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I. Introduction

This report is a revised version of the RADC In-House Technical Report Number 86-
110, "Natural Language Processing: A Tutorial" [Walter; 1986). Changes from the original,
in general, reflect advances made in the state-of-the-art in Natural Language Processing,
particularly in language generation as well as in commercially-available interface systems.

The report is structured to serve as an entry level, practical guide to research in the
field of Natural Language processing by computer. Its design and composition are meant to
provide a good basis for further study and practice in the fieid.

Section Il defines the varied goals of researchers involved in producing computer
programs that ‘process' Natural Language and attempts to provide a feeling for the full
challenge of the task by outlining the problems that require solution.

As a subfield of Artificial Intelligence (Al), describing Natural Language Processing
often requires a subset of the terminology of Al. Section il of this report defines members of

~ that subset in the context of the Natural Language processing task.

Various schemes for categorizing approaches to processing Natural Language input
exist. The most referenced scheme, from Terry Winograd's influential book Linderstanding
Natyral Language [Winograd; 1972], partitions approaches into four groups based on their
representation and use of knowledge: "special format” systems were the early, keyword and
pattern matching systems; "text-based" systems had a prestored text and indexing schemes to
retrieve pertinent data; "limited-logic” systems were those whose databases were stored in
some formal notation and which retrieved information using simple logical inferences, and
lastly; "general deductive" systems were those using a uniform notation for representing
problems and knowledge. This report will divide Natural Language understanding
technologies, basically, into "syntax-based' and alternative approaches. Section |V describes
methods which are primarily "syntax-based’. Significant changes have been made to Section
IV in order to make it easier to understand. Section V will describe research into alternative
approaches, from simple pattern matching systems to more complex systems which attempt
to work from, and develop, representations of meaning.

Section VI describes the evolution of, and the current state-of-the-art in, computer-
generated Natural Language. A discussion of generation technology was absent from the
original version of this report due to the early stage of research in that area. Natural




Language Generation (NLG) research has noticeably progressed and is receiving much more
attention from Al researchers. Increased emphasis on NLG is largely a result of the need for
explanation, to humans, of computer reasoning in Expert Systems as such systems progress
toward field use.

Section VII, another section new to this report, is a discussion of commercially-
available Natural Language software.

Appendices include a glossary of field-related terms. For each term, an index directs
the reader to an explanation of the term in the report. The names of computer systems used in
the report as examples of concepts are also listed in a glossary, each with page numbers of
where the system is mentioned. None of the systems are described in detail.

Examples of concepts in the text are meant to demonstrate concept "basics”: they may,
or may not, be wholly descriptive of those concepts. Many examples have been taken directly
(or with modifications for simplification) from previously published work. References are
provided. Hopefully, the use and description of examples is faithful to the originating
authors' perspective. The responsibility for incorrect or mislieading interpretations of other
published work rests solely with the author.




il. ‘Processing’ Natural Language
A. What Does It Mean to “Process' Human Language?

in the present context, parsing a human utterance is transforming an input expression
into a coded (computer language) representation of that expression for use in further
processing. Most often, "parsing” implies creating a representation of the structure, or
syntax, of an expression. Parsing can also refer to the creation of a representation of the
‘meaning' of an expression. In either case, parsing entails restructuring input into a
representation more suitable for a specific application. The opposing aspect of 'processing'
language "generates’ natural language from code representing information that is to be relayed
to a human. Processing natural language combines “parsing' and "generation’ with additional
manipulations to provide a comp'uter with the facilities necessary to allow facile
communication with humans--communication of the type that is typical of human-to-human
communication. ‘Additional manipulations' include a broad range of inference processes, that
is, processing to determine the real, intended meaning of a human statement to a computer.
Such processing would include attempting to interpret Speech Acts ([Searle, et al; 1980]),
and incorporating knowledge about user Belief Models ([Bruce; 1983]) and the dynamics of
human Discourse ([Grosz and Sidner; 1986]) into its interpretation. An excellent
introduction to Speech Acts, Belief Models, and Discourse can be found in [Allen; 1987] but
inclusion of discussion of them at any length here would extend the bounds of this report
beyond its intended introductory/tutorial level.

B. Why Attempt Computer Processing of Natural Language?

Language Translation

The desire to automate language translation was the stimulus for research into
computer understanding of human language in the early 1950's. Efforts were aimed at
converting Russian into English in word-for-word language translations. An oft-repeated
(although fictional) anecdote illustrates the inadequate results of word-for-word translation:
The sentence, "The spirit is willing but the flesh is weak" when translated into Russian, and
then back into English by a language translation program, became: "The vodka is strong but




the steak is rotten.” The point made is that vast amounts of knowledge are required for
effective language translations.

The initial goal for Language Transiation was "fully-automatic high-quality
translation® (FAHQT). In 1966, a report of the results of a study by the Automatic Language
Processing Advisory Committee (ALPAC) to the Nationa! Research Council harshly criticized
Language Translation research that had taken place up to that point, and disparaged of there
ever being any useful results. That report brought funding for machine translation projects
in the United States to a virtual standstill. The content of that report can be found in [Bar-
Hillel; 1960]. Much of the criticism was recanted in a later report ([Bar-Hillel; 1971]),
but the damage had been done. To this day there is virtually no government funding for
translation research in the US, although the Japanese and European governments are heavily
subsidizing such work. More realistic expectations and the realization that Machine
Translation that is Iess than "fuily-automatic” can be very useful, have lead to the resurgence
of interest in the latter countries. The revised expectations are appropriate in light of the
fact that essentially all human translations are post-edited and revised.

Two separate areas within present-day automated language translation technology are
Machine Translation (MT) and Machine-Aided Transiation (MAT). An MT system is one that is
solely responsible for the complete translation process. Preprocessing of source text or
post-editing may be done, but during actual machine processing there is ho human
intervention. MAT systems divide into two groups: Human-Assisted Machine Translation
(HAMT) and Machine-Assisted Human Translation (MAHT). HAMT systems are those which
are responsible for producing the translation but may interact with a human monitor along
the way. MAHT systems are those in which a human is on-line and responsible for the
translation but may interact with the system, for example, to request dictionary assistance.

Examples of currently available language translation systems are included in Section
VIL.

[Slocum; 1985] provides an exceptional tutorial on language translation, describing
terminology, research history, and systems that are in use.

Natural Language Front-Ends to Databases and Expert Systems

Natural Language Processing systems cannot handle every possible phrasing of every
possible statement, but they can be engineered to handle an amount sufficient to make
themselves useful in many cases. NLP systems that ease communication to complex computer
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programs have been demonstrated. LUNAR [Woods; 1972], for example, answered questions
about moon rock samples from the Apollo-11 mission using a large database provided by
NASA. A more contemporary system is IRUS-86 [Weischedel, et al; 1989}, which provides
access to a large database of Navy information. Such interfaces usually work within a single,
specific domain and are costly to develop. The goal then, is to create interfaces that can be
customized to be useful in various domains.

NLP technology has progressed to the point that some systems, designed to be tuned to
user requirements, are commercially available. To date, most of those systems provide
access to databases. Database query is constrained by the structure and contents of a database.
The breadth of possible inputs is limiied to simple 1equests to refrieve specific information
from structured information bases.

Language processing becomes more difficult, however, when more fluent use of
language, for a broader range of uses, is desired. For example, simple inferences that people
make in everday language are not so simple for computers. Ask such a system if John Q.
Public is a senior citizen. The system may have the explicit information that Mr. Public is
66 years old, but not be able to answer the query.

Some of the complexities of everyday human language are noted in Part D of this
Section. Systems for custom-built Natural Language interfaces have become available in
recent years (see Section VIl).

Text Understanding

Text Understanding is the automatic processing of textual information. A Text
Understanding system reads message narratives and produces a representation of the contents
that can be used to produce summarizations for busy human operators, or, in other ways
appropriately distributes the message contents. It differs from the task of NL front-ends to
databases and Expert Systems because there is no human interacting with the system. Since
there is no dialogue between the computer interface and the human user, there is no
integrated means of correcting inputs to the system and clearing up misunderstandings.

Text (or Message) Understanding is most predominantly used in military domains. An
example is the PROTEUS/PUNDIT system that extracts information from Navy CASEREPs
(CASualty REPorts) and puts it into a database to be accessed by an Expert Systen
(IGrishman and Hirschman; 1986]). CASREPs are a class of reports about shipboard




equipment failures. They provide information about ship readiness and equipment
performance.

Intelligent Computer-Aided Instruction (ICAI)

In contemporary technology, Intelligent Tutoring Systems (ITS) (or, intelligent
Computer-Aided Instruction (ICAl)) replaces the concept of Computer-Aided Instruction
(CAl) as it was described in the original version of this paper. The difference, according to
[Burns and Capps; 1988], is the demonstration by an ITS of the use of three types of
knowiedge. An ITS must have expert knowledge of the subject that is to be taught, must be
able to deduce the students’ knowledge of that subject, and must be able to implement
strategies that will bring the students’ level of knowledge up to its own exper. level.

SOPHIE (SOPHisticated Instructional Environment) is a well-known, early example of
a training system. SOPHIE provided instruction on electronics troubleshooting, presenting
students with a malfunctioning piece of electronics equipment and a challenge to finc the fault
in the circuitry. The system randomly selected a fault, inserted it into a simulation of a
circuit, and explained the control settings for the faulty circuit to the student. In dialogue
with the student, SOPHIE answered questions, critiqued hypotheses, and made suggestions
designed to develop the student's troubleshooting skills. Sample dialogue of an early version of
SOPHIE interacting with a student is shown in Appendix B of this report.

One of the most well-known ITSs under development is PROUST. PROUST diagnosis
nonsyntactic errors in students' Pascal programs. PROUST is an off-line tutor in that it does
not interact, in dialogue, with a student. Complete student programs are submitted to PROUST,
which provides a printed diagnosis.

An ITS called STEAMER provides a graphical simulation of a steam propuision plant.
Students are allowed to change various aspects of the state of the model in order to observe the
effects of their changes.

The current state of ITS technology, the ITSs mentioned in this Section, and others, are
described in [Poison and Richardson; 1988]. Because of the early state of development of
Intelligent Tutoring Systems, there are no examples of marketed systems in Section Vii of this
report.




Cognitive Modeling

The goal of scme researchers in attempting to develop computer programs that process
Natural Language is to understand how humans produce and undérstand language. Their
research attempts to ‘model’ the exact piocesses used by humans (cognitive modeling).
Hypotheses are often tested using various experiments that compare specific aspects of human
versus computer processing of language. Parsifal, described briefly in “-ection lli, is an
example of a computer program designed to model a specific aspect of human language
understanding.

C. What Knowledge is Required for Processing Natural Language?

l.argely, the amount and type of knowledge that mu st be incorporated into a program for
language processing depends on the degree of understanding desired. Systems 1'~ing simple
pattern matching and word phrase substitution, as in those described by Section V.A.
(Keyword/Simple Pattern Matching Systems), demonstrate no real language understanding
but may be satisfactory in some instances. Mcst useful Natural Language processing will
require a much greater degree of sentence analysis and understanding. Some will require
understanding comparable to human understanding.

