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» We describe a procedure for ﬁndmf OE/ aw,, where E is an arbitrary func- o
tional of the temporal trajectory of the states of a continuous recutrent network .
and w; are the weights of that network. An embellishment of this procedure
involving only computations that go forward in time is also described. Com-

puting these quantities allows one to perform gradient desccnt in the weights
minimize E, so our procedure forms the kerne! of a new connectionist learning
algorithm.

1 Introduction

Pineda (2} has shown how to train the fixpo...., of a recurrent temporally continuous
generahzanon of backpropagation networks [3] Such networks are governed by the
coupled differential equations

i .
Tl d‘ - Yn"'d(x;)*’. (1)

where

X = Z W;iYj
J

18 the total input ' unit i, y; is the state of unit i, T; is the time constant of unit i, & is
an arbitrary differentiable function!, w;; are the weights, and dJie boundary conditions
¥(t0) and driving functions I are the input to the system. See figure 2 for a graphical
representation of this equation.

ITypically o(£) = {3 + e~ =1 tm which 2222 0 ") 20 X1 = o (€))




Coqsndcr Eiy). an arbitrary funcuonal of the trajectory laken by v between 1y '
and (. Below. we develop a technique for compuung JE(y)/Jw, and E(y T,
thus allowing us to do gradient descent in the weights and ume constants so as {0
mimmize £. The computation of JE/Jdw, seems to require a phase in which the
network is run backwards in ume, but a trick for avoiding this is also developed.

2 The Equations

Let us define

e.(t) = lim e~! £

—_ ()
=0 by[t.0+¢€]

In the usual case where E is of the form E(y) = [, f(y(0.0dt this means that

e.(t) = 8f (y(n). 1) /dy.(1). Intuitively, e,(r) measures how much a small change to y; at
ume ¢ effects E if everything else is left unchanged. We also define

JEF+€))

()= 5E

até=0 3)
where §+€) is the same as y except that d§;/dt has a Dirac delta function of magnitude
£ added to it at time 1. Intuitively, z;(t) measures how much a small change to
at time ¢ effects £ when the change to y; is propagated forward through time and
influences the remainder of the trajectory.

| l
t t

Figure 1: The infinitesimal changes to y considered in e (0 (lefy) and z () (right).
We can approximate (1) with the difference equation

vi(t+ AN y (O + At‘—%(z)

or

At At At
St + A = (1 - ’rT) YO+ FOEE)+ FO @

which is exact in the limit as At — 0.

2For instance. £ = f‘ Youg(ny — FIN2d! measures Wie deviatier of yo from the funtion f, a.. inliiang
“ 10
this £ would teach the network to have yq imitate f.

R —




Figure 2: A lattice representation of (4).

Consider incrementing y;(f) by ¢ and letting this change propagate forward. The
differential of £(y) w.r.t. ¢ is thus the sum of the differentials of E(y) w.r.t the other
values that y;(¢) influences, weighted by the magnitude of its influence. By examining
all the outgoing lines from node y;() in figure 2 we are led to a difference equation
for z,(0),

At At ,
() ~ ( 1- f) z(t+ At + Ateir) + ; 7R (xi()zi(t+ A1), (5)

where the (1 — At/T;)z:(t) term is due to the linear influence ».(r) has upon y;(t+ A1),
the 3~ term is due to the effect that changing y;(¢) has upon the other yi(¢+A¢) through
their nonlmear coupling, and the Are(r) term is due to the cffect that changing y;
between times ¢ and ¢+ A¢ has directly upon E. By rewriting (5) as

1 1 ,
() &= 2;(t + At) — At (7-7‘_2.-(14- an—e(f) - XI: FjW.‘jO’ (xi()z;(t + Ar)) ,

assuming this to be of the form z;(t) = zi(t + A1) — Atdz;/dt(t + Af), and taking the
limit as At — 0 we obtain a differential equation,

dz; 1
_d-t- = Fiz, Z an (X/)ZJ (6)
Let QE(§U/¢.9)
v(h) = T =0 ©)

where §¢4€.9 is the same as y except that w,; is increased by £ from ¢ through .
Again examining figure 2, we see that the appropriate difference equation for v is

vi) = vt + A0 + A‘y-'(‘)d’(xj(‘))%zj(‘ + 31




which leads to the differenuial equauon

di,
7 ,
— = - =) rix)z,

di T,

which we can integrate from o t0 ¢;. By substituting v, (r;) = 0 and v ,(tg) = 3E/Iw,
into the resulting equaton we eliminate « and end up with

oE
w,

1 /" ,
= - v,o'(x)z,dL (8)
T} 0 ]/ <)

