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INTRODUCTION that are used in this domain of scientific stuuy.

[mportant advances were made in the 1960s and
19708 in the scientific study of thinking. They
have resulted from new methods for formulating
models of the cognitive processes and structures
underlying performance in complex tasks, and
the development of experimental methods to test
such models. A major accomplishment was the
discovery of general forms of cognitive activity
and knowledge that underlie human problem
solving and reasoning. This chapter surveys the
major theoretical concepts and principles that
have been developed, presents some of the
evidence that supports these principles, and
discusses the empirical and theoretical methods

'Now st Stenford University.

Preparation of this chapter was aupported by the Personnel
a4 Traning Progtams, Office of Naval Research, under
:onm Number N00014-79-C-0215, Contract Identification

umber NR 667-430 (JGG), and by grants from the National
m of Mental Health and the Alfred P. Sloan Foundation

This introductory section gives an overview of
the major concepts that will be descrnibed in the
chapter. We discuss relations between these
concepts and issues that have been investigated
in experimental psychology as well as some
general methodological issues.

Overview of Concepts

The concepts that have been developed can be
placed in two groups: hypotheses about the form
of cognitive action and hypotheses about the form
of cognitive representation. The hypotheses about
cognitive action extend analyses of behavior
that were developed in general behavior theory
by investigators such as Thorndike (1923), Tolman
(1928); Skinner (1938), and Hull (1943). The
hypotheses about representation extend analyses
that were developed by Gestalt psychologists
such as Koéhler (1929), Duncker (1935/1945),
Katona (1940), and Wertheimer (1945/1959). One
of the important insights reached in the analysis
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590 PROBLEM SOLVING AND REASONING

of problem solving 1s that hypotheses about
these issues of action and representation are
complementary: both are necessary components
of a theory of human thought.

Form of Cognitive Action

Hypotheses about cognitive action can be con-
sidered at two levels: basic action knowledge
and strategic knowledge.

A consensus has developed that human
knowledge underlying cognitive action can be
represented in the form of production rules, a
formalism introduced by Post (1943) to represent
reasoning in mathematics, and adapted for
application to psychology by Newell and Simon
(1972). Models in which knowledge for action is
represented as a set of production rules are
referred to as production systems.

Any theory of performance must include
hypotheses about the process of choice whereby
individuals select the actions that they perform.
A production system provides a framework for
expressing hypotheses about this process in
gpecific detail. A production rule (or, more
simply, a production) consists of a condition and
an action. The condition specifies a pattern of
information that may or may not be present in
the situation. The action specifies something
that can be performed. The general form of
action based on productions is simply: If the
condition is true, perform the action.

In a production system, the basic problem of
choice among actions is solved by specifying
conditions that lead to the selection of each
action that can be performed. The condition of
each production rule is a pattern of information
that the system can recognize. These patterns
include features of the external problem situ.
ation (the stimulus). They also include infor-
mation that is generated internally by the
problem solver and held in short-term memory.
The internal information includes goals that are
set duziny probiem solving. It also can include
informaticn in memory, such as past attempts to
achieve specific goals. Thus, production rules,
which represent basic action knowledge, consist
of associations between patterns of information
and actions. An action is chosen when the
individual has a gosal with which the action is
agsociated, and the external stimulus situation
az well 25 information in memory include
features associated with the action.

An important component of a model of cog-

nitive activity 15 1ts representation of strategic
knowledge. This includes processes for setting
goals and adopting general plans or methods 1,
working on a problem. Models of general problem.
solving strategies have been developed to simy.
late performance in novel problem situations
where the individual has little or no experience.
One important model is based on a process of
means~-ends analysis (Newell & Simon, 1972) i
which goals are compared with current stateg,
and actions are selected to reduce differenceg
that are identified. General strategies also
include processes for setting subgoals when the
current goal cannot be achieved directly. Analy.
ses of strategic knowledge in specific domaing
also have been developed to simulate perfor.
mance by problem solvers who have received
special training (e.g. Greeno, 1978). Strategic
knowledge of experienced problem solvers in.
cludes global plans for solving classes of prob-
lems and knowledge of subgoals that are useful
in classes of problem situations.

The general ideas used in formulating
hypotheses about cognitive activity in production
systems build upon the concepts developed and
used in general behavior theory, particularly
the formulations of Tolman (1928) and the later
forms of Hull’s (1952) theory. Early expositions
of behavior theory emphasized the direct relations
between stimuli and responses, with rather
deliberate inattention to intervening events in
the brain. Thorndike (1923) emphasized that
actions are chosen because of their asgociations
with stimulus conditions. In Skinner’s (1938)
formulation, actions are performed under the
‘control’ of external stimulus features. Tolman
(1928), on the other hand, emphasized internal
goals and information stored 1n memory 1n the
determination of response selection. Tolman
used such terms as ‘means-end expectation’ and
‘means-end readiness’ in referring to these
factors. In Hull's theory, concepts of covert
anticipatory responses (1930) and 1ncentive
motivation (1952) were used. In discussions of
problem solving, Maltzman (1955) and Staats
(1966) postulated stimulus-response units at dif-
ferent levels of generality. The idea of knowledge
about action at different levels is used in more
recent formulations of gtrategic knowledge,
especially in hypotheses about planning, some
of which we discuss in the sections on well
specified problems and on problems of design
and arrangement.
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INTRODUCTION 591

The concept of a production rule 13 consistent
with these formulations, and behavior theory,
even in the terms used by Watson and Skinner,
can be expressed as a system of productions
(Millenson, 1967). However, as production rules
are used in contemporary information processing
theory, they more explicily emphasize the moti-
vational states and memories of prior experiences
that combine with external stimulus conditions
to determine response choice. Modern production
system models of problem solving and similar
cognitive processes may be viewed as an (lengthy)
extrapolation of Tolman's research program
whereby the roles of external environment
(stimulus) and inner environment (motivational
states and memory contents) as determinants of
respose are symmetrical. It also makes exactly
how those two sources of information control
responses much more explicit. We characterize
the extrapolation as lengthy because it postu.
lates not only that many of the essential com.
ponents of the stimulus lie in the brain, but also
that a large part of the response to a production
(or all of it) may be internal—consisting, for
example, of a change in content of short-term
(STM) or long-term memory (LTM). We do not
want to underestimate the magnitude of the
shift in viewpoint, but we do emphasize that 1t is
a continuous development from the experimental
peychology that preceded it. That is presumably
what Miller, Galanter, and Pribram (1960)
meant when they described the new approach
(half jokingly) as ‘subjective behaviorism.’
Subjective, of course, referred to the minds of
the subjects, not to the scientific methods of the
investigatozrs. .

One major difference between recent.hypothe-
ses about cognitive activity and those developed
in general behavior theory (in addition to the
shift to internal events in behavior) is that
recent formulations are much more definite
and specific. Models have been formulated as
production systems with sufficient specificity to
be expressed as computer programs that simulate
actual performance of solving specific problems.
It is not sufficient to postulate the existence of
stimulus-response associations and goals, even
at differing levels of generality, to do this. It 1s
necessary also to formulate hypotheses about
just what the stimuli, responses, and goals
are. Hypotheass about snecific structures of

knowledge concerning actions and goals in
the problem domain must be constructed, and

processes must be designed to recognize specific.
relevant patterns of information in the task
situation. Hypotheses about strategic knowledge
have to specify the conditions ia which goals
will be set and plans adopted.

Again, we prefer to emphasize continuity
in this development. Nothing in the new fine-
grained mechanisms 1s antithetical to the grosser
level of description of the earlier theories.
In fact, important progress has been made in
explaining in detail (sometimes quantitatively)
the rnich body of experimental data provided
within the behavioral framework (Simon &
Feigenbaum, 1964, Gregg & Simon, 1967). The
impact from achieving this higher level of
resolution 1n our theoretical models and their
predictions has led to significantly greater
understanding of the psychological processes
involved in problem solving and reasoning.

Hypotheses about Representation
Hypotheses about cognitive representations of
problems are formulated using the idea of a
problem space. The problem space includes an
individual's representation of the objects in the
prohlem situation, the goa!l of the problem, and
the actions (operators) that can be performed as
well as strategies that can be used in working on
the problem. It also includes a knowledge of
constra.nts in the problem situation—restrictions
on what can ve done, as well as limits on the
ways 1n which objects or features of objects can
be combined.

In developing hypotheses about the represen-
tation of problems, much use has been made of
concepts developed in analyses of language
understanding, including networks of propo-
sitions (Anderson, 1976, Kintsch, 1974, Quilhian,
1968), procedural representation of concepts
(Feigenbaum, 1963; Hunt, Mann, & Stone, 1966,
Winograd, 1972), and schemata (Hayes & Simon,
1974; Norman & Rumelhart, 1975, Schank, 1972,
Schank & Abelson, 1978). Representations of
problems differ from those usually pos:tulated
for the understanding of language 1n that they
are constrained to provide information needed
for solving the problem. Hypotheses about
knowledge used in representing problems include
processes for recognizing features that are
relevant to actions, strategies, and constraints of

the nroblem domain, and for conatrmicting repre.
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592 PROBLEM SOLVING AND REASONING

Hypotheses about problem representations
address some of the issues of understanding
principles and structure in problem solving that
were emphasized by some educational, develop-
mental, and Gestalt paychologists (Brownell,
1935; Duncker, 1945; Judd, 1908; Katona, 1940;
Kohler, 1929; Piaget, 1952; Wertheimer, 1959).
As with hypotheses about cognitive activity,
current hypotheses about repreeantation are
more definite and specific than those of previous
discussions. The hypotheses specify cognitive
processes and structures that actually construct
representations from texts or other presentations
of problem information (Hayes & Simon, 1974;
Larkin, McDermott, Simon, & Simon, 1980;
Riley. Greeno, & Heller, 1983). Hypotheses about
understanding of problem structure and general
principles include cognitive structures that
specify just what is understood about the problem
and how the understanding is achieved (Greeno,
1983; Greeno, Riley, & Gelman, 1984). Another
characteristic of recent discussions is that
hypotheses about understanding are coordinated
with hypotheses about cognitive activity in
problem solving, so the significance of under-
standing, as well as the specific information that
it provides for the problem solver, is made clear.

Methodology

The use of computer programming languages as
formal systems for psychological theory has
been a major factor in the development of the
concepts and empirical results discussed in this
chapter. The standards that are now common for
adequacy of a hypothesis include its expression
in a computer program that simulates actual
solution of problems—that is, a description
of the problem can be given as input for the
program, and the program carries out steps that
result in the problem’s solution. To meet this
standard, the theorist must develop specific
hypotheses about many aspects of the psychologi-
cal process that had been unspecified. Represen-
tations of specific silmulus situaiions must be
postulated, including relations among cues that
are assumed to provide important information
for the subject Knowledge structures and pro-
cesses required for comprehension of stimulus
situations must also be specified, leading to
specific forms of information that are assumed
to constitute the subject's cognitive represen-
tations of the stimuli. Assumptions about knowl-

edge in the subject’s memory are specified
in detail, including associative structureg of
information and production rules in wheh,
specific actions are associated with specific
stimulus conditions. The actions include ovepy
responses and internal actions such as setting
goals and choosing plans.

To provide evidence to evaluate these moye
detailed hypotheses, more detailed data are
required. A major source of these data has beep
the increased use of thinking-aloud protocols,
These protocols provide a more detailed descrip.
tion of behavior, enabling inferences about inter.
mediate steps such as subgoals and attention to
specific aspects of the problem. Protocol state.
ments are treated not as introspective descnp.
tions of psychological processes, but rather ag
overt reports of mental activity that the subject,
would be aware of in any case, but usually would
not announce. Indeed, subjects are instructed to
avoid trying to explain their behavior, but only
to give reports of things they notice or think
about as they are working (Ericsson & Simon,
1980). Statements in protocols provide data to be
explained by models that constitute hypotheses
about the process. Thus, protocol statements
have the same status as other detailed obeer-
vations, such as specific patterns of error by
individuals on sets of problems, latencies of
response when information for problems is
presented sequentially, or eye fixationa during
processing of problem information.

The remainder of this chapter is organized in
five sections. "Well-Specified Problems” deals
with problems in which a definite goal or golution
procedure is specified. "Problems of Design and
Arrangement” cunsiders problems in which goals
are specified in terms of general critena, rather
than as definite states or procedures. In ' Induc-
tion” and "“Evaluation of Deductive Arguments”
we consider tasks that are often called reason-
ing, rather than problem solving. Finally, we
present conclusions and unifying concepts.

WELL-SPECIFIED PROBLEMS

This section concerns problem solving 1n rela-
tively well structured situations in which a
defipite goal is specified. The problem solver 18
given an initial situation or problem state, a set
of operators that can be used to change the
gituation, and a goal state. The task is to find a
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WELL-SPECIFIED PROBLEMS 593

sequence of actions, restricted to use of the
permitted operators, that results in the goal
gtate. Problems discussed here include (1) goal-
directed problems for which the problem solver
has little or no specific knowledge or experience
and must resort to what are sometimes called
‘weak methods,’ (2) solution of problems of
the same structure for which individuals have
received special training or experience, (3)
problems that specify a procedure rather than
a goal, and, (4) the representation of problems
for which the individual has received special
training.

General Knowledge for Novel
Problems with Specific Goals

A subetantial body of research has been con.
ducted on the solution of well-structured puzzle-
like problems that require relatively little
domain-specific knowledge. The research strategy
of focusing on such problems has some advan-
tages beyond those of making the experiments
gimpler and the data easier to interpret. In
difficult problem domains requiring special
knowledge, we are likely to learn from our
subjects principally what they know and how
they have organized and represented their
knowledge in memory, because much of an
individual’s success depends on whether he or
she knuws the specific principles and procedures
of the domain.

In experiments in domains that are relatively
free of specialized content and where subjects
are relatively naive, we may still find significant
differences in behavior from subject to subject
and from domain to domain, but we are also
likely to discover some of the commeénalities of
behevior that characterize problem solving, at
least by novices, over a wide range of domains.
We are also likely to detect the flexible, general-
purpose techniques that people fall back on
when they do not have special knowledge or
methods adapted specifically to the task at
hand. These fallback techniques, often called
weak meihods, ure ihe only weapons that are
available for attacking truly novel problems.
Hence, .adersta> "".g them should contribute
to an understanding of discovery processes and
creative problem soiving,

The problem space consists of the problem
solver’s representation of the materials of the
problem, along with knowledge that is reievant

to the task. This includes a representation
of the problem goal and operators that can be
used. These may be specified 1n the problem
description or supplied by the problem solver's
knowledge. The operators include actions that
can be performed and conditions that are required
for performance of the actions. The problem
space algo includes the problem solver’s strategic
knowledge, which may include methods pre-
viously acquired through experience in the
domain, as well as general problem-solving
methods.

The tasks discussed in this section have defi-
nite goals specified in the problem instructions.
Subjects solving these problems are usually
not experienced in the tasks. The problem-
solving operators also are specified in the
problem instructions, rather than being known
in advance by the problem solvers, and the
problem solvers must rely on general problem-
solving strategies—that is, on weak methods.
The principal methods of this kind employ a
general problem-solving heuristic called means-
ends analysis, in which the current state is
compared with the goal of the problem or a
subgoai that the problem sclver is trying to
achieve, and an operator is selected that can
reduce differences between the current state
and the goal.

Research has been conducted on several
tasks of this general kind, two of which w»
discuss here: proof discovery exercises in logic
(Newell & Simon, 1972), and water-jar problems
(Atwood & Polson, 1976). These studies 1llustrate
two empirical methods. Newell and Simon’s
study of logic-proof discovery used detailed
analyses of thinking-aloud protocols obtained
from a few subjects, with data from a larger
group of subjects to check the representative-
ness of some general features of performance.
Atwood and Polson's study of water-)ar problems
used frequencies of responses that occurred
during problem solving to evaluate a model of
problem solving expressed in quantitative form.

Discovering Froofs in Logic

Discovering proofs for mathematical theorems
of one kind or another 13 a task all of us have
faced. One domain in which theorem proving
has been studied extensively is elementary
symbolic logic (Moore & Anderson, 1954;
Newell, Shaw, & Simon, 1957; Newell & Simon,
1972). The propositional calculus 1s defined by
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only two rules of inference and a dozen axioms.
In the studies discussed here the task was
presented as a syntactic game of transforming
strings of uninterpreted symbols according to
rules given as symbolic formulas. This ensured
that subjects could not draw readily on common-
seL.2 knowledge they may have had of the laws
of reasoning (The studies of syllogistic reasnning
discussed later directly address the question of
subjects’ knowledge of formal logical rules.)

DenuctioN aAND INDUCTION IN PROBLEM
SoLvInG

At the outset we must deal with one common
misconception about proof-finding tasks. Logic
is the science of deductive reasoning from
premises to conclusions. A proof is a sequence of
expressions starting with ax‘oms (or previously
proved expressions) and terminating with the
desired theorem; each step of the proof must
satisfy the laws of deduction. Its validity can be
checked, step by step, by applying those laws
systematically.

Finding the proof of a theorem is another
matter. We have a known starting point, the
axioms, and a known goal, the theorem. Bow-
ever, in most mathematical domains there is no
systematic rule for constructing a path from
axioms to theorem. That path must be discovered,
and the method usually used is to search for it;
the amount of trial and error required depending
on how selectively the search is carried out.
Hence, while a proof is an example of a logical
deduction, the problem-solving activity involved
in searching for a proof is an inductive s2arch.

THE MooRE-ANDERSON Locic PROBLEMS

In the logic task designed by Moore and Anderson
(1954), subjects were not told that they were
discovering proofs in symbolic logic, but were
simply instructed to 'recode’ certain strings of
symbols into other specified strings, using a
o-* enset of transformation rules. The rules were
dis, ‘ayed on a sheet of paper that was available
to the subjects at all times. A typical rule (there
were tweive, some with subparts) was.

Av B-Bv A,

which was to be interpreted: T" -~ expression
A v B may be transformed into .. e expression
B v A, where A and B are variables for which
any parts of an expression can te substituted.
The connectives in such expresstons were referred

to by the experimenter as wedge (v ). aot ()
horseshoe (o). and tilde (~). instead of bemg'
given their usual interpretations in logic of or
and, implies, and not. Subjects were run on thu;
task by Carpenter, Moore, Snyder, and Lysansky
(1961) at Yale, and by Newell and Simon (1972)
at Carnegie Institute of Technology.

Several kinds of data can be obtained |
problem-solving tasks of this kind. The times tq
solution can be recorded, as well as the times for
making each successive transformation of ap
expression. Numbers of correct solutions can be
counted, and errors can be classified ang
analyzed.

THINKING-ALOUD ProTOCOLS

The richest data, however, are obtained by
instructing subjects to think aloud while solving
the problem. The verbal protocols provide a
higher temporal density of data than is usually
obtained by other methods (except perhaps from
records of eye movements). Typically, subjects
speak at an average rate of about two words per
second, although there are substantial differences
among subjects and from one part of a task to
another.

In order for thinking-aloud data to be used
correctly and effectively to help .nderstand
subjects’ cognitive processes, ar.swers are needed
to several questions, especially: (1) which
processes, or what parts of the processes, are
verbalized, and (2) to what extent does verbali.
zati0a alter or in any way affect the problem-
solving process itself? A recent extensive review
of relevant literature (Ericsson & Simon, 1980)
supports three general conclusions. First, sub-
jects mainly verbalize a subset of the symbols
that pass through the STM as the task 1s be.. |
performed. The verbalizations are more con.
plete (i.e., give a fuller record of successive STM
contents) whex. the problem 1s solved in terms of
verbal symbols than when the STM conteats
have to be translated from some other modality
(i.e., visual imaye). Secund, the process of recog:
nizing some familiar visual or auditory stimulus
does not produce any intermediate symbols wn
STM that can be reported; only the result of the
recognition process can be reported. Third, in
most problem-solving tasks, the cognitive
processes are the same in the thinking-aloud as
in the silent condition. Moreover, the speed of
task performance 18 generally nerther .ncreased
nor decreased by the instruction to think aloud.




WELL-SPECIFIED PROBLEMS . 595

The protocols under discussion here are
those produced by subjects while they are
performing the cognitive task. In using retro-
spective protocols as data. additional factors
must be taken into consideration. First. only
such information can be reported retrospectively
as has been transferred to LTM and retained
there. Second. unless the instructions call for
recall of specific events, subjects may engage. in
a variety of ways, in active reconstruction of the
event or process that is being probed. Hence,
retrospective protocols must be interpreted in
the light of what we know about the laws of
memory and forgetting (Bartlett, 1932, Nisbett &
Wilson, 1977).

The most detailed analysis of problem-solving
pratocols calls for reconstructing from them the
successive cognitive states of subjects as they
work toward solution of the problem. '‘Cognitive
state’ means what the subject knows or has
found out aboat the problem up to the time of
the protocol fragment being examined, along
with information, such as subgoals and evalu-
ations, that has been generated by the subject
from decisions and judgments. Typically, in
tasks like the logic-theorem proving task, sub-
jects verbalize the symbolic expressions they
produce and those they are actively considering,
the operators they are applying to transform
expressions, and often the goals they are trying
to attain—such as the final theorem or expres.
sions they think would bring them closer to 1t
{Newell & Simon, 1972). As they proceed, subjects
often evaluate their p-ogress and the suitability
of steps they have just taken.

From such protoccl statements we can usually
reconstruct the problem space in which a sub-
ject is operating. Formally, a problem space is
defined by a set of symbnl structures, corre-
sponding to the cognitive states that can be
generated as the subject works on the task, and
a set of cognitive operators, or information
processes that produce new cognitive states
from existing ones. The problem-solving efforts
of a subject may be described as searches
through a problem space from one cogmtive
state to another until the solution (a particu-
lar cognitive state) is found or the search is
abandoned.

Given a description of the problem space
inferred from a protocol, a search tree called
a Problem Behavior Graph (PBG) can be con.
structed to repre- - at the course of the subject’s

search. The size and shape of the PBG discloses
the extent of the subject’s skill and knowledge
and the consequent selectivity he 1s able to
achieve. With the PBG. the experimenter can
construct a simulation program for a computer
which. if given the same problem. would generate
the same PBG as that generated by the subject.

The accuracy of fit of the simulation program
to the strategy that guides a subject’s behavior
can be judged by comparing the program's trace
step-by-step with the problem-solving protocol.
Formal methods for judging goodness of fit in a
statistical sense are not available, but departures
of trace from protocol are easy to detect. These
discrepancies form the basis for modifying the
simulation program to fit the protocol more
closely. Except for the fact that the data in this
case are not numerical, the process of fitting a
computer program to protocol data is identical
in principle to the process of fitting a system of
differential equations to time series data.

A basic problem space for the logic task is one
in which the subject’s cognitive state 18 defined
by the logic expressions thus far derived from
the initial given expression, and by the legal
operators for generating new expressions from
these. Since the protocol normally discloses
both what operators are being applied and what
expressions are obtained from the application, a
great deal of redundancy is contained in the
available information, with which the consist-
ency of the interpretation is tested. Many
protocols allow a richer problem space to be
inferred—one in which the subject notes sim-
larities and differences among logic expressions,
and chooses the next step in those terms, When
the subject's choice of actions is also guided
by goals and subgoals, these are added to the
description of the problem space.

SoLuTiON PROCESSES

No single strategy, or simulation program based
on such a strategy, can be expected to descnbe
the problem-solving behavior of all subjects.
However, the behavior of many subjects in tasks
like the proving of logic-theorems reveals that a
small number of common mechanisms are central
features of the problem-solving process. One of
the most important of these is means-ends
analysis, first introduced into the problem-
solving literature by Duncker (1935/1945).
Means—¢ ..ds analysis requires a problem space
rich enough to contain not only logic expressions
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and operators. but also symbol structures des-
cnbing differences between pairs of logic
expressions and other symbol stiuctures that
descnbe goals. Thus, a subject operating in
such a problem space might say, "I have an
expression whose main connective is a horse-
shoe, and my goal expression has a wedge. Let
me look for an operator that will change horse-
shoe to wedge."

In broadest outline, means-ends analysis can
be described by the following set of productions,
where S is the present state or expression, G is
the goal expression, D 1s a difference between
two expressions, and O is an operator:

If the goal is to remove difference D between
S and G — find a relevant operator O
and set the goal of applying it.

If the goal is to apply O to S,
and condition C for applying O is unsatisfied
- set the goal of satisfying C by modifying S.

If the goal is to apply O to S
— make application

If there is a difference D between S and G
- set the goal of removing it.

If there is no difference between Sand G
- halt and report problem solved.

While the production system displayed here
does not describe all the details of the control
of search, it provides the main outlines of
means-ends analysis. The system seeks to detect
a difference between the present position in the
problem space and the goal position. Given such
a difference, it searches memory for an operator
that is relevant for removing the difference
and attempts to apply it. If all the conditions
for operator application are not satisfied, it
expresses the discrepancy as a new difference
and establishes the goal of reducing it. The
scheme operates recursively, and when one
difference has heen remeved it looks for another.
An important component of the gtrategy not
represented in the productions is the use of
memory to store goals that have been tried, so
the problem solver can avoid looping through
the same cycle of repeated unsuccessful attempts
of a goal that cannot be achieved.

A clear distinction can be made between the
general strategy of means—ends analysis and
domain-specific knowledge that 1s required for.
the strategy to be used in solving any particular
problem. The general strategy 1s represented in
the productions shown above. To use these
productions, a problem solver must be able to
represeiit the state, S, and the goal, G and
identify differences between them. In the domain
of logic, states correspond to expressions, and
differences involve different letters, different
connectives, and different arrangements of
letters and connectives, The problem solver also
must know what operators can be used, what
conditions permit each operator to be applied,
and what kinds of difference are removed by use
of each operator. In logic, the operators are
the rules for transforming expressions. The
conditions are patterns that are specified in the
rules, and the relevant differences for a rule can
be inferred by comparing the two sides of the
rule. For example, A - B -» A requirea a pattern
in which two subexpressions are connected by a
dot, and has the effect of removing a letter ora
subexpression, as well 2s removing the dot.

A o B+ ~A v Bdoes not remove or add any

letters, it can be applied to a pattern with a
horseshoe to change the horseshoe to a wedge or
vice versa, and it changes the sign of one of the
letter or subexpressions.

The general strategy of means-ends analysis
has been implemented in a program called the
General Problem Solver (GFS) and shown to be
sufficient for providing solutions in over a dozen
problem domains, including puzzles such as the
Tower of Hanoi and tasks such as integral
calculus, given appropriate representations of
the states, operators, and conrections between
operators and differences in the specific domains
(Ernst & Newell, 1969).

In the esperiments conducted with the logic
task, subjects were not experienced in the
domain. The operators were presented as part of
the trak instructions, and it is reasonable to
presutne that subjects relied primarily on general
problem-solving stratcgiss, rather than on
knowledge that was specific to that task. If that
is correct, and if the subjects’ general problem-
solving strategies have the properties of GPS,
then their performance in the logic task should
be similar to that of the program when it is
run on the task. The results supported this
hypothesis.
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The hypothesis was evaluated at three levels.
First. specific protocols were examined that
compared the statements made by subjects with
the steps in solutions by specific versions of
GPS. For these simulations, GPS was varie:d by
supplying 1t with differing priorities of differ-
ences. Second, a set of protocols [all those
obtained by Newell and Simon (1972) on one
moderately difficult problem] were coded. and
each was translated into a problem behavior
graph (PBG) showing a succession of cognitive
states that was inferred from the statements and
problem-solving operators to account for the
transitions between states. The state-to-state
transitions were classified and the categories
were compared with categories of activity per.
formed by GPS. Third, some summary statistics
were compiled for Newell and Simon's subjects
and for the subjects run at Yale, involving
the frequencies of occurrence of several inter-
mediate steps in solutions of the problems.
These statistics were compared in order to
detect any gross abnormalities in Newell and
Simon’s data, with the results from a larger
group of subjects at Yale who solved the problem
with pencil and paper and without the require-
ment of thinking aloud.

As Table 2.1 illustrates, individual protecols
can often be simulated in great detail, but
there will undoubtedly be differences among
individuals in their problem solving methods,
and hence in the production systems that would
describe them. For purposes of gsychological
theory, we are often less interested in the details
of a particular stmulation (except as a strong
test of the theory) than we are in the structure
of a program that simulates the main mech-
anisms revealed in a set of protocols. The problem
of averaging over groups of subjects ca.. .lso be
handled formally by comparing the statistics of
the behavior of a program with the statistics of
the human subjects as a group. This section
examines comparisons of programs in detail
with individual protocols, and the statist:cal
approach is described in the next section.

InpIviDUAL PROTOCOLS
Newell and Simon have presented several proto-
cols in which activities of subjects reflect
procesgses similar to those in GPS. The illus-
tration 1n Table 9.1 shows a segment of one
subject’s protocol along with a trace of a version
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of GPS working on the same problem. [n the
protocol and the GPS trace, LO refers to the
goal expression and L1 refers to the iniual
expressions of the problem. The expressions L2,
L3. and so on refer to additional expressions
that are generated by the problem solver by
applying operators to L1 and other previously
generated expressions. The operators that are
referred to in this segment are

R6:A > B+ ~AVv B
R:AvB:QO~—(Av B (Av (D
A BvOe~(A'BYv(A-O

The protocal segment in Table 9.1 began near the
end of the first minute of work on the problem
and lasted slightly more than three minutes.

In this segment, the goal of both the subject
and GPS was to delete the letter R from the
initial expression. Both problem solvers con-
sidered rule R7 as a possible way to do so. The
rule R7 cannot he applied to L1 because its
connectives are wrong, so a subgoal was set to
change the connective of L1. This led to use of
R6, but the two occurrences of R in the trans-
formed expression have opposite signs. When
attempts wer2 made to change one of the signs,
the horseshoe was returned to the subexpression.
At this point the subject and the specific version
of GPS that produced this run were unable to
continue on this line of work.

This protocol and GPS trace are alike in
an impressive degree of detail. However, the
important finding is not that the subject and
GPS tried to use the same rules in the same
sequence. The precise sequence of rules used by
GPS can be tailored fairly arbitrarily, and other
versions of GPS would not try to use R6 and R7
in this situation. The important finding involves
the general character of the subject’s perfor-
mance, involving goals related to differences
between the current expression and the problem
goal and subgoals to make operators applicable.
The protocol provides several clear illustra-
tions of activities that are consistent with the
hypothesis of 2 GPS-like problem-solving process.

ProBLEM BEHAVIOR GRAPHS
It is important to consider whether activities
like those in Table 9.1 are typical of problem
solvers or are relatively rare. Newell and Simon
addressed this question by examining Problem
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Table 3.1. Comparison of GPS with protocol data
Source. (Newell & Simon, 1972)

GPS trace

Subject protocol

10: ~ (~Q-P)
LI (R> ~P):(~R2>Q)
Goal 1:  Transform L1 into LO
Goal 2: Delete R from L1

Goal 2: (reinstated)
Goal 9: Apply R7 0 1.1
Goal 10: Change connective to v
in left (L1)
Goal 11: Apply R6 to left (L1)
Produce L4:
(~Rv ~P)'(~R> Q)

Goal 12: Apply R7 to L4
Goal 13: Change connective to v
in right (L4)
Goal 14: Apply R6 to
right (14)
Produce L5:
(~Rv ~P)-BRvQ

Goal 15: Apply R7 to L5
Goal 16: Change sign of
left (right (14))
Goal 17: Apply R6 to
right (L5)
. Produce L8:
(~Rv ~P):(~R> Q)

Goal 18: Apply R7 to L6
Goal 19: Change connective to
v in right (L6),
Reject
Goal 16: (reinstated)
Nothing more
Goal 13: (reinstated)
Nothing more
Goal 10: (reinstated)
Nothing more

Now I'm looking for a way to get rid
of the horseshoe inside the two
brackets that appear on the left
and right sides of the equation.

And [ don't see it.

Yeh, if you apply R6 to both sides
of the equation,

From there I'm going to see if [ can
apply R7.

[E writes L2: (~R v ~P)- (R v Q)]

I can almoat apply R7, but one R needs
a tilde. So I'll have to look for
another rule.

I'm going to see if [ can change that R to
a tilde R. As s matter of fact, [ should
have used R6 on only the left hand side
of the equation. So use RS, but only on
the left hand side.

(E writes L3: (~R v ~P):(~R > Q)]

Now I'll apply R7 as it is expressed.

Both...excuse me, excuse me, it can't be
done because of the horseshoe. So...
now I'm looking...scanning the rules
here for a second, and seeing if [
can change the R to 2 ~ R in the second
equation, but [ don't see any way of
doing it.