Comprehension of a sentence requires, as a minimum, an understanding of the syntax,
semantics, and pragmatics of human language. The "synta::" ¢f a language defines the
“structure’ of objects in \he language. !t describes how basic units fit together to form
structurally (syntactically) correct members of the language. In human language for
example, if a sentence can be a sequ ance of words such that the first is from the syntactic
class of adjectives, the second is an adjective, next a noun, a verb and, finally, an adverb,
then the following is a syntactically correct sentence:

(1) Colorless green ideas sleep furiously. [Chomsky; 1965}

The Autonomy of Syntax Hypothesis proposes that syntax, as a distinct component »f
language, can be studied as a distinct entity, later defining . relationship to sentence
semantics and pragmatics. Research in Computational Lincuistics initially focused
exclusively on the syntactic language comg .nent as it was presumed to be sufficient for the
task of Machine Trans'ation.




The "semantics” of a language associates a ‘meaning’ to each of its constructs. The
syntax of the following sentences is the same, but the semantics are obviously different:

(2) The artist painted using a new technique.
The aitist painted using a new paintbrush.

"Pragmatics” is the study of language in context. It is the “intended meaning' of an
utterance. Pragmatic knowledge can eliminate the "stonewalling behavior" demonstrated in
the following exchange:

(3) Do you know Sarah's last name?
Yes.

Could you give it to me?
Yes.

Can you tell me Sarah's last name?
Yes.

Understanding idioms also requires the use of pragmatic knowledge. An idiom is a
sequence of words with a special meaning when taken as a unit, apart from its literal meaning
when taken word for word. To say that someone “kicked the bucket" has a literal meaning, but
more often implies that a person has ceased to live.

In recent years there has been a surge in studies of language semantics and some,
limited, study of pragmatics. The format of interaction among language components is
somewhat controversial. In some systems, LUNAR for instance (described briefty in i1.B.), a
first pass through a sentence produced a representation of its syntactic structure and a second
phase used the result to construct a semantic interpretation. Systems based on Roger
Schank's Conceptual Dependency (CD) knowledge representation theory (See section V.C.2)
build a semantic structure directly from the input string, using syntactic information when
necessary. Terry Winograd's SHRDLU program [Winograd; 1972] attempted to deal with
syntax and semantics in an integrated way. SHRDLU simulated a robot arm in a small domain
containing blocks of different shapes and colors. In a dialogue with the system a person can
give commands, state facts, and ask questions about the state of the blocks worid.




D. What Problems are Encountered When Attempting to Provide Natural Language
Understanding Capabilities to Computers?

There are a number of aspects of human language that a system must handle in order to
be capable of fluent communication. To take human imperfection into account, a system must
understand misspelled and ungrammatical inputs. Additional features of natural language to
consider are: ambiguity, anaphoric reference, and ellipsis.

A human utterance is ambiguous if it has twc or more possible interpretations. There
are a variety of reasons why a statement might be ambiguous. A word which belongs to more
than one syntactic class may cause an utterance to be ambiguous. For instance, the word
"duck”, interpreted as a noun in “"He saw her duck" (and “her" as an adjective) implies that an
animal was seen. |f "duck” is interpreted as a verb (and “her" as a noun), the sentence
implies that an act of "ducking” was seen.

Some words have multiple senses, or meanings, which belong to the same syntactic
class. The appropriate sense of the word must be determined by its context in the sentence or
situation. A classic example is the use of the word "pen” in "The pen is in the box" and "The
box is in the pen". There "pen" can refer to a writing instrument or a child's playpen, a
noun in aither case.

Sentences may be "structurally” ambiguous, as in:

(4) "Waiter, | would like spaghetti with meat sauce and wine."
"Waiter, | would like spaghetti with butter and garlic.”
[Charniak; 1976}

In the first sentence, "spaghetti with meat sauce™ and "wine" are understood as
individual phrases. In the second, "spaghetti” and "butter and garlic® make up individual
phrases. The structure of these sentences is made clear by their meaning. The structure of
"the old men and women" is not so easily clarified. Does the phrase refer to old people of
either gender, or does it refer to women of any age and men who are old? Conjunctive
phrases, phrases joined by "and", and disjunctive phrases, those joined by "or", are a major
cause of ambiguous syntactic structure. Structural ambiguity might also be caused by
confusion over which sentence concept is being modified by a prepositional phrase. The
classic example is: "| saw the man on the hill with the telescope.” Who is on the hill, "the
man" or the speaker? Who has the telescope, "the man”, the speaker, or "the hill"?

9




Anaphoric reference is reference to something previously mentioned in the
conversation without being specific in that reference. The following examples demonstrate
the concept, and some of the distinguishable types, of anaphoric reference [Webber; 1979):

(5) a. Pronomial Reference
As in: "Today | met a man with two heads. | found him very strange.”
The pronoun "him" refers to the just-mentioned man with two heads.

b. Noun Phrase Anaphora
As in: "Today | met a man who owned two talented monkeys. The monkeys were
discussing Proust.”
"The monkeys” alludes to the two just-mentioned monkeys.

¢. "One" Anaphora
As in: "Wendy got a blue crayon for her birthday and | got a purple one.”
The "one" is a crayon.

d. Set Selection Anaphora
As in: "The vendor listed fifteen flavors of ice cream. Bob wanted the fifth."

(ie. "the fifth" flavor of ice cream)

Recant trends toward integrating modes of communication with computers (eg. typed
input, graphic displays, touch screen input,...) have introduced a new, but similar problem of
determining the object(s) of reference: deictic reference. Deixis involves reference to things
that have not been explicitly referred to (by speech or typed input), but are present in some
way in the nonlinguistic context of the conversation. For instance, a graphic display may be
pointed to with a request 1o: "identify this.” /

Ellipsis occurs in human conversation when people omit portions of sentences,
assuming that the missing parts can be filled in by the listener (or reader). Consider this
example:

10




(6) What kind of ice cream does Carol like?

Ted thi? vanilla \

(that Carol likes) (ice cream)

E. What Representation Schemes are Used?

Many researchers attempt to form a computer language representation of input that
stresses the syntax of the input. These representations can be displayed in graph forms
similar to diagrams of sentences produced in grade school English class. Such a
representation scheme is defined by a grammar.

A grammar of a language specifies the sequences of basic units that are allowed in the
language. A grammar can be used to describe well-formed computer language constructs or
well-formed human sentences. Grammars of languages, including computer languages, are
described by a set of terminal and nonterminal symbols, and a set of rewrite (or production)
rules. A distinguished nonterminal serves as the unique starting symbol for the grammar.

For the purpose of defining a grammar for English the non-terminal symbols are
usually syntactic categories such as “Sentence”, "Noun Phrase", etc. Nonterminals in this
report will be abbreviated as S, NP, etc. The terminal symbols of natural languages are the
words. Rewrite (or, production) rules specify the relationships among terminals and non-
terminals. For example, S -> NP VP means that the symbol S can be rewritten, or replaced,
by a NP followed by a VP. (Hence, a sentence is a noun phrase followed by a verb phrase.) Det
-> "the", means the symbol Det can be rewritten by the terminal symbol “the".

To illustrate, here are the rules of a grammar for a very small subset of English:

(7a) S->NP VP (7e) Det -> the
(7b) NP -> Det N (7t) N ->boy

(7¢c) NP >N (7g) N -> Mary
(7d) VP ->VNP (7h) V -> kissed

The terminal symbols of the grammar are the words: "the", "boy", "Mary", and
"kissed". The grammar indicates that these words belong, respectively, to the syntactic
categories of determiner (Det), noun (N), noun, and verb (V).

11




Grammar rule (7a) defines a sentence (S) as a noun phrase (NP) followed by a verb
phrase (VP). Rules (7b) and (7c) state that a noun phrase can be either a determiner
followed by a noun,or simply a noun. Rule (7d) defines a verb phrase as a verb followed by a
noun phrase.

Thus, the syntactic structure of the sentence, "The boy kissed Mary®, may be
represented in tree form as shown in Figure 1.

/S\
w® P g
Det N v NP\
| | | !
the boy kissed
Mary
Figure 1

Syntactic Tree Structure of "The boy kissed Mary."

In reality, grammars designed to define human language contain some terminal nodes
that are not words. These nodes are grammatical items (eg. "Past”, "Possessive”) that will
later combine with other terminal nodes to determine the appropriate form of a word, for
instance the past tense of a verb. Readers should be aware of this phenomena, but examples in
this report for the sake of clarifying basic concepts will overiook this detail.

This report will categorize processing efforts which focus on the syntactic category of
each word and the syntactic structure of each utterance as "syntax-based". Other researchers
attempt coded representation of language using various other means and concentrating on
other types of information (See Section V.).

12




I1i. Artificial Intelligence (Al) Terms Relative to Natural Language
Processing

There are a number of terms, alluded to in the Introduction, having a general meaning
in the broader context of Artificial Intelligence (Al) and more specific implications when
applied to the field of Natural Language Processing. Those terms will be defined here.

The terms top-down and bottom-up processing are applicable to Natural Language
Processing and are generally applied to syntax-based processing. Top-down or hypothesis-
driven processing starts with the hypothesis that an input is a sentence and tries to prove it.
Processing begins with the start symbol, S. A grammar rule to expand the S node is found and
applied. At each succeeding stage, appropriate grammar rules are found and applied to the
remaining non-terminal nodes until all non-terminal nodes have been expanded and the
terminal nodes that remain are the words of the sentence being processed. The sample
grammar of Section |l will be used to clarify the notions of top-down and bottom-up
processing.

Top-down processing begins with the start symbol S. Rule (7a) applies and produces
this structure:

/S\
NP P
Figure 2

Rules (7b) or (7¢) can expand NP. Rule (7d) can expand VP. In top-down processing,
expanding the leftmost node first (in this case NP) and continuing to the right (left-to-right
parsing) produces the same structure as right-to-left parsing. Thus at this point, the same
structure results whether NP or VP is expanded first. Applying rules (7b) and (7d) will
produce the structure shown in Figure 3.

13




Det N Y NP

Figure 3

Note that a different structure, inappropriate for the current sentence being parsed,
would be produced from expanding NP with rule (7c) rather than with rule (7b).

Applying rules (7e), (7f), (7h), and (7c), in any order, produces the structure in
Figure 4. Finally, rule (7g) is applicable and produces the completed structure in Figure 1.

S
N
NP VP
Det N \l/\NP
L
the boy kissed N
Figure 4

Bottom-up or data-driven processing begins with the input string. Using the grammar
rules, each word is replaced by its syntactic category. When the right-hand side of a
grammar rule is matched by an ordered string of these categories, the string is reduced by
replacing it with the left-hand side of the rule. Categories are combined repeatedly until a
single structure, with the sentence (S) category at the top, is reached. For our exampie
sentence and grammar, the following structure is produced first (Figure 5):

Det N v N

the boy - kissed Mary

Figure 5
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At this point, rule (7b) and rule (7c) can be applied to produce Figure 6:

NP NP

/N N

Det N v N
I | | |

the  boy kissed Mary
Figure 6

Rule (7d) combines V and the second NP into a VP (Figure 7).

