the message
specification easier.

Either approach would require modification of the typecaster templates to handle this
packaging approach. The discrete typecaster generic templates would be reduced to a
generic instantiation and test procedure since the only reason for the package specification in
the past was to hold the type and mapping information. In both the discrete and composite
typecaster templates, new placeholders must be defined that will specify the name of the
package where the type and mapping reside.

118 CMU/SEI-89-TR-12

ooBar_Message_Private_Record _TQ *{FooBar M Tyoe
r (Private Record TCT) ooBar_Messsge_Typ

_ {Record

Jullan_Date_Time_Record_TC

TCTN

Minute_TC
Integer TCT

Jullan_Day_TC
(Integer TC

N

Jutian_Date_Time_Type

Minute_Type

Hour_TC

>

Julian_Day_Type

— Hour_Type

{Integer TCT)

h

Generic

integer_TC

String_Map_TC
Package Generlc Package

Enumeration_TC
Generic Package)

Mnh_On_lnlogor_ﬁ
(Generic Package)

Math_on_Enumeration_TC
(Generic Package)

integer_Bit_TC
(Generic Package)

Enumeration_BIt_TC
(Generic Packsge)

LEGEND

f

Ada typecaster packagosw
generated from lemplales

Ada packages containing
type definitions and

mapping information

Ada generic packages

Ada package dependency

= (itom a 1ail is dependent

upon ilem at head)

TC = Typecaster
L TCT = Typecaster TomplatoJ

Figure 8-1: Typecaster Type Declarations Moved to Individual Packages

CMU/SEI-89-TR-12

119

rooaar_llnugo_Privno_Rocord_TC
(Private Record TCT)

(Record TCT)

Julian_Date_Time_Record_TC

Minute_TC
Integer TC

Julian_Day_TC
{Integer TCT)

Hour_TC

(Integer TCT)

v

FooBar_Muugo_Typoi

integer_TC
Generic Package

Generic Package

String_Map_TC

Enumeration_TC
[{Generic Package

Math_On_integer_TC
(Generic Package)

Math_on_Enumeration_TC l

(Generic Packsge)

Integer_Bit_TC
(Generic Package)

LEGEND
r

generated from templates

Ada packages containing
type definitions and
mapping information

Ada generic packages

Ada package dependency
—-’ (item at tail is dependent

upon iem at head)

TC - Typecaster

Ada typecaster paekage)

_ TCT = Typecaster Template)

Enumeration_Bit_TC
(Generic Package

Figure 8-2: Typecaster Type Declarations Moved to a Single Package

120

CMU/SEI-89-TR-12

8.3.2. Packaging Strategy #2: Separating Typecaster Functionality
Removing the types and mappings from the typecaster packages also leads to a second
packaging strategy. This strategy separates the two sets of functionality provided by the
typecasters, symbolic image, and natural image into individual packages. See Figures 8-3
and 8-4. This strategy stems from the original concepts of the UNR TV model and USR TV
model described in Chapter 4. These two models were merged into the Typecaster model for
implementation reasons.

The advantage of separating the Typecaster model into two models is to allow the developer
to instantiate only that functionality that is needed. We have seen cases where only
symbolic images and Ada values for a message are needed by an application and other cases
where only the natural images and Ada values are needed. Because the separation forces
the types to be separate, as described above, another advantage is the availability of the
types to other parts of the application.

The disadvantage of separating the Typecaster models is an increase in the number of
packages needed to translate and validate a message by a factor of two to three, depending
upon which type and mapping packaging strategy is selected, i.e., type and mapping in the
typecasters, one package per type and mapping, or one package per message for all types and
mappings).

CMU/SEI-89-TR-12 121

. ______ S

o
-
D.m_uEE. mwiser0dhl = 3o) m.
loisededA] = o) m'w
Py
(peey e wey uodn 3
Juepuedep €| yie| 18 woj|) W—— ? 42
Aouepusedep abewoed epy .wo nMu
Yo (&
sebexoed oueueb epy m [
W.P
uonewsojur Buddews pe .m
pue suopiulep edA) o -
Burureiuoo seBeyoed epy m ‘5
£3
] U5 '
aﬂuwuhmﬂlwnﬂu.ﬂw u@.M.anr oy vurﬂ.ocaa ALTHNN 19803u) m A
sebayond Jespo0dA) B)
§ N id - L) B 8
aN3oa g .m
-
g%
- - -]
“usn~ edALTinoH |e AL UNNTINOK Mﬂ g
Al HSN 4noH / \ u.m
- - - a
_ - / - - <@ Aeg ueynp pe .m
hi usn Aeg usynr edA1 " Awg ueynr AL HNN Aeg =g
/ / a2
ﬂ @
AL dsn " einuin edA1 einuin | AL MNNTeInupN & W
/ i i ?
h - AL HNN piodey m.
Al ¥sSn pioaey pdA) "ew g "eieg T uRINCpg— - = ~uein |
[ow))~“e1eq uejnp 1 q .E:H:-o ueynp i
1006y ei18Ajid — — AL UNN pi0oey e1®A(id
M momom-Won.mnoou edA)L eBesseny 10go0jg—— “eBussey ivgooy
N
N
—t

ebexowg opsuepn
Al Hsn 1eBe)u)

AL HSN inoy

Al ¥sSn Aeg uejinr

joise20dA| =

(peoy e wey uvodn

Aouepuadep ebexoed epy

ﬂc_m_anh oisesedh, = 151)

eJ §

uepuadep €I |IE] 1B W 6)1) ——

sebeyoed oueuab epy

uopeunojul Buiddews

pue suoniujep edAy
Bujueiuoo sebeyoed epy

seyp)dws) wos pe)nseved

elexoeq opeusn)

Qms_u!. 10)5e20dA epy

1) AL HUNN18Be3u)

aN3937 4

sedA eBusseyy 18gooy

Al HSN Uy

AL HSN piodey
oswj} " ejeq uenr

ﬁ

ALl USN piodey e)8BA|Id
“ebussop 1wgoo4

AL HNN 1noYy

AL HNN AsQ ueqnp
Al UNN einun #

_ Al HNN piodey
owyl "e1eq us)ng

|

Al HNN piodey ejeAjig
“eBsesepyy svgooy

Splitting Typecaster Functionality and
Type Declarations Moved to a Single Package

Figure 8-4

123

CMU/SEI-89-TR-12

8.3.3. Packaging Strategy #3: Conglomeration of Typecasters

Finally, the third packaging strategy is based upon having one composite typecaster package
per message. The types and mappings for the elements of the message are declared in the
composite typecaster package for the message. All discrete typecaster generics are
instantiated in the package.

One advantage of this approach is that there is only one package per message, thus all
information regarding the Ada types and mapping information is in one place. The
understandability of this information regarding a message is probably increased for smaller
messages that might not have many logical groupings, but the authors suspect that the
understandability decreases as the messages become more complicated. Another advantage
that stems from the absence of composite-level template nesting is that this approach
provides a flatter software architecture, thus fewer procedure calls and potentially more
efficient code.

But the absence of composite-level template nesting also creates a disadvantage. The
message composite typecaster will have all types, mappings and generic instantiations
defined in the same package, thus making the code more complicated as the message size
grows since no logical groupings are possible. In summary, the abstraction mechanism
provided by Ada — composite types — is not being used. Also, the discrete type, mapping
information, and generic instantiation can still be made a template, but these templates
must be copied into the composite template on an as needed basis. This implies that the
simple process of instantiating templates has gotten more complicated and thus more prone
to specifier error. Other disadvantages include the loss of reuse of discrete typecaster
instances already created for fields that are common across many messages.

Finally, the other packaging strategies can also be developed using combinations of this third
strategy with the first two. These strategies will not be discussed.

124 CMU/SEI-88-TR-12

|

.

8.4. Model Adaptations Performed to Date

The following are enhancements and modifications to the MTV model solution that have
been made by various projects based on their requirements.

The initial version of the MTV model solution did not handle bit-based messages. Both parts
of the solution were extended to handle bit-based fields. This was a cooperative effort of the
authors and Granite Sentry Phase II personnel. The field description data structure in the
EXR TV model solution was updated to allow specification of bit-based fields and the
algorithms were modified to extract the bit-based fields, and place them into a UNR form.
Two new typecasters were added to the Typecaster model solution: Integer_Bit_Typecaster
and Enumeration_Bit_Typecaster. Also, Granite Sentry Phase II recently extended the EXR
parsing capabilities to better handle variable-length, character-based fields. These
modifications have all been incorporated into the MTV model solution.

Two new discrete typecasters have been created by Granite Sentry Phase II. The first,
Fixed_Point_Typecaster, handles conversions between strings representing fixed-point
numbers and Ada values of the Fixed_Point type. The second, String_Typecaster, handles
conversions between strings and Ada values of the String type. This typecaster allows
strings to pass through the typecasters, and validation is based on the presence of printable
characters.

Granite Sentry Phase II has also created extended versions of the composite record
typecaster to handle 20 element records and 32 elements records. This work was given to,
and performed by, technical writers, not programmers.

Finally, the Rapier program has chosen to change the packaging strategy to the third
packaging strategy listed above. Their analysis and evaluation is documented in a report
entitled "Typecaster Use Prototype Technical Report” by Djoef Woessner and Bill
Schmidt [Woessner 89].

CMU/SEI-89-TR-12 125

CMU/SEI-89-TR-12

126

I A A N EE W En W an @

9. Open Issues

This chapter discusses unresolved issues pertaining to the performance, limitations, testing,
automation, and building upon the MTV model solution.

9.1. Real-Time Performance

Performance statistics are available with all engineering models. But because of the
different hardware platforms combined with the different Ada compilers available for the
various hardware platforms, the general performance characteristics of the model solution
cannot be defined. Instead, this document provides timing performance characteristics of the
MTV model solution based upon the sample messages found in this document. These
performance measurements were taken on a MicroVAX II running Version 5.1 of the
VAX/VMS operating system and compiled under Version 1.5 of the VAX Ada compiler. A
description of these timing measurements is in Section 5.5.

The provided performance characteristics tell little about the performance of the model
solution on different hardware using a different Ada compiler, and applied to a specific
message set. But one can easily measure the performance characteristics of the solution.

1. Identify a small set of messages that are characteristic of those required to be
translated and validated.

2. Create the software for the reduced message set. Note that it is
straightforward to instantiate the software to translate and validate a message
using the templates available and following the steps described in Chapter 6.

3. Run the test procedures and use them as a basis for obtaining performance
information by adding the calls to obtain the time before and after the calls to
the typecaster functions.

The above steps allow measurement of the timing performance. Sizing performance (i.e., size
of the resulting object code) can also be examined. Page faults, memory size, and other
system parameters may also need to be examined. All results can then be extrapolated to
determine the performance estimates for the rest of the system.

CMU/SEI-89-TR-12 127

9.2. Limitations

The following programming constructs are used in the MTV model solution and are
considered implementation-dependent features of the Ada language. This is based upon
Chapter 13 of the Ada Language Reference Manual (Ada LRM),
ANSI/MIL-STD-1815A-1983 [Ada 83). Thus, their use in the solution will be briefly
discussed.

The length clause attribute ’size (Ada LRM, Section 13.2) is used to define a Byte as 8 bits
whose values are natural integers that can range from 0..255. It is also used to define a Bit,
with a size of one bit, whose values are Boolean.

type Byte is new Natural range 0..255;
for Byte’'size use 8;

type Bit is new Boolean;

for Bit’'size use 1;
These definitions are in the package Casting_Common_Types. They support the bit-based
EXR TV and typecasting algorithms.