(Sigh) I'm just sort of loet for a second.

Note. From Allen Newell, Herbert A. Simon, HUMAN PROBLEM SOLVING, (c) 1972, p. 482. Adapted by permission of

Prentico-Hall, Inc.. Englawnad Cliffa, NI

Behavior Graphs (PBGs) obtained from the
protocols of geveral subjects working on a
moderately difficult problem.

An example of a PBG is shown in Figure 9.1.
The numbers prefixed by B on the left, correspond
to lines of the transcribed protocol. This PBG

was obtained from the protocol that includes the
segment given in Table 9.1, which corresponds
to the sectinn of the PBG starting at B10 and
ending just before B¢ Information included
in the cognitive sta' ‘» the rectangles;
operators are shown

1eg that connect

ko
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Figure 9.1. Problem behavior graph for a protecol, including the segment in Table 9.1. From Allen Newell,
Herbert A. Simon, HUMAN PROBLEM SOLVING, (c) 1972, p. 468. Adapted by permission of Prentice-Hall, Inc.,

Englewocd Cliffs, NJ.

the rectangles. Information in the rectangles
refers to new expressions that were written (e.g.,
L2 or L3 in the protocol), or differences between
a current expression and the goal that the
subject was considering. For example ‘Ag’ refers
to a differenice in grouping of terms and 'Ac¢ & r’
refers to the differences between connectives in
the given expression and the goal of applying R7
(horseshoes in both the left und right sides of L1
and wedgas or dots needed to apply R7).

Most of the operators refer to the rules; we
mentioned R6 and R7 earlier. When a rule is
apphed successfully, there is an arrowhead on
the line between rectangles. A rule shown with
a line but no arrowhead indicates that there
was a goal of applying the rule but it was
not achieved. Double lines indicate repeated
attempts to apply rules.

The relation between the protocol and the
PBG can be illustrated by examining the first
few lines of Table 9.1 and the PBG starting
at B10. The nstruction "get L0 refers to
consideration of the goal, this led to recognition
of the difference in grouping between L0 and L1
(Ag). The subject then attempted to apply R7,
this led to identifying the differences in connec-
ties noted in the third rectangle (Ac Z & r). An
attempt to apply R6 was then successful, result-
ing in line L2. The subject attempted to apply R7

a second time and noticed that there was a
difference in the signs of the R terms in the two
subexpressions (AsR). From time to time, the
subject returned to an earlier state, as when he
decided that R6 should be applied only to the left
side of L1. This is indicated by a vertical line
drawn down from the cognitive state that the
subjoct returned to. The rule R6 was applied to
the left subexpression of L1, giving line L3; then
R7w 1attempted again, but the subject noticed
the ".orseshoe, an incorrect connective for R7.
The subject returned to the goal of changing the
sign of R in expression L2, but the search for an
appropriate rule (indicated by R in a box) failed
to produce anything helpful.

PBGs were compiled from protocols of seven
subjects working on the problem in Table 9.1.
The transitions between states were classified,
and the categories were compared with activities
that occur when GPS works on a problem. The
categories, and their frequencies in the seven
PBGs, are shown in Table 9.2. Frequencies 1n
the second and third columns of Table 9.2 are for
subcategories of the categories in columns to
the left. For example, the 258 occurrences of
means-ends analysis consisted of 89 steps
toward goal objects, 151 steps involving operator
applicability, and 18 steps to avoid consequences.

Most of the categories shown 1n the table
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Table 9.2, Total frequencies of occurrences of
GPS-like mechanisms in seven protocols
Source: (Newell & Simon. 1972),

Category

Means-ends analysis 258
towards goal object 89
operator applicability 151
overcome difficulty 143
further specify 5
resolve uncertainty 3
*avoid consequences 18
avoid difficulty 17
prepare desired result 1

Frequency

Working forward 41
systematic scan and evaluate 37
input form similarity
do something different 1

Working backward 2
output form similerity 2

Repeated application 230
.after subgoal 93
to overcome difficulty 58
to further apecify 11
to resolve uncertainty 2
to avoid consequences 12
to correct error 8
to process interruption 2

implementation 97
for plan 84
*to command experimenter 13

*review 40

Other 21
*noticing 6
*repeated application 11
*new application 10

Total 558.

Note. From Allen Newell, Herbert A. Simon, HUMAN
PROBLEM SOLVING, (c) 1972, p. 493. Adapted by permission
of Prentice-Hall, Inc., Englewood Chiffs, NJ.

correspond to GPS-like activities. Those that do
not are marked with asterisks, accounting for
about 18 percent of the transitions in the PBGs.
The most interesting discrepancies involved
choice of operators to avoid undesirable conse-
quences (‘avoid consequences'), and the noticing
of features of the problem not related to the
present goal (‘noticing’). Simulation of these
would require significant additions to the
problem-solving processes of GPS. The remaining
discrepancies involve activities that relate to
the requirement of giving protocols (‘command

experimenter’ and ‘review'") or points in the proto-
col where there was insufficient information to
determine whether the transition was related to
one of the GPS-like categories (‘other.” except
for those in the subcategory noticing).

AGGREGATE FREQUENCIES

The data in Table 9.2 were obtained from a small
group of subjects who were required to think
aloud as they worked. It is possible that the
subjects were atypical, or that the instruction
to think aloud caused major distortions in the
problem-solving method.

Newell and Simon compared some summary
statistics from their subjects with data obtained
by Carpenter et al. (1961) at Yale University.
The larger number of subjects run at Yale (64)
solved the problems with pencil and paper, with-
out thinking aloud. If the data for the Carnegie
subjects do not differ from the Yale data in
significant ways, then there is evidence that the
general characteristics of their problem solving
were not caused by individual idiosyncracies, or
by the requirement of verbalizing protocols
while working on the problems.

The summary statistics involved a division

of expressions into categories. Each category -

consists of an expression from the problem, such
ag the left subexpression of expression L1, and
other expressions that can be formed from it by
making minor transformations. Minor trans-
formations for this purpose are those involving
rules that change the order of terms, the connec-
tives, or the signs, but do not change the terms
in an expression. The data for each group of sub-
jects are the proportions of all the expressions
written that fall into the categories. The cate.
gories of expressions are listed in the left column.
For example, expressions in Class L1 are those
that can be formed by applying one of the minor
transformations to expression L1 as shown in
Table 9.1. The categories used are not arbitrary;
they are motivated by the observation that
differences that depend on changing the terms
in expressiong are more difficult {6 remove, and
thus, require higher priority in solving the
problems.

Data for the problem in Table 9.1 are shown
in Table 9.3. The comparison of the two groups
of subjects does not show exact agreement but
indicates no major differences in their problem-
solving processes. A statistical test shows that
the difference between the category frequencies
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Table 9.3. Proportions of expressions

Class of Carnegie Yale
expressions (78 expressions) (519 expressions)
L1 37 .29

Left of L1 14 .16

Right of L1 12 29

Lo 24 By

Other 13 .16

in the two groups was not significant [y*(4) =
8.86; p > .05). (The independence assumption of
the chi-square test was not met in thesge data,
since several expressions were written by each
subject. However, this would generally make 1t
more likely that a significant difference would
be obtained, so the conclusion seems warranted.)

Data are shown in Table 9.4 for a somewhat
harder problem, in which the given expression
was L1 = (P v @) (Q o R), and the goal was
10 = P v (@ R). Again, the agreement is not
exact, but the difference is not large enough
to reject the hypothesis that the two sets of
responses were produced by a single underlying
process [£(8) = 15.27, p > .05).

PLANNING STRATEGY

A second strategy of broad applicability and wrae
use that was identified in the logic protocois is
planning. Its underlying idea is that some gaps
between the initial situation and the goal are
more important and potentially harder to remove
than others. If the problem space is simplified by
abstracting the problem expressions—removing
from them the less important features—the

Table 9.4. Proportions of expressions

Class of Carnegie Yale
expressions (97 expressions) (487 expressions)
19 .33 28
Exiended Li 02 U4
Left of L1 .14 .19
Right of L1 14 .15
R v P) 13 07
PvQ-(PvR .03 01
Lo 03 .01
Rule 9 .16 18
Other 01 07

simplified expressions will define a much smaller
space through which the search can be conducted
expeditiously. If a solution can be found to the
simplified problem, the omitted details can be
restored and this solution is used as a guide for
searching in the original problem space.

To use the planning strategy subjects not
only must be able to apply means-ends analysis,
but must have enough knowledge of the problam
space to be able to distinguish important from
unimportant differences between expressions.
For example, in the domain of logic, subjects
gradually learn that it is easier to %“ange the
connectives in logic expressions than to change
the letters. The planning space is then a space in
which expressions like (R > ~P):(~R > Q)
are replaced by (RP)(RQ). The sequences of
proof steps in the original space, R o ~ P,
~RoQ ~@>R ~Q>~P, Qv ~P,
~(~ @+ P), becomes the simpler sequencein the
planning space, RP, RQ, PQ. The second step of
the search 1n the planning space corregponds to
two separate steps in the original space, and the
third step in the planning space corresponds to
three steps in the original space—a reduction of
one-half in the length of the derivation, and of a
much larger factor in the amount of search
reguired to find it.

Evidence for planning was obtained in proto-
cols like the following, obtained in a problem
with four given expressions: L1 = P v Q;
2= ~R>~@;L3 =S;I4 =R > ~8§;and
the goal: L0 = P v T. Rule R9Y, mentioned in
the protocol. is A -+ A v X, a rule for adding a
term to an expression.

Well, one possibility nght off the bat is when
you have just a P v T like that the last thing
you might use is that R9. [ can get everything
downtoa Pand justadda v T.Sothat'stheone
thing to keep in mind.

Well, maybe right off the bat, I'm kinda jumping
into it, I maybe can work everything down to
just a P; I dunno if that’s possible. But [ think

it is, basauge I gea that staps 2 and 4 are some-
what similar; if I can cancel out the Rg, that
would leave me with just an S and @; and if [
have just an S and @, I can eventually get step
3, get the Ss to cancel out and end up with just
a @; and if I end up with just a @, maybe the Qs
will cancel out; 30 you see, all the way down the
line. I dunno, it looks too good to be true, but I
think I gee it already.
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Water-Jar Problems

Water-jar problems, studied extensively by
Luchins (1942), are transformation prcblems
with definite goals, involving a set of three jars
of different capacities. In the form studied by
Atwood and Polson (1976), the largest jar is full
in the initial state, and the goal is for the water
to be divided equally between two jars. For
example, the capacities may be: jar A, 8oz; jar B,
50z; jar C, 3o0z. Then in the initial state, jar A
contains 8oz of water, and jars B and C are
erapty. The goal is to have 4 oz of water each, in
jars A and B. The problem-solving operators
involve pouring water from a source jar into a
target jar. Water can be poured into the target
jar until it ig full if there is enough water in the
source jar; water can be poured out of the source
jar until it is empty if there is enough room in
the target jar. Intermediate actions are not
possible.

In the water-jar task, differences between
any state and the problem goal consist of dis-
crepancies between the contents of the three
jars in that state and the contents that are
specified in the goal. Atwood and Polson
hypothesized that subjects would judge their
progress by combining the discrepancies, forming
an overall evaluation function for the current
state, and would try to select moves that would
improve the value of this function, They assumed
that the evaluation of a specific state i was

e = IG(4) - G(A)| + |C(B) - G(B),

where C,(A) and C,(B) are the actual contents of
jar A and jar B in state { and G(A) and G(B) are
the contents of jar A and jar B in the goal state.
(The contents of jar C are redundant with those
of A and B.)

Atwood and Polson formulated a process
model, based on the means-ends strategy of
attempting to reduce the eveluation to zero.
They assumed that at each move, subjects would
consider various pouring operations that could
be made legally and would try to choose one that
would make the evaluation function smaller, or
at least would not increage ita current value by
more than a threshold amount. This strategy
differs from the means-ends strategy of GPS in
one significant respect: GPS considers all the
ways in which the current state and the goal
differ and selects a move to reduce the most
important of these qualitative differences.
Atwood and Polson’s model combines the dif-
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ferences into a single numerical index—the,
value of the evaluation function—and tries to
reduce that differance by at least a threshold
amount. This difference probably does not have
a significant effect on predictions of performance
in the water-jar task, but there are situations in
which strategies based on global evaluations
and on individual qualitative differences would
lead to significantly different performance.

Atwood and Polson also made specific assump.
tions about memory capacity; they assumed
that a limited short-term memory would hold
information about states that would be produced
by alternative moves, and that each state reached
in solving the problem would be stored 1n long-
term memory with a fixed probability.

The model also specifies a sequence of
processes for selecting & move. The sequence
includes calculating the evaluation function for
alternative moves, stc ‘ag information about
alternatives in STM, recognizing states that
have occurred before on the basis of information
in LTM, and deciding whether to make a given
move under consideration, The assumptions of
the model allow for several possibilities: (1) A
move may be selected if it leads to an acceptable
state (this was agsumed to be less likely if the
state was recognized as having occurred before);
(2) the moves stored in STM may be examined,
with a selection of those stored in LTM from
previous occurrences; (3) 8 move may be chosen
at random from the get of possible moves; or (4)
the subject may decide to return to the initial
state of the problem.

Atwood and Polson tested their mode] with
data from human subjects who solved different
versions of the problem. Problems were presented
at computer terminals, and the moves made by
each subject were recorded. The model was
implemented as a computer program which was
run with various values of the parameters, but
because it contains probabilistic processes, 1t
does not produce a single sequence of moves 1n
solving a problem. The model was run many
times with each set of parameter values, and its
performance was swmmarized by the average
frequency of each of the possible problem states.
The parameter values were chosen for which the
set of frequencies for two problems (jar gizes of 8,
5, 30z, and of 24, 21, 3 0z.) that approximated the
frequencies obtained from the human subjects.
These parameter values seem quite reasonable.
The size of STM was set at three alternative

~



o

.

' e he
Zandfies to
P

st Q () (LA

s ngytiave
of performance
reAituationes
£Calua Ons
ference$ Ould
rfgrinance,
o6 assinp-
they pebumned
ory J uld hOld
i bep oduced
l etdfe reg ed
e storgin long-
abiJity. e
7 saqience #Of
e, The septence
ition fudction for
fopfiation 284 t
i£pa-tlates Mat
sis ofinf " ﬂtion
¢ to mgpife a given
\e ghbumpsieripof
)o.ti‘ )A
Is to an g ept.able
» lesgAikely if the
g gfcurred-setorgX
fe exa _".' edl
>red in LP¥ from
ove mp¥ be Cooee
ssiblppeves; opf?)
sturn ¢ th “itial

d thej ./: deiEth
+hodo)wed différent
le wer esented
the mgwes maue-py

WELL-SPECIFIED PROBLEMS 603

moves, states reached in the problem were
stored in LTM with a probability of .90; and the
threshold of acceptability for a new state was set
at 1.0 above the value of the current state.
Results of the simulation are shown in Figure
9.2. Each sot of predictions was based on running
the model 250 times. The data for each problem
came from a group of about 40 subjects and were
different from the data used to estimate the
parzmeters, for which only one problem (8, 5, 3)
was used. The model correctly predicted the
order of difficulty of the four problems. For two
problems, Figure 9.2a and 9.2b, the detailed
predictions of response frequency were not sig-
nificantly different the data by a statistical
teat. In the two haruer problems, Figure 2c and
2d, the general shapes of the frequency distri-
butions agreed with the data, but the model
erred by predicting too many returns to states at
the beginning of a path that led to the goal. As
Atwood and Polson noted, this defect could be
corrected by assuming that the probability of
recognizing a previous state depends on the
number of times it has been encountered.

Conclusions
Problem solving in situations that are novel to
the problem solver, in which a definite goal and
a set of legal problem-solving operators are
described by the instructions, requires some
general problem-solving strategy. In situations
of this kind the strategy of means-ends analysis
represents the major feature of human problem-
gsolving performance. The evidence discussed in
this section consists of individual thinking-
aloud protocols and aggregate response fre-
quencies in two tasks. Findings that fit this
general pattern have been obtained in a wide
range of problem-solving tasks, including puzzles
such as the Tower of Hanoi (Anzai & Simon,
1979) and physics textbook problems (Simon &
Simon, 1978), which are discussed below in
"“Problems with Specified Procedures.”
Means-ends analysis is perhaps the single
most important strategy that people employ
to search sslectively through large problem
spaces. The selectivity is powerful because it
points search in the direction of the goal, selec-
ting operators on the basis of their relevance to

_reducing the distance from that goal. Use of

meax'us-ends analysis requires some domain-
specific knowledge; for example, it can be
employed efficiently only if the subject has

learned enough about the problem domain to
associate particular differences with particular
operators that remove them. However, it is
basically a weak method, applicable in situations
where the problem solver has little specific
knowledge based on experience in the problem
domain,

Domain-Specific Knowledge for
Familiar Problems with Specified
Goals

We now turn to problems solved by individuals
who have specialized knowledge, acquired either
through instruction or practice. The first sub-
section concerns problem solving in a domain
of school mathematics—high school geometry.
We will then discuss problem-solving set or
Einstellung, which we interpret as resulting
from domain-specific knowledge structures.

Geometry Exercises

In school subjects such as geometry, the knowl-
edge for solving problems is imparted intention-
ally, through instruction. Research conducted
by Greeno (1978) had tiie goal of investigating
and characterizing the knowledge that is
acquired by students who learn successfully in
the course.

The main data were obtained in a series of
interviews conducted weekly with six students
who were taking a standard high school geometry
course. In each interview, an individual student
worked for about 20 minutes to solve three or
four problems. Most of the probiems were typical
of homework or test problems that the class was
working on at the time. Students were asked to
think aloud as they worked, and their protocols
were recorded and transcribed.

One of the problems solved in an early session
(during the second month of the course) 1s
shown in Figure 9.3. The problem as it was
presented is shown in Figure 3a. The upper right
diagram (in Figure 3b) provides notation for
referring to the various angles in diagram (3a).
The séven sieps slivwn below the diagrams are a
formal solution with inferences and justifying
reasons. The students were not required to write
the solution steps of this problem formally but
they were required to state aloud the intermediate
inferences they made. Most of the students
golved the problem in Figure 9.3 correctly.
Specific aspects of their solutions are discussed
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below. They are generally similar to the solution
shown in Figure 9.3.

The solution shown in Figure 9.3 was given
by a computational model called Perdix that
was formulated to simulate the students’ perfor-
mance. The structures and processes represented
in Perdix are hypotheses .bout the knowledge
that students acquire in a geometry course.

PROBLEM-SOLVING KNOWLEDGE

Perdix contains three kinds of knowledge, all
represented as production rules: (1) problem-
solving operators that make inferences, (2)
perceptual concepts that recognize patterns in
diagrams, and (3) strategic processes that set
goals and select plans for problem-solving
activities.

Problem-solving operators in geometry corre-
spond to the theorems, postulates, and definitions
that are used as reasons to justify steps in a
problem solation. Examples include "Vertical
angles are congruent” (a theorem), “Corre-
sponding angles are congruent” (a postulate),
and “If two angles are supplementary, the sum
of their measures is 180°” (a definition). When
the antecedent of one of these propositions is
satisfied in a problem, then the consequent can
be inferred. For example, because A1and A6 are
vertical angles in Figure 9.3, the inference that
Al and A6 are congruent is permitted. The
propositions that correspond to the problem-
solving operators are prominent in geometry
instruction. They are represented in Perdix
as production rules, with the antecedents as
conditions and the relations that can be inferred
as actiona.

Patterns of information in the problem have
to be recognized to determine that a problem.
solving operator can be applied. For example to
apply the inference rule, "Vertical angles are
congruent,” in Figure 9.3 and thus infer that A1
and A6 are congruent, the problem solver must
first recognize that A1 and A6 are vertical
- angles In the geometry course, perceptual con-
cepts are taught with examples using diagrams.
In Perdix, knowledge for recognizing patterns is
represented by discrimination networks, similar
to the structures in the Elemerntary Perceiver
and Memorizer, EPAM (Feigenbaum, 1963) and
the Concept Learning System, CLS (Hunt et al.,
1966). Perdix’s recognition system is based on
features of a diagram, such as sides of two
angles that are collinear, along with other

PROBLEM SOLVING AND.REASONING

information that may be given or inferred. such
as statements that lines are parallel or perpen.
dicular. An example 1s shown .n Figure 9.4
which represents the process that can recognize
a pair of vertical angles. a pair of angles formed
by bisecting an angle, and other patterns that
involve pairs of angles that have a single vertex.

Strategic knowledge is needed for setting
goals that organize problem-solving activity. in
the example problem of Figure 9.3, the matn goal
is to find the measure of angle Q. This cannot be
achieved directly, and the problem solver must
know that a way of finding the measure of an
angle is to find a quantitative relationship (e.g..
congruent or supplementary) of the unknown
angle with one that has a known measure. This
can be represented as a production: when the
current goal is to find tle measure of an angle,
and the measure of another angle is known, set
a subgoal of finding a quantitative relation
between the unknown angle and the known
angle.

The importance of strategic knowledge 1s
illustrated in the protocol in Table 9.5. The
student was working on the problem shown in
Figure 9.3. The student marked several anglesn
a copy of the diagram; these are indicated in
parentheses in the protocol of Table 9.5 in
relation to the diagram in Figure 9.3(b). ¥or
example, "P iwvould equal one (~ A1)” indicates
that a label ‘1’ was written on the angle in the
student’s diagram at position A1.

The student seems to have known the problem-
solving operators and the geometric patterns
needed to apply them (this was confirmed n
another part of the interview) but was unable to
solve the problem. A likely hypothesis 1s that
the student lacked knowledge of the problem.
solving strategy needed in this problem. The
strategy involves forming a chain of angles that
are related by congruence. Knowledge of this
strategy involves setting a series of 70als, when
the problem requires a relation between two
angles and none can be recognized, one must
first find an angle related to one of them by
congruence and then try to relate that angle to
the other angle. This strategic procedure can be
applied recursively until an angle 13 found that
is related to the goal angle by one of the geo-
metric relations from which a quantitative
relation can be inferred.

Four of the six students who were inter-
viewed in Greeno's study solved the problem in
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Table 9.5.
9.3

S. All nght, [ would put, like, P would equal
one (—Al).

Okay.

And then, two (— A6).

Put 1n two there, right.

And then three (~A15); no, wait—three
(= Al5) and four (~ A12), [ guess.

Okay. Now, why did you put two there?

Well, I don’t know. It could have something
to do with vertical angles.

Okay.

Protocol of an attempt to solve Figure

o

@

All right, the first thing I guess I should try
to do, [ would try to find if there were any
alternate interior or corresponding angles?

Okay.

Or any of those.

Mm-hm.

I guess [ would say that . . . well, wait a
minute. [ guess maybe I would put five
there (~ A16).

Okay.

I don't know if [ would need this.

Okay.

These two are supplementary.

Right.

That doesn’t help much. And then, the
measure of angle five . . . would it equal
the measure of angle one?

Well, you might have to work that out.

How . .. if this equals . . . this equals forty.

That’s right.

Oh, all right. Wait, the measure . . . I can't,
I don't know. I don't know how to do
these.

E: Okay.

Figure 9 3 successfully, apparently applying the
strategy of forming a chain of congruent angles.
The students used different specific sequences of
angles, which could result from differences in
the way they scanned the diagram looking for
anglee to add to the chain, or differences in
the ease with which they recognized various
geometric patterns. About a week after one
unsuccessful student gave the protocol in Table
9.5, that student successfully solved a different
problem that also required the chaining strategy.

In geometry instruction, very little strategic
knowledge is taught explicitly; it has to be
inferred by the students from ezample problems.
Inference appears to be a common feature of

PROBLEM SOLVING AND REASONING

instruction in domains requiring acquisition of .
knowledge for problem solving, and. in the hght
of results of basic research on cognitive pro.
zesses in problem solving, we consider the
explicit teaching of problem.solving strategies
to be a potentially productive development for
instruction.

Strategic knowledge is represented in Perdix
by productions that select plans for work on
problems. A plan is a general approach to the
problem, based on information in the problem
situation. GPS forms such plans using its
general planning strategy, described on page
601. Perdix has specific cognitive structures
for plans that are used frequently for geometry
problems. Forming a chain of congruent angles
is one such plan. Another is using congruent
triangles to prove that two angles or two line
segments are congruent.

The organization of planning knowledge in
Perdix is similar to that developed by Sacerdoti
(1977), called a procedural network. In a pro-
cedural network, there are units of knowledge
corresponding to actions at different levels.
Each of these knowledge units includes infor-
mation about the prerequisites and consequences
of an action'that can be performed. In Perdix,
knowledge of each plan includes information
about goals that can be achieved using the plan
(its consequences), conditions in problems that
make the plan promising (its prerequisites), and
subgoals that should be set if the plan is adopted.

Perdix’s strategic knowledge constitutes the
main way in which it differs from GPS. Strategic
knowledge in GPS is the general means-ends
strategy that can be used in any domain for
which the problem solver is taught the operators
together with the productions that connect
operators with differences, and 1s given the goal
of a problem. The hypothesis represented in
Perdix is that instruction in a domain such
as geometry leads to acquisition of strategic
knowledge specific to that domain, such as the
schematic knowledge that represencs plans to
use chains of congruent angles or congruent
triangles. Both GPS and Perdix construct plans
that are more general than the actions that
must be performed 1n solving the problem. The
difference is that GPS forms plans using its
general means-ends strategy, whereas Perdix's
plans are based on knowledge of specific geometry
strategies,

When GPS plans, it uses the strategic process
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Figure 9.5. Wnitten work and drawing by a student on the problem, "Prove that if two sides of a tnangle are
congruent then the angles opposite those sides are zongruent. From "“Theory of Constructions and Set 1n
Problem Solving” by J.G. Greeno, M.E. Magone, and S. Chaiklin, 1979, Memory and Cognition, 7, p. 447.
Copyright 1979 by the Psychonomic Society. Reprinted by permission.

of means~ends analysis in a problem space that
contains features taken directly from the basic
representation of the problem. The planaing
space of GPS can be acquired by learning which
features of objects should be given first priority.
In Perdix, planning uses schematic knowledge
of specific methods applicable to problems in the

_ domain of geometry. These schemata include

general subgoals, such as proving that triangles
are congruent or finding an angle with a relation
based on parallel sides, that can be used as
intermediate steps. The associations of these
subgoals with the goals they help to achieve
have to be acquired by students; they are not
explicitly given as goals of problems in which
they are used.

SoLuTtoN OF ILL-STRUCTURED PROBLEMS
A hypothesis that is consistent with the analysis
of geometry problem solving is that domain-
specific strategic knowledge may provide the
main basis for solving ill-structured problems.
Problems may lack definite structure for many
reasons. One important source of indefinite
structure is that a problem may require knowl-
edge from several different sources, with the
result that its solution requires coordinated
work in several disparate problem spaces (Simon,
1973).

A modest form of this kind of problem arises
in geometry, involving problems thet require

construction of auxiliary lines. The problem
space that is presented, including a diagram,
given information, and a goal to be proved, must
be augmented in order for the problem to be
solved. Greeno, Magone, and Chaiklin (1979)
proposed that the. solutions of such problems
can be based on an individual’s knowledge of
plan schemata. In the Perdix mudel the need for
an auxihary line is recognized when a plan’s
prerequisites are partly satisfied in the problem
situation. This leads to the definition of a
subproblem; the goal is to complete the pattern
of features that constitute the prerequisites,
which is achieved in a problem space with
operators appropriate to that goal.

An example is shown in Figure 9.5, the
drawing and written work of a student on the
following problem: Prove that if two sides of a
triangle are congruent, then the angles opposite
those sides are congruent. The protocol given by
this student is in Table 9.6. After drawing the
triangle ABC, the student added the line CD,
which is not specified in the initial problem

apacs, student’s comments at *1 and *2,
along the retrospective comment at *3,
provic .ence that construction of the auxil-

iary lih. wvasrelated to a plan of proof involving
"gruzat triangles, and the construction com-
‘ed a pattern that is required for that plan to

be applied—that is, the presence of two triangles
in the diagram. Perdix simulates solutions like
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Table 9.6. Protocol for the problem of Figure 9.4

S:  Okay, if two sides of a triangle are congruent, so . . . draw a tniangle.

E: Okay.

S:  Then the angles opposite those sides are congruent. Okay, so, like, if [ have . . . given; triangle
ABC—I'l" letter 1t ABC.

E: Right.

S Andthen !l have...prove:...do I already have these two sides given? Okay. Two sides of a
triangle are given.

E: Mmm-hmm.

S:  Let me go back to my given and say that segment AC is congruent to segment BC.

E: Okay.

S:  And [ want to prove that angle A is congruent to angle B.

E: Good. .

S:  All right. Let me write down my given. Okay. And mark my congruent sides. Okay, so [ want to
prove that angle A is congruent to angle B. Now, let’s see. Do you want .. .?

E: Yeah, Why are you drawing a line there?

*1 S: ldon't know yet.

E: Oh, that's okay. Don't erase it.

S: I'mgoingtodoit,no, [just..,.

E: Oh, okay, fine,

S:  Okay...okay, thenlcould...if[drewaline...

E: Mmm-hmm.

*2 S: That would be the bisector of angle ACB, and that would give me . . . thoss congruent angles . ..
no. (Pause.) Yeah, well, that would give me those congruent angles, but I could have the
reflexive property, so this would be equal to that. Okay, I've got it.

E:  Okay.

S:  Okay.

E: Now, before you go ahead and write it all down, when you said you were going to draw the
line...

S:  Yeah.

E: And I said why are you doing that, and you said you didn't know yet, what do you think
happened to give you the idea of making it the bisector?

*3 S Okay, well, [ have to try to get this . . . [ have to try to get triangle ACD congruent to BCD.
Because, if I do that, then angle A is congruent to angle B because corresponding parts of
congruent triangles are congruent.

E: So you were drawing the line to give yourself triangles, is that the idea?

*4 S: No,to...togetaside that was in both triangles.

E: Okay.

S:  And to get congruent angles.

E: So that's why you drew it as the bisector.
S:  Yeah. "

this with a process of pattern recognition that
identifies partial patterns of two triangles
migsing a line, and uses special problem-solving
operators to ~omplete the patterns.

Another way in which problems can be ill
structured invelves the way in which goals are
formulated. Goals in well-structured problems
are presented as specific objects (e.g., a specific
logic expression to be derived or a specific
distribution of water among some jars). In ill-
structured problems, goals are often underdeter-
mined, with several alternative ways in which
they might be satisfied. Examples are frequently

cited from art or science, such as the goal of
composing a fugue, or of designing an interesting
experiment. In school geometry, the goals of
problems are usually well specified, but a sub-
goal that arises in many problems functions as
an indefinite goai for experienced probiem
solvers. This is the goal of proving that two
triangles are congruent. There are several ways
in which congruence of triangles can be proved,
involving different patterns of congruent com-
ponents such as side-side-side, side-angle-
side, and so on. Beginning learners treat these
as definite subgoals, trying one after another
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until one works (Anderson, Greeno, Kline, &
Neves, 1981). More experienced students do not
mentton spectfic patterns in their protocols, and
appear to engage in a relatively diffuse search
for congruent components of triangles with a
kind of monitor that identifies whatever pattern
of congruent components happens to emerge
Greeno (1976) hypothesized that experienced
students acquire an integrated structure of
knowledge in the form of a pattern-recogn.zing
system that represents the goal of proving that
tnangles are congruent. A version of this that was
implemented in Perdix 13 shown in Figure 9.6.

ACQUISITION OF PROBLEM-SOLVING SKILL

An important question i1s how the knowledge
that is needed for solving problems in a domain
such as geometry is acquired. Studies of learning
involving the three kinds of knowledge needed
for problem solving have been undertaken:
these are problem-solving operators, perceptual
concepts for pattern recognition, and strategic
knowledge.

Anderson (1982) based an analysis of problem-
golving operators on observations of three
students as they studied and worked problems
1n the early sections of a geometry text. He simu-
lated processes of acquiring problem-solving
skill in a version of his ACT model (cf. Anderson,
1983).

A major aspect of Anderson’s model is a
process that acquires cognitive procedures from
declarative information. This model learns new
procedures by working on problems. When ACT
encounters a problem for which it has not
learned a procedure, it uses general problem-
solving methods along with information that is
available. For example, a geometry problem may
require finding a theorem that can justify a step
in a proof. The ACT model has a general pro-
cedure for searching in a list of theorems and for
matching features of theorems to the information
in a problem. When an applicable theorem is
found, ACT asserts that theorem to solve that
part of the problem.