VP

NP

NP\
Det N v N

the boy kissed Mary

Figure 7

Finally, rule (7a) resolves the structure (Figure 1).
Even with this very simple grammar, there are occasions when two or more rules are

applicable. If the applicable rules do not interfere with one another, a decision still must be
made about the order of their application. In addition to left-to-right and right-to-left
parsing, there is a third, less used tact for determining where processing will continue,
called island-driving. Island-driving goes neither strictly from left to right, nor strictly
from right to left. Rather, it uses specific heuristics, or rules-of-thumb, to direct which
part of the input will be processed next and continues by processing neighboring chunks of
increasing size. For example, in looking for a noun phrase a processor might look first for a
noun, then look to the left of the noun for adjectives and determiners and look to the noun's
right for modifying phrases.
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S

NP/\VP
Det N \'} NP

the boy kissed

Figure 8

What do we do when two or more rules, applicable at some point in the parsing process,
reference intersecting portions of the structure produced so far? Assume, for the sake of
clarification, we are in the midst of a top-down parse of our sample sentence, "The boy kissed
Mary", using the example grammar. Assume also that Figure 8 displays the current state of
the parse. At this point, either rule (7b) or rule (7c) can be used to expand the NP. A
deterministic parser would make a firm decision about which one of the applicable rules to
use. After that rule is applied, the parser is committed to its decision, right or wrong, and
will not get an opportunity to redo the parse in another way.

Mitchell Marcus contends that people parse language in a deterministic manner.
Marcus designed a sentence parsing program, Parsifal [Marcus; 1980], to support this
theory and measured the program's success at modeling human sentence understanding by
comparing its competence with human competence in interpreting garden path sentences.
Garden path sentences are sentences which tend to initially misiead readers, leading them
"down the garden path”, regarding their structure. A second, more conscious effort is
required for understanding such sentences. The following are well-known examples of garden
path sentences:

(8a) The horse raced past the barn fell.
(8b)  The prime number few.1

1[Milne; 1983] points out that Parsifal would understand (8b) without difficulty while
human readers would usually garden path. Dr. Milne’s parser, Robie, combines look-ahead
with the use of non-syntactic information to resolve word sense ambiguities. Miine proposes
that Robie more closely models human language processing, evidence by the fact that it garden
paths on (8b).
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Parsifal uses a technique called look-ahead to help decide on an appropriate- parsing
path. Parsifal holds off on making its decision and ‘looks ahead' to get an idea about what is
coming up before choosing its path.

A nondeterministic parser can deal with multiple paths using either depth-first or
breadth-first processing. I|f a parser keeps track of all possible paths {(or a useful subset of
them) and continues building the structure on each of them in parallel, it is processing
breadth-first (usually called paraliel processing in the context of Natural Language
processing). In depth-first processing one of the paths is followed. If, at some point, the
choice is proven to have been wrong, the parser will back-up, or backtrack, to the state of
the parse just previous to when the incorrect path was taken and try another path.

From the stage of the parse illustrated by Figure 8, if parallel processing is used, the
ioilowing two structures would be built (Figures 9 and 10):

S

/NP\/\VP
Det N A NP Det N v NP

the boy kissed /\ N the boy kissed N

Det

Figure 9 is constructed when rule (7b) is applied to the structure of Figure 8. Figure
10 follows from applying rule (7c) to the structure of Figure 8. As parallel processing
continues, additional structure may be built onto each of these structures. In our particular
example, (7e) is the only rule that will expand the symbol ‘Det' in the structure of Figure 9,
but it produces a structure with a terminal node that conflicts with the desired root nodes, the
words of the sentence. Processing on the structure of Figure 9 halts, leaving Figure 10 as the
only structure to build upon.
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IV. Syntax-Based Processing
A. Linguistic Theory as a Basis for Processing Natural Language

A considerable percentage of Natural Language Processing research has developed from
the scientific study of language (Linguistics). Some NLP systems are based directly on
computer implementations of grammar theories. Thus, an overview of the basic ideas and
history from Linguistic Theory is necessary background for an understanding of NLP
technology as it is presented in this paper and for future study. Some of the theory and
associated terminology of Linguistics is described here.

1. Linguistic Notation and Terminology
Specifying Grammars

In the notational system used in the following sections, lower-case letters a, b, ¢, d,
and e will represent the basic units, or terminal symbols, of language. When describing a
grammar for English, these terminals represent words. In the notation of Linguistic study,
the letter T is used to represent the set of terminals of a language. So, for our notation, T = {a,
b, ¢, d, e}.

Lower-case letters v and w will be used to denote strings of unspecified terminais.

Capital S will represent a unique "start” symbol. S and capitals A, B, C, D, and E will
be variables, or nonterminal symbols. When describing a grammar for English, they
represent syntactic categories such as Sentence, Noun Phrase, etc. In Linguistic notation, S is
always used to represent the start state. The letter V is used to represent the set of variables
for a language. So here, V = (S, A, B, C, D, E}.

Lower-case Greek letters a (aipha), p (beta), and x (gamma) denote unspecified
strings of variables and terminals.
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As described in Section Il.E., rewrite or production rules specify the relationships
among terminals and variables. In Linguistic notation, P represents the set of production
rules of a language.

To specify a grammar, one needs to identify its terminals, variables, unique start state,
and production rules. So, to talk about a grammar, G, you must specify the members of the
sets T, V, and P, and identify the start state. Such a grammar is denotedas G = (V, T, P, S).
All of the strings that can be generated using the grammar makes up its language, just as the
grammar for English defines the "grammatically correct” English language. The language that
is described by a grammar G (every statement that is grammatically correct according to the
grammar) is denoted L(G).

"Normal” Forms for Grammars

There are algorithms for changing the production rules of -~ ..amar into a standard or
"normal” form. Normal forms for grammars allow them to be compared in order to test for
equivalence, and the procedure for changing to the Normal form eliminates excesses in the
grammar such as equivalent rules (or equivalent sets of rules) and rules that will never be
used because their left-hand side will never appear in a string. Examples of Normal forms
are the Chomsky Normal Form (CNF) and the Greibach Normal Form (GNF). An excellent
reference for further information is [Hopcroft and Uliman; 1979).

2. Chomsky's Grammar Types

In the 1950's a linguist, Noam Chomsky, developed a classification system grouping
grammars into classes according to the type of rules allowed in their definition. There are
four types of grammars in this classification scheme, labeled Type 0, 1, 2, and 3. From Type
0 to Type 3, the rules of the grammars become more restrictive and the languages generated
become simpler. Each grammar type, is a proper subset of the next lower-numbered type.
Lower numbered grammars are considered "more powerful” because they allow a larger
number of legal strings. Chomsky's classification is useful for describing grammars for
computer or human languages.
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Type 0 Grammars

A Type 0 grammar is one in which there are no restrictions on the form that the
production rules can take. The left-hand side of each production rule describes a non-empty
string of symbols. The right-hand side describes a string that may be used in place of any
string that matches the rule's left-hand side. According to our notation, grammars of Type 0
have production rules of the form a -> 8, where a and B are arbitrary strings of terminals
and variables, with a a non-empty string. These grammars are also known as semi-Thue or
unrestricted grammars.

Type 1 Grammars

A grammar is a Type 1 grammar if, for each production of the grammar the right-hand
side consists of at least as many terminal and variable symbols as the left-hanc side.
Notationally, we say grammars of Type 1 have productions of the form a -> B such that a is
non-empty and B is at least as long as a.

There is a Normal Form in which each production of a Type 1 grammar is of the form
aAyx -> aPy, where B is a string of at least one symbol. This permits replacement of the
variable A by a string of terminais and variables B only in the "context” a - x. Type 1
grammars are often referred to as context-sensitive grammars.

An example of a context-sensitive grammar is the following (note that it is not in a
Normal Form that demonstrates its context-sensitivity):

(9a) S->aSBC
(9b) S->aBC
(9c) CB->BC
(9d) aB->ab
(9e) bB ->bb
(9f) bC->bc
(9g) cC->cc

This grammar defines a language in which each string generated consists of a number of
a's, followed by the same number of b's, followed by the same number of ¢'s. The language
generated cannot be defined by a grammar of a more restricted type (ie. Type 2 or Type 3).
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The string ‘aaabbbccc’ is a member of the language defined by this grammar and can be
de-ived as shown below. The underlined symbols are those that are :ihatched against the left-
hand side of the next rule to be applied, and replaced by that rule's right-tiand side.

Rule Used
Start Symbol: S

(9a) aSec
(9a) 2aSBCeC
(9b) aagBCBCBC
(9d) aaabCBCaC
(9¢) aaspBCCBC
(9e) aaabbCCRC
(9¢c) aaabbCRCC
(9c¢c) aaabbBCCC
(9e) aaabbbCOC
(9f) aaabbbcCC
(99) aaabbbocC
(99) aaabbbccc

Type 1 grammars are said to have difficulty representing sentences that have similar
meanings with similar structures:

(10) "John ate an apple.”
"Did John eat an apple?”
"What did John eat?"

There are also cases where Type 1 grammars represent sentences with different
meanings as having similar structures:

(11) "The picture was painted by a new technique.”
"The picture was painted by a new artist.”
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Type 2 Grammars

Type 2 grammars are those in which each production rule has only a single variable on
its left-hand side. In Type 2 grammars, production rules specify replacements for symbols
without regard to what presently precedes or follows the symbol (i.e. the symbol's ‘context’).
These grammars, therefore, are context-free grammars.

The following is a Type 2 (context-free) grammar:

(12a) S->aB (12e) A -> bAA
(12b) S->bA (12¢) B->b

(12¢) A->a (12g) B ->bS
(12d) A->aS (12h) B -> aBB

This grammar defines a language in which each string generated consists of an equal
number of a's and b's. "bbabaa” is a string that is derivabie from this grammar. Type 2
grammars are considered insufficient for describing natural, human language because they
cannot produce strings of the form: ajy az ... ap by b2 ... by, where each aj corresponds in some
way to bji. Thus, Type 2 grammars cannot handle the use of the word ‘respectively’, as in:

(13) "Randy, Ken, and Charlotte are a doctor, a nurse, and a philosopher, respectively.”
Type 3 Grammars

The production rules of Type 3 grammars are more restrictive than Type 0, 1, or 2
grammars. As with Type 2 grammars, the production rules for Type 3 grammars have only a
single variable on its left-hand side. On the right-hand side, Type 3 rules consist of a single
terminal symbol or a terminal symbol followed by a single variable. This most restrictive of
the grammar types is called a regular grammar.

The simple example of a Type 3 grammar shown at the top of the next page generates
strings of at least one a, followed by at least one b. The string "aaaabbb” is derivable from
this grammar.
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(14a) S->aS

(14b) S->aT
(14c) T->Db
(14d) T ->bT

The restrictions on Type 3 grammar rules prohibit production rules of the form
B -> aBp where B is not necessarily empty. Such self-embedded constructs are presumed to
be necessary in the context of Natural Language for dealing with center embedding.

In center embedding, a sentence is embedded within another sentence. Center embedding
is the result of modification of a noun group that is not at the end of its encompassing
sentence, by a clause with a sentence-like structure. A simple example is:

(15) "The rat that the cat chased ate the cheese.”