The representation attribute 'size (Ada LRM, Section 13.7.2) is used to obtain the number of
bits allocated to the bit-based objects being translated and validated. It is also used to
determine how many bits are needed to hold bit-based objects. This attribute supports the
bit-based EXR TV and typecasting algorithms. The ’size attribute can be found in the
following packages:

o Casting_Common_Types (package specification)

» Integer_Bit_Typecaster (generic package specification and body)

s Enumeration_Bit_Typecaster (generic package specification and body)
o ICD_Utilities (generic package body)

o Field_Utilities (package body)

The unchecked programming function, Unchecked_Conversion, (Ada LRM, Section 13.10.2) is
used to convert between Byte and Character types. This was done to support the bit-based
EXR TV and typecasting algorithms that comprise the MTV model solution. This function is
used throughout the solution.

Running the MTV model solution on a Rational machine has been problematic because of the
use of the Unchecked_Conversion function for converting between an array of bytes and a
character string. The Rational machine does not store characters in 8-bit bytes. It optimizes
and stores them in a reduced format. The MTV model solution assumes that characters are
stored in 8-bit bytes.

Bytes were used instead of characters to allow the solution to support bit-based typecasting
of UNRs. Characters in Ada are defined as having an ASCII value between 0 and 127.
Using the Character type would have limited the solution to using only 7 of the 8 bits

128 CMU/SEI-89-TR-12

available for bit-based representations. Thus, bytes are used and character-based
typecasters, initially, convert from the bytes to characters.

9.3. Testing Philosophy

Although the inclusion of test drivers in each template is a step in the right direction, the
testing philosophy used leaves room for improvement. This section describes those areas
where improvement is needed.

9.3.1. Discrete Typecaster Testing

The interactive portions of the tests for discrete typecasters lead the tester through the
functions exported by the typecasters one at a time in a predefined order, first prompting for
a symbolic image, then a value, etc.24 If at any point the tester enters a bad test case (which
is the intended use of the interactive portion of testing) the predefined order is repeated from
the beginning. It would be more desirable to allow the tester to select the function to test.

All symbolic images (UNR) and natural images (USR) are, by definition, fixed-length. The
interactive portions of the tests for discrete typecasters give no indication of how long the
input string should be. This problem could easily be solved by informing the tester up front
of how many characters are expected for symbolic images or natural images. It could also be
solved graphically, by printing the troper number of dashes above the input prompt. For
example, the symbolic image for an hour value is two characters, so the prompt could lock
something like:

Enter Hour Symbolic_Image =>

Finally, the possibility of creating a generic test driver for all discrete typecasters has been
informally examined but a conclusion has not yet been reached. The advantage of having a
generic test driver becomes evident when the testing philosophy changes, as described above.
Currently, all test procedures in all templates would need to be changed, and test driver
consistency would be a manually enforced responsibility. If a generic were developed, the
test driver could be changed in one place, and the instantiation of the test driver in the
discrete templates would stay the same.

9.3.2. Composite Typecaster Testing

The canned testing of composite typecasters step through the functions exported by the
typecasters one at a time in a predefined order, testing each function based on the result of
the previous function.?’ Testing the first function is based on a predefined (at template
instantiation) symbolic image. If this symbolic image is bad, the natural image functions are
not tested correctly because they depend upon the symbolic image testing to produce a valid

USee Figure 7-7 for the PDL describing the discrete typecaster test.

25See Figures 7-15 and 7-16 for the PDL deacribing the composite typecaster test.

CMU/SEI-89-TR-12 129

Ada value. Therefore, it is impossible to test the natural image functions based upon an
invalid natural image. This approach should be changed to allow testing of invalid natural
images.

9.4. Building Upon the MTV Model Solution — User
Scenarios

The Typecaster model solution provides the UNR and USR of a message along with
descriptors that describe the format of the representation, i.e., pointers to the elements
within the UNR and USR. Also provided are the validity indicators that indicate whether
the UNR and USR are valid. The validity indicators are also described by the same
descriptors as the USR and UNR, i.e.,, pointers to the validity indicators for the elements
within the UNR and USR.

These descriptions support a user interface because the information provided by the MTV
model is in a form that can be manipulated by a user interface model. Also, the interface to
the MTV model is defined and stabilized.

Further user interface work (i.e., another model solution) is currently being investigated by
Granite Sentry Phase II. This solution will use the information provided by the MTV model
solution, along with the X-Toolkit interface, to automate the production of user interface
code. This will be done in a style similar to the MTV code to ensure consistency and support
automation.

9.5. Automated Code Generation

The MTV model solution is "automated.” That is, all that needs to be done to create software
to perform message translation and validation is select templates and do editor substitutions
based upon the EXR and INR. This process is described in Chapter 6.

One can certainly envision a tool that requires the user to specify the format of the EXR and
the desired INR. Based upon this information, the tool would select the appropriate
templates and create the software for translating and validating the message.

Changes in message formats would require changes in specifications of the EXR and/or INR,
and the code would be regenerated.

This approach is possible because a reliable, tested model solution exists. As other model
solutions become available, they can be added to a library and selected based on their
appropriateness to the C3I problem specified.

130 CMU/SEI-89-TR-12

References

(Ada 83]

[D’Ippolitol 89]

[D’Ippolito2 89]

[Goyden 89]

[GSSDP 89]

[Leel 88]

(Lee2 89]

[Lee3 88]

[Plinta 89]

ANSI.

American National Standard Reference Manual for the Ada Programming
Language.

American National Standards Institute, 1430 Broadway, New York, NY.
10018, 1983.

Richard S. D’Ippolito.
Using Models In Software Engineering.
In Proceedings Tri-Ada ‘89, pages 256-264. October, 1989.

Richard S. DIppolito and Charles P. Plinta.

Software Development Using Models.

In Proceedings Fifth International Workshop on Software Specification and
Design, pages 140-142. May, 1989.

Major Mike Goyden.
The Software Lifecycle With Ada: A Command and Control Application.
In Proceedings Tri-Ada ’89, pages 40-55. October, 1989,

CVG-2, CVG-M and CVG-S.
Software Development Plan for the Granite Sentry Phase II Project.
Technical Report GS-SDP-02, USAF ESD/AVSG, May, 1989.

Kenneth J. Lee, Michael S. Rissman, Richard DIppolito, Charles Plinta,

and Roger Van Scoy.

An OOD Paradigm for Flight Simulators, 2nd Edition.

Technical Report CMU/SEI-88-TR-30, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA. 15213, September 1988.

Kenneth J. Lee, Michael S. Rissman.

An Object-Oriented Solution Example: A Flight Simulator Electrical
System.

Technical Report CMU/SEI-89-TR-5, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA. 15213, February 1989.

Kenneth Lee, Charles Plinta, and Michael Rissman.
Application of Domain Specific Software Architectures.
Software Engineering Institute Technical Review :142-162, 1988,

Charles Plinta and Kenneth Lee.
A Model Solution for the C?I Domain.
In Proceedings Tri-Ada ’89, pages 56-67. October, 1989,

CMU/SEI-89-TR-12 131

[VanScoy 871

[Woessner 89]

Roger Van Scoy.

Prototype Real-Time Monitor: Executive Summary.

Technical Report CMU/SEI-87-TR-35, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA. 15213, November 1987.

Djoef Woessner and Bill Schmidt.

Typecaster Use Prototype Technical Report.

Technical Report M2SWAP55100, HA ASD/AFSC, Wright Patterson AFB,
Dayton, OH., June 1989,

132

CMU/SEI-89-TR-12

|- - - - '-' - - - -

Appendix A: Definitions

The following terms are defined for use in this report. We are not trying to define terms
gratuitously, but we need a common vocabulary for discussing the work. Terms in boldface
within the definitions are also defined. :
Bit String

A contiguous set of bytes where each byte is interpreted as a stream of bits.

Character String
A contiguous set of bytes where each byte is interpreted as an ASCII character.

Cut
The act of converting between a field-oriented format and an element-oriented format.
The field-oriented format is described by the external representation description
and the element-oriented format is that format in the universal represeggation that
is converted directly into an internal representation.

Designer
The person responsible for analyzing the user’s needs with the intent of generating
solutions (designs) from existing solutions (models).

Detailed Designer
The person responsible for transforming the design (i.e., models) into a detailed
specification that can be built by implemeniors.

Element
An Ada typed value in an internal representation that represents a piece of
information. An element may be of a discrete or composite type. There is at least one
element for each field in an external representation of 2 message.

EXR
External Representation.

External Representation
A string representation of a message. The format ir described by an external
representation description. The external representation is comprised of fields and
punctuation. The external representation can be represented as either character
strings and/or bit strings. External representations are received from (or sent to)
systems outside the C3I system being developed.

CMU/SEI-88-TR-12 133

External Representation Description
A textual description of the external representation format of a message. It defines
the size and location of the fields and punctuation. It also describes the information
found in the message and how to interpret the information. The external representation
description is defined outside the scope of the C3I system being developed and becomes
part of the requirements levied upon the system. For the Granite Sentry Program, the
document is the ICD.

Field
A string in an external representation that stands for a piece of information. Fields
may contain a single piece of data or several pieces of data. Fields that are represented
as character strings are said to be character-based fields. Character-based fields may
be variable length, including null length. Fields that are represented as bit strings are
said to be bit-based fields.

ICD
Interface Control Document.

Image
A string representing a value. There are two types of images: symbolic images and
natural images. Values are created from valid images by the typecasters. In
addition, the typecasters create valid images from values.

Implementor
The person responsible for building the system (coding) as per the detailed specifications
supplied by the detailed designer.

INR
Internal Representation.

Internal Representation
Ada typed values representing a message. The types are described by an internal
representation description. The internal representation is comprised of elements.
Internal representations of a message are used by the C3I system being developed.

Internal Representation Description
Ada type declarations needed to define an internal representation format of a
message. Each Ada type defines the type of an element. The internal representation
description (Ada type) is defined during system design.

Maintainer
The person responsible maintaining all aspects of the system (models, detailed
specification, code, etc.) after it has been delivered to the user.

Message
Pieces of related information.

Messages are a means of passing information from one system to another. For C°I
systems, the other systems that it must communicate with tend to be geographically
separated and are heterogeneous in nature.

The external format of the information is described by an external representation
description. The internal format of the information is described by an intermal
representation description. The information is represented as an external
representation, a universal representation, an internal representation, and a
user representation.

134 CMU/SEI-89-TR-12

N B A AN E aE I e W .

Model
To quote from Webster’s:

" ...a pattern of something to be made...

..-an example for imitation or emulation...

...a description or analogy used to help visualize something (as an atom) that
cannot be directly observed..."

Models are used by the designer to specify a solution to a problem (design).

Model Adapter
The person who enhance existing models that can not be used, as is, to solve a problem.
Enhancements can take the form of added functionality or better resource utilization.

MTV
Message Translation and Validation.

Natural Image
A character string equivalent of a value. A natural image is the character string
created by applying the Ada ’image (tick-image) attribute function directly to a value.
For example, for the Ada value North, the natural image would be be the character string
“North". The user representation of a message is a character string containing
natural images of each of the elements. Natural images are validated and converted
into values by typecasters. Typecasters also convert values into natural images.

Non-Real-Time
A system or part of a system whose operation is not considered real-time.

Placeholders
Replaceable snippets of code in templates that stand for Ada types, names, and values.
There are two types of placeholders:

1. The first is of the form <Type> or <First>, i.e., a phrase enclosed in brackets.
The entire phrase (including the brackets) must be replaced. For example,
<Type>_Type becomes Hour_Type for all instances of <Type>_Type in a file
when <Type> is replaced by "Hour".