ACT has o learning process called procedur

alization, which forms new production rules
that are added to ACT's procedural knowledge.
A new production can be formed when a theorem
has been found and applied successfully in
problem solving. The new production has con-
ditions corresponding to selected features in the
problem situation, and an action that asserts

the theorem. The production is a new problem-
solving operator. ACT has acquired a new abihity
to assert a theorem in appropriate conditions
without having to search through the lList of
theorems in the text. It has learned the theorem.
not 1n the sense of having memorized (t. but in
the sense of being able to recognize when it is
applicable, and to apply 1t.

Acquisition of perceptual concepts for pattern
recognition in problem solving was studied by
Simon and Gilmartin (1973) in the domain of
chess. The learning mechanism used was adapted
from the EPAM model (Feigenbaum, 1963), which
simulates acquisition of discrimination networks
hike that in Figure 9.4. Simon and Gilmartin
developed an EPAM-type model that acquired
knowledge of patterns of chess pieces from
presentations of board positions. This knowl-
edge was used to simulate performance in a task
of reconstructing positions after brief presen-
tations, a task known to differentiate among
players according to their level of skill (Chase &
Simon, 1973; deGroot, 1965; also see “Chess and
Go"). '

Acquisition of strategic knowledge for solv-
ing problems has been studied empirically by
Schoenfeld (1979). Four students in upper-division
college mathematics courses were given special
instruction 1n the use of five heuristic strategies
for working on problems: drawing a diagram,
arguing by .nduction, arguing by contradiction
or contraposition, considening a simpler problem
with fewer variables, and establishing subgoals.
Each strategy was presented in a training
session, lasting about one hour, including an
explanation of conditions in which the strategy
15 useful as well as practice in using the strategy.
Students took a pretest and a posttest with
problems not included in the training. These
students had a list of the strategies available
during the posttest and were reminded from time
to time to try one of the strategies if they were
not progressing well on a problem. Performance
of these students was superior to that of another
group of students who had worked on the same
without explanation of the strategies. Thinking.
aloud protocols confirmed that students con-
sidered and used strategies that they had been
trained to use. The training was especially
effective with strategies that have clear cues
for their application, the fewer-vaniables strat-
egy, cued by the presence of many variables,
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"Figure 9.6. Part .f Perdix’s goal structure for ‘proving congruence of tnangles, represented as a pattern-recog-
nizing systera Cong = congrueni, SAS = side angle side, ASA = angle-side -angie, AAS = angle-angle
gide; HYP, LEG = hypotenuse -leg. From "Indefinite Goals in Well Structured Problems’ by J.G. Greeno, 1976,

Psychological Review, 83, p 486 Copyright 1976 by the American Psychological Associat:on. Adapted by
permission of the author.

and arguing by induction, cued by an integer by Anzai and Simon (1979) and by Anderson,
argument. Farrell, and Sauers (1984). Anzai and Simon

Processes of acquiring strategic knowledge observed and simulated acquisition of a strategic
have been addressed in theoretical analyses concept in the Tower of Hanoi puzzle. The




\"
< \J/\\)f\\\)(\\){\“

WELL-SPECIFIED PROBLEMS

concept involves movement of a set of disks
requiring a sequence of individual moves, with
the sequence considered as a global action.
Anderson et al. simulated the acquisition of
knowledge for applying techniques in learning
the programming language LISP. In both theo-
retical analyses, important factors in acquiring
strategic knowledge are the activation of a prob-
lem goal that can be achieved by a sequence of
actions and the acquisitions of a production in
which the action of setting the goa! is associated
with appropriate conditions in the problem
situation.

Einstellung (Set)

The context in which problem solving occurs
may have an important influence on the process.
As a consequence of previous tasks that a
subject has engaged in or previous stimuli
that have been presented, certain responses may
become more readily and speedily available and
others less readily available. The subject has
acquired a ‘set’ for the familiar stimuli and
responses.

One experimental design that has often been
used to demonstrate the effects of set is to
present subjects with a sequence of tasks that
induce set, then a new sequence of tasks in
which this set either facilitates or impedes
performance relative to that of control subjects
who were not exposed to the first sequence.
Luchins (1942) conducted a well-known set of
experiments using this design, with water-jar
tasks.

In Luchins’s version of the water-jar task,
subjects must measure a specified amount of
water, using a given set of ungraduated measur-
ing jars. A source of water is assumed to be
available, so that any of the jars can be filled to
its capacity if the subject so chooses. Water can
be poured from one jar to another, until the
target jar is filled or the source jar is empty.
Also, the contents of the jar can be discarded.

The geries of problems that Luchins used is
shown in Table 9.7. All the problems except the
frst and the ninth can be solved by filling jar B,
then pouring from it to fill A, and then filling C
twice (X = B ~ A - 2C). But problems 5, and
7 through 11, can also be solved using only jars
A and C—by either adding the contents of C to
the contents of A, or subtracting the contents of
C from A, and for problem 9, the B ~ A - 2C
procedure does not work.

813
Table 9.7. Problems used by Luchins (1942)

Problem Measuring Jugs Required
Number A B c Amount

1 29 3 20

2 21 127 3 100

3 14 163 25 99

4 18 13 10 5

) 9 42 6 21

6 20 59 4 31

7 23 19 3 20

8 15 39 3 18

.9 28 76 3 25

10 18 48 4 22

11 14 36 8 6

Subjects given problems 7 through 11 immedi-
ately after solving problem 1 generally use the
two-jar procedure just described. Subjects who
are first given problems 1 through 6 generally
use the B - A - 2C procedure, which is more
complex than necessary for problems 7 through
11, and they have considerable difficulty with
problem 9.

Set effects can be the result of several cog-
nitive processes of which three that have been
put forward will be discussed.

First, set may be the result of a bias in
retrieving knowledge structures from memory.
A standard assumption is that the alternative
concepts or cognitive procedures that might be
retrieved have varying strengths or levels of
activation which determine the probabilities of
their retrieval. If a cognitive unit has been used
successfully several times in the immediate past,
arelatively high level of activation for that unit
results.

Schemata used in planning provide one kind
of structure that can account for set. An example
is in the domain of geometry, where Greeno
et al. (1979) developed a simulation model with
planning schemata, described above in “Geometry
Exercises.” Luchins (1942) included a study of
geometry problem solving in his investigations
of Einstellung. Figure 9.7 shows the kind of
problem used as a test. The prouf can be ubtained
in one step; LAMC and 4 BMD ara vertical
angles. However, if subjects were first given a
series of problems where they used congruent
triangles in proofs, they were likely to construct
the more complex proof for Figure 9.7 in which
triangles AMC and BMD are proved congruent
by side-side-side. An explanation is provided if




Figure 9.7. An einstellung problem in geometry.

we assume that students have a schema corres.
ponding to the plan of using congruent triangles
for a proof, and that this schema has a high level
of activation because of 1ts use in the initial
series of problems. Greeno et al. (1979) reported
an experiment with a test problem that could be
solvea by using either congruent triangles or
angles formed by a transversai with parallel
lines, but either method required construction
of an auxihary line. Subjects were given series
of problems to solve before the test problem,
involving either congruent trangles or parallel
lines. They were strongly biased toward solving
the test problem 1n the same way that they had
solved the trial problems.

Set based on activation may either facilitate
task performance or impede 1t, depending on
whether the memory elements *hat are activated
contain the information that is needed for per-
formance. Sweller and Gee (1978) showed that
the tendency to use a previously successful rule
can greatly facilitate solution of a relatively
complex problem, presumably by ehminating
the need to search in a large space of possi-
bilities, even when in the same situation it
prevents subjects from noticing a simpler golu-
tion method. Such situations are common, since
set 13 bound to arise wherever memory organ-
1zation 1s not neutral with respect to the problem-
solving process—that is, wherever there are
alternative ways of storing information in
memory, one of which may be more conducive
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to retrieval in a given problem context than
another.

A second possible explanation of Einstellung
is provided by composition of productions,
investigated first by Lewis (1978). Composition is
a process in which a newly acquired production
performs actions that required two or more
productions in the previous knowledge struc-
ture Composition generally makes performance
more cfficient by providing a way to act directly
rather than requiring several steps to achieve
a goal The new productions created by com-
position usually have conditions that are
relatively specific, and in some production
systems (including ACT) this leads to their
being preferred to productions with less specific
conditions. Anderson (1982) noted that this
would simulate the performance observed by
Luchins (1942) on problem. like Figure 97

Third, some setlike phenomena could also be
produced by the basic problem-solving procedure
that a subject uses. We have already noted that
subjects frequently use the heunstic of means-
ends analysis—that is, comparing situation
with goal and talting an action that seems to
reduce the difference between them In their
analysis of behavior of subjects solving water-
jar problems, Atwood and Polson (1976) showed
that where alternative actions could be taken,
most subjects selected the one that led to a
situation that most resembled the goal situation
As with the more specific sets induced by

e
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Luchins’s manipulation. this general set to pick
paths that lead toward the desired goal can
sometimes interfere with problem solution.
Where memory limitations prevent ~ubjects
from looking far ahead, this goal-ortented
strategy may sometimes produce a myopic
preoccupation with immediate progress and the
avoidance of paths that lead to the goal only
indirectly Jeffries. Polson, Razran, and Atwood
(1977) showed that, without looking ahead,
subjects solving the Missionaries and Cannibals
puzzle would have difficulty (as, 1n fact, they do)
on the step where they were required to bring
two persons back from the farther bank of the
river to which they were trying ultimately to
transport them all.

Problems with Specified Procedures

The present section examines tasks in which the
problem presents material for a procedure, and
the task is to apply the procedure to find the
result. While the tasks discussed in “General
Knowledge for Novel Problems with Specific
Goals” and "Domain-Specific Knowledge for
Familiar Problems with Specified Goals" specify
a goal and require finding a method to get there,
the tasks in this section specify a method and
ask where the method leads.

The tasks chosen for discussion come from
arithmetic. Many tasks in mathematics involve
applying procedures, for example, finding a
derivative in calculus or the product of two
expressions in algebra. Such tasks may not be
thought to invoive problem solving, since they
require knowledge of a procedure rather than
search in a space of possible solutions. However,
students who receive these tasks as homework
assignments and presumably the teachers who
assign them consider them to be problems.

More significantly, the knowledge required
for these procedure-based tasks is similar to the
knowledge that students acquire when they
learn to solve problems that do not specify
solution methods, such as geometry proof
exercises or water-jar problems. Knowledge for
planning in geometry consists of a set of
procedures that the student has acquired for
solving various kinds of problems. In geometry
use of these procedures requires recognition of
their applicability, which is not required if the
problem calls for the operators subtract or
differentiate. Nevertheless, characteristics of

the procedural knowledge that have been identi.
fied by theoretical analyses of the various tasks
are more notable for thetr similarties than for
their differences.

This section focuses on empirical methods
that have been used to infer the nature of
procedural knowledge, on inferences based con
patterns of errors that occur in elementary
arithmetic and on tnferences from latency daza.

Diagnosis of Cognitive Procedures from
Patterns of Errors

Brown and Burton (1980) analyzed children's
knowledge for solving subtraction problems
with multidigit numbers. Their data were
obtained in an arithmetic achievement test
taken by 1325 school children. Although perfor-
mance on tests is ordinarily used to assign a
simple score for each student, thus allowing
judgments of which students have learned a satis-
factory amount, Brown and Burton's analysis
showed that test data are potentially much richer
and can be used to make stronger inferences
ab- ut the nature of children’s knowledge.

The more powerful theoretical use of test
data depends on two conditions. First, perfor-
mance on the test is not characterized simply
by the number of problems correct, but by the
specific answers given to all the problems, with
particular attention to the incorrect answers.
Second, the analysis of each student’s test
performance consists of a model of a procedure
for solving the problems.

The idea of using patterns of errors to infer
underlying psychological processes 1s not new,
either in the psychological or the educational
literature. Earlier psychological models were
simpler, and the inferences about processes
were correspondingly less powerful, an example
is Polson, Restle, and Polson's (1965) use of
errors to identify a stage of learning in which
similar stimuli have not yet heen discriminated.
In the educational literature more complex
psychological distinctions have been made,
for example by Brownell in 1941, However,
analyses of underlying psychological processes
was informal 1n that work, consisting of verbal
descriptions of procedures hypothesized to
produce observed error patterns, and, as Brown
and Burton documented, verbal descriptions
of procedures turn out to be ambiguous in
important ways,

An example of an individual student’s
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Table 9.8. One student’s perf,rmance on sub-

traction problems
Source (Brown & Burton, 1978)

8 99 353 633 81
301 32 21 u

5 20 11 ne 64
4769 257 6523 103 7315
0 161 1280 84 6536
1769 9% 5243 139 779
1039 105 10038 10060 7001
44 9 4319 98 %
1995 76 15719 10962 7007

Note. From Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills ' by J.S Brown and R.R Burton, 1978,
Cognitive Science, 4, p 178 Copynght 1978 by the ABLEX
Publishing Co Reprinted by permission.

performance is shown in Table 9.8. This table
contains six errors (the fourth problem in the
second row, and all the problems in the third
row), not a very good score. However, all but
one of the errors were apparently caused by a
single flaw in the student’s procedure. When the
subtraction required borrowing and the numeral
to be decreased was zero, the student replaced
the zero by a nine, but did not take the further
step of subtracting one from the preceding dignt.

Brown and Burton developed a general model
of subtraction for which various flawed versions
can be represented as vanants. The desired
outcome was that the performance of each
individual child, like the one shown in Table 9.8,
should correspond as closely as possible to one
of the variants of the general model. The general
model has the form of a procedural network, the
formalism developed by Sacerdoti (1977) and
used by Greeno et al. (1979) to explain con-
structions and set in geometry problem solving.
The main features of a procedural network are
that units of knowledge correspond to actions at
differing levels of generality, and each action
unit includes information about conditions
for performing the action, and the action's

sonaoanniannaa
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Figure 9.8 shows the action components
in Brown and Burton's procedural network for
subtraction. The diagram shows component
procedures and their subprocedures, but does
not show the control information that is also
required. For example, the diagram includes
a procedure Subtract Column, and three sub-
procedures, Borrow Needed, Do-Borrow, and

Complete-Column. Control knowledge involving
these subprocedures includes the information
that Borrow-Needed 1s a test that determines
whether it 1s necessary to borrow before finding
the difference 1n the column, and the outcome of
that test determines whether Do-Borrow will be
called.

Brown and Burton formulated models of
faulty performance by varying components of
the procedural network for correct subtraction.
For example, the flaw of borrowing from zero 1s
modeled by removing some of the control pro.
cessing from the procedure Borrow-Ten in the
Do-Borrow subprocedure The change involves
removing the decision Find-Next-Column if a
zero 15 found, resulting in a procedure that just
changes zero to nine and adds ten to the original
column.

The family of models that Brown and Burton
arrived at included 60 procedural flaws of the
kind described above. They provide explanations
for many of the patterns of performance found in
the test data, and more students’ performance 13
explained if combinations of elementary flaws
are included in the analysis. About 40 percent of
the students’ error patterns were explained
reagsonably well by single flaws or combinations
of two elementary flaws. In examining additional
sets of data, more elementary flaws have been
1dentified . 115 were in the data base 1n 1982), and
adequate vxplanations are typically provided
for about 10 percent of students who make
errors (VanLehn, 1982).

An alternative analysis of subtraction errors
was provided by ‘(oung and O'Shea (1981), who
developed a relatively simple production system
that simulates correct subtraction performance
and, by deleting individual productions, simu-
lates faulty performance. Young and O'Shea's
analysis provides explanations for about the
same proportion of students as Brown and
Burton's model. On the other hand, it provides
explanations for only a small proportion of
the patterns of performance that have been
observed. While many patterns cccur rarely.
their existence provides evidence for a relatively
complex generative system.

Another significant development was an effort
by Brown and VanLehn (1980) and VanLehn
(1983) to formulate a system that explains the
production of flawed procedures. These formu-
lations distinguish between a cognitive structure
of partial knowledge of subtraction, and 2 fall-
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Figure 9.8. A procedural network for subtraction. From "Diagnostic Models for Procedural Bugs in Bastc
Mathematical Skills” by J.S. Brown and R.R. Burton,, 1978, Cogn:tive Science, 4, p. 162. Copynight 1978 by the

ABLEX Publishing Co. Reprinted by permission.

back process of problem solving that is used
when a situation is encountered for which the
partial knowledge is not adequate. In Van-
Lehn's (1983) version, the underlying cognitive
structures (core procedures) result from a com-
bination of partial learning and deletion of
components of procedural knowledge. A core
orocedure might, for example, lack a component
for dealing with a zero during borrowing. When
such as impasse occurs it is assumed that
the pr.blom solver applies a general problem-

_ solving method in order to continue. Methods

aailabie include skipping an operation, applying
the operation to a different problem element,
and using an alternative operation that is
apglicable in a similar problem situation. One
form 4f evidence that supports the theory comes
from data obtaired by giving students repeated
teats Many students perform differently on two
tests separated by two or three days, but the
performance can be explained by assuming

a single core procedure for which different
problem solving methods have been used.

VanLehn (1983) conducted theoretical investi-
gations in which a small set of problem-solving
method: 1s combined with a plausible set of core
procedures to generate flawed subtraction pro-
cedures. The generative system that has been
developed can account for about half of the
flawed procedures that have been observed,
amendments that would increase the theory's
empirical adequacy could easily be devised but
would not have strong theoretical motivation.
Part of the progress that has been made involves
identifying some general features of the system.
It can be argued, on the basis of general pro-
perties of flaws, that the system has a push-down
memory for recalling past goals, that goals are
organized hierarchically, and that the represen-
tation of a goal includes the problem components
to which the goal applies.

Another line of analysis that has developed
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from the study of subtraction flaws involves
analysis of cognitive scructures for understand-
ing general arithmetic principles that underlie
correct subtraction procedures. See “Problem
Representation in Mathematics and Physics.”

Inferences Based on Latencies

An anithmetic task that is even simpler than
multidigit calculation is the solution of basic
addition problems such as 3 - 5. The main data
used in the analyses of this task are latencies.
Patterns of latencies of individual subjects are
used to diagnose their solution processes. ~

In an empirical study by Groen and Resnick
(1977). five preschool children who knew how to
count and could recognize the numerals 1 to 9,
but who did not know about addition were used
as subjects. These children were taught a method
for addition using blocks. The procedure was to
count out two piles, each having one of the
iiumbers in it, and then count how many were in
the two piles together For example, for 3 + 5,
the child could count out a pile of three, then a
pile of five, and then count the complete set to
find eight as the answer In showing the child
the method, the experimenter sometimes started
with the number on the left of the problem, and
sometimes with the number on the right.

The problems used were basic addition facts
involving the digits 1 to 5, omitting 5 + 5.
After a child could solve all 24 of the problems
correctly using blocks, a new apparatus was
introduced The blocks were no longer provided,
and the child answered problems by pressing
buttons labeled 1 to 9. Children were showh how
to count osut answers on their fingers if it was
necessary Children received from four to seven
sets of protlems with this apparatus, with about
25 problems per set.

The latency data were analyzed with regression
techniques; models of cognitive processes were
employed to determine the values of independent
variables Two models were used. According to
one, the process of finding the answer to each
problem was much like the procedure that the
children were taught. In that procedure, a
number of sets must be counted; in fact, the total
number of counts equals double the number of
the answer. If we assume that a fairly uniform
amount of time is used each time something is
counted, the total amount of time needed is

T = A + B@25),

where S 1s the sum of the two numbers t1 ¢
the answer). and A and B are constants. [
the second model. the process is considerably
simpler. The sum can also be found by startm'g
with the larger of the two addends and counting
up the number of the smaller addend. According
to this model. the time it takes to find the answer
1s

T = A - B(M),

where M 1s the miniraum addend, and A and B
are constants. These .wo models are called the
sum model and the min model, respectively.

Comparnison of these two models with the data
of children’s performance 1s interesting pnmarily
because of the possibility that children spon.
taneously change their procedure for solving
addition problems. If they use the procedure
they were taught, their performance should
agree with the sum model. However, performance
consistent with the min model would reflect a
more efficient procedure, and would indicate
that children had spontaneously modified their
problem-solving procedures. It would thus
indicate a significant capability for discovery
or invention.

To apply either the sum or the min model to
the data, problems are grouped according to the
number of counting operations they require,
Because the models specify different counting
operatiung, they imply different groupings
of items. For example, according to the sum
mode], the problems 6 + 1,5 + 2,and4 + 3all

require the same number of operations, but

these problems require different numbers of
counts according to the min model. On the other
hand, the problems 4 + 3and 3 + 5 require the
same number of counts by the min model, but are
different according to the sum model.

If a model is approximately correct, the
regression based on it should give accurate
predictions of problem latency. The cnterion uf
fit used by Groen and Resnick was the proportion
of variance R? accounted for by ihe regression.
Higher values of R? indicate batter agreement
between the latency data and the theoretical
function.

Table 9.9 shows that about half the subjects
were fitted better by the min model than by the
sum model. Values of R? are shown for latency
data from each black of problems except the
first, in which the children were getting used to
the new apparatus. Subjects 2 and 4 were fitted

L4
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Table 9.9. Results of applying regression models to latency data

Source 1Groen & Resnick 1977

R? Slope of best
Proportion Proportion T fitting hine
Subject Block errors covert Sum Min tseconds)
1 2 15 .02 78* 65 92
3 09 00 45" 16 60
4 .03 04 79* J8 67
5 03 08 .69* 57 91
6 .06 33 50" 59* 166
7 .05 34 0™ .63* 190
2 2 18 40 44* .65* 2.82
3 14 57 51 88" 2.30
4 At .57 S51* .69* 2.06
5 06 .76 22 38* 140
6 06 99 23 54t 40
7 A1 100 17 43* 26
3 2 04 .00 14 .00 -
3 .03 .09 71 57 .99
4 .05 .06 .50* 27 a3
5 11 .30 .06 13 -
6 12 .92 .05 .30 -
7 07 .83 .03 .10 -
4 2 25 13 23 Sq4* 1.77
3 12 61 .38* 41* 1.60
4 .06 .94 .32 .65* 1.38
5 2 .04 .94 A7 .43* 1.30
3 .09 1.00 - .55* 49* 1.66
4 02 1.00 25 12 -
5 .01 .99 21 17 -
6 .06 1.00 5 .20 .64

Note Asterisks denote slope significantly different from zero at .01 leve: [tahcs denote maximum R2.
Note From "Can Preschool Children Invent Algorithms” by G. Groen ar.} L.B. Resnick, 1977, Journal of Educational Psychol-
ogy, 69. p 648 Copyright 1977 by the Ammenican Psychological Association. Reprinted by permission of the author.

better by the min model, subject 5 by the sum
model, and subject 1 underwent a transition,
being fitted better by the sum model in blocks 2
through 5, but by the min model in blocks 6
and 7 Another experiment, in which practice
problems were presented in a systematic order,
had similar results.

The important conclusion from these data is
that the children must have discovered the
procedure represented by the min model, since
they were not taught how to add in that way.
Naokos (1981} developed an analysis of learning
mechanisms thet can produce modified pro-
cedures, and he used that system to simulate
changes in counting procedures for addition
problems The main ideas in the Neches model
are that redundant components of the procedure
can be removed, and when there are alternative
ways of reaching the same result, the easier

method can be chosen. For example, in the sum
procedure, the first addend is counted, and then
later the process of counting the combined set
includes counting the first addend as a part.
Noticing this redundancy leads to removal
of the initial count of the first addend from
the procedure. Choice of the larger addend to
initialize the procedure can be made if the
subject notices that the same result i1s obtained
with either addend, but that less effort 1s required
when the larger addend 15 chosen. To produce
modifications in 1ts procedures, the Neches
system requires a trace of its activity, including
the goals that are active during the various
stages of its performance.

The regression method has also been used
in analyzing performance of adults in simple
arithmetic tasks. Groen and Parkman (1972)
found that college students’ performance 1s
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quite consistent with the min model. The slope
of the best-fitting regression equation is far too
small to correspond to verbal counting. but
an analogue of a counting procedure might
account for the result.

Performance in mental arithmetic has been
studied recently by Ashcraft and his associates.
Using a task in which subjects are shown a
problem with a possible answer and are asked
whether 1t is correct, Ashcraft and Battaglia
(1978) found longer latencies for problems
involving larger numbers, but this effect was not
linear in the smaller addend. as required by the
min model. A better predictor of latency was the
square of the problem sum, an effect that seems
inconsistent with a simple process of counting.
Ashcraft and Battaglia also found shorter
latencies for the rejection of wrong answers that
differed more from the correct answer, than for
wrong answers close to the correct answer.
Another relevant finding by Winkelman and
Schmidt (1974) was that latency increased for a
false answer that could be correct for a different
operation; for example 3 x 4 = 7. As Ashcraft
and Stazyk (1981) have argued, these findings
suggest a process of retrieval from memory,
rather than a counting procedure, with effects
on latency that result from the way in which
information is stored and from processes of
activation and search.

Problem Understanding;
Representation

Before a problem can be solved, it must be
understood. inany problems used in education
are presented as natural-language texts that
describe situations and ask questions, usually
the values of some quantities. In laboratory
studies, problems are often presented in the
form of instructions that specify the goals and
problem-solving operators that can be used in
working on the problems. These texts or instruc-
tions must be interpreted, and some kind of
representation of the problem must be generated
before problem-solving processes can be put to
work in seeking a solution,

The same problem may be represented in
radically different ways, as is illustrated by the
‘mutilated checkerboard’ problem. The subject
is given an ordinary 8 x 8 checkerboard, with
alternating black and red squares, and a set of
domtnoes, each of which covers two squares. The

entire board can be covered by 32 dominoes,
with no square left uncovered. and no domino
hanging over the edge of the board Suppose
now that the northeast square and the south-
west square of the checkerboard are cut off,
leaving 62 squares. Can the muulated board
now be covered neatly by 31 dominoes”

It is impossible for a human being or a
computer to answer this question by exhaustive
search in the obvious but enormous problem
space in which the squares and dominoes are
represented directly. Consider, however, an
abstract problem space in which we répresent
only the number of dominoes that have been laid
down, and the numbers of both black and red
squares that remain uncovered. At the outset,
because of the mutilation, there are 32 red
squares, but only 30 black squares (or vice
versa). Each domino covers exactly one red and
one black square. Hence, no matter how the
dominoes are placed on the board, after 30 have
been placed, if that is possible, two red squares
and no black squares will remain uncovered.
But the final domino cannot cover two red
squares, hence there is no way to complete the
covering. Here, a change in problem represen-
tation changes the problem from one that is
practically unsolvable to one that is quite easily
solvable,

Another famous example of problem under-
standing, discussed by Wertheimer (1959), arises
in finding the area of a parallelogram. Students
are taught that the area of a paralielogram can
be calculated with a formula A = b x h, where

b and h are the base and height, respectively.

Wertheimer described two ways in which the
formula may be understood. In one represen-
tation, b is the length of a horizontal side of the
parallelogram, and A is the length of a vertical
line drawn from a corner at the top of the figure
to its base, as shown on the upper part of Figure
9.9. Many students, apparently using that repre-
sentation, become confused if they are then
asked to find the area of a parallelogram oriented
differently, as in the lower part of Figure 9.9.
Another way to understand the formula inciudes
arelation between parallelograms and rectangles.
A parallelogram can be transformed into a
rectangle by removing a triangular piece from
one end and attaching it to the other end. Then
b and h are equal to the length and width,
respectively, of the rectangle that the parallelo-
gram can be transformed into. Children who

CHRNR .
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2

Figure 9.9. Parallelograms in two orientations.
Some students who learn the formula A = b x Ahave

dificulty applying 1t to a figure like the lower one
(Wertheimer, 1945-1959).

understand the parallelogram problem in this
way have no difficulty in solving problems
where the figure i3 oriented differently and can
frequently transfer their knowledge to solve
more complex problems, such as finding the area
of a trapezoid. The two representations involve
different features of specific problems, one with
b and h identified with specific locations in the
figure, and the other with b and A defined in
more general terms. ’

Understanding Problem Instructions

In most studies, consideration of subjects’ behav-
iors in problem-solving tasks is begun after
the subjects have received the definition of

-the problem with appropriate instructions, and

have been tested by the experimenter for their
understanding of the problem. A few studies
investigate the processes required for assimi-
lating the problem before attempting to solve it.

In the situations already studied, solution
of the problem is likely to proceed by a form
of means—~ends analysis. Therefore, the infor-
mation that subjects extract from instructions is
probably similar to the information needed by

the General Problem Solver. When GPS 15 given
a problem, 1t is provided with-a hist of the objects
involved in the problem. the relevant properties
of these objects. operators for legal moves, a
description of the starting situation, and a set of
tests to determine when the final goal has been
reached. GPS may be provided with. or other-
wise must acquire by learning, a set of tests for
differences between situations and a set of pro-
ductions that evoke, with certain differences.
operators that are relevant to reducing these
differences. ,
For example, in the Tower of Hanot problem,
the objects consist of Ndisks (where N = number)
and three pegs. A legal move consists of trans-
ferring the smallest disk on one peg to another
peg that holds no smaller disk. Hence, the size of
a disk is its relevant property. Situations differ
as to which disks are on a particular peg, or on
which peg a particular disk is located. In one
starting situation, all the disks are held on a
single peg; the goal is to move the entire set of
disks to another particular peg. The problem
description must provide this information in
English, and the subject (or computer program)
must convert this English prose into an internal
representation that permits situations, moves,
and their consequences to be modeled. A disk,
for instance, may be renresented as a schema,
one of whose attribut is its size, and a peg by
a schema, one of whose attributes is the list of
disks currently.on that peg. A move operator is
a process that changes a pair of the latter lists
by moving the name of a pasticular disk from
one list to the other.

Two central problems for psychological
research on the understanding of problem
instructions are: (1) how the verbal instructions
are converted to an iiaternal representation, and
(2) what characteristics of the instructions
cause the problem to be represented in one way,
rather than other possible ways. The second
question is especially important when alter-
native representations result in problem diffi-
culty differences (as with the mutilated checker-
board example), or provide differing degrees of
generality (as with the parallelogram problem).
These questions have been addressed by Hayes
and Simon (1974), who obtained information about
internal representations by collecting extensive
verbal protocols of problem-understanding pro-
cesses, By using problems in which alternative
representations were available, Hayes and
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Stmon also cast- light on the question of which
representations are formed.

The Understand program (Hayes & Simon,
1974) is a computer simulation of the problem.
understanding process for puzzlelike problems
like the Tower of Hano1 or Missionaries and
Cannibals—that 1s, for problems that do not
assume that the subject has any prior knowledge
of the problem domain. The program matches
human thinking-aloud protocols sufficiently well
to lay claim to being a-good first-approximation
model of the process.

Understand operates in two principal phases.
In the first, a language-parsing program extracts
the deep structure from the language of the
instructions. In the second phase, another set of
processes constructs from this information a
problem representation that is suitable as input
to a GPS-like problem-solving program. This is
accomplished by (1) identifying the objects and
sets of objects that are mentioned in the parsed
text, (2) identifying the descriptors of those
objects .and the relations among them, (3)
identifying the descriptions of legal moves and
constructing move operators that fit those
descriptions, (4) identifying the description of
the solution and constructing a test for attain-
ment of the solution, and (5)-constructing -an
organization of schemata that describes the
initial problem situation.

For example, after parsing the written descrip-
tion of the Tower of Hanoi problem, Understand
would identify pegs and disks as the relevant
sets of objects, and would notice that disks-are
on pegs-and that they move from one peg to
another. It would extract the information that
only the smallest .isk-on a peg may be moved,
and only to a peg on which there is no smaller
disk, and-it would construct a test process-for
checking these conditions. It would determine
that the problem is solved when all-the disks
are on, for example, the third peg, and would
construct a test to determine when that con-
dition is-satisfied. Finally, it would generate a
list structure showing that all the disks initially
are on tne first peg. From the evidence of proto-
cols, and of subjects’ subsequent problem-solving
behavior, this is also the method that human
solvers use.’

PROBLEM [SOMORPHS
A powerful experimental manipulation for
studying-problem understanding is to use variant

* PROBLEM SOLVING AND REASONING

problem instructions. all of which describe
isomorphs of a single problem. Two problems are
isomorphic if the legal problem situations and
the legal moves of the one can be mapped in
one-to-one fashion on the situations and moves
of the other. Then, if situation S 1s the isomorph
of S, and moves A’, B’, etc., are the isomorphs of
A, B, etc., and if the succession of moves A,
B, .. .takes the one system from Sto 7T, then the
succession of moves A’, B’. ... will take the
other system from S’ to T°, where T" is the
isomorph of T.