The embedded sentence, "the cat chased the rat,” is slightly changed in order to mark it
as a noun phrase within the relative clause.

Often in normal language usage, the relative marker ("which®, "who", "whom", or
"that") marking the start of the relative clause is left out of the sentence, as in:

(16) "The rat the cat chased ate the cheese."

Center embedding can make sentences quite difficult to understand if the embedding is
done more than once. However in principle they are grammatical. Embedding another
sentence in the sentence shown in (16) is demonstrated by the sentence in (17), below.

(17) “The rat the cat the dog bit chased ate the cheese.”

Another example of center embedding, from [Chomsky, 1965], is:

(18) "The man who the boy who the students recognized pointed out is a friend.”

The individual sentences in this example of center embedding are:
"The man is a friend." "The boy pointed out the man.” "The students recognized the boy."
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There is plenty of controversy about which class or classes of grammars are sufficient
for describing natural language. The arguments, given above, against the applicability of
Type 1, 2, and 3 grammars are quite well-known and widely held to be valid. Gerald Gazdar's
arguments to the contrary can be found in any of the referenced materials by Gerald Gazdar
(see reference list at the end of this report) and [Sampson; 1983]. (Also, see [Pullum;
1984].)

Type 1 and Type 2 grammar rules break sentences into a hierarchy of smaller and
smaller constituents. They can be used to display the structure of a sentence as a tree, with
each ‘node' expanding into one or more branches (never drawing nodes together into a smaller
number of symbols). Each node of the tree and the structure below it represent a
syntactically significant part of the sentence called a phrase marker, or p-marker. For
example, the syntactic structure of "The cat likes the mouse" may be displayed by:

S

the mouse

Figure 11
Syntactic Structure of "The cat likes the mousse.”

Here, phrase markers predict that “likes the" is not syntactically significant, but "the
cat” and “likes the mouse” are.

Because they display the "phrase structure” of sentences, Type 1 and Type 2 grammars
are called phrase structure grammars. Phrase structure grammars are aiso referred to as
immediate constituent grammars, indicating that each node is an "immediate constituent” or
"child" of the node above it in the tree.
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3. Computational Complexity Theory

A parsing algorithm is a set of rules that specifies which grammar rule, from among
those that are applicable, should be applied next. Parsing algorithms' are often compared to
determine which is best, based on the amount of time and space required to parse inputs.
Time is the most commonly measured resource. Measurement of the time required for
parsing is a very rough estimate, measured as the maximum number of production rules
needed to parse any input string of iength n, where n is a variable. Measuring the time
efficiency of an algorithm allows it to be put into a very broad class, a "complexity class”, of
algorithms with similar parsing efficiency. As an example, a parsing algorithm may have a
complexity of n2 (often presented noiationally as O(n2) and read, “of the order n-squared”).
That is to say, there is some number C such that Cn2 is an upper bound on the number of steps
required to parse any string of length n.

A number of parsing algorithms for context-free grammars are described in literature
discussing computational complexity. Two of the most well-known are the Cocke-Younger-
Kasami (CYK) algorithm and the Earley algorithm. The CYK algorithm is O(n3). The Earley
algorithm, considered the most practical algorithm, is O(n3) in general, but only O(n2) on
any unambiguous context-free grammar.

Recommended references for further information on Computational Complexity Theory
and parsing algorithms are [Barton, et al; 1987], [Earley; 1970], [Hopcroft and Uliman;
1979], and [Sippu and Soisalon-Soininen; 1988].

4. Transformational Grammar

Transformational Grammar Theory was iniroduced by Noam Chomsky in Syntactic
Structures (1957) and revised in Aspects of the Theory of Syntax (1965). This revised
model is widely referred to as the Standard Theory of Transformational Grammar and is the
version of Transformational Grammar described here.

Traditionally, research has focused on the structure of sentences as they appear, for
instance, on paper. Grammar rules are used to specify the structure of each sentence. With
Transformational Grammar, Chomsky proposed using grammars to exhibit the derivation
process of human language: the knowledge and rules that humans use to create and understand
utterances. Because it attempts to describe the knowledge and rules that ‘generate’ natural
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language, Transformational Grammar is a generative grammar and is often called
Transformational Generative Grammar.

The derivation of a sentence, in Transformational Grammar, takes place in two phases.
The initial phase uses a phrase structure grammar to generate a level of linguistic structure
called the deep structure of the sentence. The deep structure is a representation of the full
meaning of the sentence, with all of its intended nuances.

Consider the following sentences (example from [Winograd;1983]):

(19a) "Sam is easy to satisfy.”
(19b) "Sam is eager to satisfy.”

While these sentences have superficial similarities, a reader is immediately aware of
the different relationships presented. In the first sentence, Sam is the person who can be
satisfied. The one who acts to satisfy him is unidentified. In the second sentence, Sam is the
person who does the “satisfying’ and an unidentified person benefits. The syntactic structures
of the surface manifestations of these sentences, as shown below, do not exhibit this
difference.

N\/\W
I TT /™~

is easy Prt

to satisfy

Figure 12
Surface Structure of "Sam is easy to satisfy."
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NP/\
TT 7™~

T
Sam eager  Prt Verb

to satisfy

Figure 13
Surface Structure of "Sam is eager to satisfy."

The proposed deep structures for the sentences, shown in Figures 14 and 15, display
the different meanings of the sentences.

Transformational Grammar postulates that two sentences with similar surface
structures and differing implications may have differed significantly earlier in their
derivation. Conversely, two sentences may have underlying similarities that are not apparent
in their surface manifestations.

Det N VTb NP\ns easy
st one  satisty T
Sam
Figure 14

Deep Structure of "Sam is easy to satisfy."
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/NP VP
d Au%\ S
Sl’n il ealger N/\p

satisfy Det N

o o
Figure 15

Deep Structure of "Sam is eager to satisfy.”

In contrast to other phrase structure grammars, the rules in the first phase of
Transformational Grammar rarely introduce words into the phrase structure. Rewrite rules
such as "V -> shout® and "N -> boy" are eliminated. In their place are rules which form
strings of complex symbols, such as [+Common] and [-Human], depicting syntactic
"features” of the concepts they represent. These symbols act as selectional restrictions,
placing restrictions on which words may fill positions in the phrase structure.

A feature with a plus (+) sign implies that a concept has that feature. A minus (-)
sign implies that the concept is without that feature. Thus, the set of features [+N,
+Common] implies a common noun such as "boy” or "book”, whereas [+N, -Common] implies
a proper noun such as "John" or "Egypt". [+Count] or [-Count] specifies a "countable” (for
example, "dog”) or "non-countabie” (for example, "dirt") concept.

The following might be among the rules of a grammar [Chomsky; 1965]:

(20a) N -> [+N, +/-Common] (20d) [-Common] -> [+/-Animate]
(20b) [+Common] -> [+/-Count] (20e) [+Animate] -> [+/-Human]
(20c) [+Count] -> [+/-Animate) (20t) [-Count] -> [+/-Abstract]

The first rule will rewrite the symbol N as either of the complex symbols
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[+N, +Common] or [+N, -Common]. If N is rewritten as [+N, +Common], then the second
rule states that either [+Count] or [-Count] is to be added to the set of complex symbols. This
continues, building a set of complex symbols at each terminal node of the phrase structure.

To complete the phrase structure, each set of complex symbols is matched against the
sets of complex symbols in the lexicon. Each item in the lexicon, or dictionary, of
Transformational Grammar consists of a word and its description in terms of its syntactic
features. When a set of complex symbols from the phrase structure matches a set from the
lexicon, the associated word may be added to the phrase structure as the terminal node. Items
in the lexicon of a Transformational Grammar might look like:

(21a) (sincerity, [+N, -Count, +Abstract))
(21b) (boy, [+N, +Count, +Common, +Animate, +Human])

In the second phase of Transformational Grammar special rules operate on the deep
structure to produce the surface manifestation, called the surface structure, of the sentence.
These special rules, called transformations, can each do one or more of the following
elementary operations: they can move (reorder) phrase markers from one part of the
structure to another, they can add copies of existing phrase markers to the structure, they
can insert new structure, or they can delete structure. Transformations are applied one after
the other in a strict order. Each consists of a pattern that must be matched by some cross-
section of the phrase structure tree in order to be applicable, and a pattern defining the
result of using the transformation. Some ruies are obligatory (if they are applicable they
must be run) and others are optionally applied. Thus, the specific surface structure derived
from a deep structure is determined by whatever optional transformations are used. The
structures that make up the deep structure of a sentence are sometimes referred to as the
underlying phrase markers. When a transformation operates on the underlying phrase
markers, the results are called derived phrase markers. These are transformed into other
derived phrase markers, and so on, until all of the obligatory and the selected set of optional
rules are run. The surface structure or final derived phrase marker resulits.

To illustrate the transformational process, observe the application of the optional
Passive Transformation Rule as shown in the following.
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(22) PASSIVE RULE:

1 2 3 4

NP - Aux - V - NP |

l42been3by1|

The pattern to match in order to apply this rule is NP - Aux - V - NP. The numbers
are for easy referencing of the phrase markers. The Passive Transformation rule is
applicable to the phrase structure of, "The Colts have beaten the Jets", shown in Figure 16.2

Figure 16
Syntactic Structure of'The Colts have beaten the Jets.”

The phrases are matched as follows:

(23) the Colts have beaten the Jets
1 2 3 4

and transformed into:

(24) 4 2 been 3 by 1
the Jets have been beaten by the Colts

2 The intermediate level of complex symbols is not shown.
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A list of the names of the transformational rules and the ordering proposed for rule
application is included as Appendix A to this report. In-depth explanations of each can be
found in [Akmajian and Heny; 1975].

Transformational Grammar Theory attempts to describe human ‘generation' of Natural
Language. Theoretically, inverse Transformational rules can reverse the process,
transforming the surface structure of an utterance into its deep structure in order to “parse”
the input.

While focusing its attention on the process as recounted here, Transformational
Grammar Theory also makes a brief statement about how humans use the structures produced.
The deep structure is proposed as the input to a human semantic component where semantic
interpretation rules operate to derive a meaning representation. The surface structure is the
proposed input to a phonological component where the pronunciation of the utterance is
defined.

5. Modifications to the Standard Theory 01 Transformational Grammar

Since the introduction of the Standard Theory of Transformational Grammar,a number
of modifications and extensions have been proposed:

Extended Standard Theory (EST)

in the Standard Theory of Transformational Grammar, semantic interpretation rules
operate on a single tree representation of the syntactic stucture of a sentence, the deep
structure, to produce its semantic interpretation. Thus, as stated by the Katz-Postal
Hypothesis (1964), transformations must be meaning-preserving. The application of
transformations could not affect the semantic interpretation of a sentence. Soon after the
introduction of the Standard Theory however, critics pointed out that meaning could be
affected by the application of some transformations. As an example, the following pair of
sentences, with obviously differing implications, would derive from the same deep structure:

(25) Not many arrows hit the target.
Many arrows didn't hit the target.
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The Extended Standard Theory of Transformational Grammar proposed that semantic
interpretation rules operate on the entire set of trees developed during the transformational
process, rather than on the single, deep structure.