2. The second form is the double question mark, ??, This form means that
some special action must be taken by the user. For example, this form is
used for those places in the code that the user needs to supply a function
body, supply test cases, or remove some lines from the template, e.g., the
instructions at the beginning of each template.

Punctuation
Character strings or bit strings that separate fields in an external representation.
For character-based fields, punctuation may be a single character, several characters, or

absent. End-of-message punctuation occurs at the end of some external
representations.
Real-Time

Pertaining to a system or part of a system whose operation can be characterized by the
following:

"When it is done is as important as what is done."26
String ‘
A contiguous set of bytes. Two types of strings exist for the message translation and
validation model, character strings and bit strings.

#%Quote from Robert Firth, Senior Member of the Technical Staff at the Software Engineering Institute.

CMU/SEI-89-TR-12 135

Symbeolic Image
A string containing a codification of information that represents a value. For example,
for the Ada value North, the symbolic image might be the character string "N”. The
universal representation of a message is a string containing symbolic images of each
of the fields. Symbolic images are validated and converted into values by typecasters.
Typecasters also convert values into s ymbolic images.

Template

A file containing an Ada package specification, package body, and test procedure. The
file contains placeholders for the name of the package, the Ada type used in the
template, and so on. The placeholders must be globally replaced with their appropriate
values using an editor. Global replacement of the placeholders affects the specification,
the body, and the test procedure. The template with the placeholders replaced is called
a typecaster. All templates contain instructions in the first few lines of the template.
The instruction lines are to be removed when the template has become a typecaster.

TV Translation and Validation.

Typecaster

A compilable package specification and package body. A typecaster is generated from a
template by substituting all placeholders with appropriate Ada types, names, or
values. A typecaster is specific for the Ada type that was used in its generation and
provides the capability to convert between symbolic images and values of that type.
The typecaster also provides a diagnostic routine for checking the validity of a symbolic
image. Any value outside the range of the Ada type causes the Ada runtime
environment to raise a Constraint_Error exception. It also provides the capability to
convert between natural images and values of that type, and provides a diagnostic
routine for checking the validity of a natural image.

Typecasting
The act of converting between an image (symbolic image or natural image) and a
value. The implementation of the typecasting operations mimics the Ada attribute
functions ’image (tick-image) and ’value (tick-value). The functions defined in the
typecasters for performing the typecasting operations are called Image and Value.

Universal Representation
An internal view of an external representation. The universal representation is a
fixed length string, containing a symbolic image for each field in the external
representation, with punctuation removed, variable length, null, and optional
character-based fields padded with blanks to their maximum length, and bit-based
fields expanded to multiples of byte lengths. The information is cut to match the
internal representation, if necessary.

UNR
Universal Representation.

User
The person whose job can be performed more effectively using the completed C3I system.

User Representation
A user-readable view of an internal representation. The user representation is a
fixed-length string, containing a natural image for each element of the internal
representation.

USR
User Representation.
Value

An Ada typed value representing an image. Values are created from valid images by
the typecasters. Typecasters also create valid images from values.

136 CMU/SEI-89-TR-12

Appendix B: Detailed Description of the Templates

This appendix is a reference manual for the MTV model solution, whose application was
described in Chapter 6. It describes all templates individually, in detail. This appendix is
for the detailed designer and implementor. For the duration of this appendix, they are
addressed as users of the templates.

The Ada code templates can be found in Appendix C.

B.1. Format of the Template Descriptions

The sections of this appendix describe the discrete typecaster templates, composite
typecaster templates, and ICD template. Each template description .ontains the following
information:

¢ capabilities provided by an instance of a typecaster template

e when to use a particular typecaster template

* how to generate an instance of a typecaster from a typecaster template
¢ how to use the generated typecaster

Before looking at the discrete and composite typecaster templates individually, the following
describes the above points in general for all typecaster templates.

Capabilities

Typecasters provide the capability to convert between strings representing
discrete/composite values (symbolic images) and discrete/composite Ada values.

Typecasters provide the capability to convert between character string images of a
discrete/composite value (natural images) and discrete/composite Ada values,

Typecasters provide the capability to check strings for symbolic image validity and
natural image validity.

The Ada type checking insures the validity of discrete/composite values.

CMU/SEI-89-TR-12 137

When to Use the Templates

The templates described in this appendix should be used when the detailed designers
wish to generate Ada software to translate and validate externally formatted bit-based
or character-based messages.

How to Generate an Instance of a Typecaster

Once the detailed designer decides which typecaster template to use, the template
must then be copied into an empty file and editor substitutions must be performed.
These substitutions are based on the placeholders found in the header comments at the
beginning of the template. Also, any special instructions, indicated by the ™"
placeholder, should be followed.

One test procedure is provided in 2ach template.

o For discrete typecasters the test procedure first does an exhaustive test on
the entire range of values and then allows interactive testing by prompting
for symbolic images, natural images and values.

o For composite typecasters the test procedure does testing based on a set of
canned test cases that are supplied before compilation.

All test procedures report on testing problems, e.g., unexpected results.
How to Use the Typecaster

Each typecaster package exports a set of types, constants and functions that support
the capabilities listed above. Sample uses are shown.

138 CMU/SEI-89-TR-12

B.2. Template Naming Conventions

It is critical that the user of these templates be aware of the naming conventions enforced by
the templates.

All typecasters are named via a substitution for the <Type> placeholder. A suffix is hard
coded into the templates. The name of the type to be cast, which is exported by the
typecaster, is handled similarly.

For example, for any character-based discrete typecaster, the name of the typecaster and the
type it exports will look like:

suffix provided suffix provided
| S P

i | I |
<Type>_Typecaster <Type>_Type

whereas for bit-based discrete typecasters, the name of the typecaster and the type it exports
will look like:
suffix provided suffix provided

! | I |
<Type> Bit_Typecaster <Type> Bit_Type

The composite typecasters and the type they export have different suffixes depending on the
composite type:
suffix provided suffix provided
! 1
] | | |

<Type>_ {composite}_ Typecaster <Type>_{composite}_ Type
where {composite} will be “Array” in the Array typecaster template, "Private_Record” in the
Private_Record typecaster template, and so on.

In all cases it is only necessary to substitute for the <Type> placeholder, e.g., replacing
<Type> with Hour results in

<Type>_Typecaster => Hour_ Typecaster
<Type>_Type => Hour_Type

It is also necessary to know the names of the elemental typecasters when generating a
composite typecaster. The names without the _Typecaster and _Type suffixes should be
specified. The suffixes are provided throughout the composite typecaster templates for each
elemental reference.

CMU/SEI-89-TR-12 139

B.3. Discrete Typecaster Templates

The discrete typecaster templates are the building blocks of the typecaster model solution.

The following is a list of the discrete typecaster templates:

1. Integer Typecaster Template

2. Integer_Bit Typecaster

3. Math_On_Integer Typecaster Template

4. Enumeration Typecaster Template

5. Enumeration_Bit Typecaster Template

6. Math_On_Enumeration Typecaster Template
7. String_Map Typecaster Template

All discrete typecaster templates are based upon the typecaster model described in Chapter
4. Figure 7-5 shows the incomplete Ada package specification that is representative of all

discrete typecaster templates.

Each discrete typecaster template is customized based upon the incomplete Ada package
specification shown in Figure 7-5. The customization entails specifying those portions of the

incomplete Ada package specification that are in | bold, italics and boxed

These

customizations are either in the form of compilabie Ada code or code template placeholders
that the detailed designer must specify when instantiating the template. The customizations
are specific to the typecaster operations provided by individual discrete typecaster templates.

140 CMU/SEI-89-TR-12

B.3.1. Integer Typecaster Template
The Integer Typecaster Template is shown in Appendix C.3.1 and resides in the file named

INTEGER TEMPLATE_.ADA

The name of a typecaster generated from the Integer typecaster template will result from
substitution of the placeholder <Type> as in

<Type>_Typecaster => Hour Typecaster

The name of the Integer type, generated in the Integer typecaster, will result from
substitution of the placeholder <Type> as in

<Type>_ Type => Hour Type

Capabilities

The generated package will provide the capability to convert between character strings
representing integers (symbolic images) and integer values (values) of a specified integer
range. The strings representing integers are zero padded and can be signed or unsigned. It
also provides the capability to check character strings for symbolic image validity. The Ada
type checking insures the validity of integer values.

The generated package will also provide the capability to convert between character strings
images of integers (natural images) and integer values (values) of a specified integer range.
It also provides the capability to check character strings for natural image validity.

When to Use the Template

Use this template to create a typecaster for casting between character-based symbolic images
and values of a specified integer range, and also for casting between character-based natural
images and values of a specified integer range.

It handles integers in the range <First>..<Last>. Type <Type>_Type will specify the integer
range for instantiating the Integer_Typecaster generic.

An implicit mapping between both the symbolic images and natural images, and the values
in the range specified by the type <Type>_Type must exist, e.g.,

subtype Hour Type is Integer range 0..23;

symbolic natural
image <=> value image <=> value
"00" <= 0 "0 <= 0
23" <=> 23 " 23" <=> 23
CMU/SEI-89-TR-12 141

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of an Integer typecaster from the
Integer typecaster template.

The following global placeholder substitutions need to be made:

* Replace the placeholder <Type> with the integer type, e.g., Hour. It is not
necessary to append _Type to the placeholder <Type>, the template contains
_Type in the correct places. See section B.2 for more details.

¢ Replace <First> with the starting value of the range of the integer type, e.g., "0".
» Replace <Last> with the ending value of the range of the integer type, e.g., "23".

o Replace <Is-Signed> with "True" if the symbolic image is signed, otherwise
replace it with "False".

One test procedure is provided in the template, <Type>_Typecaster_Test. The test procedure
first does an exhaustive test on the entire range of values for the type <Type>_Type. Then,
the procedure allows interactive testing by prompting for symbolic images, natural images
and values of integers.

Appendix D.1.3 shows an example instance (Hour_Typecaster) of the Integer typecaster
template.

How to Use the Typecaster

The Integer typecaster can be used by providing the following statements and declarations
within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

with <Type> Typecaster;

An_Integer : <Type>_Typecaster.<Type> Type;

Integer_ Symbolic_Image : <Type>_ Typecaster.Symbolic_Image:
Check_Symbolic_Image : <Type>_Typecaster.Symbolic_Image;
Integer Natural Image : <Type>_ Typecaster.Natural Image;
Check_ Natural Image : <Type>_Typecaster.Natural Image;

The functions available in the Integer typecaster are used as follows:
An_Integer := <Type> Typecaster.Value (Integer Symbolic Image);
Integer_ Symbolic_Image := <Type>_ Typecaster.Image (An_Integer):

Check_ Symbolic_ Image :=
<Type>_Typecaster.Check (Integer_ Symbolic_Image);

An_Integer := <Type>_ Typecaster.Value (Integer_ Natural Image);
Iptager Natural Image := <Type> Typecaster.Image (An_ Integer);

Check Natural Image :=
<Type>_Typecaster.Check (Integer_ Natural Image);

142 CMU/SEI-89-TR-12

N G & O N &N G G O =

B.3.2. Integer_Bit Typecaster Template
The Integer_Bit Typecaster Tomplate in shown in Appendix (C.3.2 and resides in the file

nameod

INTEGER RIT_TEKMPLATE_ .ADA

The name of a typecaster generated from the Integer_Bit typecaster template will result
from substitution of the placeholder <Type> aa in

<Type>_Bit Typecaster => Julian Day Bit Typecaster

The name of the Integer type, generated in the Integer_Bit typocantor, will result from
aubstitution of the placeholder <Type> as in

<Type>_Bit Type => Julian Day Bit_ Type

Capabilities

The generated package will provide the capability to convert between bit satrings
reprosenting integers (symbolic images) and integer values (values) of a specified integer
range. It also provides the capability to check bit strings for symbolic image validity. The
Ada type checking insures the validity of integer values.