If we substitute p, = T, " into (4), find SE/Ip, by proceeding analogously, and
substitute T, back in we get

. f }
9F =_r-1/ 2 Dig ©)
. Lt

We will find a way to compute 9z;(¢;)/3z;(to) useful. Let us define

. oz,(1)
() = ——= 10)
Gy (D) 350) (
and take the partial of (6) with respect to z;(#y), substituting in {; where appropriate.
This results in a differential equation for ¢,

dg; _ 1 Lo
rri 7—:'(;/' - zk: G (xe)Cy- 1
and for boundary conditions we note that
[ ifisg
Clto) = { 0 otherwise. 12

One can also derive (6), (8) and (9) using the calculus of variations and Lagrange
multipliers (Dr. William Skaggs, personal communication).

3 Utilization

The most straightforward way to use (6), (8) and (9) is to simulate the system y
forward from o 1o t;, set the boundary conditions z;(t;) = 0, and simulate the system
z backwards from #; 1o ¢ while numerically integrating z; ¢'(x,) y; and z, dy;/dt thus
computing 8E/dw,; and OE/8T;. Aside from the practical problems of simulating
the system backwards in an actual leaming application, the backwards simulation
of z as well as the integrals being computed require that y also be run backwards,
necessitating either remembering the trajectory of y, which can require prohibitive




amounts of storage, or the backwards simulation of y itself, which is typically 1l
conditioned.

However, running the system backwards can be avoided. Given guesses for the
correct values of z,(10), one can simulate y, z and ¢ forward from ¢ to ty and then
update the guesses in order to minimize B where

1
BziZz‘(mz (13)
by making use of the fact that
JB .
m = Z z{t1)¢, (1) (14)

For notational convenience, let b; = 8B/dz,(%). We can use a Newton-Raphson
method with the appropriate modification for the fact that B has a minimum of zero,
resulting in the simple update rule

B
2i(to) — zi(to) — ZWM- (15)

During our simulation we can accumulate the appropriate integrals, so if our guesses
for z;(to) were nearly correct we will have computed nearly correct values for E/9wj;
and 9E/OT,. If the w;; change slowly the correct values for z;(to) will change slowly,
so wolerable accuracy can be obtained by using the JE/Uw; computed from the
slightly incorrect values for z;(fo) while simultaneously updating the z;(z) for future
use, eliminating the need for an inner loop which iterates to find the correct values
for the z;(t). This argument assumes that the quadratic convergence of the Newton-
Raphson method dominates the linear divergence of the changes to the wy;, which
can be guaranteed by choosing suitably low learning parametcrs.

4 Future Work

We are planning on performing the following experiments in the immediate future:

e Learn a simple xor problem, with the functional requiring the output to be
correct after 2 time units.

o Follow a square trajectory in state space, where the desired trajectories of two
visible units are specified explicitly using a func. nal of the form

1 e a2
5-22‘:/‘0 si(yi — diy*dt (16)

where d; is the desired trajectory for y; and s; is the importance of y; attaining
d; at time ¢. For this functional, the instantaneous error takes on the particularly
simple form e; = 5,(y; — d;). Note that following a square trajectory requires
the use of hidden units.




e Teach two visible units to follow a circular rajectory (n state space, but rather
than specifying the trajectory explicitly, require that the trajectory be on the cur-

cle with center (¢; ¢3) and radius ~ and that the velocity be v using a funcuonal
like -

"
£= / (m—c)t+ G-t = r+ ey = V) 4 0n
!,

Assuming that these simulations are successful, we are planning on using this
procedure in the domain of control as part of the author's thesis work on learning to
control robot manipulators using connectionist networks [1].
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