Generative Semantics

Proponents of Generative Semantics contend that the structure produced in the first
phase of the Standard Theory, rather than being strictly a syntactic structure, is a semantic
representation of the sentence. Transformational rules, as in the Standard Theory, operate to
transform the base structure into its surface syntactic representation. The name "Generative
Semantics' is derived from the viewpoint that language is generated from a semantic
component.

The semantic base structure of Generative Semantics has a formal nature similar to a
syntactic phrase structure representation in that it can be represented in tree form. The
labels on its non-terminal nodes are some of the same categories as those used in syntactic
tree structures (ex. S, NP,...), aithough presumed to be fewer in number. The terminal
nodes of the base structure are semantically interpretable terms, similar to symbolic logic
terms, instead of words. During the transformational process the terminal nodes may
combine in a 'manner similar to symbolic logic processing.

Montague Grammar

The Montague Grammar formalism was devised by logician Richard Montague. The first
phase of Montague Grammar uses a categorial grammar to construct the phrase structure
representation of a sentence. A categorial grammar is a representation system for context-
free grammars. A syntactic formula (rather than a single, syntactic class) is associated with
each word in a categorial grammar dictionary. The grammaticality and syntactic structure of
a sentence is determined by combining the formulas associated with each of its words using
specified ordering and cancellation properties. For example, assume a noun, such as
"gasoline”, is expressed with the simple formula N and an intransitive verb, such as
"explodes”, is expressed as S/N. Then "gasoline explodes" is N x (S/N) or, by cancellation, S
(a sentence). A ftransitive verb might have the formula (S/N)/N, implying it is something
that combines with a noun (the “object’ of a sentence) to produce an intransitive verb.
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In Montague Grammar, rules representing semantic information are associated with
each syntactic formula. In its second phase, the rules associated with each node of the
syntactic tree tell how to combine semantically interpretable logic statements to form a
single, formal logic representation of a sentence's meaning. The difficult notation and very
formal nature of the combining mechanism (intensional logic) is quite intimidating. However
the basic gist of Montague Grammar is evident in the following extremely simplified version
of the process.

A noun phrase in Montague Grammar is represented by the set of properties of the
entity which it describes. Thus, the noun phrase "Bill* is represented by the set of
properties of the entity Bill. (Anything that is true of Bill is part of the description of what
Bill is.) If the facts that Bill sleeps, talks, has blond hair and biue eyes, are represented as:

(26) (sleeps Bill)
(talks Bill)
(blond Bill)
(blue-eyed Bill)

; then this is the sat (or subset) of properties that represent the noun phrase "Bill".
Intransitive verbs in the Montague formalism are represented by sets of entities.
"Sleeps”, for example, has as its meaning the set of entities that sleep:

(27) (sleeps Bill)
(sleeps Joe)
(sleeps Jill)

N

in this example, the entity "Bill" is represented as the set of all predicates X such that
(X Bill), and "sleeps” is represented as the set of all entities Y such that (sleeps Y). Now, the
rule for combining the representation for the noun phrase "Bill" with that of the verb
"sleeps” produces (sleeps Bill), or "Bill sleeps”.

Montague Grammar is primarily concerned with assigning truth values to simple
declarative sentences in models of the world. Hence, the final result of our simplified
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example is particularly fortuitous since the truth vaiue of "Bill sleeps” can be determined by
searching for its representation, "(sleeps Bill)", in the database representation of the state
of the world.

Trace Theory

In Trace Theory, transformational rules are greatly reduced in number and compiexity
from those in the Standard Theory. The transformations that remain (there are only one or
two) move structure from one position in the syntactic tree to another.

Surface structure representations of sentences in Trace Theory contain placeholders,
called traces, that mark positions where structure was moved from at some time during the
transformational process. A pointer from each trace indicates the moved item that it
represents.

The surface structure of the sentence "What did John give to Sue", according to Trace
Theory, is derived from the structure shown in Figure 17 ("John did give what to Sue”). A
"Move" transformation moves "what" to the Compiement position and leaves behind a trace
(t), as shown in Figure 18.

S

S
|

/NP VP
N x Verb NP
| \N PP

I I S
John did give Prep
. what I N\

to N
Figure 17 Sue

Syntactic Structure of "John did give what to Sue.”
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John did  give Prep NP
I
to N

Figure 18
Syntactic Structureof "What did John give to Sue?"

Generalized Phrase Structure Grammar (GPSG)

Transformational Grammar was deve'oped in response to what was widely seen as the
inadequacy of phrase structure grammars for the description of natural language. However
some researchers have recently presented counter-arguments to criticisms of the phrase
structure grammar formalism. Most notably, Gerald Gazdar of the Uriversity of Sussex
maintains that none of the arguments against phrase structure grammars are valid, and offers
an extended interpretation of such grammars. This interpretation, called Generalized Phrase
Structure Grammar (GPSG), includes the use of: complex symbols as in Transformational
Grammar, rule schemata, and meta-rules. Rule schemata are patterns of rules. They present
sets of rules, which have some common property, as a single statement. For example, the
rule:

(28) * -> * "and" *, where " is any category
represents:
(29) NP -> NP "and" NP

VP -> VP "and" VP
N -> N "and" N
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A metarule is a rule which creates new phrase structure rules from rules which
already exist. If a grammar contains the following set of rules:

(30) VP>V NP
VP->V NP NP
VP ->V NP PP
VP ->V NP VP

then the following metarule, where W represents any category:
(31) VP>V NP W => VP[PAS]->V W PP
adds these rules to the grammar:

(32) VP[PAS] > \, PP
VP[PAS] ->V NP PP
VP[PAS] -> V PP PP
VP[PAS] > V VP PP

As in Montague Grammar, semantic rules are associated with each syntactic rule and
operate in parallel to the syntactic analysis to create the semantic representation of a
sentence.

Lexical-Functional Grammar (LFG)

The context-free grammar and the dictionary of a Lexical-Functional Grammar have an
equation associated with each grammar rule and each dictionary entry. The first phase of an
LFG generates a phrase structure tree from the grammar, with the leaf nodes of the tree
selected from the dictionary. Next, the equations associated with each node of the phrase
structure and each lexical entry are used to produce a representation of the sentence called
the “functional structure”.

The sample LFG rules shown in Figure 19 and the sample dictionary items displayed in
Figure 20 are from [Winograd; 1983]. The pa}se of "A girl handed the baby the toys" would
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produce the phrase structure tree of Figure 21. Note that a unique variable is assigned to
each ‘'pre-lexical' tree node.

S —p NP Y,

( § Subject) =V §=y
NP —p» Det Noun

WV —  Ved NP NP

§ - (} Object = (bbjectz)- i)

Figure 19

Sample Lexical-Functional Grammar (LFG) Rules
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a Det (A Definiteress) = Indefinite

(A Number) = Singular
baby Noun (ANumber) = Singular
(4 Predicate) = '‘Baby’
girl Noun ( 4Number) = Singular
( §Predicate) = ‘Girl’
handed  Verb (ATense) = Past
(4Predicate) = "Hand< ( {ubject),
( ¥object),
( iObject2)>’
the Det (A Definiteness) = Definite
toys Noun ( Number) = Plural

( §Predicate) = 'Toy'

Figure 20
Sample Lexical-Functional Grammar (LFG) Lexicon

S (x1)
NP (x2) | WP (x3)
Det Noun Verb NP (x4)
| |
!\ girl handed Det/\Noun Det

the baby the

Figure 21
Syntactic Structure of "A girl handed the baby the toys.”

NP (x5)
Noun

toys

in the second phase of the analysis process, equations associated with the rules which
were used to derive the phrase structure tree are "instantiated”: the up-arrows
(’) are replaced by the variable at the node where the grammar rule was applied, and each
down-arrow (') is replaced by the variable at the node associated with the symbol under
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which the equation appears. With reference to our example, the equations associated with the
topmost (S) node of the phrase structure tree derive from the grammar rule:

(33) S —» NP VP

( §Subject) =¥ =y

Here, the up-arrow is replaced by x1 (representing the node S of the phrase
structure), the first down-arrow is replaced by x2 (representing the NP of the phrase
structure), and the second down-arrow becomes x3 (the VP node). The instantiated equations
for the S node then, are:

(34) (x1 Subject)=x2
and x1=x3

The equations associated with each lexical entry are somewhat similarly instantiated,
however the up-arrow is replaced by the variable representing the parent of the parent node
(two nodes up), and the down-arrow is replaced by the variable of the parent node of the
lexical entry. (Thus, instantiated equations for “baby' are "(x4 Number) = Singular" and
"(x4 Predicate) = ‘Baby™.) The system of equations derived from the second phase of
analysis is then "solved”, producing a single functional structure representing the sentence.
The functional structure produced for "The girl handed the baby the toys” is shown in Figure
22. If there is no solution for the system of equations produced then the sentence is
ungrammatical. More than one solution implies that the sentence is ambiguous. (For full
details of this example see pages 334 - 338 of [Winograd; 1983].)
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Definiteness = Indefinite

Subject = Number = Singular
Predicate = 'Girt’
"A girl handed the baby the toys" - Object = 53:::," :ssg;gsgfmte

Predicate = 'Baby'

. Definiteness = Definite
Object2 = Number = Plural
| Predicate = Toy’

Tense = Past
Predicate = 'Hand<Girl, Baby, Toy>'

Figure 22
Functional Structure for "A girl handed the baby the toys."

Government-Binding (GB) Theory

Existence of the complicated system of rules of early Transformational Grammar
Theory was difficult to justify in view of the speed with which children acquire language and
the minimal breadth of experience they need before demonstrating language competence.

Government-Binding (GB) Theory, the modern grammatical theory most directly
derived from early Transformational Theory, proposes the presence of only a single
transformational rule called Move-a. Move-a allows any constituent to be moved anywhere.
The result of an application of Move-a is then filtered through a number of “universal
principles®. The filtering mechanism rejects any ungrammatical utterance.

The universal principies are innate, not learned. People are thought to be naturally
equipped with them. The exact number and description of the principles are not put forward
by the theory. In that sense, GB Theory is still evolving. Some of the principies that have
been defined, however, are the Case Theory, the Projection Principle, and the 6-Theory. In
Case Theory, for example, noun phrases in most instances must be assigned a Case. (In many
languages a noun's Case is marked by a variation in the form of the word. In English, only
personal pronouns demonstrate Case distinctions. For example, “they" is used as the Subject

40




of a sentence and "them" is used as an Object.) If a noun phrase does not have a Case assigned to
it, or fails to be in a position designated by its Case, then the structure is ruled
ungrammatical.

The universal principles of GB Theory are general constraints. Chomsky demonstrated,
in [Chomsky; 1977], that many superficially dissimilar rules from early Transformational
Grammar Theory share many important properties. Thus, the universal principles of GB
Theory combine to produce effects that previously were produced by a single transformation.