The generated package will also provide the capability to convert between character atring
images of integers (natural images) and integer values (values) of a specified integer range.
It alao providen the capability to check character strings for natural image validity.

When to Use the Template

Use this template to create a typecaster for casting between bit-based symbolic images and
values of a specified integer range, and also for casting between character-based natural
images and values of a specified integer range.

It handles integers in the range <First>.<Last>. Type <Type> Bit_Type will specify the
integer range for instantiating the Integer_Bit_Typecaster generic.

An implicit mapping between both the symbolic images and natural images, and the values
in the range apecified by the type <Type>_Bit_Type must exist, e.g..2".

subtype Julian Day Bit Type is Integer range 1..366;

symbolic natural

image <=> value image <=> value
164014, 164008 <=> 1 " 1" <=> 1
16#6EH, 164014 <=> 366 " 366" <=> 366

""The aymbolic imaga is two bytes bacause it takes two bytes Lo represent a number from 1..368

CMU/SEI-89-TR-12 143

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of an Integer_Bit typecaster from the
Integer_Bit typecaster template. -

The following global placeholder substitutions need to be made:

¢ Replace the placeholder <Type> with the integer type, e.g., Julian_Day. It is not
necessary to append _Bit_Type to the placeholder <Type>, the template containe
_Bit_Type in the correct places. See Section B.2 for more details.

¢ Replace <First> with the starting value of the range of the integer type, e.g., "1".
¢ Replace <lLast> with the ending value of the range of the integer type, e.g., "366".

One test procedure is provided in the template, <Type>_Bit_Typecaster_Test. The test
procedure first does an exhaustive test on the entire range of values for the type
<Type>_Bit_Type. Then, the procedure allows interactive testing by prompting for symbolic
images, natural images and values of integers.

Appendix D.1.11 shows an example instance (Julian_Day_Bit_Typecaster) of the Integer_Bit
typecaster template.

How to Use the Typecaster

The Integer_Bit typecaster can be used by providing the following statements and
declarations within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

with <Type> Bit Typecaster;
An_Integer :@ <Type>_Bit_Typecaster.<Type>_Bit_Type:

Integer_ Symbolic Image : <Type> Bit_ Typecaster.Symbolic_Image;
Check_Symbolic_Image : <Type>_Bit_Typecaster.Symbolic_Image;

Integer Natural_ Image : <Type> Bit_ Typecaster.Natural_ Image;
Check_Natural_Image : <Type> Bit_Typecaster.Natural_ Image;

The functions available in the Integer_Bit typecaster are used as follows:
An_Integer := <Type> Bit Typecaster.Value (Integer_Symbolic_Image);
Integer_ Symbolic Image := <Type>_Bit_Typecaster.Image (An_ Integer);
Check_Symbolic_Image :=
<Type>_Bit_Typecaster.Check (Integer_Symbolic Image);
An_Integer := <Type> Bit Typecaster.Value (Integer_Natural_ Image);
Integer_ Natural Image := <Type> Bit_ Typecaster.Image (An Integer);

Check Natural Image :=
<Type>_Bit_Typecaster.Check (Integer_Natural Image);

144 CMU/SEI-89-TR-12

N A 0 Ey N BN O D N e

B.3.3. Math_On_Integer Typecaster Template
The Math_On_Integer Typecaster Template is shown in Appendix C.3.3 and resides in the
file named)

MATE_ON_INTEGER TEMPLATE_.ADA

The name of a typecaster generated from the Math_On_Integer typecaster template will
result from substitution of the placeholder <Type> as in

<Type>_Typecaster => Scaled Integer_ 100_500_Typecaster

The name of the Integer type, generated in the Math_On_Integer typecaster, will result from
substitution of the placeholder <Type> as in

<Type>_Type => Scaled Integer_ 100_500_Type

Capabilities

This generated package provides the capability to convert between character strings
representing integers (symbolic images) and scaled integers (values). The strings
representing integers are zero padded and can be signed or unsigned. It also provides the
capability to check character strings for symbolic image validity. The Ada type checking
insures the validity of integer values.

The generated package will also provide the capability to convert between character string
images of the scaled integers (natural images) and scaled integers (values). It also provides
the capability to check character strings for natural image validity.

When to Use the Template

Use this template to create a typecaster for casting between character-based symbolic images
and values of a specified integer, where the value is a scaled integer. Also for casting
between characte~-haaed natural images and values of a scaled integer.

This package handles strings representing integers whose values are in the range
<First>/<Factor>..<Last>/<Factor>. Type <Type>_Type specifies the range of scaled values
for instantiating the Math_On_Integer_Typecaster generic.

An implicit mapping (after applying the scale factor) between both the symbolic images and
natural images, and the values (scaled integers) in the range specified by the type
<Type>_Type must exist, e.g.,

factor : Integer := 100;
subtype Scaled_Integer_100_500_Type is Integer range 100..500;

symbolic natural
image <=> value image <=> <value
"' <=> 100 " 100" <=> 100
"5" <=> 500 " 500" <=> 500
CMU/SEI-89-TR-12 145

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of a Math_On_Integer Typecaster from
the Math_On_Integer typecaster template.

The following global placeholder substitutions need to be made:

¢ Replace the placeholder <Type> with the scaled integer type, e.g,
Scaled_Integer_100_500. 1t is not necessary to append _Type to the placeholder
<Type>, the template contains _Type in the correct places. See Section B.2 for
more details.

¢ Replace <First> with the starting value of the range of the scaled integer type
<Type>_Type, , e.g., "100".

* Replace <Last> with the ending value of the range of the scaled integer type
<Type>_Type, , e.g., "500".

» Replace <Is-Signed> with "True" if the symbolic image is signed, otherwise
replace it with "False".

¢ Replace <Factor> with the scaling factor. The default factor is 100,

One test procedure is provided in the template, <Type>_Typecaster_Test. The test procedure
first does an exhaustive test on the entire range of values for the type <Type>_Type. Then,
the procedure allows interactive testing by prompting for symbolic images, natural images
and scaled values of integers.

Appendix D.4.1 shows an example instance (Scaled_Integer_100_500_Typecaster) of the
Math_On_Integer_typecaster template.

How to Use the Typecaster

The Math_On_Integer typecaster can be used by providing the following statements and
declarations within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

with <Type> Typecaster;
An_Scaled Integexr : <Type>_Typecaster.<Type>_Type;

Scaled_Integer_ Symbolic_Image : <Type>_ Typecaster.Symbolic_Image;
Check_Symbolic_Image : <Type>_Typecaster.Symbolic_Image;

Scaled_Integer Natural Image : <Type>_Typecaster.Natural Image;
Check_Natural Image : <Type>_Typecaster.Natural Image;

146 CMU/SEI-89-TR-12

The functions available in the Math_On_Integer typecaster are used as follows:

A_Scaled Integer:=
<Type>_Typecaster.Value (Scaled_Integer Symbolic_Image);

‘Scaled_Integer Symbolic Image:=
<Type>_Typecaster.Image(A_Scaled_ Integer):;

Check_Symbolic_Image :=

<Type>_Typecaster.Check (Scaled Integer_ Symbolic_ Image);
A_Scaled Integer :=

<Type>_Typecaster.Value(Scaled Integer Natural Image);

Scaled Integer Natural Image :=
<Type>_Typecaster.Image (A_Scaled Integer);

Check Natural Image :=
<Type>_Typecaster.Check (Scaled Integer Natural Image);

CMU/SEI-89-TR-12 147

—_

B.3.4. Enumeration Typecaster Template
The Enumeration Typecaster Template is shown in Appendix C.3.4 and resides in the file
named

ENUMERATION TEMPLATE_.ADA

The name of a typecaster generated from the Enumeration typecaster template will result
from substitution of the placeholder <Type> as in

<Type>_Typecaster => Direction_Typecaster

The name of the discrete type generated in the Enumeration typecaster will result from
substitution of the placeholder <Type> as in

<Type>_Type => Direction Type

Capabilities

This generated package provides the capability to convert between character strings
representing discrete values (symbolic images) and discrete values (values). It also provides
the capability to check character strings for symbolic image validity. The Ada type checking
insures the validity of the discrete values.

The generated package also provides the capability to convert between character string
images of discrete values (natural images) and discrete values (values). It also provides the
capability to check character strings for natural image validity.

When to Use the Template

Use this template to create a typecaster for casting between character-based symbolic
images, which can be represented as an enumerated type, and discrete values of the specified
discrete type, <Type>_Type. Also for casting between character-based natural images and
and discrete values of the specified discrete type.

Type <Type>_Type will specify the discrete values, and the type <Type>_Map specifies the
symbolic images and the mapping between the symbolic images and the values. These are
for instantiating the Enumeration_Typecaster generic.

There must be an explicit one-to-one positional mapping between the enumerated values
specified by <Type>_Map, which are the enumerated values representing valid symbolic
images, and the discrete values specified. There is an implicit mapping between natural
images and the discrete values, e.g.,

type Direction Type is (North, South, East, West);

type Direction Map is (N, s, E, w);

symbolic natural
image <=> value image <=> value
"N" «=> North "NORTH" <=> North
"8" <=> South "SOUTH" <=> South
"E" <=> LEast " EAST" <=> East
"H” <=> West " WEST" <=> Wast

148 CMU/SEI-89-TR-12

How to Generate an Instance of a Typecaster
The following lines describe how to create an instaiice of a Enumeration Typecaster from the
Enumeration typecaster template.

The following global placeholder substitution needs to be made:

¢ Replace the placeholder <Type> with the Enumeration type, e.g., Direction. It is
not necessary to append _7Yype to the placeholder <Type>, the template contains
_Type in the correct places. See Section B.2 for more details.

e Do a search for ?? and fill in the necessary information:

*the definition of <Type>_Type, the meaning of the symbolic images.
remember that the natural images are derived from the values, e.g.,
("North", ...).

*the definition of <Type>_Map, the symbolic images expressed as an
enumeration type, e.g., (N, ...).

One test procedure is provided in the template, <Type>_Typecaster _Test. The test procedure
first does an exhaustive test on the entire range of values for the type <Type>_Type. Then,
the procedure allows interactive testing by prompting for symbolic images, natural images
and values.

Appendix D.1.2 shows an example instance (Direction_Typecaster) of the Enumeration
typecaster template.