Using a number of isomorphs of the Tower
of Hanoi problem, Hayes and Simon (1977)
demonstrated that problem difficulty varied by a
factor of two to one from one class of problem
descriptions (transfer problems) to another
(change problems). Moreover, protocols and
diagrams produced by subjects showed that they
consistently used different representations for
the different classes of isomorphic problems.
Tihie Understand program behaved inthe same
way, constructing different representations for
both the transfer and change problems. In only
one case out of-the nearly 100 that have been
examined did a subject shift from the more
difficult ‘chdnge’ representation to the easier
‘transfer’ representation.

The reasons-that the change problems take
twice as iong to solve as the isomorphic transfer
problems aye not yet fully elucidated. It can be
shown, nowever, that the tests for legality of
moves arc & little more complex for change than
for transfer and this complexity may increase
the short-term memory load for the subject
who is seeking to understand the problem
instructions.

Problem isomorphs can be -used to study
transfer of training, as in the study conducted
by Reed, Ernst, and Banerji (1974). They devised
a variant of the Missionaries and Cannibals
problem, called the Jealous Husbands problem.
It differs from the Missionary~Cannibal problem
in that specific husbands are paired with specific
wives, and no woman may be left in the company
of men unless her liustand is-present. Experi-
mental results showed that subjects were not
better at solving one of these problems if they
had previously solved the other. We must con-
clude that, although subjects may use analogies
to help solve problems, there-is nothing auto-
matic about the-availability of an analogy, and
subjects may fail to take advantage of analogies

Y
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unless their attention 1s drawn to them or they
are made salient in some other way. Positive
transfer between isomorphs in a different type of
problem is discussed below in “Construction
tasks and other insight problems.”

Problem Representation in Mathematics
and Physics

Typically a problem given in a mathernatics or
physics text describes a situation, including
quantitative values of some variables, and asks
for the value of another variable. The given
quantities correspond to the initial state of a~
problem and the unknown quantity provides the
goal. The problem is presented in a natural-
language text, as are the instructions for novel
problems discussed in the-previous section. A
physics or mathematics problem differs from a
puzzle in that the instructions for the problem,
do not provide a description of the problem.
solving operators that can be used. [t is assumed
that the student already knows the operators,
from class instruction or from reading the text.
The interpretation of puzzle instructions is a
representation that can be used by a general
problem-solving system such as GPS, whereas
the interpretation of a vext problem in mathe-
matics or physics is a representation that can be
used only by domain-specific problem-solving
procedures.

ALceBRA WORD ProBLEMS

Word problems in algebra describe situations
that can be translated into equations, which are
then solved to find the values of unknown
variables. An early model of solution to-word
problems, called Student (Bobrow, 1968), showed
that the translation can be accomplished mainly
by using the forms of sentences in'the problem
text, and the numerical quantities, with- very
little knowledge about the objects that are
described. For example, in the sentence, “The
number of customers Tom gets is twice the
square of the number of advertisements he
runs,” Student does not need to know anything
about what customers or advertisements are.
but can form the equation X = 2Y? using the
function words is and of in critical ways.

In an empirical study of the solving of algebra
word problems, Paige and Simon (1966) found
great similarities between human solutions and
those given by Bobrow’s Student program.,
Their more skillful subjects, however, used an

intermediate semantic representation in the
translation of the English-language problem
statements into algebraic equations. Some
problems presented descriptions of situations
that were contradicted implicitly by real-world
knowledge (boards of negative length. nickels
worth more than quarters, and so on). The
weaker subjects often made accurate syntactic
translations of English into equations. as
Student does, even though the.equations repre-
sented nonsense situations. The abler subjects
either noticed the contradictions between the
statements and their knowledge or translated
the statements into equations that were not
quite equivalent syntactically, but that repre-
sented physically realizable situations.

Another difference between subjects was
that those who were more able, unlike the less
able, generally drew diagrams of the problem
situation that contained all the essential relations
from which the equations could be derived.

Both kinds of evidence—the response to
‘impossible’ situations and the nature of the
problem diagrams produced—indicate that the
more couipetent subjects used an intermediate
semantic representation of problem situations,
rather than a direct translation from English to
algebra,

ARITHMETIC WORD PROBLEMS .
Detailed analyses of intermediate represen.
tations huve been worked out for a class of word
problems in elementary arithmetic. Riley et al.
(1983) and Briars and Larkin (1984) have devel-
oped models of representation-and solution of
word problems that are solved by a single
operation of addition or subtraction. Examples
of the- problems studied are: "Jay had eight
books; he lost five of them; how many books does
Jay have now?" or "Jay has some books; Kay
has seven more books than Jay; Kay has eleven
books; how many books does Jay have?”’

In the Riley-et al. (1983) model, problems are
represented by three schemata that provide
knowledge of basic quantitative relationships.
One schema represents problems involving
events that change the value of a quantity,
either by increasing or decreasing it, as in the
loss of five books; in the problems of the second
schema two separate quantities are considered in
combination; and in the third schema the prob-
lems involve comparison between two separate
quantities. (This classification of problems is
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not unique; Carpenter and Moser, 1982, Nesher,
1982, and Vergnaud, 1982, have offered similar,
though distinct, charactenizations.)

Arithmetic word problems are usually classi-
fied according to the operations used 1n their
solution, and children are often taught to look
for certain key words to decide how to solve the
problems This is tnadequate, because choice of
the correct operation depends on understanding
the structure of quantities in the problem, rather
than on a single feature corresponding to a key
word. For example, 'altogether’ 1s sometimes
suggested as a key word for addition, but this s
not a rehable cue, as 1n the problem, “'Jay and
Kay have nine books altogether; Jay has seven
books; how many books does Kay have?”

The model by Riley et al. simulates children’s
solutions of word problems when small blocks
are available for the children to use in solving
the probiems. The model forms representations
of problem texts using the schemata of change,
combination, and comparison. Based on the
representation that 18 formed for a problem, the
model performs quantitative actions, such as
joining two sets of objects together or removing
a specified number of objects from a set and
counting how many remain. Different versions
of the model were formed to correspond to
different levels of skill that were observed in a
study of children from kindergarten through
third grade. The versions differ in the detail
with which internal representations are formed
(which affects their ability to retrieve infor-
mation from earher steps), and in their ability to
perform transformations that provide infor-
mation in a form needed to make inferences. The
patterns of correct responses and errors observed
in the performance of most of the children were
consistent with the patterns obtained in the
simulation models.

Bnars and Larkin's (1984) model constructs
less elaborate intermediate representations of
problems, and thus relies more on procedures
for inferences. Their model uses a schema for
representing part-whole relations among sets
for some relatively dificult nroblems,

Puysics PROBLEMS

The knowledge structures used in simulating
solutions to arithmetic word problems are quite
general, involving relation between quantities
that children probably learn about in their
ordinary experience. In techmcal domains such

as physics. specific instruction 1s given to teach
students the nature of theoretical gquantitieg
and the ways in which they combine

Novak (1976) constructed a program called
Isaac that builds problem representations in a
domatin of physics (simpie statics) from problem
descriptions tn Enghsh. [saac uses schemata
of physical subsystems (levers, masses. etc),
assumed to be understood already by the solver
in order to build a compound schema to fit the
problem at hand. Thus, it may as.=mble a wall
schema (surface), a floor schema (surface), a
ladder schema (lever), and a man schema (mass)
to represent a situation in which a man stands
on a ladder that is leaning against a wall, assign-
ing to each component appropriate numerical
quantities and appropriate connections to the
others.

Models such as Riley’s for arithmetic word
problems and Novak’s for physics problems are
based on the idea that understanding a problem
requires schematic knowledge of the quantities
in problem situations. The schemata provide
knowledge of ways in which quantities are
related to one another. These quantitative
relations are not expressed adequately in the
algebraic formulas that are taught in physics
and other quantitative sciences, even though
the formulas are based on quantitative relations
and stud: nts must be able to choose formulas
and assign values to variables correctly on the
basis of the problem representations that they
construct.

The distinction between knowledge of a
formula and knowledge of quantities and their
relations is illustrated in experiments conducted
by Mayer (1974). The experiments were instruc-
tional studies, conce. _ied with different methods
of teaching the formula for binomial probability
One group of subjects received instruction that
emphasized calculation, presenting components
of the formula with explanations of the cal-
culation steps, some practice exercises, and
relatively brief explanations of the referents
of terms in the formula. Another condition
emphasized the information needed in order for
students to acquire schematic knowiedge. in it
definitions of terms and explanations of relevant
concepts, such as the number of combinations
and the probability of a single sequence of
outcomes, were presented before calculation
exercises were given. Tests given following
nstruction contained a variety of problems,
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\ncluding some that involved direct application
of the formula, and others that required more
\nterpretation. The latter group included word
problems. problems that could not be solved
pecause of inconsistent or insufficient infor-
mation, and problems requiring use of a com
ponent of the formula rather than the whele
formula The subjects whose instruction empha-
sized the formula excelled on the problems
.nvolving direct use of the formula. but the
subjects given more conceptual instruction
were more successful on the problems requiring
more nterpretation.

Several studies have compared the perfor-

mance of physics students with that of expert .

physicists to identify some of the components of
knowledge that characterize more advanced
problem solvers. Three of the characterstics
that differentiated the physicists were identified
as (1) their use of abstract physics principles in
representing problems as well as in providing
methods of solution; (2) the strong organization
of their knowledge of physics, including relations
among principles and recognition of complex
patterns of problem features; and (3) the inte-
gration of their physics knowledge with general
concepts and reasoning processes.

The use of abstract physics concepts by experts
was shown in experiments by Chi, Feltovich,
and Glaser (1981), who gave subjects a set of 24
physics textbook problems and asked them to
sort the problems into groups. Groupings formed
by advanced graduate students were based
primarily on abstract principles, such as con-
servation of energy, whereas subjects who had
completed a single course in mechanics were
much more likely to base their groupings on
superficial features such as the kinds of objects
(pulleys. levers, etc) that were mentioned in
the problems. Chi et al. (1981) also found that
experts used abstract physics principles in
studies where they reported their thoughts and
hunches while deciding on a ‘basic approach’ to
solving the problem. Use of abstract principles
as included in a computational model develogod
by McDermott and Larkin (1978) that simulates
the representation of textbook problems by an
expert The representation of a problem included
adiagram with major components and relations,
followed by an abstract description of the
theoretical entities such as forces and energies
and their interrelations, based on genral
principles.

[nstructional materials designed by Reif and
Heller (1981) provide training for beginning
students in a procedure for constructing abstract
representations of problems. Reif and Heller pro-
vided an explicit methed for arriving at the kind
of problem representation used by experts (al-
though their method was not patterned after the
experts’ performance, since experts form a repre-
sentation rapidly and apparently automatically,
without easily discerned intermediate steps).

Larkin and Reif (1979) also designed instruc.
tion to strengthen students’ knowledge of
relations among physics principles and thetr
ability to apply principles in solving problems.
The instruction grouped principles on a chart
and suggested to students that, in applying
certain principles 1t was generally useful to con-
sider the application of other related principles.
Qualitative analogies were also used, such as a
fluid-current analogy for electric current and a
height analogy for potential. Students who
received this instruction solved test problems
more successfully than students who received
instruction 1n the principles only, without the
organization and qualitative analogies.

Experts in various domains have been shown
to have superior skill in recognizing complex
patterns of information in the domain of their
expertise. This phenomenon has been demon.
strated in chess (Chase & Simon, 1973), go (Rett.
man, 1976), electronics (Egan & Schwartz, 1979),
computer programming (McKeithen, Reitman,
Rueter, & Hirtle, 1981), and radiology (Lesgold,
Feltovich. Glaser, & Wang, 1981). A highly
developed skill in pattern recognmition may
provide an explanation for the finding obtained
in several studies that expert problem solvers
tend to work forward from the given information
to the unknown, whereas novices work back-
ward from the unknown, searching through a
series of subgoals for formulas that can proviue
the needed quantities (e.g., Simon & Simon,
1978). Applying formulas involves using more
complex patterns of known values of variables,
which experts have probably learned to recognize
direetly, thus avading ihe more iaborious
searches that novices conduct (Lackin, 1981).
This view 1s supported by Malin (1979), who
found that subjects were more likely to adopt a
forward-search strategy to colve problems if
the formulas they were using had an obvious
crganization than if the formulas did no. fit
together ir any evident way.

e
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A third charactenistic of experts’ knowledge
1s that their domain-specific knowledge (e g . in
physics) s integrated with powerful general
concepts and procedures for making inferences.
An example comes from Simon and Simon (1978)
who obtained protocols from a novice and an
expert on problems from a high school physics
text. One problem was. "An object dropped from
a balloon descending at four meters per second
lands on the ground 10 seconds later. What was
the altitude of the balloon at the moment the
object was dropped?” The novice subject’s
solution had the properties of means ends
analysis, using the formula s = vyt + .5a’. In
contrast, the expert calculated a quantity that
he called the total additional velocity by multi-
plying the tume by the gravitational constant
(e., 10 x 9.8 = 98), he then added that to
the imitial velocity to obtain the final velocity
(98 + 4 = 102), took the average velocity ((4 +
102)/2 = 53], and found the distance by multi-
plying the average velocity by the time of 10
geconds (53 = 10 = 530 meters). The expert
apparently had a represzntation of the problem
1in terms of physical quantities that enabled him
to upply general procedures, such as computing
components of velocity and taking an average,
whereas the novice was restricted to using
the formulas that were provided in the text.
Relations between technical knowledge and
general concepts have been investigated theo-
retically by deKleer (1975) and Bundy (1978),
who developed models of physics problem-solving
that combine general kno..ledge about the
motion Jf objects on surfaces with knowledge of
formulas in kinematics, and by Larkin (1982)
who studied the use of spatial information in the
solving of hydrostatics problems.

UNDERSTANDING OF STRUCTURE AND
PrINCIPLES
The integration of problem-solving knowledge
with general conceptual structures has also
been used to charactenze structural understand-
ing aa digcusped hy Wertheimer (1945/1959).
and the understanding of general principles,
including the relation of abstract properties of
number (cardinality, order, one-to-one corre-
spondence) to children's cognitive procedures
for counting.

The understanding of structure has been
investigated theoretically by Greeno (1983) on a
problem, discussed by Wertheimer (1945/1959),

of proving the congruence of vertical angles
Wertheimer distinguished between a relatively
mechanical process for generating the prouf,
involving the use of algebra without cognizance
of spatial relations in the problem. and a more
meaningful process based on part whole relations
between pairs of angles and operations to
remove a part that i1s included in each of two
whole angles. Greeno's model simulates the
more meaningful process by using a schema that
represents part-whole relations in a general
way and applying problem-solving operators
that make inferences based on the part whole
structure. Data were available in the form of
protocols from students working on the vertical
angle problem after they had learned to solve
other problems with similar part whole structure
involving line segments. The model simulates
learning 1n the line-segment situation. Once the
learned problem-solving operators are integrated
into the part-whole schema, the model can
apply this knowledge when it encounters the
vertical-angle problem. The model thus provides
an explanation for transfer that occurs between
problems in different domains, with a charac
terization of structural understanding based on
schematic representation. An account of transfer
based on acquisition of a schema in a different
problem domain i discussed below in “Con-
structi.r. tasks and other insight problems "

A similar idea was used by Resnick, Greeno,
and Rualand (described by Resnick, 1982) in
analyzing children's understanding of a pro-
cedure fur subtraction with multidigit numbers
According to their analysis, children who under-
stand the procedure have a representation that
includes general relations—such as part-whole
relations between auantities represented by
individual digits and the quantities represented
by combinations of digits and constraints such
as the requirement that the total value of a
number remain unchanged when borrowing is
used. The analysis focused on knowledge acquired
in meaningful nstruction (cf. Brownell, 1935),
in which chuldren were shown the correspondence
between subtraction with numerals and an
analogous subtraction procedure using blocks
Resnick et al. (in Resnick, 1983) hypothesized
that the understanding was achieved through
acquisition of a schema, involving part-whole
relations, that was general enough to apply to
both—the numerals and the blocks.




vy a, ang

‘een g rfiati
1¢e~the padof,
hout ¢oghizance
1é o and a mosg
o€ relagiofis
| operans to
| in#fch of two
simulates the
emaghat
ns in a _géneral
rlvingbperators
t th€ part-whole

g L] o U

s on the vergi€al.
learned 46 soive
:~whott structure
gdel simulates
Qation.Oneethe
ors are integpéited
the mgd€l can
t encodnters the
dejfhus provides
woccugsbetween
3, with a chsfrac-
tanding bdsed on
ccoundt transfer
‘magh a different
delow in_LCon-

4 prodiems

Resnigl’ Greeno,
Respitk, 1983) in
aplling o4 gro-
ultidigit nugplers.
ildren whd under-
‘preseptation that
ich 48 part-whole
s/repraserited) by
Tes repreg€nted
. constrajdts such
totalAalue of a
hep”borrgy :
nqxedge acq ip€d
. Brownell, J835),
:he correspondence

PROBLEMS OF DESIGN AND ARRANGEMENT 627

Efforts are being made to develop rigorous
and explicit characterizations of knowledge
that includes implicit understanding of general
principles (cf. Judd, 1908; Piaget. 1941/1952). A
representation of preschool children’'s under-
standing of the principles of counting has bee_n
formulated by Greeno et al. (1984). Their analysis
was based on evidence presented by Gelman
and Gallistel (1978) that young children have
significant understanding of principles.such as
cardinality, order, and one-to-one correspondence,
rather than a-simple ‘mechanical’ knowledge of
counting procedures. The evidence includes
their performance in novel situations, such as
being asked to evaluate counting performance
by a puppet that sometimes makes errors, or
counting with the novel constraint of associating
a specified numeral with a particular cbject.
Greeno et al. (1984) also proposed an analysis of
conceptual competence to represent children’s
implicit understanding of principles. Conceptual
principles are represented as schemata that
incorporate constraints on correct counting and
express general properties, such as-the part-
whole relation between the counted objects and
the whole set. The conceptual principles are
related to procedures of counting by -a set of
planning rules, which permit derivation of
procedures from the schematic representations
of the principles.

PROBLEMS OF DESIGN AND
ARRANGEMENT

Problems discussed in this section require
finding an arrangement of some objects that
satisfies a problem criterion. Simple examples
include puzzles in which the objects are given in
the problem situation. For example, an anagram
presents some letters, and the task is to find a
sequence of those letters that forms a word. in
more complex cases, the problem solvers must
provide the materials based on their own knowl.
edge. Examples are writing an essay or a
computer program.

The problem space in a problem of design

-includes the objects that are given to or are

known by the problem solver. The space of
possible solutions is the set of arrangements
that can be formed with the available objects.
The problem goal is to construct an-arrange-
ment that meets a criterion, which may be either

specific or ncaspecific. An anagram problem has
a specific criterion: the sequence of letters
should form a word. A written composition has
several less specific criteria, such as clear
exposition, persuasive argument. and an enter-
taining style. Many problems of design have a
mixture of specific and nonspecific criteria. For
example, a problem in computer programming
may combine a criterion of a specific-function to
be computed with less specific criteria, such as
efficient computation and clarity of structure.
Satisfying constraints is an important factor
in solving problems of design. The metaphor that
best characterizes typical solution processes is
‘narrowing the set of possibilities’ rather than
‘searching through the set of possibilities.’
Although it is entirely possible to describe the
solution process as a search, the main steps
in this search lead to the acquisition of new
knowledge that rules out a whole set of problem
states as potential solutions—a wholesale
approach to the reduction-of uncertainty. The
use of constraints is important because the set of
possible arrangements is usually very large,

-compared to -those that satisfy the problem

criterion.

Problems of design are differentiated from
the transformation problems discussed above in
"Well-Specified Problems,” in both the nature of
the goal and the set of alternatives that are
congidered. In a transformation problem such as
the Tower of Hanoi or in finding a proof for a
theorem, the goal is a specific arrangement of
the problem objects, such as a specific location
of all the disks in the Tower of Hanoi or a
specific expression to be proved in logic. Thus,
the question is not what to construct, as it
is'in a design problem, but how the goal can be
constructed with the limited set of operators
that are available. The search for the solution of
a transformation problem-often examines one

-problem situation after another, uncovering

knowledge that helps point the direction of the
search toward the goal situation.

Viewed in another way, however, transfor.
mation problems and problems of design are
very similar in structure. The solution of a
transformation problem is a sequence of actions
that changes the initial problem situation into
the goal. The solution process can be considered
as the construction of an appropriate sequence
of actions, involving search in the very large
space of possible sequences: This view emphasizes
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similanities between probiems of transformation
and of design, which are especially apparent
when the solution of transformation problems
includes planning.

Problem solving 1n design is discussed in four
parts: (1) Two sumple problems of forming arrange-
ments—cryptanithmetic and anagrams—provide
paradigms for analyzing search among sets of
possible arrangements: (2) problems in which an
arrangement of objects is already presented, and
the task 1s to modify the arrangement according
to some cniterion (e.g . Katona, 1940); (3) "insight’
problems that depend on finding a successful
formulation or representation of the problem;
and (4) more complex problems of composition
and design, including the composition of essays
and musical pieces, the design of procedures,
and the formation of administrative policies.

Simple Problems of Forming
Arrangements

Cryptarithmetic Problems

In cryptarithmetic problems, digits are arranged
to form a correct addition problem, constrained
by a set of letters for which the digits are to be
substituted (Newell & Simon, 1972). One of the
best known examples follows:

DONALD
+ GERALD

= ROBERT

The task is to replace each letter in the array
with a distinct digit, from 0 to 9, the same digit
replacing a given letter in all its occurrences (no
digit being used for more than one letter). To
make the problem easier, the solver is usually
told that D = 5.

The cryptarithmetic task was apparently first
studied by Bartlett (1958), who reported some
retrospective protocols of subjects in his book
on thinking. Subsequently, Newell and Simon
(1972) carried out extensive analyses of thinking-
aloud protocols for cryptarithmetic problems.
From this work, we now have quite a clear
picture of how human subjects approach such
problems.

There are 10! = 3,628,800 ways of assigning
ten digits to ten letters. Most subjects, without
calculating this number, realize that it is very
large, and do not even attempt to solve the
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problem by making random assignments and
testing them. Instead. they look for information
in the form of constraints that permit values to
be assigned to particular letters at once If that
can be done, the number of possibilities declines
rapidly Simply giving the information that
D = 5 already reduces the possible solutions by
a factor of 10, that 1s, to 362,880—still a large
number!

The constraints in cryptartthmetic problems
that sometimes make systematic elimination
possible derive from the fact that each column
of the literal array must be translated into a
correct example of addition (subject to carrying
into and out of the column). Thus, as soon as it
is known that D = 5, the sixth column can
be processed to produce the inference that T
necessarily equals 0, and that 1 is carned into
the fifth column. This single inference reduces
the remaining set of possible assignments by a
factor of nine to 40,320.

Next, consideration of the second column
allows the subject to infer that E is equal to 0 or
9. Since 0 has already been preempted by T, we
have E = 9, reducing the possible assignments
to 5,040. A few more steps of reasoning, based on
information contained in columns 1 and 5, allow
the subject to infer that R = 7, reducing the
possible assignments to 720, An inference in
column 4 gives A = 4 (120 possibilities remain);
and an inference on column 5 gives L = 8
(leaving only 24 possibilities). From column 1,
G = 1 (leaving 6 possibilities), and now the
remaining digits must be assigned to N, O, and
B, a task easily carried out by trial and error.

Newell and Simon (1972) obtained thinking-
aloud protocols of subjects solving cryptarith-
metic problems. Problem behavior graphs were
constructed based on the protocols, and a
detailed model of one subject’s problem-solving
processes was developed in the form of a produc-
tion system. (This methodology is discussed
above in "Discovering Proofs in Logic.”) In the
model several productions represent a problem-
solving strategy. These pruduciions sei goais of
examining a column or the occurrences of a
variable; they make decisions on the assignment
of a value to a variable or the testing of a can-
didate value, and they perform other general
functions. There are also a few dozen produc-
tions that represent the operation of specific
processes. One, called Process Column, contsins
26 productions; others are considerably simpler.
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The productions in this process examine the
letters in a coluinn and use any information that
has been gathered about them to make further
inferences The subject’s performance, recorded
in a problem behavior graph, was compared in
detail with the model, and approximately 80
percent of the protocol units were explained by
processes 1n the model.

Protocols obtained from five subjects were
consistent in their general characteristics of
problem-solving processes. They also revealed
significant 1ndividual differences, and these
can be interpreted as differences between the
problem spaces of the individual problem solvers.
All the subjects made use of their knowledge of
arithmetic in order to make inferences, and
all subdivided the problems into subproblems
involving the columns. There were important
differences among subjects in their strategies
for selecting columns to work on and in their use
of specific constraints for making inferences.

For an efficient solution of this problem, sub-
jects must use the search heuristic of attacking
the most constrained columns first, since most
information can be extracted from a column in
which the assignment of one or more letters has
already been made, or in which the same letter
occurs twice. Some subjects used this selection
heuristic immediately; others began by attacking
the columns systematically, from right to left,
and only later abandoned that strategy for the
more powerful one Subjects who did not use the
heuristic usually failed to soive the problem.

Another factor that influenced success was
the use of specific constraints. The problem
spaces of some gubjects included rules of parity.
For example, one of the inferences needed in
order to conclude that R = 7 is that, whatever
R’s exact value, it must be an odd number. This
is inferred by processing column 5, containing
two Ls whose sum must be even, and the carrying
of 1, making the total an odd number. Subjects
whose problem spaces did not inciude the parity
constraints were generally unable to solve their
problems.

Even subjects who used the available heu
ristics and constraints for efficient elimination
found the DONALD + GERALD problem dif-
ficult. Most of their difficulties arose from one
or both of two sources. One such source is the
making of conditional assignments (e.g., "'suppose
that L = 1") Then, if the assignment was wrong
and they arrived at a contradiction, they may

have been unable to remember which prior
number assignments they had inferred definitely
and which they had postulated conditionaily.
Another source of difficulty involved errors of
inference, resulting 1n incorrect assignments.
For example. from the fact that R = 7 some
subjects concluded that L = 3 (with a carry
from the sixth column), ignoring the possibility
that L might be 8, with a carry into the fourth
column. When L = 3 led to a contradiction,
they found it difficult to discover the cause.

Errors of inference are forms of the errors of
syllogistic reasoning discussed below 1n *'Prop-
ositional end categorical syllogisms.” In the
example just cited, subjects appeared to tnfer
from the premise, "if L = 3thenR = 7" and the
premise "R = 7,” the conclusion "L = 3,” an
example of the classical fallacy of infernng the
antecedent from the consequent. They did not
notice that L, = 8 also implies R = 7. Thus,
the cryptarithmetic task draws on reasoning
processes as well as search processes.

Nothing in the behavior of subjects solving
cryptarithmetic problems suggests that they
decide consciously to treat it as a constraint
problem rather than a search problem. In fact,
their behavior can be described as a search
through the space of possible asgignm~ats, and
Newell and Simon’s analysis took *b 3 point of
view. What distinguishes it from search in many
other problem spuces is that the problem 1s
factored into 10 separate but interdependent
searches for the individual assignments. Success
in each of these searches constrains the problem
space by reducing the number of alternative
possibilities for the remaining assignments, and
by providing additional information about some
of the columns. Hence, 1t is not unlike an
ordinary search in which each step of progress
provides clear feedback of information that the
right track 1s being followed.

Anagrams

Anagrams are strings of letters that can be
rearranged to forn words, for example, thgli
light. The prublem space of an /V-letter anagram
contains V! possibilities, and therefore, increases
rapidly with N. The solution process can be
viewed as a search through this space of permu-
tations of the letters, but most persons presented
with an anagram use various heuristics to speed
up the search. One of these 1s to pick out initial
combinations of letters that are pronounceable
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(e.g.. tt or li in the example above). and then try
to complete a word with the remaining letters.
Imposing the condition of pronounceability on
solution attempts may restrict the search space
considerably.

The course of the search s also much influ-
enced by the structure of long-term memory. For
example,. if there are two possible solutions to an
anagram, the one corresponding to the more
frequent and familiar word 1s likely to be found
by most of the subjects Moreover. the solution
can be primed by presenting the word to the
subject, or a semantically related word. some
time before the anagram task 1s taken up
(Dominoswski & Ekstrand, 1967).

Perceptual factors may affect performance
on anagram tasks Anagrams that are already
words (e.g, forth — froth) or are easily pro-
nounced (e.g., obave — above) take longer to
solve than those without such properties (Beilin
& Horn, 1962). This finding is consistent with
Gestalt principles that meaningful forms resist
restructuring. Gavurin (1967) found a corre-
lation of 54 between success in solving anagrams
and scores on a standard test of spatial abilities.
When the subject was provided with tiles that
could be rearranged physically, the correlation
disappeared, indicating that the original relation
had to do with the perceptual ability to operate
on visual or auditory images.

It is easy to induce a problem-solving set in
anagram solving by presenting subjects with
several anagrams that call for the same per-
mutation (say, 5 4 1 2 3) of the letters. If an
ambiguous anagram (one with several possible
solutions) is then presented, most subjects will
find the solution requiring the same permutation
rather than the alternative solution (Rees &
Israel, 1935).

Thus, subjects’ behaviors on the anagram
task combines search (generating possible
solutions) with constraint satisfaction (rejecting
unpronounceable initial segments). The process
of alternative generation, in turn, is influenced
by long-term memory organization and priming,
and by the subject’s skill in forming and holding
in short-term memory the permutations of the
stimulus,

Problems of Modifying Arrangements

Unlike the problems just discussed in which
arrangements are formed from materials pro-

vided that the problem solver must put together
to satisfy a specified criterion. we now turn to
problems in which an arrangement of objects 15
presented. and the task is to modify the arrange.
ment. Perceptual processes important to the
solution of these problems involve recognition
of general features and complex patterns.

These problems combine features of the
transformation problems discussed above in
"Well-Specified Problems™ with features of
design problems. Like design problems, a goal 1s
specified as a general criterion rather than as a
specific state that the problem solver tries to
produce. At the same time, i1n these problems
significant restrictions on the operators can be
used to change the situation. Therefore, the
problems can be conceptualized as search either
in a space of possible arrangements or 1n a space
of possible sequences of moves,

Matchstick Problems

Figure 9.10 shows a matchstick problem used by
Katona (1940). The 16 matches form five squares;
the task is to move exactly three matches in
such a way that the matches form only four

l ]
{ ¥

Figure 9.10. A matchstick problem used by Katona
(1940).
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squares. and all the matches serve as sides of
squares. Katona tested subjects under three
conditions: (1) in rote learning (subjects were
shown and required to learn a specific solution),
(2) with a logical condition for the solutton
(subjects were taught that in the solution, each
match formed a side of one and only one square),
and (3) with a heunstic for solving the problem
(subjects were told “"you need to-open up the
figure”).

The subjects learned the solutions and then
were tested on transfer tasks (different intial
arrangements of the matches and different
numbers of squares). Differences in the ease of
learning the solution were minimal, with the
rote solution being learned most rapidly. Two
weeks later they were invited back and tested
for their memory of the solution. In the test of
transfer and retention, the logical-and heuristic
solutions far outshone the rote solution, and the
heuristic solution scored slightly better than
the logical. From this evidence Katona con.
cluded that problem-solving knowledge and
skills are-better transferred and retained when
the learning is meaningful than when it is rote,

The experimental manipulations leave implicit,
however, -the theoretical import of the term
‘meaningful’. Why does meaningful learning
facilitate retention and transfer, and why is the
heuristic form of the instruction superior to the
logical form?™

With respect to transfer and retention,

-meaningful learning involves the same issues as

structural understanding (discussed above in
“Problem Representation in Mathematics and
Physics"). Transfer is facilitated because, with
more meaningful instruction, subjects-acquire
knowledge that can be applied more generally
—in particular, to the new problems presented
in the test as well as the problems used in train-
ing. It is easy to see why this occurs; the meun-
ingful instruction can be applied to matchstick
problems generally, while a specific solution
sequence applies only to a single problem,

As for retention, meaningful forms of instruc-
tion may provide more reédundancy, and hence,
more opportunity to recover from partial forget-
ting. The general principles of single versus
double function and of loosening or condensing
the figure are constraints that can be used to
limit search for information in memory, or to
reconstruct solutions that are only partly
remembered.

The difference between the two meaningful
procedures appears to derive from the distinction
between generators and tests. The instructior to
‘open up the figure’ providesa constraint on the
selection of an operator 1t suggests something
to do, however vague. relative to a general
property of the figure that can be perceived. The
rule, ‘each match must form a side of one and
only one square,’ constrains solution arrange.
ments. It provides a test that can be applied to
an attempted solution, but does not suggest
what to move to produce the solution 1 the first
place. In fact, the matches that have to be moved
to solve the problem are not those with double
function but rather those that already lie on the
side of only one square. In this situation, at
least, the knowledge that facilitates a solution
most effectively increases the selectivity of the
move generator rather than of the candidate-
solution states.