Proponents of GB Theory note that some human languages have similar - but different -
constraints. For example, there may be two languages in which a noun phrase cannot be
moved from a certain structural position, but the specific structural position may be
different for each language. GB Theory uses "parameters” to maintain the universality of its
principles. For the example given, the appropriate single constraint may specify that ‘a
constituent cannot be moved from position X, where X is a variable over a small number of
values, X1, X2,..., XN. The setting of all of the parameters. in the constraints identifies the
particular human language; set them one way to get grammatical French, another way to get
English.

[Sells; 1985] and [Berwick and Weinberg; 1986] provide good discussions of GB
Theory and much more thorough descriptions cf the currently accepted array of principles.

B. Tools and Techniques for Implementing Syntactic Analyzers

Various techniques for representing and maintaining the details of the syntactic
analysis of sentences are in current use. A number of them are described here:

Augmented Transition Networks (ATNs)

An Augmented Transition Network (ATN) is a formalism for representing syntactic
grammars. An ATN consists of a set of nodes, representing states of the parse, and directed
arcs which connect the nodes into networks. These networks of nodes are "augmented” with
conditions and actions attached to the arcs, and "registers” which may be used to store
intermediate results of the parse. The conditions (or tests) associated with each arc
determine whether or not a transition may be made to the next node. Often, transitioning
through an arc requires that a subnetwork be satisfied. Actions associated with arcs are
executed when transitions are made through the arcs. An input sequence to an ATN is deemed
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to be a sentence if, beginning at the (unique) start state, an analysis of the input leads to a
(not necessarily unique) final state of the network.

As stated in section Il of this report, there are often occasions during the parsing
process when two or more grammar rules are applicable. Similarly, ATNs often have two or
more paths away from a node. Most implementations of ATN parsers can select a path with the
option of later backtracking and selecting a different path should the first prove unsuccessful.

Following part of a parse will demonstrate the ATN concept. A small dictionary, a
network with associated Conditicns and Actions, and a set of Registers are displayed in Figures
23, 24, and 25. Note that any arc labeled "JUMP" is automatically satisfied. For the sake of
brevity and clarity assume that the correct choice is made at each instance in which there are
multiple possible paths.

Word  Category  Fealures
a Det Number: Singqular
black Adj
cat Noun Number: Singular
chased Verb Transitivity: Transitive
Tense: Past
fish Noun Number: Singular or Plural
Verb Transitivity: Intransitive
girls Noun Number: Plural
mouse Noun Number: Singular
saw Noun Number: Singular
Verb Transitivity: Transitive
the Det
These Det Number: Plural
Figure 23

Sample ATN Dictionary Entries

Subject:
Number:
Main-Verb:
Auxiliaries:
Direct-Object:

Figure 24
Sample ATN Registers
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NP:

VP:

Arc-associated Actions and Conditions:

Sl <VP> a:NP-b (From node "a" to node "b")
(a) (¢c) Action: Set Subject to current constituent.
d-Dete
Action: Set Number to the Number of the
Det Noun current constituent.
e-Noun-f

Condition: Number is empty or Number
matches the Number of the current
constituent.

Action: Set Number to the Number of the

current constituent.

g:-V:h
Action: Set Main-Verb to current constituent.

b-V:h
Condition: The Main-Verb is form of Be, Do,
or Have.
Action: Add contents of Main-Verb to
Auxiliaries.
Set Main-Verb to current constituent.

Action: Set Direct-Object to current constituent.

]

Figure 25
Sample Augmented Transition Network
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Start at node "a". Assume the input sentence is, "The black cat chased a mouse”.

The S Network; The only route away from node "a" connects to node "b" and has no associated
pre-Conditions to satisfy. Crossing the arc requires the satisfaction of the NP subnetwork,
i.e. finding a noun phrase at the beginning of the sentence. Consider the S network to be
temporarily "on hold" and move to node "d" of the NP network.

The NP Network: There are two paths away from node "d". One, the "JUMP" arc, takes us
directly to node "e" with no pre-Conditions, no follow-up Actions, and, importantly, no
matching of input. The other path has no pre-Conditions but requires that the first word
of the input sentence be a determiner. After following the latter of the two paths to node
“e" the remaining input is "black cat chased a mouse". The Action associated with the
just-crossed path says to set the Number register to be the same as the Number feature
associated with "the current  constituent”. The dictionary does not associate a Number
feature with the word "the", so the Number register remains empty. At node "e" there are
again two possible paths. Follow the path from "e" back to "e". There were no pre-
Conditions for this arc. The adjective "black” has been matched and the input remaining
is, "cat chased a mouse". At the present state of the parse we are at node "e" and, as
before, there are two paths leading away. The pre-Condition on the arc to node *f*
requires that the Number register be empty (which it is) or that the contents of the
Number register match the Number feature of the current constituent "cat". This pre-
Condition is satisfled, foliow the path to node “f. The Action required after crossing to
node “f* sets the Number register to "Singular”", the Number feature for "cat”. Now the
NP subnetwork has been satisfied.

Betum to the S Network; In the S network, we are now allowed to move from node "a" to node
"b". The Action associated with this move sets the Subject register to the noun phrase “the
black cat”. The single path leading from node "b" requires that the VP subnetwork be
satisfied, so, as before, the S network will be put "on hold".

The parsing process would proceed by transitioning through the VP network, then

returning to toplevel, the S network, where the parse is considered successful upon reaching
node "c".
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James Thorne, Paul Bratley, and Hamish Dewar [Thorne, et al; 1968] are credited
with the development of the ATN mechanism. Its use was demonstrated and popularized by
William Woods' LUNAR system.

Chart Parsing

Charts are used to keep track of the syntactic parse in progress. Charts record
syntactic constituents found so far.

A chart is a network of vertices linked by edges. Each edge represents a constituent
part of the input; its vertices define the beginning and the end of the constituent.A chart parse
begins with a structure containing only the individual words of an input as its edges. Thus,
the initial chart formed for the parse of "The black cat bit the dog" is shown in Figure 26,
below.

the black cat bit the dog

0 -0 0 0 0 0

(-]

Figure 26

Next, edges labeled with the lexical category of each word are added. (See Figure 27.
Note that "bit" can be either a noun or a verb.)

Det Adj Noun Noun Det Noun

Figure 27

T e

During the parse, a new edge is added to the chart whenever a new constituent is found.
if the rules "NP -> Det Noun®, "NP -> Det Adj Noun", and "NP -> Det Adj Noun Noun" are
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included in the grammar, the chart structure shown in Figure 28 will be constructed for our
exampile.

A successful parse of a sentence is found when an edge extends from the first vertice to
the last. More than one such edge indicates ambiguous input.

The chart constructed for “the black cat bit the dog" is shown in Figure 29. This

analysis indicates the syntactic structure of the sentence to be as shown in Figure 30.
NP

Figure 28
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Verb

NP
Figure 29
/s\
7~ /VP\
Det Adj Noun Verb NP
the black cat bit °|°‘ T
the dy
Figure 30

Chart parsing, as described above, only keeps track of grammar rules that succeed.
Active Chart Parsers, on the other hand, keep track not only of rules that succeed but of all
rules that have been tried. Active chart parsers have active edges and inactive (or complete)
edges. Inactive edges represent whole constituents and indicate that a grammar rule has
succeeded. An active edge represents the start of an incomplete constituent and would be
represented by an arc that is anchored to the base line at only one end. The label on an active
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edge includes its "remainder”, that is, the parts that need to be found in order to complete an
edge.

The earliest use of chart parsing in a practical system was in the MIND system [Kay;
1973] for machine translation. MCHART [Thompson; 1983] is & system for constructing
chart parsing systems.

Definite Clause Grammars (DCGs)

Context-free grammar rules may be expressed in the form of logic statements called
definite clauses. The resulting grammar is called a Definite Clause Grammar (DCG). DCGs
are often implemented computationally in the logic programming language Prolog. In fact,
most implementations of Prolog include a grammar rule interpreter which automatically
translates a grammar rule into executable code. Thus,

(35) “"sentence --> noun_phrase, verb_phrase.”
will be automatically translated to:
(36) “"sentence(S0,S) :- noun_phrase(S0,S1), verb_phrase(S1,S).”

Appendix C contains a sample, very small, DCG grammar from {Clocksin and

Mellish;1981]. CHAT-80, a prototype natural language question-answering system based on
the DCG formalism, is described in [Warren and Pereira;1982].
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V. Other Processing Techniques

"Other” processing techniques are those in which the syntax of the input is not the main
focus of the analysis. The simplest such technique usas a keyword and simple pattern
matching scheme. The method and a very well-known implementation of it are described
below:

A. Keyword/Simple Pattern Matching Systems

Some functionality, although limited, is offered by systems which do simple matching
of patterns against inputs. The particular pattern which is matched determines the response
that will be given. No real analysis of input is done by these simple systems. A well-known
example of such a system, called ELIZA, was developed by Joseph Weizenbaum [Weizenbaum;
1966]. : M&

In dialog with a human, SLIZA simulates a Rogerian psychotherapist. Responses from
the system are meant to appear to be leading the patient (the person typing keyboard inputs to
the system) towards self-discovery of truths about themselves. A typical conversation is
shown below:

(37) PATIENT: Men are all alike.
ELIZA: In what way

PATIENT: They're always bugging us about something or other.
ELIZA: Can you think of a specific example?

PATIENT: Well, my boyfriend made me come here.
ELIZA: Your boyfriend made you come here.

PATIENT: He says I'm depressed much of the time.
ELIZA: | am sorry to hear you are depressed

ELIZA inspects each input sentence for any of several keywords and attempts to match
the input against a pattern, called a decomposition rule, containing that keyword. Thus, if the
patterns associated with the keyword "remember" are "(* | remember *)" and "(* do you
remember )", where asterisks represent a sequence of zero or more words, the input "|
remember when winters were harsher” would match the first pattern. The second asterisk in

49




the pattern would match the string "when winters were harsher". (The first asterisk is
matched with zero of the input words.)

Each decomposition rule has an arbitrary number ot reassembiy rules associated with
it which describe the format for the response. Possible reassembly rules for "(* |
remember *)" include: “(Do you often think of 4)", "(Does thinking of 4 bring anything else
to mind)", and "(What else do you remember)". Numbers in a reassembly pattern are an
index to an item obtained from the match of the input to the decomposition rule. Here, the
response would be "Do you often think of when winters were harsher”, "Does thinking of when
winters were harsher bring anything else to mind", or simply "What else do you remember".

A facsimile of Weizenbaum's program can be produced from the details provided in
[Weizenbaum; 1966]. Another early system based on pattern matching, called SIR, is
described in [Raphael; 1968].

B. Semantic Grammars

Semantic Grammars are grammars that use word classes specific to the domain being
discussed rather than (or in combination with) the traditional grammar classes of Noun,
Verb, Noun Phrase, and so on. For instance, a system dealing with airline reservations might
have as classes: Destination, Flight Number, Flight Time, etc. A semantic grammar rule for
such a system might be: S -> <PLANE-ID> is <PLANE-TYPE>.

The same tools used for syntactic analysis of input, ATNs and the live (described in
iV.B.), can be applied when the grammar is a semantic grammar. For example, SOPHIE,
described briefly in Section Il of this report, uses an ATN and a grammar based on semantic
categories such as Measurement, Transistor, and Circuit Element. An ATN used with a
semantic grammar is called a semantic ATN.