How to Use the Typecaster

The Enumeration typecaster can be used by providing the following statements and
declarations within a compilable unit:

NOTE: Prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

with <Type> Typecaster;
A_Discrete : <Type>_ Typecaster.<Type>_Type;

Discrete_Symbolic_Image : <Type> Typecaster.Symbolic_Image;
Check_Symbolic_Image : <Type> Typecaster.Symbolic_Image;

Discrete_ Natural Image : <Type>_ Typecaster.Natural Image;
Check_Natural Image : <Type>_Typecaster.Natural Image;

CMU/SEI-89-TR-12 149

The functions available in the Enumeration typecaster are used as follows:
A_Discrete := <Type>_ Typecaster.Value(Discrete_Symbolic_Image);

Discrete_ Symbolic_Image := <Type> Typecaster Image (A _Discrete):
Check_Symbolic_Image :=

<Type>_Typecaster.Check (Discrete_Symbolic_Image) ;
A_Discrete := <Type>_Typecaster.Value (Discrete_Natural Image);
Discrete_Natural Image := <Type> Typecaster.Image(A Discrete);

Check Natural Image :=
<Type>_Typecaster.Check (Discrete_ Naturul Image);

150 CMU/SEI-89-TR-12

Gl IR &0 N U E BN = N e

B.3.5. Enumeration_Bit Typecaster Template
The Enumeration_Bit Typecaster Template is shown in Appendiz C.3.5 and resides in the
file named

ENUMERATION BIT_TEMPLATE_.ADA

The name of a typecaster generated from the Enumeration_Bit typecaster template will
result from substitution of the placeholder <Type> as in

<Type>_Bit_ Typecastar => Direction_Bit_Typecaster

The name of the discrete type generated in the Enumeration_Bit typecaster will result from
substitution of the placeholder <Type> as in

<Type>_Type => Direction_ Bit_Type

Capabilities

This generated package provides the capability to convert between bit strings representing
enumerated values (symbolic images) and discrete values (values). It also provides the
capability to check bit strings for symbolic image validity. The Ada type checking insures
the validity of the discrete values.

The generated package also provides the capability to convert between character string
images of enumerated values (natural images) and discrete values (values). It also provides
the capability to check character strings for natural image validity.

When to Use the Template

Use this template to create a typecaster for casting between bit-based symbolic images and
enumeration values of the specified enumeration type, <Type>_Bit_Type, and also for casting
between character-based natural images and enumeration values of the specified
enumeration type.

Type <Type>_Bit_Type will specify the values and The_Map will specify the mapping
between bit-based symbolic images and the values. These are for instantiating the
Enumeration_Bit_Typecaster generic.

There must be an explicit one-to-one mapping between the bit-based symbolic images and
enumerated values. Type <Type>_Bit_Type will specify the values and
Symbolic_Image_Range will specify the range of integer values possible for the bit-based
symbolic images. The_Map explicitly defines the mapping between bit-based symbolic images
and the values. There is an implicit mapping between natural images and the discrete
values, e.g.,28

28The symbolic image is one byte because it takes one byte to represent a number from 0..3.

"CMU/SEI-89-TR-12 151

type Direction Bit_ Type is (North, South, East, West):;
subtype Symbolic_Image_ Range is Integer range 0..3;
The_Map : The Map Type :=(

North => 0,

South => 1,

East => 2,

West => 3);

symbolic natural

image <=> value image <=> value
16#00# <=> North “NORTH" <=> North
16#01% <=> South "SOUTH" <=> South
16#02%# <=> East " EAST" <=> East
164#034# <=> West " WEST" <=> Waest

How tc Generate an Instance of a Typecaster
The following lines describe how to create an instance of a Enumeration_Bit Typecaster from
the Enumeration_Bit typecaster template.

The following global placeholder substitution needs to be made:

e Replace the placeholder <Type> with the Enumeration_Bit type, e.g., Direction.
It is not necessary to append _Bit_Type to the placeholder <Type>, the template
contains _Bit_Type in the correct places. See Section B.2 for more details.

» Do a search for ?? and fill in the necessary information:

» the definition of <Type>_Bit_Type, the meaning of the symbolic images,
remember that the natural images are derived from the values, e.g.,
("North", ...)

*» the definition of <Symbolic_Image_Range>, the range of integer values
expected in the bit-based symbolic images, e.g., "0..3"

* the definition of <The_Map>, the mapping between enumeration values
and the bit-based symbolic images, e.g., "North => 0"

One test procedure is provided in the template, <Type>_Bit_Typecaster_Test. The test
procedure first does an exhaustive test on the entire range of values for the type
<Type>_Bit_Type. Then, the procedure allows interactive testing by prompting for symbolic
images, natural images and values.

Appendix D.1.8 shows an example instance (Direction_Bit_Typecaster) of the
Enumeration_Bit typecaster template.

How to Use the Typecaster

The Enumeration_Bit typecaster can be used by p. iding the following statements and
declarations within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

152 CMU/SEI-88-TR-12

with <Type> Bit_ Typecaster:;
An_Enumeration : <Type> Bit_ Typecaster.<Type> Bit_Type;

Enumeration_Symbolic_Image : <Type> Bit_Typecaster.Symbolic_Image;
Check_Symbolic_Imags : <Type>_Bit_ Typecaster.Symbolic_Image;

Enumeration_Natural Image : <Type>_Bit_ Typecaster.Natural Image;
Check_Natural_ Image : <Type> Bit_ Typecaster.Natural Image;

The functions available in the Enumeration_Bit typecaster are used as follows:
An_Enumeration :@=
<Type>_Bit_Typecaster.Value (Enumeration Symbolic_Image);

Enumeration_Symbolic Image :=
<Type>_Bit_ Typecaster.Image (An_Enumeration) ;

Check Symbolic_Image :=
<Type>_Bit_Typecaster.Check (Enumeration_Symbolic_Image);
An_Enumeration :=

<Type>_Bit_Typecaster.Value (Enumeration Natural Image) ;

Enumeration Natural Image :=
<Type>_Bit_ Typecaster.Image (An_Enumeration);

Check_Natural Image :=
<Type>_Bi. Typecaster.Check (Enumeration_ Natural_ Image);

CMU/SEI-89-TR-12 153

B.3.6. Math_On_Enumeration Typecaster Template
The Math_On_Enumeration Typecaster Template is shown in Appendix C.3.6 and resides in
the file named

MATE_ON_ENUMERATION TEMPLATE_.ADA

The name of a typecaster generated from the Math_On_Enumeration typecaster template
will result from substitution of the placeholder <Type> as in

<Type>_Typecaster => Scaled Integer_100_1000_Typecaster

The name of the scaled integer type, generated in the Math_On_Enumeration typecaster,
will result from substitution of the placeholder <Type> as in

<Type>_Type => Scaled Integer_ 100_1000_Type

Capabilities

This generated package provides the capability to convert between character strings
representing enumerated values (symbolic images) and scaled integers (values). It also
provides the capability to check character strings for symbolic image validity. The Ada type
checking insures the validity of the scaled integer values.

The generated package will also provide the capability to convert between character string
images of the scaled integers (natural images) and scaled integers (values). It also provides
the capability to check character strings for natural image validity.

When to Use the Template

Use this template to create a package for casting between character-based symbolic images,
which can be represented as an enumerated type, and values of a specified integer range,
where the value is a scaled integer. Also for casting between character-based natural images
and values of a scaled integer.

Type <Type>_Type will specify the integer range of the scaled integer values. Type
<Type>_Map will specify the enumerated values corresponding to the symbolic images.
These are for instantiating the Math_On_Enumeration_Typecaster generic.

There must be an explicit one-to-one positional mapping between the character-based
symbolic images and scaled integer values after the factor is applied. Valid symbolic images
are expressed by the type <Type>_Map and are mapped positionally to the to the range of
scaled integer values specified by <Type>_Type after the factor is applied. There is an
implicit mapping between natural images and the discrete values, e.g.,

164 CMU/SEI-89-TR-12

) GO N BN 60 A B D N e

subtype Scaled Integer_ 100_1000 is Integer range 100..1000;
type The_Map is (A,B,C,D,E,F,G H,I,J);

symbolic natural
image <=> value image <=> value
"A" <=> 100 " 100" <=> 100
"J" <=> 1000 " 1000" <=> 1000

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of a Math_On_Enumeration
Typecaster from the Math_On_Enumeration typecaster template.

The following global placeholder substitutions need to he made:

e Replace the placeholder <Type> with the scaled integer type, e.g.,
Scaled_Integer_100_1000. It is not necessary to append _Type to the placeholder
<Type>, the template contains _Type in the correct places. See Section B.2 for
more details.

« Replace <First> with the starting value of the range of the scaled integer type
<Type>_Type, e.g., "100".

* Replace <Last> with the ending value of the range of the scaled integer type
<Type>_Type, e.g., "1000".

« Replace <Factor> with the scaling factor. The default factor is 100.

¢ Do a search for ?? and fill in the necessary information:

* the definition of <Type>_Map, the symbolic images expressed as an
enumeration type, e.g., (A, ...).

One test procedure is provided in the template, <Type>_Typecaster_Test. The test procedure
first does an exhaustive test on the entire range of values for the type <Type>_Type. Then,
the procedure allows interactive testing by prompting for symbolic images, natural images
and scaled values of integers.

Appendix D.4.2 shows an example instance (Scaled_Integer_100_1000_Typecaster) of the
Math_On_Enumeration typecaster template.

How to Use the Typecaster

The Math_On_Enumeration typecaster can be used by providing the following statements
and declarations within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

CMU/SEI-88-TR-12 155

with <Type> Typecaster;

A_Scaled_Integer: <Type> Typecaster.<Type>_Type:

Scaled Integer_ Symbolic_Image: <Type> Typecaster.Symbolic_Image;
Check_Symbolic_Image: <Type>_Typecaster.Symbolic_ Image;

Scaled Integer Natural Image: <Type>_ Typecaster.Natural Image;
Check_Natural Image: <Type>_Typecaster.Natural Image;

The functions available in the Math_On_Enumeration typecaster are used as follows:

A_Scaled_Integer:=
<Type>_Typecaster.Value (Scaled_ Integer_ Symbolic_Image);

Scaled_Integer_ Symbolic_Image:=
<Type>_Typecaster.Image (A _Scaled Integer);

Check Symbolic_ Image :=
<Type>_Typecaster.Check (Scaled Integer_ Symbolic_Image);

A_Scaled Integer:=

<Type>_Typecaster.Value (Scaled Integer_Natural Image);
Scaled_ Integer Natural Image:=

<Type>_Typecaster.Ilmage (A_Scaled Integer);

Check_Natural Image :=
<Type>_Typacaster.Check (Scaled Integer_ Natural Image);

158 CMU/SEI-89-TR-12

B.3.7. String_ Map Typecaster Template
The String Map Typecaster Template is shown in Appendix C.3.7 and resides in the file
named

STRING_MAP_TEMPLATE_.ADA

The name of a typecaster generated frcm the String Map typecaster template will result
from substitution of the placeholder <Type> as in

<Type>_Typecaster => Status_Typecaster

The name of the discrete type generated in the String Map typecaster will result from
substitution of the placeholder <Type> as in

<Type>_Type => Status_Type

Capabilities

This gcneratod package provides the capability to convert between character strings
representing discrete values (symbolic images), as defined in <Type>_Map, and discrete
values (values). It also provides the capability to check character strings for symbolic image
validity. The Ada type checking insures the validity of discrete values.

The generated package will also provides the capability to convert between character string
images of discrete values (natural images), as defined in <Type>_Type, and discrete values
(values). It also provides the capability to check character strings for natural image validity.

When to Use the Template
This template is primarily used when:

1. The user wishes to map from character-based integer symbolic images to
enumeration values.

2. One of the possible character-based symbolic images is an Ada key word, e.g.,
"do" or "if".

3. The possible character-based symbolic images are case sensitive, i.e., "AA" and
"aa" are valid symbolic images with different meanings, or one is legal and the
other is not.

It is also important to note that this template can be used to replace all other
character-based discrete typecasters templates. The reason the other generic typecasters
exist is because less is involved to define the mapping. Performance studies may indicate
that this typecaster should be used in preference to the other character-based typecasters.

This typecaster handles discrete types with a range specified by the type <Type>_Type. The
symbolic image portion of the mapping information is defined in <Type>_Map. These are for
instantiating the Sting_Map_Typecaster generic.