Katona noted that the heuristic of opening

the figure or closing gaps uses a feature that is-

important in the perception of form, the Gestalt

principle of good- continuation. Attending to-
that feature and considering moves to adapt an:

arrangement to it constitutes a general strategy
for-solving matchstick problems.

Chess and Go

_ Board vames offer problems of the same general
-form as matchstick problems. An arrangement

of objects is presented—the current situation in
the game—and a player has the task of selecting

a move or move sequence. Some criteria for a-

good solution are quite specific_(e.g., white to
mate in four moves); more often they are general,
involving a goal to achieve-a stronger position.
Recent experiments comparing the performances
of individuals who differ in skill show- the
importance of knowledge in-the recognition of
large numbers of complex patterns that occur
during games.

In complex games, as in other domains in

which some people become expert, problems.

that would be difficult or impossible for novices
are often solved ‘instantly’ by experts—that is,
in a few seconds. For example, a chess grand
master, who is presentzd with a position from
an actual but unfamiliar game and -asked to
recommend a move, will usually be able to
report a good-move, often the best move, in five
seconds or less (deGroot, 1965). In a 'blitz’ game,
the same player, required to move within 10
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seconds, will probably be unable to play at the
grand master level but will achieve master level.
Players at this level will be able to play 50 or
more opponents simultaneously, with a high
level of success. taking only a few seconds for
each move. When experts are asked how they
solve problems so rapidly. they may reply, 'l use
intuition.” or, [ use my judgment.”

The nature of this intuition or judgment has
been clarified by experiments on skill in chess by
deGroot (1965) and Jongman (1968) and repeated
and extended by Chase and Simon (1973), and on
skill in the game Go by Reitmaa (1976). In the
experiments on chess skill, a chessboard with a
position from a game (containing perhaps 25
pieces) is shown to a subject for 5 to 10sec. The
subject is then asked to reconstruct the position.
Chess grand masters and masters can perform
this task with 90 percent accuracy. Ordinary
players can replace only five or six pieces
correctly (20 to 25 percent accuracy). In a
second condition the task is the same, except
that the pieces are now arranged on the chess-
board at random, rather than in a pattern that
could have arisen in a game. In this condition,
the performance of masters falls to the level of
ordinary players—both can replace, on average,
only about six pieces. This second part of the
experiment demonstrates that the chess masters
do not have any special powers of visual imagery.

Reitman's (1976) study of skill in Go had
similar resuits. Go is a game of territory played
onal9 x 19 grid. The pieces are round 'stones’
differing only in color for the two players, black
and white. An experienced subject (not as
strong as a professional player), was able to
reproduce 66 percent of the pieces of meaningful
patterns, compared to 39 percent for a beginner
who had played about 50 games. On random
patterns the players replaced 30 percent and 25
percent, respectively or an average of five to
seven stones.

This experimental procedure has been applied
to the pattern-recognition abilities of experts in
several other domains; see “More Complex Tasks
of Composition and Design” and ‘‘Diagnostic
Problem Solving,” below.

The behavior of the chess and Go experts in
the perception and memory task can best be
explained as a function of their chess and Go
experience. As a result of thousands of hours
spent at game boards, they become familiar with
many configurations of three, four, or more
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pieces that recur again and again 1n games. for
example. a configuration known as a "fianchet.
toed castled Black King's posttion” occurs in
perhaps one in ten games between expert chess
players. This configuration is defined by the
positions of six pieces. It has been estimated
that a chess master has stored in long-term
memory not fewer than 50,000 familiar patterns
of this kind (Simon & Barenfeld, 1969; Simon &
Gilmartin, 1973). This number is comparable to
the 50,000 words in the vocabulary of a typical
college graduate, or perhaps the total number of
human faces a gregarious person learns to
recognize over a lifetime.

When a chess master is confronted with a
chessboard on which the pieces are arrayed in a
‘reasonable’ way, he can store this information
in short-term memory in a half dozen or fewer
‘chunks’'—familiar configurations. The ordinary
player, or the chess master confronted with a
randomly arrayed chessboard, must store the
information piece by piece, and hence, can hold
the positions of only half a dozen or so pieces in
short-term memory.

The skill that the expert acquires does not
consist simply of being able to recognize familiar
stimuli or configurations of stimuli. As deGroot
showed, the recognition of perceptual features
on the chessboard reminds the grand master of
moves that are potentially good when those
features are present. Indeed, we should expect
the expert’s knowledge for pattern recognition
to be integrated with strategic knowledge so
that the patterns the expert has learned to
recognize are those relevant to the choices of
moves and plans encountered in games.

The importance of game strategy in percep-
tion and representation of complex patterns
was shown in an experiment by Eisenstadt and
Kareev (1975). The games Go and Gomoku are
played with entirely different rules, though on
the same board and with the same kinds of
pieces. Two groups of subjects, who knew how to
play both games, were shown the same patterns
of stones on boards, One group was *old that
the patterns were from a game of Go, and the
other from a game of Gomoku. When they were
subsequently asked to recall the patterns, the
subjects in the first condition better recalled the
pieces that were critical to selecting the correct
move in the Go position, whereas the others
recalled better those pieces that were critical to
gelecting a move in the Gomoku position. Thus,
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in the face of a complex stimulus situation,
attention to a particular task determines the
sequence 1n which information s extracted from
the stimulus and the patterns in which 1t 1s
organized.

Studies of specific knowledge structures that
integrate strategic knowledge and knowledge
for recogmzing patterns have been carried out
by Wilkins (1980) in a model of chocsing r.oves
in chess, and by Reitman and Wilcox (1978) in a
model of playing Go.

Wilkins's (1980) model represents board
positions by recognizing concepts, such as
Attack and Safe, based on relations among
pieces. The model uses schemata that correspond
to the concepts in proposing and evaluating
plans. In formulating a plan, a concept such as
Safe or Defend-Threat can be set as a goal; the
schema for each concept includes conditions
that are required to satisfy the goal. The model’s
strategy of using proposed plans to guide its
search restricts the set of moves it considers,
enabling relatively thorough evaluations. The
mode! is successful in soiving problems of
choosing moves in middle game positions that
are sufficiently difficult to be used in a standard
chess textbouk.

Reitman and Wilcox’s (1978) model simulates
representation of board positions and changes
of board positions in Go. The model forms a
multilevel representation with low-level units
such as strings and chains of stones, and higher-
level units called groups and fields involving
collections of points and their surrounding
stones. The representations include features
that are relevant to Go tactics, such as the
stability of a group of stones. Perceptual activity
is organized according to several structures
including lenses, which monitor changes on the
board relevant to relations between groups of
stones, and webs, which monitor changes on
radii and circumferences around groups. The
model’s capabilities for representation, combined
with some relatively low-level processes for
selecting moves, is similar to a human player
with the experience of plaving 40 or 50 games,

The ability of experts to recognize complex
patterns of information related to a highly
integrated structure of actions has been found
in other domains in which expertise has been
analyzed. The importance of knowledge for
representing problems in physics was discussed
above in "Problem Understanding; Represen-
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tation.” and similar conclusions were found for
medical diagnosts and electronic troubleshoot.
ing ("Diagnostic Problem Solving.” belaw), It 1s
reasonable to conjecture on present evidence
that high levels of expertise generally require
tens of thousands of perceptual 'chunks’ relevant
to the domain. {n domains where the mimimal
time required to become a world-class master
has been measured, the estimate turns out to
be about a decade (Hayes, 1981; this finding 1s
discussed below for musical composition 1n
“Problems of Composition™),

Construction Tasks and Other Insight
Problems

Much attention in research has been given to
problems in which some physical device or
arrangement is required, often to satisfy a
functional criterion. An example is Duncker’s
(1935/1945) famous ‘tumor’ problem in which
a patient has a stomach tumor that is to be
destroyed by radiation without damaging the
surrounding healthy tissue. How is it to be
done?

The source of difficulty in construction
problems differs from the problems discussed
above in "Simple Problems of I':orrmingrﬁrrange-
ments” and “Problems of Mod‘}fngg Arrange-
ments”’ where difficulty arises from the large
number of possible solutions. The tumor problem
and other ‘insight’ problems are difficult, pri-
marily because most-of the candidate solutions
considered are ruled out by the constraints of
the problem. In the tumor problem, for example,
gimply directing the rays to the tumor would
destroy all the tissue along their path; toopena
path to the tumor by surgical procedures would
cause intolerable damage, and so on. The ‘text-
book' solution to the tumor problem- calls for
irradiating the tumor from many different angles,
and hence, via many different paths through the
surrounding tissue. By this means a large
quantity of radiation is concentrated. on the
tumor, while each path of surrounding tissue is
subjected to only a small fraction of that amount

Solving the tumor problems and- similar
insight problems often depends on finding a way
to represent the problem so that the solution
becomes obvious. Achievement of such-a repre-
sentation, corresponding to a moment of insight,
is a phenomenon of great interest, especially in
relation to issues of cognitive organization
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in Gestalt psychology. In problems such as
cryptarithmetic and anagrams. the problem
space is easily constructed. and problem-solving
activity consists of searching in the set of
possibilities that arise in that space. On the
other hand, in insight problems such as the
tumor problem, the problem solver’s initial
representation usually provides an inadequate
problem space. one in which a solution will not
be found. Probiem solving involves a construc-
tion of several problem spaces—only to be
discarded as factors are discovered that make
each of them inadequate—until a successful
representation is found. Processes of problem
representation thus play a central role in the
solution of these problems of construction. The
process can be characterized as a search for
alternative ways to represent the problem. How-
ever, the usefulness of such a characterization is
limited unless the set of alternative represen-
tations can be specified more definitely than we
are at present able to do.

Duncker (1935/1945) emphasized the demand,
the condition to be met by the problem solution,
as the chief source of solution proposals. The
mnitial proposals are not unmotivated, but they
are faulty in not attending to all the conditions
a solution must meet. False analogies may
produce inadequate solutions because of their
failure to match the actual situation in crucial
dimensions. At the same time, Duncker stressed
that the proposals are not produced by simple
association:

In short, 1t 1s evident that such proposals are
anything but completely meaningless associ-
ations. Merely in the factual situation, they are
wrecked on certain components of the situation
not yet known or not yet considered by the
subject.

Occastonally it 1s not so much the situation as
the demand, whose distortion or sumplification
makes the proposal practically useless (p 3)

By constructing a taxonomy of correct and
inadequate solutions to the tumor prubiem,
Duncker showed how the solution-generating
process can be understood as a process of
means-ends analysis. His taxonomy can be
depicted in outline form:

Treat tumor by rays without destroying healthy
tigsue
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Avoid contact between rays and healthy
tissue
Use free path to stomach
Use esophagus
Remove healthy tissue from path of rays
Insert a cannula
Insert protective wall between rays and
tisgue
Feed substance that protects
Displace tumor toward surface
Apply pressure
Desensitize the healthy tissue
Inject desensitizing chemical
Immunize by adaptation to weak rays
Lower intensity of rays through healthy
tissue
Postpone full intensity until tumor 1s
reached
Use weak intensity in penphery, strong
near tumor
Use a lens

Duncker described the solution process as
the successive development or reformulation of
the problem. Working both forward and back.
ward may contribute to the process. Seeing a
stick may give a chimpanzee the clue to obtain.
ing a banana that is out of reach. Alternatively,
the banana's being out of reach may lead the
chimpanzee to look for an object that could be
used to reach it (cf. Kohler, 1929). Mistakes may
also call a:tention to features of the problem
situation that must be incorporated in the
solution, and hence, may lead to new solution
attempts.

From the idea that the solution of a problem
depends un an appropriate formulation, it would
be expected that hints could be used to make
problems significantly easier. One experiment
on the effects of hints used a problem of con-
structing a hat rack, invented by Maier (1945).
Twosticks and a clamp were given. The hat rack
could be constructed by clamping the sticks
together so that the assemblage was long enough
to be wedged between the floor and the ceiling.
Subjects usually began by either laying one
stick on the floor and clamping the other stick to
it veriivally, o standing both sticks on the flaor
in an X or inverted V shape. Neither of these
structures is stable. If the experimenter said, “In
the correct solution, the clamp is used as a
hanger,” the solution was facilitated somewhat,
mainly by reducing attempts made with one
stick lying on the floor. If the experimenter said,
“In the correct solution the ceiling is part of the
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construction.” the solution was facilitated even
more forcefully, by reducing attempts that used
only the floor as support (Burke. Maier, &
Hoﬂ‘man, 1966).

A potential source of problem solutions
is analogy with similar problems. Gick and
Holyoak (1980} gave Duncker's tumor problem
to :ubjects. some of whom had studied a story
n which a fortress was taken by a converging
attack The subjects who were familiar with the
military problem were more successful than
control subjects 1n solving the tumor problem.
An important factor was the inclusion of an
instruction that the fortress story might provide
a usefui hint for solving the problem. With the
hint, most subjects found the convergence
solution to the tumor problem, but without the
hint only about half as many subjects found that
solution. even though they had read the story
and recalled it in a test.

In a subsequent study, Gick and Holyoak
(1983) examined conditions favoring the spon-
taneous use of an analogy. Asking the subjects
to summarize the military story, rather than
recall it, had little effect, ana giving them a
verbal statement or diagram showing the con-
vergence principle did not nuticeably increase
their use of the analogy. However, more solutions
were proposed by subjects who read two stories
involving convergence, summarized both of
them, and-discussed ways in which the stories
were similar. Gick and Holyoak concluded that
those subjects acquired a schema with the idea
of convergence represented in a general way,
and that such a schema is more likely to be
used than is a specific analogous problem. (In
“Problem Representation in Mathematics and
Physics,” above, a similar hypothesis was
offered.)

Duncker (1935/1945) also studied problems
that required subjects to construct some item
out of potential components, including some
inessential components, that were provided. He
showed that the problems could be made difficult
by presenting one of the components in such a
way that it wag conceptually “unavailuble’ for its
required function. For example, in one problem
the building materials were a candle, matches,
and a box full of thumbtacks. The task was to
mount the candle on a wall so that it could burn
without dripping wax on the floor, The problem
could be solved by thumbtacking the box to the
wall, then mounting the candle in it.

This problem was so difficult that fewer than
half the subjects 1n one experiment were able to
solve 1t in 20 minutes (Adamson, 1952). When the
problem was presented to another group of
subjects with the thumbtacks lying on a table,
and the box empty, 86 percent solved 1t 1n less
than 20 minutes. The phenomenon underlying
this finding has been labeled ‘functional fixity.'
When an object is performing, or has recently
been used to perform some function, subjects
are less likely to recognize 1ts potential use for
another function. .

Birch & Rabinowitz (1951) demonstrated a
similar phenomenon, using another problem
originally studied by Maier (1931). In a room
where two strings were hanging from a ceiling,
too far apart to be reached simultaneously, the
task was to tie them together. This could be
accomplished if a heavy object was tied to one
string and the string was swung as a pendulum.
This string could be grasped as it swung toward
the subject, who meanwhile had the other string
in hand. Two objects, an electric switch and a
relay, were available for constructing the
pendulum. The subjects had used either the
switch or the relay (but nos both) in a previous
task. Of ten subjects who had used the relay
previously, all used the switch to construct the
pendulum; of nine who had used the switch,
seven used the relay to construct the pendulum.
Of six subjects who had used neither object
previously, three used the switch and three the
relay to construct the pendulum.

Several findings support a hypothesis that
functional fixity results from a decrease in the
likelihood of noticing certain critical features of
objects in the situation, such as the flatness of a
box (in use as a container), or the heaviness of a
switch (after use in a circuit), or the features in
functional fixity may be quite different in dif-
ferent situations, involving restrictive hypothe-
ses about general classes of solutions in some
cases, and simple competition between feature-
regognition processes in others.

Some of the findings that support this expla-
nation involve demonstrations that the solution
of problems can be influenced even by very low-
level perceptual factors. For example, in the
pendulum task, the idea of making one string
swing so that it would be reachable by someone
holding the other one does not occur readily to
most subjects, even in the presence of one or
more heavy objects. Maier (1931) showed that
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this idea occurred immediately to many subjects
who had not previously thought of 1t, when
the expennmenter casually brushed against
the string and set 1t swinging. Glucksberg
and Weisberg (1966) presented pictures of the
matenals available for use in solving Duncker's
candle problem. and found that solutions were
markedly increased when the label 'Box' was
included in the picture. A process of noticing
features of objects that can be related to the
prcblem goal (Dur er's ‘suggestions from
below") probably ple agnificant role 1n the
solution of construc ‘blems, as Weisberg
and Suls (1973} conc. .n their theoretical
analysis of solution esses for the candle
problem. Results consistent with that idea were
obtained by Magone (1977), whose subjects
produced a greater variety of solutions to
Maier’s two-string problem if they were initially
prompted to consider features of objects than if
they were prompted to seek a solution of a
specified kind, such as extending one of the
strings or causing a string to swing back and
forth.

The Einstellung effect discussed above in
“Einstellung” is similar in character to func-
tional fixity in that in both effects, previous
experience influences the availability of alter-
native steps toward solution. The processes
responsible for the two effects are probably
analogous in a subtle but significant way since
1n both, a form of search is made less likely than
1t would normally have been. With Einstellung,
the previous use of a solution path suppresses a
search for problem-solving operators. With
functional fixity, the search for features of
objects that could be useful to a solution is
suppressed.

Another ‘insight’ problem that has been
studied 18 the nine-dot problem. A three-by-three
matnx of dots 18 given, and the task is to cornect
all the dots with four straight lines witho. .t any
retracing. Several lines may pass through the
same dot. The problem 18 difficult, most subjects
de not think of drawing lines outside the space
defined by the matnx of dots, as 18 required for
the solution. The difficulty 1s apparently another
mstance of a restricted domain of search, but
the obvious hypothesis of a restriction based on
the spatial arrangement 1s not supported by
data. Weisberg and Alba (1981) instructed their
subjects to draw lines outside the square of dots,
but that had little effect. However, when they

gave ar. easter problem requiring drawing lines
beyond the region that contained dots to other
subjects, subsequent solution of the nine-dot
problem was facilitated A reasonable interpre-
tation s that the easier problem led the subjects
to consider problem-solving operators that were
not in the problem space of subjects who had not
solved the simpler problem first. This finding
involves the same principles as the finding of
Katona (1940; see "'"Matchstick Problems”) that
a heunstic for choosing operators is more effec-
tive than a test applicable to the results of
operators.

More Complex Tasks of Composition
and Design

Problems of Composition

Flower and Hayes (1980), who studied the task of
writing an essay, noted that successful writing
requires simultaneous compliance with a large
number of constraints, operating at different
levels. One set of constraints requires the selec-
tion and organization of ideas from the writer's
knowledge into a coherent network of concepts
and information for inclusion in the essay.
Another involves the linguistic and discourse
conventions of written language. A third is
rhetorical, involving the need to arrange the
essay -0 as to accomplish the writer’s purpose
for the intended audience.

Using protocols obtained from subjects work-
ing on writing tasks, Hayes and Flower (1980)
found three general processes: planning, trans-
lating, and reviewing. These three processes
allow the writer to attend to a subset of the
constraints at any time. In planning, information
relevant to the topic is generated from the
problem solver’s memory, and decisions are
made about what to include. In trans'ating, a
text is produced using information that has been
retrieved, consistent with a wnting plan that
has been formed. In reviewing, the generated
text is evaluated and revised in accord with the
constraints of rhetoric, text structure, and such
detailed linguistic concerns as correct grammar
Hayes and Flower found that writing involves a
combination of these processes and postulated
that the writing process includes a monitor
that determines the sequence of subprocesses,
depending on the nature of difficulties that
arise,

To write successfully, an individual must
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understand the constraints that apply at vanous
Jevels to the text, must have effective methods
for generating Or revising text to conform to
those constraints, and must actively engage in
evaluation 1n light of the constraints. In studies
of young writers, Bereiter and Scardamala
(1982) noted that inattention to constraints,
especially global rhetorical concerns, charac-
ter1zes the writing of many children When they
revise a text that have produced, most childsen
attend exclusively to low-level constraints,
usually changing only single words or small
phrases, rather than attempting to improve
more significant general features of their essays.
Bereiter and Scardamalia hypothesized that the
difficulty lies 1n the process of evaluating the
text, rather than in a failure to understand
rhetorical goals or the lack of effective means to
produce an improved text. They gave students a
set of cue cards with evaluative comments, such
as "'I need another example here,” "The reader
won't be convinced by this,” “Even [ seem to be
confused here,” and “This is a good sentence.”
The children’s task was to choose a card that
seemed appropriate for each sentence in their
texts and to make appropriate changes. The
technique was effective and consistent with the
idea that the chlildren’s problem lay in the
difficulty of evaluating their texts and applying
glnbal constraints, rather than in ignorance of
the constraints or methods for complying with
them.

Multiple interacting constraints also charac-
terize composition of music, as Reitman (1965)
showed in an analysis based on a protocol
obtained from a professional composer as he
wrote a fugue. Reitman noted that schematic
structures that he called transformational formu-
las played an important role, these included
knowledge of the main components of the musical
form being composed (exposition, development,
and conclusion) as well as subcomponents of
those units (exposition — thematic material +
countermaterial, thematic material = motive +
development. etc.). Reitman found that much
problem-solving activity was concerned with
constraints. Some constraints were generated
by properties of the instrument (piano) chosen
for the piece, requiring musical material suited
to the instrument. Other constraints were
produced by material already included in the
piece, such as a requirement that counter-
material should be compatible with thematic

material. but sufficiently different to elicit
interest. The composer characterized patterns
that he developed as conventions. producing
melodic, rhythmic. and instrumental properties
that were then "used to carry on the movement
of the music” (Reitman. 1965, p. 169), with
variations introduced to maintain interest.

A substantial knowledge base 1s required to
solve problems of composition, and an important
question 1s how much experience and training a
person needs to make substantial creative con-
tributions to a field such as musical composition.
Using data from biographies and a standard
catalogue of recordings, Hayes (1981) determined
the time between a composer’s beginning serious
musical training and the first composition
that had five independent recordings in the
catalogue. In almost every case, at least ten
years of virtually full-time training occurred
before a composer produced a work of sufficient
quality to appear commonly in the recorded
repertoire.

Recognition and Knowledge of Constraints
In problems that impose constraints, a problem
solver must recognize the constraints in order to
perform successfully. “Cryptarithmetic Problems”
discussed Newell and Simon's (1972) finding
that individual differences in cryptanthmetic
depended on inclusion in the subjects’ problem
spaces of significant constraints, such as odd-
even parity. Two studies have investigated this
factor. one on examination questions by Bloom
and Broder (1950) and one on administrative
policy by Voss, Greene, Post, and Penner (1983).
In comprehensive college examination ques-
tions studied by Bloom and Broder (1950),
students were often required to make inferences
or deal with information presented in an unusual
form. For students who performed poorly, a
significant factor was their inattention to
constraints in the statements of some questions.
For example, when the task was to choose the
best explanation for a situation, some students
would ignore the relation of alternative answers
to the situation and would pick the answers that
seemed most nearly true 1a 1itself. For such
students, the activity of problem solving occurred
in a problem space that lacked some of the infor-
mation that was required for good performance.
Bloom and Broder developed zn instructional
method 1n which students compared their own
problem-solving process, recorded in a thinking-
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aloud protocol, with the process of another
student whose performance was more successful.
This traiming was effective for many students,
teaching them to attend more carefully to con-
straints in questions as well as such other helpful
strategies as increasing their efforts to infer
plausible answers from information they could
reirieve {rom memory.

Voss et al. (1983) obtained thinking-aloud
protocols on problems involving the design of an
administrative policy. For example, problem
solvers were asked to develop a policy for
improving agricultural productivity in a region
of the Soviet Union. Subjects with different
amounts of knowledge about Soviet government
and history worked on the problem, including
students 1n an introductory course in Soviet
politics, experts in political science (some of
whom specialized in the Soviet Union and some
with other specialties), and experts in another
field altogether (chemistry). The solving pro-
cess of experts was primarily to formulate the
problem, and then, after a long initial period
devoted to considering historical and political
factors, to make successive reformulations
based on evaluations of propcsed solutions
against known constraints. The inexpert student
subjects offered problem formulations that
failed to include important constraints. Experts
in chemistry worked more systematically than
the political science students, sometimes using
general knowledge about administrative systems
to provide useful conjectures, but they too lacked
the nch formulations that characterized the
problem solver with specialized knowledge.

Design of Procedures
Another type of problem involves tasks in which
the matenals consist of a set of actions that can
be performed, and the problem solver constructs
a procedure from these components. These prob-
lems are similar to problems of transformation,
discussed 1n “"Well-Specified Problems” especially
when planning 18 used to construct a sequence
of actions to reach the problem goal.
Hayes-Roth and Hayes-Roth (1978) gave sub-
jects a map of a fictitious town, showing the
locations of several stores and other businesses.
The subjects were also given a list of errands,
such as buying frech vegetables at the grocery,
picking up medicine for a dog at the vet, and
seeing a movie. The subjects’ task was to plan a
schedule that included as many of the errands

W

as possible. The task presented some generaj v
constraints, in particular. a hmit on the amount
of time available. It also presented local con.
straints and interactions. For example. 1t 15
better to buy groceries late in the day. so they
will still be fresh when the shopper returns
home; and it is best to go to the movie at one of
the times when the feature 1s starting. Inter-
actions include the proximity of shops, making
it more efficient to group together in the
sequence errands that involve shops that are
near one another.

The Hayes-Roth'’s simulated performance on
their planning task with a model that contained
several planning specialists and a blackboard
control structure, a design similar to one used
earlier in a speech understanding system called
Hearsay (Reddy, Erman, Fennell, & Neely,
1973). The specialists are designed to make
suggestions about different kinds of planning
decisions: They all have access to inferences,
suggestions, and other information, which is
located in the system’s blackboard. This system
design supports a feature called opportunistic
planning, which has been found in the perfor-
mance of human problem solvers. Opportunities
arise in the form of conditions that make it easy
to include an errand, such as the proximity of a
store to a place that is already included in
the plan, and an appropriate specialist can be
activated by that condition.

In the writing of a computer program, the
procedure is designed to perform a designated
function. Studies of computer programmers and
designers have revealed important characteristics
of the knowledge required for the solution of
these design problems.

Soloway, Ehrlich, Bonar, and Greenspan
(1982) gave three problems, typical of elementary
programming courses, to students in the first
and second introductory courses in programming
They 1dentified schematic cognitive structures
that they called plans, needed for successful
problem solving. The required schemata cre quite
basic, involving the construction of iterative
loops and the use of variables. The schemata
provide knowledge of requirements for perform-
ing significant program functions, such as the
interactions between processing and testing a
variable within a loop and between the loop
processing and initialization. Students who
lacked adequate versions of these schemata
made significant errors, for example, by failing

v
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aloud protocol, with the process of another
student whose performance was more successful.
This tramning was effective for many students,
teaching them to attend more carefully to con-
straints 1n questions as well as such other helpful
strategies as increasing their efforts to infer
plausible answers from information they could
retrieve from memory.

Voss et al. (1983) obtained thinking-aloud
protocols on problems involving the design of an
administrative policy. For example, problem
solvers were asked to develop a policy for
improving agricultural productivity in a region
of the Soviet Union. Subjects with different
amounts of knowledge about Soviet government
and history worked on the problem, including
students in an introductory course in Soviet
politics, experts in political science (some of
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factors, to make successive reformulations
based on evaluations of propcsed solutions
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in chemistry worked more systematically than
the political science students, sometimes using
general knowledge about administrative systems
to provide useful conjectures, but they too lacked
the rich formulations that characterized the
problem solver with specialized knowledge.

Design of Procedures
Another type of problem involves tasks in which
the matenals consist of & set of actions that can
be performed, and the problem solver constructs
a procedure from these components. These prob-
lems are similar to problems of transformation,
discussed 1n “"Well-Specified Problems™ especially
when planning 18 used to construct a sequence
of actione to reach the problem goal.
Hayes-Roth and Hayes-Roth (1978) gave sub-
jects a map of a fictitious town, showing the
locations of several stores and other businesses.
The subjects were also given a list of errands,
such as buying fresh vegetables at the grocery,
picking up medicine for a dog at the vet, and
seeing a movie. The subjects’ task was to plan a
schedule that included as many of the errands
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as possible The task presented some genera] v
constratnts, tn particular. a limit on the amount
of time available It also presented local con.
straints and interactions For example. 1t s
better to buy groceries late in the day, so they
will still be fresh when the shopper returns
home; and it is best to go to the movie at one of
the times when the feature 1s starting. Inter.
actions include the proximity of shops. making
it more efficient to group together in the
sequence errands that involve shops that are
near one another.

The Hayes-Roth’s simulated performance on
their planning task with a model that contained
several planning specialists and a blackboard
control structure, a design similar to one used
earlier in a speech understanding system called
Hearsay (Reddy, Erman, Fennell, & Neely,
1973). The specialists are designed to make
suggestions about different kinds of planning
decisions: They all have access to inferences,
suggestions, and other information, which is
located in the system’s blackboard This system
design supports a feature called opportunistic
planning, which has been found in the perfor-
mance of human problem solvers Opportunities
arise in the form of conditions that make it easy
to include an errand, such as the proximity of a
store to a place that is already included in
the plan, and an appropriate specialist can be
activated by that condition.

In the writing of a computer program, the
procedure is designed to perform a designated
function. Studies of computer programmers and
designers have revealed important characteristics
of the knowledge required for the solution of
these design problems.

Soloway, Ehrlich, Bonar, and Greenspan
(1982) gave three problems, typical of elementary
programming courses, to students in the first
and second introductory courses in programming
They identified schematic cognitive structures
that they called plans, needed for successful
problem solving. The required schemata . re quite
basic, involving the construction of iterative
loops and the use ot vanabies. The schemata
provide knowledge of requirements for perform-
ing sigmficant program functions, such as the
interactions between processing and testing a
variable within a loop and between the loop
processing and initialization. Students who
lacked adequate versions of these schemata
made significant errors, for example, by failing
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to recognize distincuions between different
looping structures Experiments on memory
for pi 7 am texts have shown that experienced
programmers can recall more successfully than
peginners (Adelson, 1981, McKeithen et al.,
1981: see also "Enstellung™). The acquisition of
plan schemata as hypothesized by Soloway et al.
(1982) provides a natural explanation of this
finding.

More advanced problems. involving software
design, were studied by Polson, Atwcod. Jeffries,
and Turner (1981). A task in software design
.nvolves planning a complex program, actual
wriing of the program is performed separately.
Polson et al studied the design of a program for
compiling an index for a text, given a set of key
words to be included in the index. Both pro-
fessional software designers and students gave
soluttons with thinking-aloud protocols. The
experts recognized functions that had to be
included in the solution, such as defining a data
structure for the text and searching the key
word set for a word that would match each word
encountered in the text. Polson et al. concluded
that experts’ knowledge includes general design
schemata that enable decomposition of problems
and the progressive forming of more well-defined
subproblems, with specific te_hniques available
for some of the subproblems encountered. These
schemata provide another exampi2 of knowladge
for action orgamized hierarchically like that
developed by Sacerdoti (1977, see ‘Domain
Specific Knowledge for Familiar Problems with
Specified Goals.”)

In the domain of microbiology, two versions
of a program that solves problems of experimental
design, called Molgen, have been developed.
One program by Stefik (1981) designs procedures
for modifying the genetic structure of micro
organisms. An important 1ssue considered by
Stefik 1s the handling of constraints that anse
from interactions between components of a
procedure. Molgen designs procedures in a top-
down manner, 1n which abstract plan schemata
are gradually made more specific. A method of
constraint posting was developed in which
requirements for one of the design components
could be taken into account in the decisions
made about other components.

The second version of Molgen, by Friedland
(1979), designs analytic experiments, such as the
determination of the sequence of base molecules
in a DNA strand or the location of a set of

restriction sites on a molecule. In this model
schemata called skeletal plans incorporate
information about experimental procedures that,
through a process of filling in details. develop
specific experimental plans based on the specific
problem requirements.