C. 'Case’-Based Semantic Processing

In the traditional notion of "case", different forms of a word can provide information on
the role played in the sentence by the concept represented. English, for example, has a case
classification system for pronouns. Cases are: subjective, objective, reflexive, possessive
determiner, and possessive. Hence, when referring to oneseif in the subjective case, one
would use the word "I, as in: "I went to the store”. When referring to oneself objectively,
one would use "me”: "Joan went with me to the store". (Reflexive, possessive determiner, and
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possessive forms for the First Person Singular are, respectively: myself, my, and mine.)
These so-called syntactic (or surface) cases vary from language to language and convey only
minimal semantic information.

In semantic case grammar theories, an analysis of an input sentence produces a
representation of its meaning (semantics) rather than its syntactic structure. Each such
theory proposes the existence of a small number of universal, primitive, semantic (or deep)
cases which are descriptive of the possible semantic roles of a noun phrase in a sentence. The
following sentences demonstrate the idea of semantic cases:

(38) We baked every Wednesday evening.
The pecan pie baked to a golden brown.

"We" in the first sentence and "the pecan pie” in the second, hold the same syntactic
position (the initial noun phrase in a syntactic parse), but each plays a different semantic
role. "We" describes WHO performed the action of baking; "the pecan pie” tells WHAT object
the action of baking was performed on.

The first notable presentation of semantic case grammars was by Charles Fillmore in a
paper entitled "The Case for Case" [Fiumorenseé]. The primitive semantic roles proposed
by Fillmore were:

(39) Agentive (A) The instigator of the action, usually animate.
For example, John in "John opened the door”.

Instrumental (I) The inanimate force or object involved in the action.
The key is the Instrumental in "John opened the door with the key" and "The
key opened the door".

Dative (D) The animate being that is affected by the action.
Thus, John is the Dative in "We persuaded John that he would win".

Factive (F) The object that results from the action.

The Factive in "We made John a jacket" is the jacket. The dream is the Factive
in "John had a dream about Mary".
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Locative (L) The location or spatial orientation of the action.
Chicago is the Locative in "It is windy in Chicago”.

Objective (O) The object affected by the action.
For example, the door in "The key opened the door" and "John opened the door with
the key".

According to Fillmore's Theory, each verb sense has an associated case frame describing
the set of cases that appear or are optional when that verb sense is used in a sentence. For
instance, the case frame for the usual sense of the word "open” would dictate that the
Objective case is obligatory, but the Agentive and Instrumental cases are optional. A
representation for this case frame might be: [O, (A), (I)]. Parentheses indicate optional
cases. Thus, a sentence whose main verb is "open” requires a filler for the Objective case
(something which is “opened’), and may or may not have fillers for the Agentive (someone
who does the “opening’) and Instrumental (an object with which to do the “opening’) cases.
The ungrammaticality of "John opened with the key" is evidence that a filler for the Objective
case is required for the word “"open"”.

Yorick Wilks' ([Wilks; 1975]) English-to-French language translation system has a
case grammar component. In the system, word senses are represented by "formulas” which
can be expressed graphically with binary trees. The formula for "drink" (the action of
"drinking” a liquid) is: "((*"ANI SUBJ) (((FLOW STUFF) OBJE) ((SELF IN) (((*AN!I (THRU
PART)) TO) (BE CAUSE)))))". The tree representation is shown in Figure 33. According to
the formula, the “preferred” (but not required) agent doing the drinking is animate, the
object of the drinking is preferrably liquid (something that flows), the container into which
the aforementioned liquid goes is the animate agent, and the direction of the action is to an
aperture in the animate agent (the mouth). (In Wilks' system, verbs are not necessarily the
only word senses with case preferences.) The system attempts to form a semantic
representation for a sentence by meshing word sense formulas into a larger graphical
structure. If more than one possible representation is formed, the one with the highest
"semantic density" (the one in which the largest number of case preferences are satisfied) is
assumed to be the correct representation. Acceptance of less than a perfect fit in this manner
allows the system to understand non-standard word usage, as in "My car drinks gas". Wilks
calis this technique for building a semantic representation Preference Semantics.
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(*ANI SuBJ)

(SELF IN)

(FLOW STUFF)
TO) (BE CAUSE)

(*ANI

(THRU PART)

Figure 31
Tree Representation of Wilks' Formula for "drink”

Case grammar structures are present in most implementations of "semantic networks”

and in turn, since it has derived from the semantic net formalism, are present in the
"Conceptual Dependency” knowledge representation (see the following sections on "Semantic
Networks" and "Conceptual Dependency Theory").

Semantic Networks

A semantic network is a knowledge representation consisting of "nodes" and labelled,

directed "arcs” (arrows). Nodes in a semantic net represent entities or concepts. The arcs
(sometimes called associative links or, simply, links) represent relationships among nodes
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by connecting them into a network. For example, Figure 32 is a very simple semantic
network made up of two nodes (representing a person named Anna and a person named Bill),
and an arc indicating "Bill likes Anna". Note that "Anna likes Bill" is not a relationship which
can be assumed from this network.

likes
Bill Anna
Figure 32

Semantic Network Representation of "Bill likes Anna” {Scragg; 1976]

A slightly more complicated relationship is represented by the network in Figure 33.
Here, "Charles is a boy" and "Charles hit the tall girl" are represented. Notice that the node
for "the tall girl" is an uniabelled concept. (In order to reference "the tall girl" this node
could be labelled with an arbitrary, unique symbol.) Networks can be built up to represent
very complicated sets of relationships.

boy
0

HIT
Charles ISA

girl

tall

Figure 33
Sample Semantic Network

The basics of the semantic net formalism have been described. Additional functionality
can be provided by organizing related concepts in the network from the most general to the
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most specific. For example, the net in Figure 34 shows that: a dog is an animal, a Schnauzer
is a type of dog, and Bert is a Schnauzer. This organization of concepts builds an inheritance
hierarchy: anything that is true about a general concept, unless otherwise noted specifically,
is true of the concept below it on the hierarchy. Thus, since a dog is an animal and a Schnauzer
is a dog, a Schnauzer is an animal (and Bert, because he is a Schnauzer, is a dog, and therefore
is an animal, etc).

A further refinement of the semantic net formalism allows links to represent
properties of concepts. For instance, in the network of Figure 34, NUMBER-OF-LEGS and
VOCALIZATION characteristics are included as properties of dogs.

animal
“ i
ISA
NUMBER-OF-LEGS
dog
VOCALIZATION
ISA
barks k‘) Schnauzer
INSTANCE-OF
O Bert
Figure 34

Another Sample Semantic Network

Inheritance of the concept properties (property inheritance) is enabled by the
hierarchical organization of the network. To determine how many legs Bert has, one would
look first at the Bert-node. If the NUMBER-OF-LEGS property is not present (or is present
but no value is specified), the arc to the next, more general node would be traced. Since the
target property is not found on the node representing "Schnauzer”, one would look to the "dog"
node. Here, NUMBER-OF-LEGS is given as 4. Thus Schnauzers, by property inheritance,
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have 4 legs and, (again by property inheritance) so does Bert. Properties inherited from
more general classes act as default values. A value for a property may be specified at any
level in the hierarchy and overrides any value for that property provided at a node which is
higher in the hierarchy. Thus, if Bert happens to be a 3-legged dog, that fact can be recorded
by specifying NUMBER-OF-LEGS to be 3 at the Bert node.

Notice that an INSTANCE-OF arc in Figure 34 indicates that Bert is a "specific
instance” of Schnauzer. Were it not ior this distinction, Bert could be mistaken for an empty
subclass of Schnauzers. Some types of incorrect inferences are also avoided by this
differentiation between classes and instances of things. If "Dogcatchers chase dogs" is true,
then "Dogcatchers chase Schnauzers" is true, in general. However, it may not be the case that
"Dogcatchers chase Bert". Nodes representing classes of objects are called type nodes. A node
representing an individual is a token node.

information is obtained from semantic networks most often by matching network
patterns. For example, assume the existence of the semantic network of knowledge shown in
Figure 35 (slightly altered version from [Barr and Feigenbaum; 1981)], page 187).

Cl}de INSTANCE-OF :oct;in ISA >bi g’
OWNER
ownl O OohEE oo INSTANGEOF M
INSTANCE-OF
!
ownership Figure 35

Semantic Network [Barr and Feigenbaum; 1981]

In order to answer the question "What does Clyde own?", the semantic fragment shown
in Figure 36 would be constructed and matched against the database network providing the
correct replacement for the variable X: Nest1.
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Clyde
0
A

OWNER
OWNEE
ownl O = ®)
INSTANCE-OF
ownership
Figure 36

Semantic Network Repesentation of "What does Clyde own?"

Note from Figure 35 that nodes can represent more than just concrete objects, as in the
"ownership" node representing a kind of relationship and the "own1" node which represents a
specific instance of ownership. These concepts may be extended by associating a “case frame"
with their nodes. Such a case frame would consist of a set of outgoing arcs to descriptors of
the parent node. The case frame associated with the ownership node, for example, might
consist of arcs labelled "OWNER", "OWNEE", "START-TIME", and "END-TIME". This case
frame could be inherited by' instances of "ownership”, such as "own-1", where values for
these properties could be assigned or left to default to a value assigned in the "ownership”
node. _

The most well-known, and perhaps the first, implementation of a semantic network
was Quillian's Semantic Me.acny {({Quillian; 1988]). Propnsed by Quillian as a model of
human associative memory, the program accepted two words as input and attempted to return
information on their semantic similarities or differences. Beginning from the nodes
representing the two input words, "tags” were placed at each node that could be reached by
following arcs until a path between the two words were found. At the conclusion of this
spreading activation process, the path between the words was described in the format shown
for input words “cry" and "comfort” in (40), below. (Selected senses of words in the
intersection path are indicated by a numerical suffix, as in CRY2 meaning the second sense of
"cry®.)
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(40) Input words: CRY, COMFORT

Intersection: SAD
(1) CRY2 is among other things to make a SAD sound.
(2) To COMFORT3 can be to MAKE2 something LESS2 SAD.

Quillian developed the Teachable Language Comprehender (TLC) [Quillian;1969]
around the concept of a semantic memory. .TLC "leams" to understand English text.

Conceptual Dependency, described next, is derived from the semantic network
formalism.

Conceptual Dependency (CD) Knowledge Representation Theory

The basic axiom of Conceptual Dependency (CD) Theory states: "For any two sentences
that are identical in meaning, regardless of language, there shouid be only one representation”
[Schank and Abelson; 1977]. Proposed by Roger Schank as a formalism for representing
meaning, CD theory attempts to represent the "conceptualizations™ underlying sentences,
rather than the sentences themselves. A small number of primitive ACTs, which are the basic
meaning units for representing actions, and a number of primitive STATEs are used to
construct representations of actions in an unambiguous manner. CD Theory proposed the
existence of 11 primitive ACTs: ATRANS, PTRANS, MTRANS, MBUILD, PROPEL, MOVE,
INGEST, EXPEL, GRASP, SPEAK, and ATTEND. Brief descriptions and examples of the types of
events represented by each are provided in Appendix D. _

Each primitive ACT has an associated "case frame” which describes the roles that are
required for a full conceptualization of that primitive. Case frames provide information on
the concepts that can be expected to appear in a sentence. These expectations help direct the
parse towards a successful conclusion (expectation-driven processing).