To provide the above mentioned capability the user must explicitly define the map between
the symbolic images and the discrete values. There is an implicit mapping between natural
images and the discrete values, e.g.,

CMU/SEI-89-TR-12 157

type Status Type is (Operational, Non Operational);
Status _Map : Status_Map Type := (

Operational => "g"

Non_Operational => "1");

symbolic natural
image <=> value image <=> value
"0" <=> Operational " Operational"” <=> Operational

"1l" <=> Non_Operational "Non_Operational" <=> Non_Operatiocnal

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of a String Map Typecaster from the
String_Map typecaster template.

The following global placeholder substitutions need to be made:

¢ Replace the placeholder <Type> with the String_Map type, e.g., Siatus. It is not
necessary to append _Type to the placeholder <Type>, the template contains
_Type in the correct places. See Section B.2 for more details.

» Replace <Length> with the length of the string images, e.g., "1".
¢ Do a search for ?? and fill in the necessary information:

* the definition of <Type>_Type, range of discrete values, e.g., "(Operational,
Non_Operational)”

* the definition of <Type>_Map, .e.g, Operational => "0"...

One test procedure is provided in the template, <Type>_Typecaster_Test. The test procedure
first does an exhaustive test on the entire range of values for the type <Type>_Type. Then,
the procedure allows interactive testing by prompting for symbolic images, natural images
and discrete values,

Appendix D.1.6 shows an example instance (Status_Typecaster) of the String_Map typecaster
template.

How to Use the Typecaster

The String Map typecaster can be used by providing the following statements and
declarations within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <7Type>
placeholder, shown below, with the proper Ada type.

with <Type> Typecaster:;
A_Discrete : <Type>_ Typecaster, <Type>_ Type:

Discrete_Symbolic Image : <Type>_ Typecaster.Symbolic_Image;
Check_Symbolic_Image : <Type>_ Typecaster.Symbolic_Image;

Discrete_Natural Image : <Type> Typecaster.Nat ural Image;
Check Natural Image : <Type>_Typecaster.Natural Image;

158 CMU/SEI-89-TR-12

The functions available in the String Map typecaster are used as follows:
A Discrete := <Type>_ Typecaster.Value(Discrete_Symbolic_Image);

Discrete_Symbolic_Image := <Type>_ Typecaster.Image (A_Discrete);
Check_Symbolic_Image :=

<Type>_Typecaster.Check (Discrete_Symbolic_Image) ;
A _Discrete := <Type>_Typecaster.Value(Discrete Natural Image);
Discrete Natural Image := <Type> Typecaster.Image (A_Discrete) ;

Check Natural Image :=
<Type>_Typecaster.Check (Discrete Natural_ Image);

CMU/SEI-89-TR-12

159

B.4. Composite Typecaster Templates
The composite typecaster templates are the building blocks of the typecaster model solution,
The following is a list of the composite typecaster templates:

1. Array Typecaster Template

2. Private_Array Typecaster Template

3. Record Typecaster Template

4. Private_Record Typecaster Template

5. Wrapper Typecaster Template

All composite typecaster templates are based upon the typecaster model described in
Chapter 4. Figures 7-9 and 7-10 show the incomplete Ada package specification that is
representative of all composite typecaster templates.

Each composite typecaster template is customized based upon the incomplete Ada package
specification shown in Figures 7-9 and 7-10. The customization entails specifying those
portions of the incomplete Ada package specification that are in | bold, italics and boxed |

These customizations are either in the form of compilable Ada code or code template
placeholders that the detailed designer must specify when instantiating the template. The
customizations are specific to the typecaster operations provided by individual composite
typecaster templates.

All composite typecasters are capable of grouping one or any combination of the following:
¢ an instance of a character-based discrete typecaster
¢ an instance of a bit-based discrete typecaster
¢ an instance of a composite typecaster

Therefore, in this section, when the authors refer to strings, the reader may substitute bit
string and/or character string.

Another item to note is that symbolic images and natural images for composites are defined
as the concatenation of the symbolic and natural images of the elements that they group.

160 CMU/SEI-89-TR-12

B.4.1. Array Typecaster Template
The Array Typecaster Template is shown in Appendix C.4.3 and resides in the file named

ARRAY TEMPLATE.ADA

The name of a typecaster generated from the Array typecaster template will result from
substitution of the placeholder <Type> as in

<Type>_Array_Typecaster => Barrier_Segment_ Array_ Typecaster

The name of the Array type generated in the Array typecaster will result from substitution of
the placeholder <Type> as in

<Type>_Array Type => Barrier_Segment_ Array Type

Capabilities

This package provides the capability to convert between strings representing values of the
type <Type>_Array_Type (symbolic images) and values of the type <Type>_Array_Type
(values). "It also provides the capability to check strings for symbolic image validity. The
Ada type checking insures the validity of the values.

The package also provides the capability to convert between character string images of
values of the type <Type>_Array Type (natural images) and values of the type
<Type>_Array_Type (values). It also provides the capability to check character strings for
natural image validity.

When to Use the Template
Use when the symbolic image is a string representing an array of elements of type
<Type>_Array_Type.

This package depends on a typecaster being defined for the element type,
<Te>_Typecaster.<Tc>_Type. This is necessary to access the type of the array elements,
Symbolic_Image and Natural_Image for the elements, and the Value, Image and Check
functions.

How to Generate an Instance of a Typecaster

The following lines describe how to create an instance of an Array Typecaster from the Array
typecaster template.

The following global placeholder substitutions need to be made:

» Replace the placeholder <Type> with the Array type, e.g., Barrier_Segment. It is
not necessary to append _Array_Type to the placeholder <Type>, the template
contains _Array_Type in the correct places. See Section B.2 for more details.

¢ Replace the placeholder <First> with the number of the first element of the
array, e.g., 1.

¢ Replace the placeholder <Last> with the number of the last element of the array,
e.g., 8.

CMU/SEI-89-TR-12 161

» Replace the placeholder <Tc> with the type of the elements of the array, eg.,
Barrier_Segment_Record. It is not necessary to append _Type or _Typecaster to
the placeholder <T¢>, the template contains _Type and _Typecaster in the correct
places. See Section B.2 for more details.

¢ Do a search for ?Z and fill in the necessary information:

« If the number of elements in the array is less than 8, some lines must be
removed. Conversely, if the array has more than 8 elements, equivalent
lines must be added to the typecaster template.

* the canned test cases
* selection of proper output format (bit or character based) to support test
case failure processing

One test procedure is provided in the template, <Type>_Array_Typecaster_Test. The test
procedure does testing based on a set of canned test cases that the user supplies before
compilation. The test procedure reports on testing problems, e.g., unexpected results.

Appendix D.4.3 shows an example instance (Barrier_Segment_Array_Typecaster) of the
Array typecaster template.

How to Use the Typecaster

The Array typecaster can be used by providing the following statements and declarations
within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

with <Type> Array Typecaster;
An_Array :@ <Type>_ Array Typecaster.<Type> Array Type’

Array Symbolic Image : <Type> Array Typecaster.Symbolic_Image;
Check_Symbolic_Image : <Type>_Array Typecaster. Symbolic_Image;

Array Natural Image : <Type>_ Array_ Typecaster.Natural Image;
Check Natural Image : <Type> Array_ Typecaster.Natural Image;

The functions available in the Array typecaster are used as follows:
An_Array := <Type> Array Typecaster.Value (Array Symbolic_Image);

Record Symbolic Image := <Type> Array Typecaster.Image(An_Array):
Check_Symbolic_Image :=

<Type>_Array Typecaster.Check (Array Symbolic_Image);
An_Array := <Type>_ Array Typecaster.Value (Array Natural Image);
Record Natural Image := <Type>_ Array_ Typecaster.Imag=(An_Array);

Check_Natural Image :=
<Type>_Array_ Typecaster.Check (Array Natural Image);

162 CMU/SEI-89-TR-12

&M .S 0 Ay D N N D N e

B.4.2. Private_Array Typecaster Template
The Private_Array Typecaster Template is shown in Appendix C.4.4 and resides in the file
named -

PRIVATE_ARRAY_TEMPLATE.ADA

The name of a typecaster generated from the Private_Array typecaster template will result
from substitution of the placeholder <Type> as in

<Type>_Private_Array Typecaster =>
Probability Private Array Typecaster

The name of the Private_Array type generated in the Private_Array typecaster will result
from substitution of the placeholder <Type> as in

<Type>_Private Array Type => Probability Private Array Type

Capabilities

This package provides the capability to convert between strings representing values of the
type <Type>_Private_Array_Type (symbolic images) and values of the private type
<Type>_Private_Array_Type (values). It provides the capability to check strings for symbolic
image validity. The Ada type checking insures the validity of the values. It also provides the
capability to convert between the public type, <Type>_Public_Array_Type, and the private

type, <Type>_Private_Array_Type.

The package also provides the capability to convert between character string images of
values of the type <Type>_Private_Array_Type (natural images) and values of the type
<Type>_Private_Array_Type (values). It also provides the capability to check character
strings for natural image validity.

When to Use the Template

Use when the symbolic image is a string representing an array of elements of type
<Type>_Public_Array_Type and inter-element dependencies exist. The private type
<Type>_Private_Array_Type is a private instance of the public type
<Type>_Public_Array_Type.

This package depends on a typecaster being defined for the elements type
<Te>_Typecaster.<Tc>_Type. This is necessary to access the type of the array elements,
Symbolic_Image and Natural_Image for the elements, and the Value, Image and Check
functions.

The type <Type>_Private_Array_Type is private because there are dependencies among the
elements of the array. The data being private allows only this package to monitor and
enforce the inter-element dependencies of the array. The public type,
<Type>_Public_Array_Type, provides access to a readable and writable copy of the data.

CMU/SEI-89-TR-12 163

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of a Private_Array Typecaster from
the Private_Array typecaster template.

The following global placeholder substitutions need to be made:

e Replace the placeholder <Type> with the Private_Array type, eg.,
Probability_Wrapper. It is not necessary to append _Private_Array_Type to the
placeholder <Type>, the template contains _Private_Array_Type in the correct
places. See Section B.2 for more details.

¢ Replace the placeholder <First> with the number of the first element of the
private array, e.g., 1.

s Replace the placeholder <Last> with the number of the last element of the
private array, e.g., 8.

* Replace the placeholder <Te¢> with the type of the elements of the private array,
e.g., Probability_Wrapper. It is not necessary to append _Type or _Typecaster to
the placeholder <T¢>, the template contains _Type and _Typecaster in the correct
places. See Section B.2 for more details.

¢ Do a search for ?? and fill in the necessary information:

* If the number of elements in the array is leas than 8, some lines must be
removed. Conversely, if the array has more than 8 elements, equivalent
lines must be added to the typecaster template.

*the Is_Consistent function body for maintaining inter-element
dependencies

* the canned test cases

» selection of proper output format (bit or character based) to support test
case failure processing

One test procedure is provided in the template, <Type>_Private_Array_Typecaster_Test. The
test procedure does testing based on a set of canned test cases that the user supplies before
compilation. The test procedure reports on testing problems, e.g., unexpected results.

Appendix D.4.4 shows an example instance (Probability_Private_Array_Typecaster) of the
Private_Array typecaster template.

How to Use the Typecaster

The Private Array typecaster can be used by providing the following statements and
declarations within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type. Also note that the Ada type that
specifies the value in all typecasting operations is of the type <Type>_Private_Array_Type
and not <Type>_Public_Array_Type. The reason for this is that the typecaster must
maintain the validity of the object (i.e., enforce inter-element dependencies).