INDUCTION

In a problem of inauction, sore material 13
presented and the problem solver tries to find a
general principle or structure that 13 consistent
v..th the material. Important examples include
(1) scientific induction, including situa.ons in
which the material is a set of numencal data and
the task is to induce a formula or a molecular
structure, (2) language acqusition, where the
material is a set of sentences and the task 1s to
irduce the rules of grammar for the language,
and (3) diagnosis, in which the material is a set
of symptoms and the task is to induce the cause
of the symptoms. Problems of anelogy and
extrapolating sequences are inductive tasks
that are widely used in intelligence tests. The
task of inducing a rule for classifying stimuli
into categories has been used in a larger and
significant body of experimenta!l study.

Aninduction problera presents a dual problem
space that .ncludes a space of stimuli or data
and a space of possible structures, such as rules,
principles, or patterns of relations (c¢f. Simon &
Lea, 1974,. The task can be conceptualized as a
search, within the space of structures, to find a
structure that satisfies a criterion of agreement
with the stimuli or data. An expesimental sub-
ject can be tested by being required to use the
structure for stimuli that have nut yet been
shown, When the task 13 to induce a rule for
classifying stimuli, new stimuli may be presented
to test whether the subject can classify them
correctly. When the task is to induce a pattern
1n a sequence, the subject may be required to
extend the sequence by p:oducing additional
elements that fit the same pattern as those that
are given.

Solving an induction problem can proceed in
two ways, and most tasks use a combination
of the methods. The first, a top-down method,
involves generating hypotheses about the struc-
ture and evaluating them with information about
the stimulus instances. The second, a bottom-up
method, involves storing information about the
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individua! stimuh and making judgments about
new stimuli on the basis of similarity or analogy
to the stored information. Use of the top down
method requires a procedure for generating or
selecting hypotheses, a procedure for evaluating
hypotheses, and then a way of using the hypothe-
s1s generator to modify or replace hypotheses
that are found to be incorrect Use of the bottom.
up method requires a method of extrapolating
from stored information, either by judging the
similarity of new stimuli to stimuli stored in
memory, or by forming analogical correspond-
ences with stored information.

Induction involves a form of understanding
in which a representation is found that provides
an integrated structure for diverse stimuli. This
general feature also characterizes processes of
representing problems such as the textbook
physics problems discussed above in “Problem
Understanding; Representation.”” There the
space of stimuli is the information in the
problem situation—often a problem text or
ingtructions—and the space of structures is a
set of possible representations that can be con-
structed. To be successful, a problem rer.esen-
tation must provide the information needed to
achieve the problem goal. Thus, in representing
trangformation problems, the inductive search
is constrained by the requirements of problem-
solving operators that are available. In some
problems of induction, such constraints are not
present, and one does not have to do anything
witn the pattern that is found in the infor-
mation. However, in some inductive problems,
such as medical diagnosis, there are strong con-
straints related to available operators. The goal
is to restore the ailing person to proper function.
ing, and the effort to induce a cause serves the
goal of determining an effective remedy.

In some task domains, the possible structures
are represented explicitly as formulae. Examples
include induction of quantitative formulas from
numerical data in physics, or induction of the
molecular structure of a chemical compound.
Patterns induced in letter-sequence problem-
also consist of explicit formula-like rules. These
tasks share important properties with problems
of design and arrangement (digcussed above in
“Problems of Design and Arrangement”). The
goals of these induction tasks can be considered
as the design of a formula that agrees with the
data. The solution of design problems generally
requires use of strong constraints to limit

the space of possibilities for search and this
important property s also found 1n tasks that
involve induction of formualas.

The discussion of inductive problem solving
will cover. (1) induction of categorical concepts.
(2) induction of more complex concepts involving
sequential stimuli, (3) induction of relational
structure, and (4) diagnostic problem solving.

Categorical Concepts

Of the various inductive tasks that have been
studi.d, by far the most attention has been given
to the induction of categorical concepts. This 13
partly in recognition of their practical impor-
tance. Qur human capabihity of orgamzing expen-
ence using conceptual categories undoubtedly
contributes much to making our cognitive lives
manageable.

In an experiment on concept induction, the
experimenter constructs a set of stimuli (e.g.,
diagrams with figures that vary 1n shape, size,
color, and other attributes) and decides on arule
to classify the stimuli (e.g., "the red circles are
positive, all other stimuli are negative”). The
subjects are given information about several
individual stimuli-—that is, they are told whether
each stimulus is positive or negative. The sub-
ject’s task is to induce the rule of classification.
Usually the experimenter tests whether the
subjects have induced the concept by presenting
new stimuli to determine whether they can
classify them correctly.

In an early discussion, Woodworth (1938)
distinguished between processes of concept
induction involving bottom-up and top-down
methods. In a bottom-up process, knowledge of
the concept is analogous to a composite photo-
graph, consisting of ap impression summed over
the various stimuli in the category, with the
common features emphasized and the vanable
characteristics ‘'washed out.” In a top-down
process, the problem-solver actively constructs
hypotheses about features that define the concept
and tests these hypotheses with additional
information about’examples.

The following discussion deals first with two
studies of top-down processes, and then with
studies of bottom-up processes of inducing
concepts.

Multifeature Concepts
When two or more stimulus features are
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Figure 9.11 An array of instances comprising combinations of four attributes, each exhibiting three values.
Open figures are in green, striped figures in red, solid figures in black, From A Study of Thinking (p. 42) by J.S.
Bruner, J § Goodnow, and G.A. Austin, 1956. New York. Wiley. Copyright 1956 by Jerome Bruner. Reprinted

by permission.

combined to form a categorical concept, they
are combined in some logical formula, such as'A
and B, or ‘If A, then B.” A stimulus is a pogitive
example of the concept if the formula truly
describes the stimulus. In the set of stimuli
shown in Figure 9.11 the concept ‘Green and
Circle’ specifies the stimuli in column 2; the
concept ‘Green or Circle’ specifies the stimuli 1n
columns 1, 2, 3, 5, and 8.

Consider the requirements for performance
of this task, assuming that it is done in a tcp-
down, hypothesis-testing manner. First, the
stimulus features must be discriminated, the
problem solver must have processes for recog

nition of the featurse that are used i{v define

concepts. Second, there must be a process for
hypothesis formation, which constructs candidate
hypotheses to be considered. Third, a process of
hypothesis evaluation is needed to test the
hypotheses that have been formed. Fourth, a
process for hypcthesis modification is required
in order to use the recults of the tests to elimi-

nate incorrect hypothesis, to change existing
hypotheses, or to form new ones,

In a landmark study of multifeature concept
induction, Bruner, Goodnow, and Austin (1956)
observed subjects who, as they worked on
concept induction problems, made oral reports
about their hypotheses. In certain of these
experiments subjects were instructed that con-
cepts were conjunctions of features, and that
their task was to induce how many features
were relevant and what the features were. Two
experiments are considered here.

In one experiment subjects were requred to
solve two problems with the array shown in
Figure 9.11 and a third problem of the same kind
from memory— that is, with the stimuli not
available. Each of the problems began with the
experimenter providing a positive instance—a
stimulus that was a member of the concept
category. The subject eculd then choose any
stimulus 1n the display and ask whether 1t was a
positive or negative instance of the concept. The
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subject could offer a hypothesis after the choice
of stimulus, but this was not required. The
subject continued choosing stimuli and receiv-
ing information until the correct concept was
induced.

The results obtained by Bruner et al. (1956)
included characterizations of a vanety of
strategies used by subjects in selecting stimuli.
Strategies of one kind, called focusing strategies,
involved finding a positive instance of the con-
cept, then determining which of its features
were relevant. For example, suppose the concept
was ‘Red and Circle.” The subject might be told
that the stimulus with three red circles and two
bordere was a positive instance. The subject
could then choose a stimulus that differed from
the focal stimulus in the number of circles, say,
two red circles with two borders. This would be
a positive instance, and the subject would infer
that the number of figures was not a relevant
attribute. The subject might then vary the color
of the figures, choosing the stimulus with three
green circles and two borders. This would be a
negative instance, and the subject would infer
that the color of the figures was relevant, that is,
that ‘Red’ was part of the definition of the
concept. With further choices and information,
the concept’s definition would be inferred.

Other strategies called scanning strategies,
involve consideration of specific hypotheses and
the use of information to narrow down the set of
possible hypotheses. For example, a subject
might consider as distinct possibilities the
hypotheses ‘three figures,’ ‘red,’ ‘three and red,’
‘circle,’ ‘three circles,” and ‘red circles.’ Then
finding that a stimulus with two red circles and
two borders is a positive instance, all the
hypotheses with the property ‘three’ could be
eliminated. Use of a scanning strategy places
severe demands on memory. It is impossible to
consider all the possible hypotheses simultane-
ously (there are 255 of them), but it is desirable
to consider as many as one can, since information
can be used to evaluate hypotheses only in the
sample being considered.

The focusing strategies and the scanning
strategies differ primarily in the processes
they use to form hypotheses. In the focusing
strategies, information about instances is used
to constrain hypothesis formation. Tests are
performed to see whether an attribute is relevant,
and when the attribute is eliminated, no hypothe-
sis using it will be formed. If the focusing
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strategy 1s used successfully, all but the correct
attributes can be elimnated, and the correct
hypothesis can be formed directly In the scan.
ning strategies. less use 1s made of problem
information tn forming hypotheses. and hypothe-
ses that are in the sample are tested directly
with information about instances. [nformation
is used somewhat more directly 1n evaluating
hypotheses in the scanning strategies. but
there is consequently a greater need to keep 1n
memory a large set of hypotheses.

Bruner et al. (1956) used 12 subjects whose
performance was used to classify them as eicther
focusers or scanners. Seven subjects were classi-
fied as focusers and the rest were treated as
scanners. The focusing strategy was advantageous
for the subjects who used it. They required
about half as many choices as the scanners to
solve a problem with the stimulus array present
(medians of 5 and 10 choices, respectively). In
addition, the scanners had noticeably greater
difficulty in solving a problem ‘in their heads’
than they did when the stimuli were present
(median of 13 choices), except for one scanner
who discovered the focusing strategy while
working on the third problem. The focusers’
performance without stimuli present did not
differ from their performance on the second
problem with stimuli pregent.

Bruner et al. (1956) conducted two experi-
ments tc investigate situational factors that
influenced subjects’ choices of strategies. One
experiment compared the effect of an orderly
arrangement of stimuli with the same stimuli
presented haphazardly. The stimuli used abstract
forms, differing on six dimensions, with two
values on each dimension. With the 64 stimuli
arranged systematically, similar to the arrange-
ment in Figure 9.11, almost all subjects used
focusing strategies. When stimuli were not
arranged systematically, subjects typtcally used
scanning strategies. There was also a tendency
to use scanning strategies when con~rete stimuli
were uged. such as drawings of persons who
varied in sox, size, and cloiling.

Analyses by Hunt (1962) and Hunt et al.
(1966) provided a hypothesis on how to represent
categorical concepts in cognitive structure.
Hunt proposed that the knowledge of a cate-
gorical concept is a cognitive procedure for
deciding whether a stimulus is a member of the
category. The form of the procedure that Hunt
investigated was a decision network, a structure
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of perceptual tests organized 1n a way that
reflected the logical structure of the concept.
(This same form was used by Feigenbaum, 1963.
for the Elementary Perceiver and Memonizer.
used tn simulations of rote verbal memorizing.
Examples of such decision networks, for recog-
nizing some concepts .n zeometry problems,
were shown in Figures 95 and 9 6.) Experiments
conducted by Trabasso. Rollins, and Schaugh-
nessy (1971) provided evidence that supports
Hunt's characternzation Trabasso et al. measured
latencies for categorical decisions about stimult
and obtained results that agreed with Hunt's
model" Longer times were required for decisions
in which the model specified a larger number
of perceptual tests A model that simulates
acquisition of conjunctive concepts was deve-
loped by Williams (1971) who used Hunt's repre-
sentational hypothesis together with assumptions
about limited short-term memory capacity and
changes in the salience of dimensions.

An important aspect of the acguisition of
complex concepts 1s induction of the logical
relation between the stimulus features in the
definition This has been studied by Bourne and
his associates in experiments in which subjects
are informed of the features that the rules
include. For example, a subject may be told that
the rule includes ‘Red’ and ‘Circle,” but the
subject would then have to discover from
examples whether the combination is conjunc-
tive, disjunctive, conditional, or biconditional.
When subjects are not experienced in this rule-
learning task, there are substantial differences
in the difficulty of inducing the various kinds of
rules, and these correspond to differences
among the types of rules found in standard con-
cept induction tasks (Haygood & Bourne, 1965).

One possible explanation for differences in
difficulty 1s that the rules differ in familiarity to
the subjects, with conjunction being the most
familiar way to combine features. Overuse of
conjunction would lead to a bias in the process
of forming hypotheses, with the less familiar
forms of hypothesis generated later, if at all, and
consequent delays 1n problem solutions. Evidence
in support of this interpretation was obtained by
Bourne (1970), who found that differences among
the rule forms decreased when subjects were
given a series of rule-induction problems. A
more specific hypothesis, proposed by Bourne
(1574), 1s that, with experience, subjects acquire
a strategy for representing information about
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sumuli in terms of truth-table values based on
the features known to be relevant. For example.
if 'Red’ and ‘Circle’ are the features. then a red
circle has the value T-T (true on both attributes),
a green circle has the value F-T, and so on. This
is an efficient representation for solving concept-
induction problems, because each of the alter-
native rule forms corresponds to a distinctive
subset of trutn-table values. A conjunctive rule
1s satisfied only by T-T. a disjunctive rule 1s
satisfied by T-F, F-T, and T-T. a conditional
rule 1s satisfied by T-T, F-T, and F-F. and a
biconditional rule 1s satisfied by T-T and F-F.
The truth-table hypothesis 1s supported by
Dodd. Kinsman, Klipp, and Bourne's finding
(1971), that training on a task of sorting stimuh
into the four categories of the truth table
facilitated subsequent performance on rule-
induction problems.

Single-Feature Concepts

Induction of conceptual rules may also consist
of single features, such as 'all the red pictures,’
or, 'the circles.” The task of inducing such a
concept 18 simpler, of course, than inducing a
multifeature concept.

EVIDENCE FOR Top-Down INDUCTION
Single-feature concept induction has been studied
extensively by H.H. and T.S. Kendler and their
assoctates. One question addressed in their
experiments 1s whether concepts are acquired in
the form of a verbalized rule or 1n the form of an
aggregation of individual stimulus-response,
connections. It 1s likely that a verbalized rule
would result from a top-down hypothesis-testing
process of induction, and an aggregation of
stimulus-response connections from a bottom-up
process.

Evidence has been obtained in experiments
in which the conceptual category 1s changed
without informing the subject. A subject 1s
given an imtial concept-induction problem
involving a single stimulus feature (e.g., "respond
vogitively to red stimuh™), After the subject
meets a criterion of correct responses, the rule 1s
changed, either by changing the positive value
of the same attribute (e.g., from red to green),
called a reversal shift, or by changing to a
different attribute (e.g., from red color to large
size), a nonreversal shift. It was found that both
adult human subjects, and kindergarten children
who solved the imitial problem quickly, adjusted
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more easily to the reversal than to the nonrever-
sal shift (Buss. 1953. Kendler & D’Amato. 1955,
Kendler & Kendler. 1959). whereas rats and
slower-learning kindergarten children adjusted
more quickly to the nonreversal shift (Kelleher.
1956) An interpretation 1s that adults and
achool aged children use a hypothesis such as 'it
depends on color,” which does not have to be
changed to adjust to the reversal shift, while
nonhuman subjects and preschool children
learn specific stimulus-response associations,
for which the reversal shift requires a greater
change I[n a later study, Enickson (1971) found
that college students adjusted more rapidly to
nonreversal shifts if they had been carefully
instructed about the nature of the concept
induction task, suggesting that when subjects
have more complete information about the task
they tend to remove stimulus attributes from
consideration when their hypotheses are not
confirmed.

Further evidence that adult human perfor-
mance 1n concept induction is based on definite
hypotheses was obtained by Levine (1963) who
showed that on a series of test trials with no
feedbeck given, nearly all the sequences of
responses given by college students were con-
sistent with a systematic hypothesis about the
conceptual rule,

PROCESSES OF SAMPLING HYPOTHESES

The processes of forming and evaluating hypothe-
ses in single-feature concept induction are quite
straightforward. Any stimulus feature that is
noticed can be the basis of a rule, and a rule that
links a feature with a response is confirmed
or refuted directly by information about the
category of any example Because the hypotheses
are simple, and many hypotheses are possible, it
is efficient for subjects to consider samples of
hypotheses rather than one hypothesis at a time.
When a sample of hypotheses ig considered, the
subject can on each trial eliminate hypotheses
that are inconsistent with the information
given about that trial's stimulus. If the sampie
includes the correct hypothesis, the process of
elimination can narrow the gample down to that
hypothesis, which solves the problem. It the
sample does not include the correct hypothesis,
all the hypotheses in the sample will eventually
be eliminated and the subject will have to
generate another sample. Note that this method
is sumilar to the strategies that Bruner et al.
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(1956) called scanntng Like the scannming strate.
gies. the strategy of testing samples of hypotheses
1s demanding on memory

Proposals about the processes of choosing
hypotheses to be considered. the eliminating of
hypotheses on the basis of stimulus information,
and the recall of previously eliminated hypotheses
have been discussed in theoretical papers by
Gregg and Simon (1967) and by Millward and
Wickens (1974).

Wickens and Millward (1971) provided support
for the assumption that expertenced subjects
remember stimulus attributes after ehminating
them. According to their model, if the sample
of hypotheses 18 exhausted, the attributes of
eliminated hypotheses may still be stored 1n
memory. Limitations of memory apply to both
the size of the sample that can be considered
and the number of previously eliminated attn-
butes that can be remembered. In Wickens and
Millward’s experiment, subjects received exten.
sive training in concept induction, solving many
problems with the same set of stimuli, with
different attributes used to define the concept 1n
the successive problems. Performance improved
sharply after the first problem or two, and
stabilized within 10 to 20 probiems. The model of
attribute elimination was supported by statistical
data as well as by the subjects’ responses to
a retrospective questionnaire. Differences in
performance among the individual subjects can
be explained by assuming that they all performed
in accurd with the model’s assumptions, but that
they differed in the size of hypothesis sample
that they considered and in their capacity to
remember previously eliminated hypotheses.

When performance of inexperienced subjects
has been analyz.. using stochastic models, the
results have revealed a problem-solving process
of suprisingly simple structure. Restle (1962)
investigated the mathematical properties of a
process in which a subject considered a sample
of hypotheses and on each trial chose a response
based on one of the hypotheses. In Restle’s
modei 1t ts assumed that the way subjects
process information differs, depending on
whether the response on a trial happens to be
correct. After each correct response, hypotheses
that are inconsistent with the information
about that trial's stimulus are eliminated from
the sample. After an error, the suhject conaiders
a new sample of hypotheses. A simple stochastic
process results if 1t 18 assumed that samphng
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occurs with replacement [f this assumption 1s
correct. solution of the problem 1s an all or none
event. the probability of solving the problem
with no more errors after a new sample 1s taken
is a constant. independent of the number of
trials or errors that have occurred previously
This implication is counterintuitive If we
assume that the subject 1s sampling and testing
hypotheses. the assumption of samphng with
replacement says that there 1s no accumulation
of information over trials that makes sampling
of the correct hypothesis more Likely The all-
or nore property 1is also incompatible with
almost any assumption that learned stimulus-
response associations are strengthened gradually
over tnials, or that there is a summative or
‘composite photograph’ process as Woodworth
(1938) proposed.

The counterintuitive all-or-none property of
Restle’s model received strong empincal support
1n experiments by Bower and Trabasso (1964).
Their experiments with college students as
subjects included conditions i1n which the
categorical rule was changed before the subject
solved the problem. using either a reversal or a
nonreversal shift The assumption of resampling
with replacement after errors predicts that
shifts prior to solution should not delay the
solution of the problem, and this surprising
result was obtained.

Computer simulation models of the concept-
induction task. using different hypothesis.
generating strategies, have been proposed by
Gregg and Simon (1967). They showed that
when these process models are aggregated
(approximately) into simple stochastic models
like Restle's (1962), they provide an information-
processing explanation for the simple statistical
regularities implied by the stochastic models
and found in Bower and Trabasso’s (1964) data.
Gregg and Simon found that a range of different
models 1s required to account for the set of
experiments reported by Bower and Trabasso.
According to these models, the nature of sampling
depends primarily on how much information the
subjecis can retain about the classification of
previous instances and about which hypotheses
have already been refuted by the evidence. In
general. the process models that fitted the data
best were those that implied severe restrictions
on short-term memory for previous instances
and their classification. Given this retriction on
memory, the models are consistent with the all-
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or none property —that is. the expected number
of trials to solve the problem 15 independent of
the time the subject has alreads <pent on 1t

Bottom-Up Induction of Concepts

In addition to inducing categorical concepts in
a top-down, hypothesis-based manner. induction
also can be a bottom-up process. involving
gradual emergence of the concept from the
features of individual stimuli. This idea has
recetved less attention in psychological research.
but it has not been totally missing from the
discussion.

Hull (1920) conducted a study of learning
in which the materials were pseudo-Chinese
ideograms patred with nonsense syllables. The
stimuli paired with the same response syllable
from list to list all shared a stimulus component,
a radical that was part of each of the stimuli.
Hull's subjects showed positive transfer on the
later lists 1in the experiment, indicating that
they had induced the concepts to some extent.
However, most of them were not aware of the
feature or features that were shared, indicating
that they were not actively testing hypotheses
about the categorical rules. It seems likely
that the subjects stored information about the
individual stimulus-response pairs and gradually
built uo impressions that included the shared
components.

A re-ult similar to Hull's was obtained by
Reber 11967), who studied induction of rules
for an artificial language. Reber constructed
sequences of letters using a set of grammatical
rules: for example, "Start with a Tora V,” or
“After an imtial T, use a P or another T.” or
"After a V that 1s not at the beginning, use a P
or end the sequence.” The sequences, from six to
eight letters long, were used 1n a learning task
in which subjects were shown the sequence and
had to recall them. Subjects working on the
grammatical sequences learned faster than
subjects who worked on a comparable set of
random letter sequences. After learning a set of
grammatical sequences, subjects were able to
discriminate, with greater than 75 percent
accuracy, between new grammatical sequences
and sequences that violated the grammar. Even
80, subjects were not aware of the rules that
were used to form the grammatical sequences.
and showed little awareness of their shared
features.
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Rosch (1978) recently argued persuasively
that lttle of our conceptual kriowledge 15
organized on the basis of definite feature struc-
tures, like those used in most experiments on
induction of categorical rules. First. Rosch.
Mervis. Gray. Johnson, and Boves-Braem (1976)
proposed. with.empirical support, that concepts
at different levels of generality are not equally
salient, but that there are -basic categories
whose members share- features that are not
shared by members of other categories, including
characteristic patterns by which we interact
with them physically. For example. chair, table,
and hammer refer to basic categories, while.
their superordinates, furniture and tool. and
their subordinates, such as picnic tabie and claw
hammer, are less fundamental. Data supporting
this distinction were obtained by Rosch et al.,
whose subjects were given a series of 90 terms
and-were asked to write all the attributes that
came-to mind. Another group of subjects was
given-the same terms-and were asked to write
descriptions of muscle movements that they
would make in interacting with the objects.
Many more attributes and movements ‘were
associated with the basic terms than with their
superordinates, and -few additional attributes
beyond those for the basic terms were given for
the subordinate terms.

Rosch (1973, 1975) has also contended that
natural concepts are represented as prototypes,
rather than as sets of features. A prototype
may be thought of as a kind of schema for
recognition of members of a category. which is
activated more readily by typical representatives
than by atypical ones. For example, in the
category of birds, robins and canaries are
judged to be more typical than penguins or
peacocks; in the category of tools, hammers and
saws are judged more typical than anwils or
scissors. Rosch (1975) found that there is firm
agreement among subjects in ratings of typi-
cality. Evidence that typicality influences
cognitive processes has been- obtained when
subjects are asked to_judge whether statements
such -as “A robin is-a bird"” or "An anvil is-a
tool” are true. In these experiments, judgments
are made more quickly for the statements
involving more typical examples (Rosch, 1973;
Rips, Shoben, & Smith, 1973).

Acquisition of prototypical concepts has
been studied experimentally (Posner, Goldsmith,
& Welton, 1967; Franks & Bransford, 1971;

Reed (1972), and others) For these experiments,
a set of stimult 15 constructed by varving 3
single stimulus. the prototype The stimul,,
which may be geometric forms, patterns of dots,
or schematic faces. are shown to subjects. after
which a recognition test 1s given. Subjects’
confidence tn recognition 1s a function of-the
similarity of stimuli to the prototype. When the
prototype itself is- shown, subjects respond
positively and confidently, even 1f the prototype
was not included-in-the set-of sumuli thev saw.
Several investigators have shown that this
performance can be explained by considering
the frequencies with which various stimulus
features occur during the -learning trials: for
example, the features of the prototype appear
with great frequency, even if the prototype
itself is not presented (Reitman & Bower, 1973;
Neumann, 1974).

A model:that simulates bottom-up acquisition
of a prototypical concept has been formulated
by Anderson, Kline, and Beasley (1979), using
general principles of learning in the context of a
production-system-model of performance. The
Anderson et al. system stores cognitive repre-
sentations-of the patterns seen in individual
stimuli, and additional representations are
stored by processes of generalization and. dis-
crimination. Representations are strengthened
when th-y provide a basis for recognizing stimuli
that ar. presented. The Anderson-et al. simu.
lation accurately mimics subjects’ performance
on recognition tests, including false recognition

of prototypes that have -not been presented

during learning.

A reasonable expectation is that many learn.
ing processes are not strictly top-down: or
bottom-up,-but a combination of the two. Such
combinations were analyzed by Greeno and
Scandura (1966) and by Polson (1972) in studies
of concept induction involving verbal items. In
an-experimental setup like that used by ‘Hull
(1920), lists_of paired associates were presented
to be memorized, and in successive lists the same
response term was paired with different -but
interrelated simuli. Greeno and Scandura found
that transfer to individual-items occurred.in-an
all-or-none-manner; different sets of items had
differing proportions of items with no errors, but
for items with any:errors performances in the
transfer conditions could not be distinguished
from each other or from performance on control
items. The finding of all-or-none transfer suggests
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a top-down conceptual process in which any
individual item either 1s or-1s not recognized as
a member of a definite category Polson (1972)
studied acquisition of the conceptual categories
and found that it was not an all-or-none process.
His findings suggest a two-stage process. For
some subjects, there 1s an 1nitial stage of bottom-
up learning. 1n which associations of responses
with patterns of features are stored, with transfer
depending on features that are shared by similar
items. In the initial phase, the subject may
notice by chance the shared features of members
of a concept category. Once the shared feature
of a category is recognized, the second stage of
learning occurs. involving an active. top-down
process in which the subject searches-actively
for features to use in classifying the stimuli.

It is likely that both the top-down-and the
bottom-up methods of learning about categories
are available to human learners, and the question
arises-as to what.circumstances make it more
likely -for one rather than the other to-occur.
Brooks (1978) compared a-condition in which
subjects were asked to learn names for individual
stimuli with one in which subjects induced a rule
for classifying stimuli. Explicit rule induction
led to -better knowledge of relevant features,
reflected in better performance on classification
of new-stimuli, as-would be exper-ed from learn-
ing by:top-down induction. Subjects who learned
individual names showed superior performance
in recognition of specific stimuli from the
learning set, but-also recognized new stimuli at
an above-chance level, as would be expected from
bottom-up acquisition of a-concept involving a
summation of instances.

Sequential Concepts

We now turn to two more complex tasks involv-
ing induction of concepts, in which the materials
are sequences of elements organized in patterns,
and the subject's task is to induce the patterns.
In the first task which concerns extrapolating
sequences of letters, the subject's task is to
identify patterns in the sequences presented and
to use the patterns to extend the sequences. The
second task concerns induction of grammatical
rules of a language from example sentences that
are consistent with the grammar.

In these tasks the problem space includes a
set of stimuli and a space of possible structures,
as in all induction problems. However, compared

to the space of possible rules for classifving
stimull, the spaces of possible pattern descriptions
for sequences and of possible grammatical rules
are extremely large. To solve these probiems.
substantial reducttons of the search spaces are
required. These reductions are accomplished by
constraints on the generation of hypotheses.
In sequence extrapolation. a limited set of

-relations and sequence forms are considered:

in grammar induction, hvpotheses about the
structures of sentences are constrained by the
structures of situations that the sentences
describe.

Sequence Extrapolation
An example of a sequence extrapolation problem

follows: mabmbemedm . . . | where the task is to

extend the sequence. In a model of sequence
extrapolation formulated by Simon and Kotovsky
(1963), a pattern is induced from basic relations
between the letters in-the problem string. The

-pattern is-a kind of formula for producing the

sequence;-once discovered, the formula can be
used to extend the sequence, as required.
For example, for the problem mabmbcmedm... ,

the formula that is induced is the following:
{8, :m; s, :a], [8,. 8,, (N(8,)), 8;}. The first part of

the formula is initialization. There are two
subsequences, denoted s, and s,. S, starts with

-m, and s, starts with a. The second part of the

formula gives instructions for producing the
sequence. The instructions are. interpreted as

follows s,—write the current symbol of s,;
-3,—write the current symbol of s,; (N(s;)—

change the symbol-in s, to the successor (N for

‘next) of the current symbol; finally, s,~—write

the (new) current symbol of s,. The -entire
sequence is generated by repeating this routine
as many times as necessary.

The problem solver constructs a formula as a
hypothesis, based on the first letters of the given
sequence. and tests the hypothesis with -more
letters. Since there are many different ways-to
form a sequence of letters, the number of possible
formulas is. in principle, extremely large. To
make the task manageable, some constraints

-have to be imposed. In Simon-and Kotovsky's

(1963) model, constraints are imposed on the
generation of hypotheses. As-in the focusing
strategies about the structure-of a pattern are

‘based on- features of-the stimulus, rather than

being generated a priori. Furthermore, only a
few of the possible hypotheses are ever generated.

H
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because the model considers only a small set of
relations between elements and 1t 1s assumed
that the sequence-fits a specific form.

The model knows the alphabet of letters, both
forward and backward. The relations that are
recognized are-identity, /. and successor N. The
problem solver assumes that the sequence is
penodic, an tmportant structural charactenstic.

The model begins by determining the period
of the sequence. Periodicity can be discovered-
either by noting that a relation 1s repeated every
nth symbol. or noting that a relation is inter-
rupted at every nth position. In the problem
mabmbemedm . . . the periodicity 1s 1dentified by
noting that the relation 7 occurs at every third
symbol. Then the problem solver produces a des-
cription-of the symbols -that occur within the
periods and relations between corresponding sym.
bols in successive periods. For mabmbcmedm. ..
the description requires two subsequences, one
of which is just repetition of m; the other starts-
with a and moves incrementally to produce the
final term in the set of three symbols. The result
of the process-is-a formula for producing the
sequence, such as-the one described earlier-for
the example problem.

Because the product of the inductive process
is-an explicit formula, sequence extrapolation
can be considered as a problem of design as well
as of induction. Viewed in this way, the problem
solver has available-a set-of symbols—s,, s,,
%, (perhaps more), N, and the letters of the
alphabet—and has the task of constructing from
these symbols. The feature of sequence extrapo-
lation that makes it an inductive task is the
criterion that the construction must satisfy, the
criterion that the formula should produce the
sequence of letters that is given in the problem.
In ordinary problems of design, such as anagram
or cryptarithmetic, the criterion is a general
property rather than agreement with an arrange-
ment of stimuli.

Simon and Kotovsky (1963) reported data on
the difficulty of solving 15 different sequence-
extrapolation problems by two groupe of subjects
and found that the solvers agreed fairiy weii
with their program on the relative difficulty of
the 15 problems. In a more-thorough empirical
study, Kctovsky and Simon (1973) collected
thinking-aloud protocols on problems with
sequences so presented that the subjects had to
lift a panel to see the individual letters. The data
were consistent with the model in -important
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respects Like the model. the subjects deter.
mined the periodicity of sequences and lookeq
for relations between successive elements of
between elements separated by a regular period,
Representations of sequences induced by the
subjects agreed with those induced by the model
in a majority of ¢ases.

There were also discrepancies, some of which
involved relatively minor details of program.
ming, but two of which revealed significant
processes in humans not represented in the
model. First, the subjects’ performance showed
closer integration than did the program between
discovery of the period of the sequence and
induction of the pattern description. These are
distinct phases in the model, whereas the human
problem solvers used information in forming the
pattern description that they had picked up
during the phase of finding the period. Another
discrepancy between human data and Simon
and Kotovsky's simplest model was that in some
problems, human solvers induced patterns.with
hierarchical structure, involving a singlelow-
level description and a-higher-level switch that
transited -between versions of the low-level
structure. A  hierarchical relation between
levels of pattern description is a basic structural.
feature of sequential patterns that-can play-a
dominant role-in the induction process, as Restie
(1970) .has shown.