164 CMU/SEI-89-TR-12

with <Type> Private_Array Typecaster;

An_Array, Private_prray :

<Type>_Private_Array Typecaster.<Type> Private_Array Type;
Public_Array :

<Type>_ Private_ Array Typecaster.<Type> Public_Array Type;

Array Symbolic_Image:<Type>_Private Array Typecaster.Symbolic Image;
Check Symbolic_Image:<Type>_ Private Array Typecaster.Symbolic_Image;

Array Natural Image : <Type>_Private_ Array Typecaster.Natural Image;
Check Natural Image : <Type>_Private Array Typecaster.Natural Image;
The functions available in the Private Array typecaster are used as follows:
An_Array :=
<Type> Private Array Typecaster.Value (Array Symbolic_Image);

Array Symbolic_Image :=
<Type>_Private_Array Typecaster.Image (An_Array);

Check_Symbrlic Image :=
<Type> Private_ Array Typecaster.Check (Array Symbolic_Image) ;

Private_Array := <Type> Private_Array Typecaster.
Make_?rivate(Public_pr:ay);

Public Array := <Type>_Private_ Array Typecaster.
Make_Public(Private_;rray);

An_Axray :=
<Type> Private_ Array_ Typecaster.Value (Array Natural Image);

Array Natural Image :=
<Type> Private_Array Typecaster.Image (An_Array):;

Check Natural Image :=
<Type>_ Private_ Array Typecaster.Check (Array Natural Image);

CMU/SEI-89-TR-12 ' 165

B.4.3. Record Typecaster Template
The Record Typecaster Template is shown in Appendix C.4.1 and resides in the file named

RECORD TEMPLATE .ADA

The name of a typecaster generated from the Record typecaster template will result from
substitution of the placeholder <Type> as in

<Type>_Record Typecaster => Julian Date_ Time Record Typecaster

The name of the Record type generated in the Record typecaster will result from substitution
of the placeholder <Type> as in

<Type>_ Record_Type => Julian Date_Time Record Type

Capabilities

This package provides the capability to convert between strings representing values of the
type <Type>_Record_Type (symbolic image3) and values of the type <Type>_Record_Type
(values). It also provides the capability to check strings for symbolic image validity. The
Ada type checking insures the validity of record values.

The package also provides the capability to convert between character string images of
values of the type <Type>_Record_Type (natural images) and values of the type
<Type>_Record_Type (values). It also provides the capability to check character strings for
natural image validity.

When to Use the Template
Use when the symbolic image is a string representing a record of type <Type>_Record_Type.

<Type>_Record_Type is a record containing the following elements:

<El>
<E2>
<E3>
<E4>
<E5>
<E6>
<E7>
<E8>

This package depends on typecasters being defined for all elements, <En>, of the Ada record
<Type>_Record_Type. This is necessary to access the types of the elements, Symbolic_Image
and Natural_Image for the elements, and Value, Image and Check functions.

The record elements are defined by the following Ada types:

<T1l>_Typecaster.<Tl>_ Type
<T2>_Typecaster.<T2> Type
<T3>_Typecaster.<T3> Type
<T4>_Typecaster.<T4>_Type
<T5>_Typecaster.<T5> Type
<T6>_Typecaster.<T6>_ Type

166 CMU/SE1-89-TR-12

<T7>_Typecastex.<T7>_ Type
<T8>_Typecaster.<T8> Type

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of a Record Typecaster from the
Record typecaster template.

The following global placeholder substitutions need to be made:

» Replace the placeholder <Type> with the Record type, e.g., Julian_Date_Time. It
is not necessary to append _Record_Type to the placeholder <Type>, the template
contains _Record_Type in the correct places. See Section B.2 for more details.

» Do the following loop until all record elements are defined:

* replace <En> with the name of the nTH element of the record, e.g., replace
<E1> with Julian_Day

* replace <Tn> with the type of the nTH element of the record, e.g., replace
<T1> with Julian_Day

» Search for and remove lines and code blocks with <Tn>’s and <En>’s remaining,
e.g., if the record has 5 elements, then lines containing <76>.<78> and
<E6>..<E8> must be removed. Conversely, if the record has more than 8
elements, equivalent lines must be added to the typecaster template.

¢ Do a search for ?? and fill in the necessary information:
* the canned test cases
*» gelection of proper output format (bit or character based) to support test

case failure processing

One test procedure is provided in the template, <Type>_Record_Typecaster_Test. The test
procedure does testing based on a set of canned test cases that the user supplies before
compilation. The test procedure reports on testing problems, e.g., unexpected results.

Appendix D.2.1 shows an example instance (Julian_Date_Time_Record_Typecaster) of the
Record typecaster template.

How to Use the Typecaster

The Record typecaster can be used by providing the following statements and declarations
within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

with <Type> Record Typecaster;

A_Record : <Type>_ Record Typecaster.<Type> Record_Type:

Record_Symbolic_Image : <Type> Record Typecaster.Symbolic_ Image;
Check Symbolic_Image : <Type> Record_Typecaster.Symbolic_Image;

Record Natural Image : <Type> Record Typecaster.Natural Image;
Check_Natural Image : <Type> Record_Typecaster.Natural Image;

CMU/SEI-89-TR-12 167

The functions available in the Record typecaster are used as follows:
A_Record := <Type>_Record Typecaster.Value (Racord Symbolic_Image);

Record Symbolic_Image := <Type>_ Record_ Typecaster.Image (A_Recozd);
Check_Symbolic_Image :=

<Type>_Record Typecaster.Check (Record Symbolic_Image);
A_Record := <Type> Record Typecaster.Value (Record_Natural_ Image)’
Record Natural Image := <Type>_Racord Typecaster.Image (A _Record);

Check Natural Image :=
<Type>_Record Typecaster.Check (Record Natural Image);

168 CMU/SE]-88-TR-12

B.4.4. Private_Record Typecaster Template
The Private_Record Typecaster Template is shown in Appendix C.4.2 and resides in the file
named

PRIVATE RECORD TEMPLATE.ADA

The name of a typecaster generated from the Private_Record typecaster template will result
from substitution of the placeholder <Type> as in

<Type>_Private_Record Typecaster =>
FooBar_ Message Private_ Record Typecaster

The name of the private record type generated in the Private_Record typecaster will result

from substitution of the placeholder <Type> as in

<Type>_Private_Record Type =>
FooBar_Message Private Record Type

Capabilities

This package provides the capability to convert between strings representing values of the
private type <Type>_Private_Record_Type (symbolic images) and values of the private type
<Type>_Private_Record_Type (values). It provides the capability to check strings for
symbolic image validity. The Ada type checking insures the validity of record values. It also
provides the capability to convert between the public type <Type>_Public_Record_Type and
the private type <Type>_Private_Record_Type.

The package also provides the capability to convert between character string images of
values of the type <Type>_Private_Record_Type (natural images) and values of the type
<Type>_Private_Record_Type (values). It also provides the capability to check character
strings for natural image validity.

When to Use the Template
Use when the symbolic image is a string representing a record of type
<Type>_Public_Record_Type and inter-element dependencies exist.

The private type <Type>_Private_Record_Type is a private instance of the public type
<Type>_Public_Record_ Type. <Type>_Public_Record_Type is a record containing the
following elements:

<El>
<E2>
<E3>
<E4>
<E5>
<E6>
<E7>
<E8>

This package depends on typecasters being defined for all elements of the Ada record
<Type>_Public_Record_Type. This is necessary to access the types of the elements,

CMU/SEI-89-TR-12 169

Symbolic_Image and Naturai_lmage for the elements, and Value, Image and Check
functions.

The public record elements are defined by the following Ada types:

<T1l>_Typecaster.<T1l> Type
<T2>_Typecaster.<T2> Type
<T3>_Typecaster.<T3>_ Type
<T4>_Typecaster.<T4> Type
<T5>_Typecaster.<T5> Type
<T6>_Typecaster.<T6>_Type
<T7>_Typecaster.<T7> Type
<T8> Typecaster.<T8>_ Type

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of a Private_Record Typecaster from
the Private Record typecaster template.

The following global placeholder substitutions need to be made:

e Replace the placeholder <Type> with the Private record type, e.g,
FooBar_Message. It is not necessary to append _Private_Record_Type to the
placeholder <Type>, the template contains _Private_Record_Type in the correct
places. See Section B.2 for more details.

¢ Do the following loop until all record elements are defined

* Replace <En> with the name of the nTH element of the record, e.g., replace
<E1> with Detection_Confidence.

* Replace <Tn> with the type of the nTH element of the record, e.g., replace
<T1> with Detection_Confidence.

® Search for and remove lines and code blacks with <Tn>’s and <En>'s remaining,
e.g., if the record has 5 elements, then lines containing <T6>..<T8> and
<E6>.<E8> must be removed. Conversely, if the record has more than 8
elements, equivalent lines must be added to the typecaster template.

¢ Do a search for ?? and fill in the necessary information:

«the Is_Consistent function body for maintaining inter-element
dependencies

* the canned test cases
» selection of proper output format (bit or character based) to support test
case failure processing

One test procedure is provided in the template, <Type>_Private_Record_Typecaster_Test.
The test procedure does testing based on a set of canned test cases that the user supplies
before compilation. The test procedure reports on testing problems, e.g., unexpected results.

Appendix D.2.2 shows an example instance (FooBar_Message_Private_Record_Typecaster) of
the Private_Record typecaster template.

170 CMU/SEI-89-TR-12

& G &N o) & G =N = e ==

How to Use the Typecaster

The Private Record typecaster can be used by providing the following statements and
declarations within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type. Also note that the Ada type that
specifies the value in all typecasting operations is of the type <Type>_Private_Record_Type
and not <Type>_Public_Record_Type. The reason for this is that the typecaster must
maintain the validity of the object (i.e., enforce inter-element dependencies).

with <Type> Private_Record Typecaster;

A_Record, Private_Record : <Type> Private Record Typecaster.
<Type>_Private_ Record Type;

Public_Record : <Type> Private_Record Typecaster.
<Type>_Public_Record_ Type;

Record_Symbolic_Image:

<Type>_Private_Record Typecaster.Symbolic_Image;
Check_Symbolic_Image:

<Type>_Private Record Typecaster.Symbolic Image;

Racord Natural_ Image:<Type> Private_Record Typecaster.Natural Image;
Check Natural Image:<Type> Private_Record Typecaster.Natural Image;
The functions available in the Private Record typecaster are used as follows:
A_Record :=
<Type>_Private_ Record Typecaster.Value (Record Symbolic_Image);

Record Symbolic_Image :=
<Type>_Private_Record Typecaster.Image (A_Record);

Check_Symbolic_Image := <Type>_ Private_ Record Typecaster.
Check (Racord Symbolic_Image);

Public_Record := <Type>_Private Record Typecaster.
Make Public(Private_Record):

Private_Record := <Type> Private Record Typecaster.
Make Private (Public_Record);
A_Record :=
<Type>_Private_Record Typecaster.Value (Record Natural Image);

Record Natural Image :=
<Type>_Private_Record Typecaster.lmage (A _Record);

Check_Natural Image := <Type> Private_ Record Typecastec.
Check (Record Natural Image);

CMU/SEI-89-TR-12 171

B.4.5. Wrapper Typecaster Template
The Wrapper Typecaster Template is shown in Appendix C.4.5 and resides in the file named

WRAPPER TEMPLATE.ADA

The name of a typecaster generated from the Wrapper typecaster template will result from
substitution of the placeholder <Type> as in

<Type> Wrapper Typecaster => Probability Wrapper_ Typecaster

The name of the Wrapper type generated in the Wrapper typecaster will result from
substitution of the placeholder <Type> as in

<Type>_ Wrapper Type => Probability Wrapper_ Type

Capabilities

This package provides the capability to convert between strings representing values of the
discriminant record type <Type>_Wrapper_Type (symbolic images) and values of the
discriminant record type <Type>_Wrapper_Type (values). It also provides the capability to
check strings for symbolic image validity. The Ada type checking insures the validity of
record values.

The package also provides the capability to convert between character string images of
values of the type <Type>_Wrapper_Type (natural images) and values of the type
<Twpe>_Wrapper_Type (values). It also provides the capability to check character strings for
natural image validity.

When to Use the Template

Use when the symbolic image is a string representing a record of type <Type>_Record_Type
and the presence of the symbolic image is optional.

The discriminant portion of the record is an enumerated type, Availability, whose possible
values are Available or Unavailable. If the information is Available, then the type
<Type>_Record_Type is used for casting. If the information is Unavailable, then the type
Unavailability_Reason is used for casting.

The Unavailability_Reason portion of the discriminated record <Type>_Wrapper_Type is an
enumerated type whose possible values are Unreporied, i.e., no element existed in the report,
or Reported_Unknown, i.e., there was an explicit indication that nothing is known about the
element.

The <Type>_Record_Type portion of the discriminated record <Type>_Wrapper_Type is a
record containing the following elements:

<El>
<KE2>
<E3>
<E4>
<E5>

172 CMU/SEI-89-TR-12

<E6>
<E7>
<E8>

This package depends on typecasters being defined for all elements of the Ada record
<Type>_Record_Type. This is necessary to access the types of the elements, Symbolic_Image
and Natural_Image for the elements, and Value, Image and Check functions.

The record elements are defined by the following Ada types:

<T1>_Typecaster.<Tl>_ Type
<T2>_Typecaster.<T2> Type
<T3>_Typecaster.<T3> Type
<T4>_Typecaster.<T4> Type
<T5>_Typecaster.<T5>_ Type
<T6>_Typecaster.<T6>_ Type
<T7>_Typecaster.<T7>_ Type
<T8>_Typecaster.<T8> Type

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of a Wrapper Typecaster from the
Wrapper typecaster template.

The following global placeholder substitutions need to be made:

¢ Replace the placeholder <Type> with the Wrapper type, e.g., Probability. 1t is
not necessary to append _Wrapper_Type to the placeholder <Type>, the template
contains _Wrapper_Type in the correct places. See Section B.2 for more details.

¢ Do the following loop until all record elements are defined:

*» replace <En> with the name of the nTH element of the record, e.g., replace
<E1> with Beam_Number

*» replace <Tn> with the type of the nTH element of the record, e.g., replace
<T'1> with Hour

® Search for and remove lines and code blocks with <Th>'s and <En>’s remaining,
e.g., if the record has 5 elements, then lines containing <T6>.<T8> and
<E6>..<E8> must be removed. Conversely, if the record has more than 8
elements, equivalent lines must be added to the typecaster template.

¢ Do a search for ?? and fill in the necessary information:

* The value of the boolean, Unreported_NoImage_Possible. If true then the
EXR of the message can have a field where no symbolic image is present.
When nothing in the EXR is present for the field, the symbolic image will
contain Unreported_Symbolic_Nolmage defined below.

* The value of the boolean, Unreported_Image_Possible. If true then the
EXR of the message can have a symbolic image present that indicates that
no information regarding the field is available. The symbolic image that
indicates this is defined by Unreported_Symbolic_Image.

* The value of an Unreported_Symbolic_NoImage. When it is possible for a
field in the EXR to not be present, this is the what will be placed in the
symbolic image to signify that nothing was present.

CMU/SEI-89-TR-12 178

* The value of an Unreported_Symbolic_Image. When it is possible for a
field in the EXR to have a value that signifies that no information
regarding the field is available, this is the what will be found in the
symbolic image.

¢ the canned test cases

* selection of proper output format (bit or character based) to support test
case failure processing

At least one of the two booleans must be true, otherwise there would be no need to use the
wrapper typecaster.

One test procedure is provided in the template, <Type>_Wrapper_Typecaster_Test. The test
procedure does testing based on a set of canned test cases that the user supplies before
compilation. The test procedure reports on testing problems, e.g., unexpected results.

Appendix D.4.5 shows an example instance (Probability_Wrapper_Typecaster) of the
Wrapper typecaster template.

How to Use the Typecaster

The Wrapper typecaster can be used by providing the following statements and declarations
within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Zype>
placeholder, shown below, with the proper Ada type.

with <Type> Wrapper Typecaster;
A_Record : <Type>_Wrapper_ Typecaster.<Type> Wrapper Type;

Record Symbolic_Image : <Type> Wrapper_ Typecaster.Symbolic_Image;
Check_Symbolic_Image : <Type> Wrapper Typecaster.Symbolic_ Image;

Record Natural Image : <Type>_ Wrapper_ Typecaster.Natural Image;
Check Natural Image : <Type> Wrapper Typecaster.Natural Image;

The functions available in the Wrapper typecaster are used as follows:
A_Record := <Type> Wrapper_ Typecaster.Value (Record Symbolic_ Image):

Record_Symbolic Image := <Type>_ Wrapper_ Typecaster.Image (A Record);
Check_Symbolic_Image :=

<Type>_Wrapper_ Typecaster.Check (Record Symbolic_Image);
A_Record := <Type> Wrapper_ Typecaster.Value (Record Naturval Image);
Record Natural Image := <Type> Wrapper Typecaster.Image (A Record);

Check Natural Image :=
<Type>_Wrapper_Typecaster.Check (Record Natural Image);

174 CMU/SEI-89-TR-12

B.5. External Representation TV Template

The EXR TV model solution is captured in one template, the Msg_ICD Template. Figure
7-17 shows the Ada package specification template for the Msg_ICD Template.

B.5.1. ICD_Message Template
The ICD_Message template is shown in Appendix C.5 and resides in the file named

MSG_ICD_ TEMPLATE.ADA

The name of the package generated from the ICD_Message template will result from
substitution of the placeholder <Msg_Id> as in

<Msg_Id> Icd => FooBar_ Message Icd

Capabilities

This package provides the capability to convert between strings containing fields and
punctuation (an EXR whose format is described by an EXR description) and a UNR. It also
provides the capability to check an EXR for validity (i.e., can the information be parsed, field
by field, without any problems).

When to Use the Template
Use when there is a need to convert between an EXR, and a UNR.

How to Generate an Instance of a Typecaster
The following lines describe how to create an instance of an EXR TV model solution from the
ICD_Message typecaster template.

The following global placeholder substitutions need to be made:

¢ Replace the placeholder <Msg_Id> with the ICD type, e.g., FooBar_Message. It
is not necessary to append _Icd to the placeholder <Msg_Id>, the template
contains _Jcd in the correct places. See Section B.2 for more details.

e Replace <En> with the name of the nTH field, e.g., replace <EI> with
Reporting_Location.

¢ Replace <Number_Of_Cuts> with the number of cuts that need to be made for
the Icd, e.g., replace <Number_Of_Cuts> with "0".

* Replace <Symbolic_Image_Width> with the width of the symbolic image (UNR).
Note that this should be the same as the Symbolic_Image_Width on the message
typecaster side. The Symbolic Image is a fixed length image.

¢ Do a search for ?? and fill in the necessary information:

* eo_text character — the end-of-text character appearing at the end of the
EXR.

* Fields — defines the field attributes, either bit-based or character-based,
for the EXR. It also contains information about the symbolic image, but
this is derived from the EXR description and the user need not concern
himself. See Section 6.2.1 for an explanation of how to supply this
information.

CMU/SEI-89-TR-12 175

* Cuts — describes which fields to cut in the UNR. See Section 6.2.1 for an
explanation of how to supply this information.

* canned test cases (either bit-based or character based)
*» gelection of the proper output format (bit-based or character-based) to
support test case failure processing

See Section 6.2.1 for a more detailed description of how to specify Fields and Cuts.

One test procedure is provided in the template, <Msg_Id>_Icd_Test. The test procedure
performs canned tests generated by the user on the <Msg_Id>_Icd ICD Message Typecaster.

Appendix D.3.1 shows an example instance (FooBar_Message_ICD) of the ICD_Message
template.

How to Use the Typecaster

The ICD Message typecaster can be used by providing the following statements and
declarations within a compilable unit:

NOTE: prior to placing the following lines within the compilable unit, replace the <Type>
placeholder, shown below, with the proper Ada type.

with <Msg Id> Icd;
with Casting Common_Types;

An _Icd : Casting_Common Types,Icd Message Type;
Universal Image : <Msg_Id> Icd.Symbolic_Image;
Icd_Check : Booclean;

Bad_Position : Integer;

The functions available in the ICD Message typecaster are used as follows:
<Msg_Id> Icd.Check_Icd(An_Icd, Icd Check, Bad_Positionm);

Universal Image :=
<Msg_Id> Icd.Extract Universal Image (An_Icd);

An_Icd := <Msg_Id> Icd.Construct_Icd(Universal Image);

176 CMU/SEI-89-TR-12

J

SECURITY CLASSIFICATION OF TrusS PAGE

REPORT DOCUMENTATION PAGE

1s. REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

2. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE

25, DECLASSIFICATION/OOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

N/A

«. PERSORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU-SEI-89~-TR-12 ESD-89-TR-20

(1f applicable)
SEX

6a. NAME OF PERFORMING ORGANIZATION ‘ru. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City. State and ZIP Code)

7b. ADORESS (City, State and ZIP Code)

CARNEGIE-MELLON UNIVERSITY ESD/XRSL
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE
HANSCOM, MA (01731
8e. NAME OF FUNOING/SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATIONNUMBER
ORGANIZATION (11 applicable)
SEI JOINT PROGRAM OFFICE ESD/XRS1 F1962885C0003
8c. ADDRESS (City. State and ZIP Code) A 10. SOURCE OF FUNDING NOS,
CARNEGIE-MELLON UNIVERSITY PROGRAM PAOJECT TASK WORK UNIT
PITTSBURGH . PA 15213 ELEMENT NO. NO. NO. NO.
63752F N/A N/A N/A
11. TITLE (Inciude Security Classification)
A Model Solution for C3I Message Translatiof and Validatilon
12. PERSONAL AUTHOR(S)
Charles Plinta, Kenneth Lee, Michael Rissman
13e TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT

FHOM TO December 1989 176

FINAL

16. SUPPLEMENTARY NOTATION

APPENDIX C: MTV Model Solution Ada Code, and APPENDIX D: FooBar Message Ada Code
are bound separately.)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by bdlock number)
FIELD GROUP sSu8. GR.
19. ABSTRACT (Continue on reverse if necewsary and identify by block number)

This document describes an artifact, the Message Translation and Validation (MTV)
model solution. The MTV model solution is a general solution, written in Ada,
that can be used in a system required to convert between message representations.
These message representations can be character-based, bit-based, and internal
(i.e., Ada values).

This documemt provides designers with enough information to determine whether this
solution is applicable to their particular problem. It gives detailed designers
the information needed to specify solutions to their particular problem using the
MTV model solution. Finally, it describes the MTV model solution in enough detail
to enable a maintainer or adapter to understand the solution.

20. DISTAIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED] same s aet. O oTic usens (3 UNCLASSIFIED, UNLIMITED DISTRIBUTION
22a. NAME OF RESPONSIBLE INDIVIOUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMEBOL
KARL H. SHINGLER tinclude Area Code)
412 268-7630 SELI }PO
OD FORM 1473, 83 APR €DITION OF 1 JAN 7315 OBSOLETE. L

SECURITY CLASSIFICATION OF THIS PAGE