Grammatical Rules
In considering the induction of the grammar of
a language we limit the discussion to those
aspects of language -acquisition that relate
directly to general issues in the theory of
problem solving.

In acquiring the grammar of a language,

‘learners are-presented materials that include

sentences 1n the language. Their-task is to infer
a set of rules that can be used to parse sentences
they hear and to produce sentences that are
grammatical in the language. Thus, the problem
solving involves a search in a space of possible
syntactic -rules, The space of stimuli includes
the grammatical sentences that the learners
hear and-the task is to induce the rules that
characterize the structure of -those sentences.
Human knowledge of the rules of grammar is
implicit, in contrast to the explicit formulas that
are induced in the sequence extrapolation task.
This can-be seen in the fact that very young
children have a significant knowledge -of
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grammar (e g.. Brown. 1973), whereas adults
know grammatical rules explicitly only if they
have had special training. Because of the implicit
nature of grammatical knowledge. the product
of language learning 1s characterized as a set of
procedures. rather than exphcit formulas or
other descriptions of structure. The procedures
acquired by learners of a language enable them
to produce and understand sentences that are 1n
accord with the grammar of the language, and to
distinguish between grammatical and ungram.
matical sequences of words. Such a set of
procedures 1s referred to as knowledge of the
grammatical rules, because the rules are built
into the procedures. As with much procedural
knowledge. an individual's knowledge of the
rules in the form of procedures does not imply
the ability to state what the rules are.

There is evidence from both empirical studies
(e.g» Moeser & Bregman, 1972) and theoretical
analyses (e.g.. Wexler & Cullicover, 1980) that
grammatical rules are learned more easily if
reference is provided for terms in the language.
This indicates that, in the space of stimuli for
inducing a grammar, each sentence is paired
with a situation that the sentence describes. The
functions of situations in facilitating induction
of grammatical rules probably include assisting
in determining which words belong together in
constituent units (cf. Morgan & Newport, 1981).

An analysis of language acquisition by Ander.
gon (1975, 1977) serves as an example of a definite
information-processing mechanism for acquiring
knowledge of grammatical rules in the form of
procedures. Anderson’s system includes learning
processes that show how semantic reference can
facilitate the acquisition of grammar. His learn.
ing program called LAS for Language Acqui-
sition System, induces rules of grammar when it
is given sentences in a language accompanied
by the semantic objects to which the sentences
refer. For example, if the sentence, "The red
square is above the small circle,” was presented
to LAS, there would also be a semantic network
that represented an object with the properties
red and square, and another with the properties
small and circle, and the relation above between
the two objects.

LAS has a procedure, used in its learning of
grammar, that identifies the objects in the
semantic network that correspond to words in
the sentence and forms a structure showing the
relations among those concepts. This structure

15 used to determine constituent umits of the
sentence [n the example sentence, the words red
and square are bracketed together. because they
are properties of the same object, as are small
and circle The relational term gbove 15 at a
higher level tn the bracketing formed by LAS,
The procedures that LAS acquires tnclude rules
for parsing noun phrases (NP) such as the red
square and the small circle, and sentences of the
form NP Relation NP There s also a mechanism
for generalization in LAS that makes 1t eventu.
ally parse similar structures with a single rule.
and some of these generalizations produce recur-
sive parsing rules. The generalization process
sometimes produces incorrect rules that are too
general, and LAS also includes a discrimination
mechanism that restricts the application of its
language-processing procedures.

Viewed as a problem-solving system, LAS
conducts search in a space of procedures for
producing and understanding sentences. Note
that LAS can also be viewed as designing or
constructing these procedures. The system's use
of the structure of situations provides significant
constraints that are needed for the search. As in
Simon and Kotovsky's (1963) model of sequence
extrapolation, the constraints are applied to_
the generation of hypotheses. Processes for
modifying the induced procedures are available;
LAS can generalize its procedures, which makes
its performance more efficient, and it can add
restrictions to the application of procedures
when it 15 informed that the use of a procedure
has produced an error.

Nonsequential Patterns

Our discussion of induction of patterns that are
not sequential in character begins with a simple
case; an analogy problem in which one or two
pairs of items are presented that are related in
some way. The task is to form another pair with
the same relation. The solving of simple analogy
problems has been analyzed both empirically

and thaoretically, For mere complicated problems,

involving induction of concepts in mathematics
and of quantitative regularities and structures
in gcientific domains, the available analyses are
primarily theoretical.

Analogy Problems
The form of an analogy problem is A:B.:C:D,
where D is often a set of alternative items that
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can complete the analogy. with the subject
required to choose one from the set. A and B are
related in some way. and the correct chotce 1s a
D 1item with the same relationto Cas Bhasto A
Solution of an analogy problem involves search
1n a space of relations for a relation that can be
applied to both the A . B and the C. D pairs. or to
one of the C D1 alternatives more successfully
than any of the others. Analogy problems are
commonly used n tests of intellectual ability.
In factor.analytic studies. analogy problems
contribute most to the factor of induction. the
single best predictor of academic achievement
(Snow, 1980).

Solutions of analogy problems requires (1) a
process for recognizing or analyzing relations
between pairs of stimuli—that 1s, between the A
and B stimuli and between C and each of the D1
alternatives, and (2) a process that compares
relations found for the A. B pair wath relations
found for the various C.Di alternatives and
chooses the C. D1 relation that best matches an
A . B relation. In the simplest case, the relation
for A and B that comes to mind first also applies
to one and only one of the C. D1 pairs. When this
does not occur—because the relations found
for A . B apply erther to more than one C. Di pair
or to none of them—some further analysis of the
A. B pair 18 required. In such cases, other A.B
relations may be suggested by relations that are
found 1n considering the C.Di pairs.

Two processes for solving analogy problems
have been descrbed. In one, relations between
pairs of items are based on information stored in
the problem soiver’s memory. Memory-based
analogy problems include most verbal analoges,
where solutions use relations between words
that are stored 1n memory or are inferred from
word meanings. In the other process. relations
are determined by analysis of features of stimuli.
For example, 1n analogy problems composed of
geometnic diagrams, the relations between pairs
of terms are found by companing pairs of dia-
grams and 1dentifying differences between the
members of each pair.

ReLATIONS BASED ON SEMANTIC MEMORY

Solutions to many verbal analogies are based
on their meanings stored 1n semantic memory.
Reitman (1965) formulated a model for verbal
analogies based on the activation of concepts in
a semantic network. Reitman’s model, called
Argus, solves problems such as bear.pig.

chair (foot. table. coffee strawberrv) Argys
has knowledge of words in a network of relationa]
connections. for example bear and pig are
both connected to animal through the relation
superordingte Activation and inhitbition are
transmitted through connections between unuts

Argus can perform according to different
strategies. [n one strategy. the A and B terms
are activated. and relations that become active
are noted. then C becomes active, and the D
alternatives are activated in turn A goal 1s set
for relations that are the same as the ones
activated by the A B pair When a C Dt pair
activates those relations, that Dy alternative s
chosen. In the example. after bear and pig are
activated, their superordinate relations to
animal become active, because these relations
hie on a path between the activated terms Then
chair 1s activated along with the Di alternatives
taken 1n turn, with the goal of finding active
superordinate relations. This geal is achieved
when table is activated, because both chair and
table are connected by superordinate relations
to furniture.

Strategic factors in analogy problems were
demonstrated in an experiment by Grudin (1980)
Grudin presented two kinds of analogy items:
standard items, where a salient relation between
A and B can be matched with one of the C:Di
pairs. ind nonstandard items, where there
18 no -alhent relation between A and B, but a
relatiun between A and C matches one between
B and a Di alternative. An example is the
item bird.air..fish.(breath, water, swim) in
standard form, which in its nonstandard version
18 bird. fish . air. (breathe, water, swim) The
nonstandard problems are more difficult, as
measured by the time required for a solution
However. if subjects can adapt their strategies
to look for relations between A C and B D1
pairs, the difficulty of nonstandard problems
may be reduced Grudin's sequence of problems
included five-item sets that were either all
standard or all nonstandard. followed by either
a standard or a nonstandard problem. During
solution of a set of nonstandard items, a shift in
strategy could occur, involving more attention
to the A.C and B D1 pawrs. This produced
shorter times for nonstandard problems follow-
ing nonstandard sets than for nonstandard
problems following standard sets, and that
result was obtained.

Thinking-aloud protocols in solution of verbal
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analogies were obtained in a study by Heller
11979) and were also described by Pellegrino and
Glaser (1982) Heller first presented the three
terms of ar analogy stem and asked the subject
to think aloud and to include a statement of any
A Brelations and expectations about the answer
that came to mind Then four alternative answers
were presented individually and the subject
judged whether each alternative was an accept-
able answer. and why The complete problem
was then presented for a final choice

Heller's findings were consistent with the
general features of Reitman’s (1965) hypotheses
of solution strategies and of finding relations by
the activation of a semantic network. In Heller's
experiment s*rategic factors provide an interpre-
tation of individual differences in performance,
and the activation hypothesis is supported by
the variability 1n solution sequences.

Heller's major finding was a striking dif-
ference between the degree to which groups of
subjects adhered to the task constraints of
analogy problems The main constraint of an
analogy 15 the requirement that the relation
A.Band C D1 correspond. If a subject chooses
a D1 response on the basis of a relation to C
without regard to whether that relation corre-
sponds to the A B relation, then the analogy
constraint has not been applied Subjects who
had good overall performance mentioned the
similarity or difference between an A . B relation
and at least one of the C Di relations on nearly
all the problems In contrast, subjects with
poorer overall performance were inconsistent in
applying the constraint of matching the A.B
and C Di relations and frequently accepted
answers based on a vague relation between D1
and C, or with other terms in the analogy. To
account for the differences among subjects in
this adherence to the task constraints, Heller
proposed that individuals differ in the strengths
of the goals that require different solution
strategies In Reitman’s model, this would be
analogous to the better subjects’ having more

atrr\nolv activatad gtratacic aoalg or to diffor
egic go Qitter

ences in the degree to which other processes
interfered with goals.

Heller’s protocols also revealed considerable
vaniability in the sequence of steps taken to
solve the problems In most cases, subjects
'dentified an A B relation and then thought
about C D1 alternatives in the context of that
relation There were also cases in which a

relation between A and B came to mind as a
subject thought about one or more of the C D1
relations Such solution sequences occurred in
about 20 percent of the problems on which
subjects adhered to the analogical constraints.
Reitman's assumption that relations are found
by activation of a semant.c network provides an
interpretation of the variability of solution
sequences, since activation of a relation in the
context of a C.Di pair would facilitate its
recognition for A.B 1n some cases where A B
did not elicit 1t.

Further information relevant to individual

. differences was obtained :n a study by Pellegrino

and Glaser (1982). Analogy items with single D
alternatives were presented and subjects judged
the items as true or falge. Pellegrino and Glaser
used an experimental and statistical method
introduced by Sternberg (1977), in which the
four terms are presented in sequence, with the
subject making a response to request presen-
tation of the each succeeding term. The latencies
of the responses are used to estimate the time
for various components of the solution process,
according to a general model. Each latency
includes time to encode the new item. When B is
presented, the latency includes time to infer one
or more relations between A and B. When C is
presented. the latency includes timetomap A.B
relations .nto the C term. When D 1s presented,
C.D relat.ons are inferred and compared with
the A.B relations. It was assumed that the
comparisun process could have three outcomes.
The relations could correspond well, leading
to a response of true. The lack of correspond-
ence could be so great that the subject would
immediately reject the analogy and respond
false. The subject could also judge that the
correspondence was indeterminate and requires
a more extended analysis. possibly including
review of the A and B terms to find new relations.

Pellegrino and Glaser used four sets of items
in this study, positive items, which were judged
to be appropnate analogles. and negauve 1tems.
which were ,uuscu G be inappropriaie. Withun
each of these sets. there were items 1n which the
C and D terms were closely associated and other
items 1n which they were not associated. A weak
C-D association for a positive item, or a strong
C-D association for a negative item, was expected
to make the item more ambiguous and increase
the frequency of extended analyses 1n the final
component of the solution process. The results
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supported this expectation. estimates of the
proportion of proulems with extended enalyses
were higher for weakly associated than for
strongly associated positive items (.55 and 23,
respectively), and also higher for strongly
agsociated than for weakly associated negative
tems (.19 and .07, respectively). A similer
correlation of item difficulty with time spent
n the final stage of solution was obtained by
Barnes and Whately (1981).

Pellegnno and Glaser's major finding was
that tle frequencies of an extended analysis
were correlated with the subject’s overall ability
in the analogies task. The subjects were college
students divided into two groups on the basis of
their scores on a standard analogies test. The
estimates of time for the various information-
processing components were generally longer
fo. the low than for the high-ability subjects.
But the most striking difference was in the
frequency of engaging in an extended analysis,
which was more than twice as high for the low-
than for the high-ability subjects. Pellegrino
and Glaser concluded that, since the low-ability
subjects often arrived at the final stage of
processing an analogy with an inadequate
representation of the relations among the other
terms, they had to reconsider the A, B, and C
terms more frequently than the high-ability
subjects. A similar difference in the solution
process was found by Snow (1980), for spatial
reasoning tasks in which the items are diagrams,
and the subjects’ reexaminations of terms could
be observed by recording eye movements. In
verbal analogies, this difference in processing
could be due to differences in the information in
semantic memory, differences in the activation
process, or differences in strategy, with the
low-ability subjects more likely to want to sce
the final term to facilitate recognition of A:B
relations. This conclusion is consistent with
Heller’s finding that students with low ability in
analogies often choose responses that violate
the constraint of an analogy problem. When they
iack & recponee that satisfies the constraints,
they are likely to choose a response on sume
other basis.

In Reitman’s (1965) model of verbal analogy
solution, relations are relatively discrete compo-
nents of semantic memory. This characterization
is probably correct for most verbal analogies,
though not for all. An example is provided by
Rumethart and Abrahamson (1973), who studied
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the solution of verbal analogy problems 1n 3
single semantic domatn. the names of animals

Analogies composed of animal names have
two properties that are different from most
verbal analogies. first. they depend on more
than one relation, and the relations are combined
somehow 1n solving the probiem. and second,
the relations differ in degree. rather than just
being present or absent.

An example that illustrates multiple relations
is the following: rabbit-sheep.. beaver (tiger,
donkey). Donkey seems the better answer,
perhaps because while a relation involving size
is similar for beaver:tiger and beaver donkey,
and both are similar to the size relation for
rabbit: sheep, there also 18 an additional difference
for beaver:tiger—tigers are ferocious while
beavers are not, and thus the beaver:donkey
pair matches the rabbit:sheep pair better,
which also lacks e difference in ferocity. The
graded nature of relations is illustrated by
rabbit: beaver::sheep:(donkey, elephant). Donkey
aeems the better answer. The judgment seems to
depend mainly on the sizes of the animals, and
beavers are larger than rabbits, but the difference
is not large enough to make sheep:elephant
seem appropriate.

It is convenient to use a spatial representation
to represent differences of graded magnitudes
that can be combined easily. In such a represen-
tation, the dimensions of the space correspond
to salient ways in which items differ from each
other. Each item is located at a point in the
space. The coordinates of the point correspond
to the values that the item has on each of the
dimensions.

A spaual representation of a set of items can
be obtained by presenting pairs of the items to
subjects and asking them to judge how similar
the members of each pair are to each other.
These judgments of similanty are used as
estimates of the distances between pawrs of
items, and items are located 1n the space so that
the distances between points are as close as
possible to the estimates obtained 1n the expen-
ment In the method of choosing the spatial
representation, called muitidimensiona! scaling.
an attempt 13 made to represent the items in one
dimension; if that 15 unsuccessful two dimensions
are used, and so on until a space is found in
which the points are located so that interpoint
distances agree satisfactonly with the ssnlanty
judgments given by subjecte.

r
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Henley (1969) obtained judgments of similanty
for pairs of animal names, and obtained a spat..|
representation with three dimensions size.
ferocity. and a third dimension that probably
\nvolves a mixture of attributes. including
similarity to humans. These results were used by
Rumelhart and Abrahamson (1973) in their
study of analogy problem solving. The relation
petween two items A and B corresponds to the
vector that connects the points for A and B in
the spatial representation. The vector represents
the combination of differences in the three
dimensions between the two 1tems: for example,
the vector from beaver to tiger represents a
moderate increase in ferocity, a large increase
1n size. and very little difference 1n "humanness.’
[n Rumelhart and Abrahamson’s model. to solve
an analogy A.B::C:(D1, D2, D3, D4), the A — B
vector is translated to C, and the probability of
choosing each of the Di alternatives is a function
of its distance from the ideal point defined by the
end of the vector. In one experiment, the model
provided accurate predictions of the frequencies
of subjects’ rankings of the various response
alternatives in analogy problems. In another
experiment, fictitious animal names were
assigned to locations in the spatial represen.
tation. These fictitious names were used in
analogy problems for which subjects received
feedback, and the subjects induced features of
the fictitious animals, responding appropriately
to new analogies involving their names.

RELATIONS BASED ON FEATURE ANALYSIS

In a geometnic analogy problem, the terms are
diagrams that differ in various ways. In the
example given in Figure 9.12, the best answer 1s
apparently D2, Diagrams A and B are related by
deletion of the dot and moving the rectangle
from inside the triangle to a position at the left
of the triangle. Diagrams C and D2 are related
similarly* the dot in C is also deleted. and the Z
18 moved from inside the segment of the circle to

“the left of the segment.

As Figure 9 12 illustrates, the relation between
twvo diagrams can involve several aspects,
corresponding to components of the diagrams
that differ Some of the differences may be
quantitative, for example, the amount of rotation
of a component or the amount by which the size
of a component 1s increased or decreased. In
analogy problems involving animal names, these
characteristics of composite and quantitative

(s
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Figure 9.12. A geometric analogy problem. From
"“A Program for the Solution of Geometric-Analogy
Intelligence Test Questions” by T.G. Evans in Seman-
tic Information Processing (p. 273), M. Minsky (Ed.),
1988. Cambndge, MA: MIT Press. Copyright 1968 by
the MIT Press. Repninted by permission.

relations make a spatial representation of 1tems
a reasonable one. Cn the other hand, spatial
representation 1s not economical for geometric
analogies, because there are too many ways in
which diagrams can differ. For animal names, a

satisfactory approximation can be reached by
characterizing all pairwige

.

relations ‘G'j dif-
ferences on three dimensions, but geometric
diagrams do not have so su.aple a structure.

In geometric analoges, relations are found
by examining features of the diagrams, rather
than by retrieving information from memory, as
with verbal analogies. Therefore, a model for
solving geometric analogy problems has two

components. one that analyzes diagrams and
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identifies relations between them. and another
that comr.ares the relation of A B with relations
of the C.Di alternatives and chooses the best
match.

Evans (1968) developed a model that solves
geometnic analogy probiems. The program is
given descriptions of some diagrams that specify
the locations of straight lines, curved lines,
and closed figures. From these descriptions,
relations among components are derived: for
example, that one figural component lies inside
another, or above 1t in a diagram. -

The model then compares its representations
of the diagrams in pairs and forms descriptions
of the relations between the members of the
pairs. These relations are-in the form of trans-
formations—that 1s, changes in one diagram
that would make it the same as the other diagram
in the pair. For example, in one diagram a
component might be removed or added, or one
miglt be changed in size or rotated, or the
relative positions of two components might
be changed, for example, by moving one from
inside the other to above:the other.

The relation between A -and B is then com-
pared with the relations between C and each of
the Di alternatives, by matching components of
A with components of C-and determining which
of the transformations. in the A:B relation
also occur in the C:Di transformation. The Di
ajternative chosen is- the one for which the
greatest number of transformations can be made
to correspond.

Evans (1968) developed his model as a project
in artificial intelligence, rather than as a simu.
lation of human problem solving, but the model
nevertheless has features that seem plausible as
psycholog:cal hypotheses.-One such feature is a
suggestion that problems with more complex
diagrams or relations between diagrams should
be more difficult for human subjects to solve. In
the model, diagrams are more complex if they
have more components, and relations are more
complex if there are more transformations—
thatia, if there are more changes in components
betweer related diagrams. These two factors
were varied in an -experiment by Mulholland,
Pellegrino, and Glaser (1980). and both had
significant effects. Problems whose diagrams
had more components and problems with more
transformations both required longer times for
solution.

In the human solution-of geometric analogy
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problems. we should expect some of the ~ame
characteristics of performance that have been
observed in the solution of other analowy
problems. In verbal analogy problems when the
subject’s representation of the A B relation and
the C. D1 relations are not sufficient to provide
a determinate answer. additional further pro.
cessing ts necessary Findings by Sternberg
(1977) show that -this factor 1s important n
geometric analogy prculems as well. Sternberg
measured the time to solve problems presented
after part of the problem had been shown,
enabling part of the-processing to occur. He
used the differences between conditions as
estimates of the times for components of the
solution process. In comparing subjects with
differing levels of general reasoning ability.
Sternberg found a large difference in the time
required to process the C:Di- alternatives in
geometric analogy problems, with much of the
difference attributable to a process of comparing
alternatives when prior processing had not
provided a unique solution.

Inductive Problems in Mathematics and
Science

Cognitive analyses have been-developed in the
form of computer programs that invent new
mathematical concepts, based on properties
of examples, and -that induce formulae and
structures from data in scientific -domains.
Three models are discussed: one that invents
new mathematical concepts,_one that induces
formulae from sets of quantitative data, and one
that induces molecular structure from data of
70885 Spectroscopy.

INVENTION OF CONCEPTS IN MATHEMATICS
A program called AM (Lenat, 1982) generates
examples of concepts that it knows, and develops
new concepts based on properties of the examples.
The main domain 1n which- AM was run was
elementary mathematics. The-AM program was
given 1nitial concepts 1nvolving sets and devel-
oned a-vanety of concents-involving-numbers,
For example, AM developed concepts of addition
and multiplication, developed the concept of
primes. and arrived at a conjecture that every
number is the product of a unique combination
of prime numbers.

It is useful to compare AM’s task to the
standard experimental tusk of concept induction,
for example, that of Bruner et al. (1955). In
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standard concept induction, a set of examples is
pmmded by the expenmenter, with some positive
examples and some negative examples determined
by & rule, and the subject’s task 1s to induce the
ru'e. Hypotheses are generated by the subject
and tested with information about further exam-
ples until the correct concept aas been found
Each hypothes:s that 18 generated 1s itself &
concept. 1n the sense that 1t provides a rule for
classifying the stumuh. The main preblem-solving
work 15 to determine which rule 1s correct.

The task of AM is not defined as well. in two
respects First. the examples are not provided by
an experimenter, but rather are produced by
AM Second. AM does not have a specified
criterion of correctness for the concepts that .t
generates Instead, AM evaluates its conze..s
by some criteria of importance, based in part on
how easy 1t 18 to generate examples.

In AM the knowledge of concepts is organized
as a set of facets, including some that are standard
for semantic networks. such as generalizations,
specializations, and examples. and others that
are especially useful in mathematics, such as
objects that are in the domain or range of a
function. Facets also hold procedural information,
such as ways to test whether an object is an
example of the concept. Reasoning activity in
AM 1s crganized as a set of tasks, each involving
a concept and one of its facets. Examples of
tasks include filling in examples of a concept
or forming a generalization or a canonical
representation of a concept. Tasks that are
proposed are placed on an agenda, and the
choice of a task to perform is based on an
evaluation of the reasons for the task, including
the importance of concepts for which the task
would contribute new information. Heuristics
that contribute to the developments of new
concepts include efforts to form a more general
concept if an existing' concept has very few
examples, and to form hew representations that
clanfy the relations between concepts.

Table 9.10. Data for a simple induction problem

Time Distance
1 0.98
2 3.92
3 8.82
4 15.68
5 24.50

We note that AM does not really do mathe.
matics tn the usual sense It has no concept
of deductive consequence and thus. does not
develop a body of concepts and principles with a
formal structure Even so. it provides an example
of a system that goes well beyond the knowledge
that it 1s given initially, moving into a conceptual
domain that 1s quite different from that of its
initial concepts.

[NDUCING QUANTITATIVE REGULARITIES

A system called Bacon induces formulas from
numerical data (Langley, 1981, Langley. Brad.
shaw, & Simon, 1983). The data are values of
some variables that are controlled and other
vanables that are measured, a simple example 1s
«n Table 9.10. The goal 18 to find a formula that
describes the relation between the vansbles, in
this case distance and time. The two componenta
of the problem space are the subapace of stimuhi
(the set of data) and the space of structures (the
set of formulas constructable with the vanables
that are included in the data).

A simpler approach than Bacon's 1s adequate
for relatively simple induction problems. This
simpler approach tries to fit alternative formulas
that are known in advance. For example, for
Table 9.10, a linear function can be tried, and
thediscrepancy that 18 noted shows that there 18
positive acceleration. This suggests trying a
quadrat.. formula, which fits the data. Generate-
and-test methods of this kind have been analyzed
by Huesmann and Cheng (1973) and by Gerwin
(1974), with supporting experimental data.

The task of inducing formulas can become
unmanageable for a simple generate-and-test
method if there are several variables that can be
related in complex ways. For example, Bacon 1s
able to induce Coulomb's Law, f = q,q./d?.
which relates electrical force to the charges on
two bodies and the distance between them. and
a formula for the electrice! current 1n a wire
connected to a battery and a metal rod, I = T/
(R ~ L/D?) which depends on the temperature
differential of the bar and the internal reaistance
of the battery, and the length and diameter of
the wire. The set of formulae that includes
thes. is extremely large, and 1t seems unlikely
that s;mple equation fitting would be an effec-
tive method for inducing formulae of this
comglexity.

Bacon'’s search method uses properties of the
data to guide the formation of hypotheses. Other
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induction systems have this capabihity including
the concept-induction strategy of focusing
described by Bruner et al. (1956), the method for
inducing patterns in letter sequences studied by
Simon and Kotovsky (1963). and AM's heuristics
for generating new concepts based on properties
of examples Bacon s neunstics involve properties
of quantitative data and thus differ, as one
would expect. from the heuristics of other
systems such as AM, where the data nvolve
categories of examples and sets of defining
features. Bacon's use of data has the further
interesting feature of creating new data in the
process of evaluation hypotheses. In evaluating
a hypothesis. Bacon calculates values of a new
function of available data, and 1f the hypothesis
does not succeed, those values become part of
the data available to Bacon for further problem
solving. Thus, though an attempt to solve the
problem may fail, it leaves new results that may
be tnstrumental 1n a later successful attempt.

Bacon's basic method 18 to search for a
function of data that gives constant values
across experimental conditions. As an example,
the formula for the data in Table 9.1018d = k&,
where k 15 a constant, the form in which Bacon
discovers the law 1s d/¢ = k.

Bacon uses heuristic rules to form hypotheses.
consisting of functions of variables 1n its data
base that might give constant values. For
example, if two quantities increase or decrease
together, Bacon forms their ratio as a new quan-
tity to be considered. If one vanable decreases
as another increases, Bacon forms their product
as a new quantity. These heunistice, and another
that forms linear functions of variables, erable
Bacon to induce relatively complex functions.
The first two are sufficient for the problem in
Table 9.10. First, note that ¢t and d increase
together, and form the ratio t/d. Since this ratio
decreases with t, Bacon forms the product
£;d, which quantity 1s constant across the
observations.

Some other heuristic methods are also used,
inciuding the defimtion of intfinsic variables'
as properties of objects that are associated with
constant values of quantities, and attempts to
find a common divisor for values of intrinsic
vanables that have been induced. These heur-
1stics enable induction of properties such as the
resistances of different wires from measurements
of current, and the atomic and molecular weights
of chemical elements from data about the
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weights and volumes of elements and «ompounds
invoived 1n chemtcal reactions

As previously noted nduction problems
can also be understood as problems uf design,
especially when the structures that are induced
are expressed explicitly as formulae This view
18 particularly appropriate to Bacon s induction
of formulae. Constder the task as the construc-
tion of a formula using symbols for the variables
in the problem. Bacon'’s heuristics then are rules
for forming combinations of the symbols that
may satisfy the problem criterion. Even if a
formula does not solve the problem. it may
provide part of the formula that is needed Thus,
the process of search through the construction
of partial solutions. which 13 Characienisuc
of design problems, provides an appropnate
charactenzation of Bacon's process of induction.

Bacon 18 not intended as a complete simu.
lation of cognitive processes in scientific research,
where hypotheses about causal mechanisms
often play a critical role in the decision to
measure vanables or to examine quantitative
relation. Even so, it demonstrates that quite
simple heunstics are sufficient to produce quite
complex inductive conclusions from quantitative
data, and it is reasonable to suppose that these
heunistics correspond to significant components
of complex scientific reasoning.

INDULING MOLECULAR STRUCTURE
Another scientific task that has been investi-
gated .s induction of the molecular structure of
organic compounds. A system called Dendral
induces molecular structure from data in the
form of mass spectra (Lindsay, Buchanan,
Feigenbaum, & Lederberg, 1980). A mass spectrum
18 a set of quantities of the {fragments of vanous
sizes that are produced when molecules of a
substance are bombarded by electrons

Like AM and Bacon. Dendral performs induc-
tion using heunisic search. An important dif-
ference 1s that Dendral uses search heunstics
that are based on principles that are specific to

apply to any structure of categorical concepts,
and Bacon's methods can be applied to any
quantitative data.

Dendral's method of induction has three
main stages. First, the chemical formula of the
compound is inferred from features of the mass
spectrum Then hypotheses about molecular
structures are generated with constraints based




-al pe pfbrms induc-
iy dif-

INDUCTION P

on knowledge of the class of compounds that the
substance belongs to Finally. the hypoth-<es
are tested by comparing their implications with
the quantitative details of the mass spectrum.
and the hypothesis that fits the data best s chosen,

The data used to infer the chemical formula
are the peaks 1n the mass spectrum The largest
mass represented is probably erther the mass of
the molecular ton or a mass smaller than the
molecular 10n by one fragment Differences
between peaks usually correspond to the masses
of fragments that are broken off in the bombard-.
ment. Dendral ises the value of the largest
peak and the interpeak distances, along with
krowledge of chemistry, to infer one or more
chemical formulas that are consistent with the
spectrum.

Dendral’s next task 1s to generate possible
molecular structures, with the ions in the
formula arranged in ways consistent with
known possible arrangements. There are many
millions of possibilities for most problems,
so Dendral formulates constraints based on
knowledge of the class of compounds that the
sample belongs to. With the constraints, Dendral
constructs hypotheses about molecular struc-
ture with a method that first determines the
maximum number of rings in the structure, then
constructs the possihle partitions of ions into
rings and remaining components, *nd finally
constructs the possible structures for each
possible partition.

Dendral now tests ite many hypotheses, using
the quantitative details of the mass spectra. In
the different hypothesized structures. since
different components are separated by different
numbers of bonds, there are differences in the
likelihood of this occurring together in a frag-
ment. Assuming that fragments are produced by
breaking one or two bonds at once, predictions
are made about the relative amounts of material
to be found at each peak in the spectrum, and

the structure that fits the data best is chosen.

Note that Dendral’s task, like Bacon's,
involves constructing an explicit formula tc
tepresent the structure 1t induces. Thus, its
method can also be considered to solve problems
of design, where the materials for the construc-
tion are symbols that represent the atomic
components of chemical compounds, and the
chemical knowledge that it uses constrains the
search to arrangements of those materials that
agrees with the mass spectra.

Diagnostic Problem Solving

In the problem solving tasks of troubteshooting
in electronics and diagnests tn medicine, the
problem solver has a space of stimuli consisting
of one or more symptons and further information
that can be obtained by performing tests. The
space of structures s a set of possible causes of
the symptoms—faulty components in electrical
circuits or disease states in medical diagnoses.
In addition to its characteristics of inductive
problem solving, diagnostic problem solving
also has components of operational thinking,
because 1t 18 based on the goal of curing a
patient’s illness or repairing a device. Thus the
information and conclusions 1n the diagnosis
are directed toward making a decision about a
remedial treatment that should bz applied.

Troubleshooting

The task in troubleshooting is to determine
which of the many components of an electronic
system is causing the system to function improp-
erly. There may be more than one fault, but it
simplifies the problem greatly to assume that
there is only a single fault in the system.

In a general way, troubleshooting resembles
the task of inducing categorical concepts when
the subject chooses the stirauli for which infor-
mation - given. In concept induction the problem
solver obtains information by asking whether a
specific stimulus is positive or negative. In
troubleshooting, informution is obtained by
taking readings of voltage or current at specific
locations 1n the circuit. In both tasks there are
many possible hypotheses to be considered, but
the set of possibilities can be spectfied: in
concept 1nduction 1t is the set of logical com-
binations of the stimulus attributes, and in
troubleshooting 1t is the set of possible faults of
components. These similanties 1n the tasks are
correlated with an important resemblance in
effective methods for working on the problems.
The focusing strategy in concept inducnon uses
information obtained shout instances in order
to eliminate classes of hypotheses, rather than
considering each hypothesis individually as is
done in the less effective scanming strategy
(Bruner et al., 1956). Similarly, in troubleshooting
an important component of strategy 1s to conduct
tests that permit elimination of sets of possible
faults from consideration. Use of this strategy 1s
made possible by both a general knowledge of
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electronic components and a knowledge of the
specific circuit in the problem. This requirement
of knowledge to support the process of induction
13 analogous to the role played in concept
induction by knowledge of the alternative
logical forms (comjunction, disjunction, etc.)
and the truth-table combtnations that correspond
to them (Dodd et al.. 1971), although the knowl-
edge required 1n troubleshooting 1s considerably
more elaborate.

A model of troubleshooting 1s included in a
system called Sophie that provides computer-
based instruction for trainees in electronics
maintenance (Brown. Burton, & deKleer, 1983).
The troubleshooting system provides a model
for the student to observe 1n learniug how to
diagnose faults in a circuit. If the student
specifies a fault in the circuit, Sophie can
diagnose the fault, perform a series of tests to
obtain readings of current or voltage at various
points in the circuit, form hypotheses about the
fault, and eventually arrive at a decision about
it. Sophie has a store of general knowledge
about electronics and an explicit representation
of strategy that enables 1t to provide explanations
of both the principles of electronics and the
strategic purposes of 1ts activity for tests that it
18 performing. Sophie’s troubleshooting knowl-
edge 18 also used to evaluate the problem-solving
performance of students, by providing a series of
problem-solving steps that can be compared
with the steps taken by students.

Sophie's knowledge for troubleshooting has
four main components: two components of elec-
tromcs knowledge, a component of knowledge
for making specific inferences, and a'component
of strategic knowledge. The component for
specific inferences includes general knowledge
in the form of 'experts’ that have information
about charactenistics of different kinds of
electronic components such as resistors and
diodes. These experts can use data obtainad
from readings to calculate values for other
vanables, assuming normal functioning of
components of the circuit; the inferred values
can then be compered with aciuai readings of
those variables.

A second component of Sophie’s knowledge is
information about the specific circuit that is
used for instruction. The circuit is represented
hierarchically as a set of modules with sub-
modules and components. Possible functional

states of each module and component are repre-
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sented. including normal functioning and possible
fault states Experimental evidence obtained by
Egan and Schwartz (1979 15 consistent with a
hypothesis that human electronics experts
represent circuits tn ways similar to Sophies
Egan and Schwartz showed that experts encode
information from circuit diagrams rapdly
much the way experts perform in other domains
such as chess (see "Problems of Modifying
Arrangements™), and that functional modules
made up of components that are spautially con.
tiguous in the diagram play an important role in
the performance.

A third part of Sophie’s knowledge involves
spectfic actions that occur dunng troubleshooting
This knowledge 1s in the form of rules for
making inferences about the states of modules
and components of the circuit. Readings are
used to eliminate hypotheses about faults by
showing that a module is functioning normally,
and for propagating inferences in the hierarchical
representation; for example, if a component 13
faulted, then all the modules that contain that
component must also be faulted.

The fourth compon- at of knowledge 1s Sophie’s
strategy, a breadt’.first search method with
backtracking. Soraie considers all the possible
states that can occur, according to its represen-
tation of the circuit, and eliminates possible
faulty -tates on the basis of readings that are
consistent with normal functioning. [t assumes
normal functioning of components until there is
a reading that conflicts with that assumption;
howeser, 1t keeps a record of the assumptions
used 1n its inferences, and if information con-
tradicts an assumption made earlier, inferences
based on that assumption are revised.

Medical Diagnosis

In medical diagnosis, as in troubleshooting. a
system—in this case, a human body—is function-
ing improperly, and the inductive task 1s to infer
the cause of the malfunction. Also. as in trouble-
shooting, the purpose of the diagnosis is to
determine a treatment that can remedy the
malfunction. and the diagnostic acuwvity 1s
conducted in a way that provides information
relevant to choosing a treatment.

Several systems have been developed that
solve diagnostic problems in various domains of
medicine, including diagnosis of infectious
agents and prescription of antibiotics ,Shortliffe.
1976), prescription of digitalis therapy for cardiac
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patients (Silverman, 1973). and diagnosing and
prescribing treatment for varieties of glaucoma
(Weiss. Kuhikowski, & Safir. 1977). (For a review,
see Ciestelski. Bennett, & Cohen. 1977) One
system. Caduceus. which performs general diag-
nosts, 1s discussed here, along with empinical
studies-of diagnostic problem solving by phy.
sic1ans with varying amounts of traiming and
experience.

A MOoDEL oF KNOWLEDGE FOR GENERAL
DiaGNosis .
Knowledge used in general medical diagnosis
has been investigated in the context of a model
named Caduceus (Miller. Pople. & Myers, 1982;
Pople, 1982). The knowledge with which Caduceus
diagnoses diseases is similar in important ways
to the knowledge used by Sophie for diagnosing
faults in electronic circuits. Its hierarchical
form enables systematic search in-the space of
hypotheses. The Caduceus system also has rules
that infer hypotheses from symptoms and test
results, and that propagate the inferred infor-
mation using the hierarchical structure of its
knowledge.

Caduceus’s knowledge about diseases is of two
kinds, organized in separate but related graph
structures. One of these, called a_nosological

_graph, provides a taxonomy of diseases based on

the organs of the body involved and on etiological
factors. This graph groups-diseases- according
to their manifestations. The other knowledge
structure, called a causal graph, contains infor-
mation about disease states and processes. The
causal graph contains technical concepts: of
pathology that refer to states of disease, such
as cardiogenic shock.

Caduceus has-the goal of identifying one or
more disease entities that provide a complete
explanation of a set of symptoms and findings
in the case. Subproblems-are formulated from
findings that are not yet integrated into an
explanatory network; these constitute diagnostic
tasks that are generated by the system. Identi-
fication of the disease depends mainly on the
nosological graph, this hierarchical structure is
used in a top-down search to narrow the poasible
disase entities. The information about the
states and processes of disease in the causal
graph provides- -links between hypothesized
disease entities -and the specific symptoms
and test results that are available. Caduceus
concludes its diagnostic analysis when .an
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explanatory network has been developed that
includes all the available symptoms and findings.

EmMpiricAL STUDIES OF DiacNosTIC
PERFORMANCE

An extensive study of performance in diagnostic
problems was conducted by Feltovich (1981. also
described 1n Johnson, Duran. Hassebrock.
Moller, Prietula. Feltovich. & Swanson, 1981).
The results were consistent with the general
properties of the Caduceus model. They also
provide information about characteristics of
knowledge for diagnosis at different levels of
experience and expertise. Feltovich obtained
problem-solving protocols for cases in pediatric
cardiology from individuals varying in experience
from fourth-year medical students who had-
just completed a six-week course in pediatric
cardiology to two professors who had more than
20 years of experience in that subspecialty.
Information from five cases was presented-
serially and the physicians gave their hypotheses
and other thoughts about the cases, attempting-
to arrive at a correct diagnosis.

The performance of experts indicated that
their knowledge differed from that of novices in
several ways, consistent with the general features
of expert knowledge in chess and Go discussed
above in 'Problems of Modifying Arrange-
ments.” The major difference was that experts
had more integrated knowledge about diseases
—more detailed knowledge of variation in-
disease states and -more precise knowledge of
relation between diseases and symptoms. For
example. one advanced expert mentioned
groups of hypotheses that were supported by the-
findings presented first and then used later
information_to narrow the range of possibilities.
The other advanced expert used more of a depth-
first strategy—proposing a likely hypothesis-
based on preliminary findings, but modifying
the hypothesis in a flexible way when later-
evidence provided counterindications. The
knowledge of novices was primarily in the form
of a few specific disease forms used in textoook
cases. The novices responded to early-evidence
by proposing reasonable hypotheses but were
less likely to recognize the significance of later
evidence and change their hypotheses when
necessary. The sets of hypotheses mentioned by.
novices during problem solving were signifi-
cantly smaller than those of the experts.In a.
study of expert and novice radiologists, Lesgold
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et al (1981) came to similar conclusions regard:
tng expert knowledge for diagnosis They found
that 1n reading x-ray films experts generated
representations 1n a three-dimensional system
and used salient features to generate initial
hypotheses that were refined or modified on the
basis of more detailed features The knowledge
necessary for recognizing features associated
with abnormalities appeared to be well nte-
grated with a general knowledge of anatomy.
The integration of experts’ knowledge was indi-
cated by their ability to use features noted early
as constraints on later interpretations (cf.
Stefik. 1981) Novices—in this case. first-year
residents 1n radiology—depended more on find-
ing an explanation for a few features and to let
other details be assimilated to the initial
hypothesis rather than used to generate alter-
native hypotheses or modifications.
Conclusions from these studies of expert
diagnosticians in medicine show close similarity
to the studies of expert performance in other
problem-solving domains, especially physics
and chess. According to current findings, a
major source of expert performance is the
expert’'s ability to represent problems success-
fully. This results from the expert's having a
well integrated structure of knowledge in which
patterns of features in the problem are associated
with concepts at varying levels of generality,
enabling efficient search for hypotheses about
the salient features of the problem that cannot
be observed directly, as well as for methods and
operations to be used in solving the problem.

EVALUATION OF DEDUCTIVE
ARGUMENTS

The relation between human reasoning and
formal logic has long been a subject of dis-
cussion and debate and, for some decades, a
subject for experiment as well. It is generally
agreed that human ‘logical reasoning’ does not
always conform to the laws of formal logic.
Formal logic is a normative theory of how
people ought to reason, rather than a description
of how they do reason. It is important, then, to
develop a descriptive theory of human reasoning
to compare and contrast with the logic norms.

Experiments aimed at developing a theory of
human reasoning have mostly set tasks of
judging the correctness or incorrectness of

formal syllogisms. These tasks require apph. «

cation of the rules of deductive argument that
are special 1n some wass, and correct perfor
mance depends on the subject s knowledge and
use of the technical rules of formal deductive
inference However. the processes used in these
tasks do not differ 1n any fundamental way from
those involved in problem solving in other
domains. Psychological analvses provide no
basis for a beltef in deductive reasoning as a
category of thinking processes different from
other thinking processes, other than in the
special set of operators that are permitted in
rigorous deductive arguments, As Woodworth
put the matter, “Induction and deduction
are distinguished as problems rather than
processes” (1938, p. 801).

Two tasks are discussed: First, we discuss
propositional and categorical syllogisms, which
present arguments in the sentential and predi-
cate calculus; subjects frequently make errors
in evaluating these syllogisms, and research has
focused on why the reasoning process differs
from correct logical inference. Second, we
discuss linear syllogisms, which present argu-
ments that depend on transitivity of order
relations. Subjects make the transitive infer-
ences in these tasks without difficulty, and
psychological analyses have focused on the
cognitive representation of information in the
syllcyisms.

Propositional and Categorical
Syllogisms

Subjects in experiments on propositional or
categorical syllogisms are asked to judge the
validity of arguments such as the following
(invalid) propositional syllogism:

If T push the left-hund button, the letter T
appears.

[ did not push the left-hand button.
Therefore, the letter T did not appear.

The major premrise states what will happen if the
button is pushed. It says nothing about what will
or will not happen if the button 1s not pushed.
Hence the conclusion does not follow from the
premises. Yet in a typical experiment (Rips &
Marcus, 1977) a fifth of the subjects accepted
this as a valid syllogism.

Categorical syllogisms in the predicate
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calculus nvolve statements containing the
terms some. all. and no. An example of a (valid)
categorical syllogism 1s

Some jewels are diamonds.
All diamonds are valuable.
Therefore. some jewels are valuable

Again, human subjects make frequent mistakes
in Judging whether certain kinds of categorical
svilogisms are valid. For example, many subjects
,{;dge mistakenly that the following argument 1s
a valid syllogism (Johnson-Laird & Steedman,
1978):

Some As are Bs.
Some Bs are Cs.
Therefore. some As are Cs.

In experiments on syllogistic reasoning, the
type of syllogism presented is most commonly
taken as the independent variable; and the num.
bers of subjects that make errors on syllogisms
of different kinds are measured. By comparing
the error rates for different kinds of syllogisms,
the experimenter seeks to formulate and test
hypotheses about the cognitive processes. that
subjects use to make such syllogistic judgments.

For example, though many subjects will
accept, 'No As are Bs and no Bs are Cs,
therefore no As are Cs,” almost all will reject,
"No As are Bs and no Bs are Cs, therefore all As
are Cs.” Yet both syllogisms are equally invalid.
Such errors of reasoning have sometimes been
attributed to an ‘atmosphere effect.’ In the
example above, since no is present in both
premises, it appears to be more acceptable than
allin the conclusion (Woodworth & Sells, 1935).
Alternatively, some investigators have claimed
that the reason for these errors is that the
quantifiers and connectives, gll, some. no,
if ... then, and, or, do not have the same mean-

-ings in natural language as they do in formal

logic (Braine, 1978). According to this hypothesis,
since the experimenter judges the correctness of
answers by their conformity to the rules of
formal logic, whereas the subjects use the
natural language meanings, errors follow when
the two kinds of meaning diverge.

Errors and latencies in reasoning tasks
depend not only on the form of the syllogism, but
also on whether it has meaningful content
(Wilkins, 1928). Thus, subjects may respond

differently to the-syllowism. "It some AS are Hs
and some Bs are Cs. then some As are €s." and
the syllogism “If some birds have blue eves and
some blue-eved-creatures are human. then some
birds are human.”

In general. subjects’ error rates are lower
when syllogisms have meaningtul content. but
there 1s an important class of exceptions. Sub-
jects often reject valid syllogisms when the
conclusions are contrary to facts known to
them. “'If all horses have four feet and all fish
are horses. then all fish have four feet.” may be
rejected by subjects who know that fish are
footless. The rate of rejection rises when subjects
react emotionally to the conclusion. “If drug
addiction is a disease and diseases should not be
punished, then drug addiction should not be
punished,” is more likely to be rejected by
subjects who support strong measures against
drug usage then by those who do not (Janis &
Frick, 1943; Lefford, 1946). Conversely, subjects
often accept invalid syllogisms when the con.
clusions are consistent with their knowledge
about the world or their preferences.

All these findings must be stated as "tenden-
cies,’ since many subjects who make errors on
some syllogisms-of a certain form do not make
such errors consistently. Moreover, there are
large individual differences among subjects. For
exampiv. subjects trained in formal logic gener-
ally maxe fewer errors—not surprisingly—than
do subjects without such training.

Whiie human syllogistic reasoning conforms
to some broad generalizations of the sorts that
have been mentioned already, the findings
derived from experiments are complex and
confusing. In recent years, a few investigators
have sought to-cut through the confusion by
creating models of the inference process or some
components of it. The attempt to create such
models has revealed features of the reasoning
task that had not been entirely obvious.

Subjects may use any one of a wide range of
strategies to solve the problems, and there is no
reason te believe that all subjects use the same
strategies. Subjects who reason by vague verbal
analogies may succumb to the atmosphere effec:,
whereas subjects who create semantic images of
the propositions- and reason by operating on
those images may. make quite different errors.
(Certain syllogisms may require the creation of
images more complex than a subject can handle
in memory.) Subjects’ knowledge of logical
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inference can be embedded tn formal axioms or
in-tnferenceé rules. with different consequences
for the likelihood of error The axioms that
define connectives or the inference rules may
conform to some natural logic that deviates
from the formal-logic of the textbooks.

Several -quite successful recent efforts at
modeling have used the 1dea that evaluation of
svilogisms 15 a form of problem solving similar
to that discussed above in “General Knowledge
for Novel Problems with Specific Goals.” Using a
set of inferential operators. the subject attempts
to confirm the conclusion working from the
premises. and accepts the conclusion if this
problem-solving effort succeeds. The process
typically-used by subjects differs from the task
of finding explicit proofs in that the inferential
operators are not expressed overtly and need
not, of course, correspond completely to the
rules of formal logic.

- Modelsof evaluating propositional syllogisms
have been formulated by Osherson (1975), Braine
(1978), and Rips (1983). These models are based
on the concept of natural deduction, discussed
by Gentzen (1935/1969). A system of natural
deduction is-a form of production system. Rules
for making-inferences specify conditions in the
form of patterns of propositions, and when a
pattern is.matched in premises the inference is
made. The models account for performance by
postulating sets of inference rules assumed to be
used implicitly by subjects. Rips also formulated
a specific process of applying the rules and
forming representations of the derivation. An
interesting -feature of Rips's formulation is
the inclusion of suppositions that provide a

backward-chaining component in the search

process. A syllogism is judged valid if the system
can generate a derivation of the conclusion from
its inference rules.

The idea that sentential syllogisms are
evaluated by natural deduction provides an
interpretation of many of the kinds of errors
that occur.in syllogistic reasoning. Because it is
an informal reasoning system, it is not surprising
that it is susceptibie to influence by general
knowledge and affect. Performance would be
expected to-improve if subjects were taught a
more explicit procedure for verifying the applica-
bility-of inference rules in evaluating syllogisms,
and this result was obtained in the domain
of geometry-proofs in a study by Greeno and
Magone-(described-in Greeno, 1983).

PROBLEM SOLVING AND REASONING

Models of reasoning for categoncal svllogisms
have been formulated by Guyote and Sternberg™
(1981) and by Johnson-Laird and Steedman
(1978). These models use the idea that the
information 1n premises 1s represented in-the
form of examples: for example. “Some jewels are
diamonds” might be represented by a symbol for
a jewel that is a diamond and another symbol for
a jewel that is not a diamond. A representation
based on the premises is formed and 1s used to
evaluate the conclusion. Errors occur because
the representations are incomplete: the examples
generated by the system often fail to exhaust-the
possibilities, leading to incorrect conclusions.

Linear Syllogisms

In.a linear syllogism, premises specify ordered
relations between pairs of objects, and questions
are asked about peirs for which the order was
not specified. An example from Egan and Grimes.

‘Farrow (1982) is:

Circle is darker than square.
Square is darker than triangle.
Is triangle darker than circle?

(An_alternative is to ask, "Which-is darkest?"
or, "Which is lightest?") Problems are presented

with relations. expressed differently, such as

"*Tr.angle is lighter than square,” or "Triangle
is not as dark as square,” with the premise
information given in different orders, and-with
different questions.

To. answer the question, the information’in

-the-premises must be encoded in some represen-

tation that enables the answer to be derived.
Three hypotheses about representation- have

‘been considered.

According to a spatial hypothesis (DeSoto,

‘London, & Handel, 1965; Huttenlocher, 1568)

information in the premises is integrated-into an
ordered iist, possibly using an image in which
symbols are spatially aligned. A representation

-for the example would be an ordering with circle-
‘first, square second, and triangle third, perhaps

imagined in a vertical line with the circle at the
top. Then a question such as, “Is circle darker
than triangle?” would be answered by comparing
the positions of the circle and the triangle in'the
ordered representation.

‘A second hypothesis (Clark, 1969) is that the
representation consists of propositions in-which
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individual objects are associated with values of
attributes For the example. circle would be
associated with a large degree of darkness.
square with a medium degree. and triangle with
asmalldegree Aquestion would be answered by
retrieving representations of the objects 1n
the question and comparing the properties
associated with them.

The third hypothesis is that representation of
binary relations are stored in memory This
hypothesis assumes the simplest process of
representation. since information in memory
corresponds directly to the information (n the
premises To answer a quest.on, however, a
sequence of propositions has to be retrieved, for
example. to answer “Is circle darker than
triangle”” both "Circle darker than square”
and “Square darker than triangle” have to be
retrieved.

The hypothesis that binary relations are
represented is ruled out by data obtained by
Potts (1974). who had subjects study paragraphs
containing series with six terms and asked
questtons (e g . "Does B precede D?"') involving
pairs that varied in their separation: with the
ordering A > B> C > D > E > F, the pair
C > D has a separation of 0; the pair B > D
has a separation of 1; the pair B > E has a
separation of 2, and so on. If binary relations are
represented in memory, questions about pairs
with greater separation should take longer,
since answers to these questions require more
inferential steps. The finding was the opposite:
it took less time to respond to items with greater
separation. This finding has also been obtained
with comparisons involving general knowledge,
such as the relative sizes of animals (Banks,
1977).

The question whether premises are represented
by an integrated spatial array or by propositions
associating properties with individual objects
has been harder to resolve. Huttenlocher (1968)
provided an argument for the spatial hypothesis,
including the {inding that latency is shorter
when the second premise has the third individual
as the subject of the sentence (e.g., A > B,
C < B rather than A > B, B > C). The inter-
pretation is that the subject imagines placement
of the new object in a spatial array, and this is
easier if the object is mentioned as the sentence
subject than the sentence object. Clark (1969)
argued for a propositional representation, pre-
senting evidence that performance is influenced

by linguistic factors such as the ¢ongruence of
questions with premisesteg. A + B, whichs
greater” 13 easier than B A which s
greater™™)

Sternberg (1980) formulated models that ~pecifv
stages of processing based on assumptions of a
spatial or a propositional representation of
premises. He also formulated a model that
combines those assumptions. so that linguistic
factors influence an imitial encoding of premises,
and relaticns among propositions influence
conversion of the information into an integrated
spatial array. The combined iinguistic-spatial
model provided a more accurate account of
latency data than did either of the sumpler
models.

Several investigators have provided evidence
that subjects do not all solve linear syllogisms in
one way: rather, different subjects use different
representations (Mayer, 1979; Sternberg & Wel,
1980). Egan and Grumes-Farrow’s (1982) evidence
was particularly direct. They used retrospective
protocols obtained after solutions of individual
problems. The protocols indicated that some sub-
jects used spatial representations consistently,
and cthera sometimes formed representations by
associating certain bjects in the problem with
different quantitative values of attributes. The
protocol evidence was substantiared by analyses
show .ng that subjects differed tn their perfor-
mance, according to the representations they
repor:ed using. The order 1n which objects were
ment.oned was significant for subjects who used
spatial representations, and the hnguistic factor
of consistency of the relational term used was
significant for those subjects who sometimes
used individual object propositions.

Conclusions

Unt1l recently, hittle attempt has been made
to establish a relation between research on
reasoning and research on problem solving of
the sorts discussed earlier 1n this chapter.
Sometimes thie separaticn has been justified
on the grounds that syllogistic reasoming 1s
‘deductive’ whereas problem solving 1s inductive,’
but we have seen that this distinction does not
hold. Although a syllogism 1s a deductive struc-
ture, neither finding valid steps nor testing
whether proposed steps are valid 18 a deductive
process. Indeed, the major process in the evalu-
ation of a propositional or categorical syllogism
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15 to seek a proof of the conclusion. the process
discussed above in "General Knowledge for
Novel Problems with Specific Goals™™ as the
prototypical example of goal based problem
solving. For hinear syllogism problems, the
major process 1s an example of 1nductive
problem solving, as defined 1n “Induction.” 1n
which the subject forms an integrated represen-
tation of the premises using the structure of an
ordered list induced from the order relations
that the premises state.

Although all reasoning involves problem
solving, 1t does not follow that there is no need
for a special theory of syllogistic reasoning. To
understand human reasoning, we must under-
stand the meanings that people attach to words
and the rules of inference that constitute their
systems of 'natural logic’ as well as the structure
of the control system that guides their problem.
solving search. Recent investigations show
progress on these questions.

CONCLUSIONS

The literature reviewed in this chapter includes
analyses of problem solving on a few dozen
tasks One way to express the important general
characteristics that have emerged here is
to apply problem-solving analyses to a new
domain. The analyses shown have provided
strong guidance about the kinds of processes
and knowledge structures that one should look
for in an investigation of problem solving.

First, it is important to investigate the sub-
jects’ knowledge and processes for representing
the problem If the subjects do not have special
training in the problem domain, they must
construct a problem space that includes repre-
sentations of the problem materials, the goal,
operators, and constraints. If subjects have
special training or experience 1n the domain,
their prior knowledge includes general charac-
teristics of the problem space. and their repre-
sentations of individual problems are based on
that general knowledge. Experts in various
domains are cognizant of the general methods
that can be used for solving problems, and
their representations include use of problem
information relevant to the choice of a solution
method.

A second major task is to characterize the
problem representations that subjects form in

PROBLEM SOLVING AND REASONING

their understanding of the problem [n relative|,”
unfamihar domains. the problem solving g
primanily a process of search. and the problem
representation determines the space of poss). ¢
bilities 1n which the search will occur Some
basic features of the problem space depend on
the problem itself. A problem mav present
constraints on the operators that the subjects
are permitted to use in trying to achieve a goal,
or on the arrangement of matenals that g
acceptable as a solution. The problem may also
require induction of a pattern or rule from
matenals presented. These alternatives lead
to differences 1n the problem space. a space of
possible sequences of actions, of possible solution
arrangements, of posstble structures, or some
combination of these.

The problem space constructed by an indi-
vidual subject is also determined by the method
of search that the subject uses, the features of
the problem that are used, and the general
knowledge that is applied. In a problem of
transforming a situation by a sequence of
actions, subjects typically use some form of
means-ends analysis. They may distinguish
between features of the situation that are more-
or-less essential for the solution, and they may
organize their search by a process of planning
that focuses on the more essential features,
Searching in a space of possible solution arrange-
meats typically involves generating partial
solutions on a trial basis, and the search 1s
influenced by the subjects’ knowledge of con.
straints that can be used to limit the candidate
arrangements that are considered. Similarly,
solution of induction problems is influenced by
the subjects’ knowledge of general constraints
on possible solutions, which may be used in
generating and testing hypotheses, or in synthe-
s1zing 0. abstracting structures from the features
of individual objects that are provided.

In solving problems for =hich subjects have
special training or experience, the problem
space of operators and constraints is provided
by the subjects’ existing knowledge. Experts
have highly organized knowledge that includes
solution methods and concepts for representing
problems at varying degrees of generality and
abstraction. For simple problems, experts’
knowledge often provides a basis for immediate

recognition of methods as well as detailed *

features relevant to the solutton. Their knowl-
edge of relations among methods and operators
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15 to seek a proof of the conclusion. the process
discussed above in “General Knowledge for
Novel Problems with Specific Goals™ as the
prototypical example of goal-based problem
solving For linear syllogism problems. the
major process 1s an example of inductive
problem solving, as defined 1n "Induction.” 1n
which the subject forms an integrated represen-
tation of the premises using the structure of an
ordered list induced from the order relations
that the premises state.

Although all reasoning involves problem
solving, 1t does not follow that there 1s no need
for a special theory of syllogistic reasoning. To
understand human reasoning, we must under-
stand the meanings that people attach to words
and the rules of inference that constitute their
systems of 'natural logic’ as well as the structure
of the control system that guides their problem-
solving search. Recent investigations show
progress on these questions.

CONCLUSIONS

The literature reviewed in this chapter includes
analyses of problem solving on a few dozen
tasks One way to express the important general
characteristics that have emerged here 1s
to apply problem-solving analyses to a new
domain. The analyses shown have provided
strong guidance about the kinds of processes
and knowledge structures that one should look
for in an investigation of problem solving.

First, it is important to investigate the sub-
jects’ knowledge and processes for representing
the problem If the subjects do not have special
training in the problem domain, they must
construct a problem space that includes repre-
sentations of the problem materials, the goal,
operators, and constraints. If subjects have
special training or experience in the domain,
their prior knowledge includes general charac-
teristics of the probiem space. and their repre-
aentatione of individual problems are baged on
that general knowledge. Experts in various
domains are cognizant of the general methods
that can be used for solving problems, and
their representations include use of problem
information relevant to the choice of a solution
method.

A second major task is to characterize the
problem representations that subjects form in

PROBLEM SOLVING AND REASONING

their understanding of the problem [n relatively*
unfamihar domains, the problem solving g
primarily a process of search. and the problem
representation determines the space of possi. ®
bilities 1n which the search will occur Some
basic features of the problem space depend on
the problem itself. A problem may present
constraints on the operators that the subjects
are permitted to use in trying to achieve a goal,
or on the arrangement of materials that is
acceptable as a solution. The problem may also
require tnduction of a pattern or rule from
matenals presented. These alternatives lead
to differences 1n the problem space. a space of
possible sequences of actions. of possible solution
arrangements, of possible structures, or some
combination of these.

The problem space constructed by an indi-
vidual subject is also determined by the method
of search that the subject uses, the features of
the problem that are used, and the general
knowledge that is applied. In a problem of
transforming a situation by a sequence of
actions, subjects typically use some form of
means-ends analysis. They may distinguish
between features of the situation that are more-
or-less essential for the solution, and they may
organize their search by a process of planning
that focuses on the more essential features.
Searching in a space of possible solution arrange-
ments typically involves generating partial
solutions on a trial basis, and the search 1s
influenced by the subjects’ knowledge of con-
straints that can be used to limit the candidate
arrangements that are considered. Similarly,
solution of induction problems is influenced by
the subjects’ knowledge of general constraints
on possible solutions, which may be used 1n
generating and testing hypotheses, or in synthe-
sizing o. abstracting structures from the features
of individual objects that are provided.

In solving problems for =hich subjects have
gpecial training or experience, the problem
space of operators and constraints is provided
by the subjects’ cxisting knowledge. Experts
have highly organized knowledge that includes
solution methods and concepts for representing
problems at varying degrees of generality and
abstraction. For simple problems, experts’
knowledge often provides a basis for immediate
recognition of methods as well as detailed
features relevant to the solution. Their knowl-
edge of relations among methods and operators
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and of constraints in the domain enables them
(0 solve problems in a highly organized and

Janned manner.

The study of problem solving and reasoning
has progressed to a substantial level of knowl-
edge and theory. however, several questions
remain unanswered. ‘

First, while we are begmmng to understand
the performance of experts on simple problems,
litle 15 known about their performance on

roblems that are difficult and deep. When con-
?ronted by problems for which their know'Nledge
does not provide a ready method of solution, do
experts resort to weak metl'}ods of search and
analysis fundamentally similar to those used
by novices? Or do experts who have acquired
powerful processes of reasoning in one domain
apply those processes to solving problems in
areas where specific solution methods have not
peen worked out and stored in memory?

A second question, closely related to the first,
involves the general nature of problem solving
in its more powerful and productive forms.
In their discussions of productive thinking,
Duncker (1935, 1945) and Wertheimer (1945,
1959) raised a critical issue that has not been
dealt with in the recent literature, namely,
the process of constructing more powerful
i-epresentations of problems by analysis of
problem components. The initial representation
of a problem frequently fails to include important
relations that are required for meaningful
solution, although the problem solver is able
to construct a reformulation that-includes its
important structural features.

A third question concerns learning. How
1s problem-solving skill learned? To-analyze
acquisition requires an understanding of the
skills and knowledge to be acquired, and promis-
ing results in characterizing skill and knowledge
in problem solving could provide a basis for the
investigation of learning. New approaches to
the acquisition of cognitive skill-such as those
of Anderson (1982), Anzai and- Simon (1979),
Neches (1981), and Neves (1981), may provide
somie Xeys to the analysis of learning processes.

A fourth question concerns the theoretical
power of general principles in the analysis of
problem solving and reasoning. The literature
discussed in this chapter offers detailed hypothe-
ses about performance on specific tasks that are

‘testable at the level of their assumptions about

specific processes. The more general assump-

tions are more heunistic These general concepts
and principles provide guidance 1n constructing
hypotheses about specific cogmtive structures
and processes. but they rarely constrain those
hypotheses in wholly specifiable ways. It 15 an
open question whether complex processes of
problem solving and reasoning can be defined
solely by underlying formal principles. Some
investigators (Keil, 1981 VanLehn, Brown. &
Greeno, 1984) have urged that research should
seek general principles with déductive power
that would determine characteristics of process
models. Others (e.g.. Newell & Simon. 1976)
assert that there are good reasons for expecting
that complex cognition 1s constrained only by
relatively weak structural principles, of the
kind that are characteristic of current theoretical
analyses.

A review of-any body of scientific research
can be closed with the remark that much has
been accomplished, and more remains to be
done, and the psychology of problem solving and
reasoning is no exception, The progress of the
1960s and 19708 has provided concepts and
methods that -future-investigators may use as
the basis for further advances.
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