All of the roles that are present in the case frame must be filled, none are optional. The
ACTOR case is always present. lIts filler tells who the performer of the action is. Other
possible cases (or roles) are: OBJECT, RECIPIENT, DIRECTION, and INSTRUMENT. Since CD
structures represent underlying conceptualizations, the concepts that fill the CD roles may or
may not be present in their manifestations as sentences.

The representation of "John goes to New York® demonstrates the basics of CD theory as
presented so far. "Going" is the transfer of the physical location of an object and, hence, is

58




represented by a PTRANS. The ACTOR, or performer of the PTRANS, is John. The DIRECTION
of the act is FROM some unknown place TO New York, and the OBJECT of the transfer of
location is John. Thus, the CD representation for "John goes to New York” looks like (and is)
the same as the representation for *John takes himself to New York™ (see (41)).

(4 1) The CD representation of "John goes to New York".
[Schank and Riesbeck; 1981]

(PTRANS
(ACTOR John)
(OBJECT John)
(DIRECTION (FROM unknown)
(TO New York)))

In an actual CD implementation, role fillers in each of the examples of this section
would be structures representing the concepts "John", "New York", and so on, rather than
English descriptions as shown here.

Relationships among concepts are called dependencies. Thus, there are object
dependencies, direction dependencies, etc. Progressively complex structures are formed
when concepts depend on other concepts, as in the CD representation of "John saw Mary"
(42).

The act of "seeing” is to transfer information from one's eyes to one's conciousness, and
is done by directing one's eyes at whatever is to be seen. Therefore, there is an instrument
dependency on an act of ATTENDing.

Note that "Mary's image”, not Mary, is transferred from John's eyes. Also note, the
place to which the image is transferred is represented as the mental location (MLOC) of
John's Conscious Processor (CP).

Primitive STATEs provide information about some property or condition of objects.
Many of these states can be described (for computational purpc.as especially) by, a ~umerical
value. For instance, the "HEALTH", "ANGER" level, and "CONSCIOUSNESS" states of an object
may be valued as being in the range from -10 to +10. [Schank; 1975] gives the scale of
values shown in (43) for describing an object's HEALTH.
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(42) CD representation of "John saw Mary".
[Schank and Riesbeck; 1981]

(MTRANS
(ACTOR John)
(OBJECT image of Mary)
(DIRECTION  (FROM John's eyes)
(TOMLOC (CP of John)))
(INSTRUMENT (ATTEND
(ACTOR John)
(OBJECT eyes)
(DIRECTION  (FROM unknown)
(TO Mary)))))

(43) Sample scale values for HEALTH STATE of objects in CD.
[Schank; 1975]

HEALTH STATE (Scaled from -10 to +10):

dead -10
gravely ill -9
sick -9 to -1
under the weather -2
all right 0
tip top +7
pertect health +10

Other STATES, such as "LENGTH" and "COLOR?", have absolute values ("45 feet" or
"red®, for example) rather than a scaled rating.

Early descriptions of the Conceptual Dependency knowledge representation schema used
labelled arrows to graphically represent dependencies. The graphical notations for "John
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went to New York", "John saw Mary", and "John died" are shown in Figure 37, Figure 38, and
Figure 39, respectively.

P C C —3p New York
John <P PTRANS ¢—— JOhn @—

@ unknown

Figure 37
Graphical CD representation of "John went to New York.” [Schank; 1975]

John
B-—PMLOC

P C (CPofJohn) I
John =P MTRANS <@—— image of Mary <&

. John's eyes

\ ATTEND
C T
| eyes
| Figure 38
Graphical CD representation of "John saw Mary." C
unknown Mary

——3 HEALTH (-19)
John «—=

————a} HEALTH (> 10)

} Figure 39
‘ Graphical CD representation of "John died.”
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Note from the representation in Figure 39 of "John died” that verbs are not necessarily
represented by primitive ACTSs.

CD primitive ACTs and STATEs form representions of actions. Other knowledge
structures, based on CD primitives and demonstrated in computer implementations, have been
developed to represent other types of information.

SAM (Script Applier Mechanism) [Cullingford; 1981], for exampie, uses scripts to
represent stereotypicai human activities such as dining out or grocery shoppirig. Scripts
describe the sequence of events that can be expected 1o occur during such activities. "Dining
out", for instance, can be described by the sequential occurence of the events listed in (44):

(44) 1. The customer goes to the restaurant.
2. The customer goes to a table.
3. The server brings a menu.
4. The customer orders a meal.
5. The server brings the meal.
6. The customer eats the meal.
7. The server brings the check.
8. The customer leaves a tip for the server.
9. The customer gives money to the cashier for the meal.
10. The customer leaves the restaurant.

When told "John went to a restaurant. He ordered chicken. He left a big tip.", SAM
assumes that the intervening activities of the restaurant script occured.

Of course, not all human experiences can be described by scripts. PAM (Plan Applier
Mechanism) [Wilensky; 1981] investigated the use of "plans®, "goals”, and "themes" for
story understanding. Plans describe steps toward achieving a goal. If a character's goal is to
satisfy his/her hunger, an appropriate plan might be to apply the restaurant script. Themes
provide general information upon which predictions can be made about an individual's goals.
Hunger, Love, and Success are examples of themes. Each may be ascribed to an individual,
which would then help to explain that individual's goals.

SAM, PAM, and a number of other programs dasigned to experiment with the use of CD
knowledge structures to handle various aspects of human understanding are described in
[Schank and Riesbeck; 1981].
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BORIS, described in [Dyer; 1983], integrates script, plans, goals, themes, and other
knowledge structures into a program which reads and answers questions about short stories
in a limited domain. Each of these references contains miniature versions of the programs
described.

D. Word Expert Semantics

At the time of the original version of this report, there were pockets of strong interest
in, and advocacy as a linguistic theory (a theory of how humans understand language) of,
Word Expert Parsing (WEP) Theory. In WEP Theory, the individual contributions of the
words of a sentence fragment determine the overall meaning of the fragment. In the years
since the original version of this report was published however, the inierest in WEP has
waned.

Although "pure® WEP Theory is no longer widely considered a viable approach to
Natural Language Understanding, it is included here for its historical significance and due to
the fact that its contributions to NLP research and theory have not been forgotten altogether.
This is evidenced in part by the recent publication of Word Expert Semantics: An Interlingual
Knowledge-Based Approach [Papegaaij; 1986}, in which WEP Theory is discussed and
description is provided of a Machine Translation system having aspects of WEP Theory
integrated into it.

Word Expert Parsing (WEP) Theory

According to WEP Theory, each word has an associated word expert which determines
the meaning of the word in the context of other words. A word expert "knows' everything
there is to know about a word: different senses of the word, and how the meaning of the word
effects and is effected by the other words in a sentence. As each word is examined sequentizlly
during the parsing process, its "word expert” is retrieved from memory and executed. Word
experts, which can be thought of as the "code" for determining the contribution of words in
context, ask questions and exchange information with other word experts, and with higher-
order system processes, until all of the word experts for a particular fragment of text come
to a collective agreement on the meaning of the fragment.

An interesting sidelight to WEP Theory is that it does not accept the notion of an idiom.
in other parsing theories, the words of an idiom must be viewed as a single unit in order to
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determine the idiom's meaning. So, the meanings of "throw in the towel” and "kicked the
bucket”, each as a unit, are specially stored and accessed. In WEP Theory, each word expert
"knows" what its word's contribution will be even within the context of the words that make
up the idiom. Therefore, the word expert for “throw" contains the information necessary to
understand "throw in the towel.” The disambiguation of idiomatic expressions will not differ
significantly from the comprehension of any other sentence fragment.

In the prototype LISP (programmed) implementation of WEP theory, each word expert
uses a word sense discrimination network (or sense net) to disambiguate the role of a word in
a sentence. Each node of the discrimination net represents a multiple-choice question that the
word expert can ask in order to determine the single appropriate sense of the word. An
example network for the word “"deep” is shown in Figure 40.

human

Does the word on my
right contributeto
the current concept?

yes

What is the class of
the current concept?

msnc
INTELLECTUAL

volume

Does

consist of air or water?

the current volume

HOLE-IN-

What is the
current focus?
fooba'I/ \ INTERSTELLAR

YARDS-AWAY UNDER-WATER

GROUND BLUE-SEA

Figure 40

Word Sense Discrimination Network for "deep”
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VI. Natural Language Generation (NLG)

For many years, the language generation task was not considered an important research
area. It was thought to be much less difficult than language understanding, and less important
because there was not much for con.puter programs to say. Now however, expert system
applications are being made in language intensive fields such as medicine, military command
and control, and tutoring. Quality Natural Language Generation has become necessary in order
to provide an adequate ability to explain conclusions and reasoning steps.

Present-day language generation research is divided into two areas. In the Planning
phase, the task is to "decide WHAT to say.” Planning is often further broken down into Content
Determination ("what to say") and Text Planning ("the order in which to say it"). The
research described in [McKeown; 1985] is focused on the Planning phase of NLG. McKeown
developed the generation system TEXT to study human communication strategies. In
particular, the system is used to study discourse strategies and mechanisms for focus.
Discourse strategies are general techniques people use to decide what to say next in order to
get their point across in a conversation. Focus mechanisms attempt to track concepts that are
central (ie. currently "in focus”) in a conversation in order to constrain the number of
things that may be talked about next.

The second phase of NLG is the Realization phase. In this phase, a representation of the
information to relay is assumed to be present and the task is to "decide HOW to say it.” Word
selection, including choosing word forms, is done in the Realization phase.

Realization techniques can be divided into three cla .ses: Canned Text, Direct
Replacement, and Grammar-Based Techniques.

Canned text, the simplest approach for text realization, is exemplified by ELIZA
(described in Section V.A.). Canned text is useful in systems in which the statements that the
software needs to make are known, in full detail, at the time the interface is defined. The
number of such statements is usually small or made up of groups of statements that are
similar except for a few words. Canned textual outputs are stored strings of words or stored
strings with simple word substitutions. Software compilers use Canned text to produce error
messages.

In Direct Replacement, a knowledge structure is selected, or created, as the
appropriate information to relay, and translated into human language using a Direct
Replacement Algorithm similar to the following:
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DIRECT REPLACEMENT ALGORITHM:
For each element of the list:

If it is a string
then print it,

If it is a symbol
then apply the symbol's generation rule and replace the symbol with the result,

If it is a function call
then execute the function and repiace it, in the output, with the result.

Repeat until only a string of words remains.

The generation rules of Figure 41 and the function TENSE-FUNCTION of Figure 42 can
be used to illustrate Direct Peplacement generation applied to "say" the meaning of the
semantic network of Figure 43. When applying a generation rule, any element in angle
brackets is replaced by thie symbol (or string) found by following the arc having that
element's name. Also, curly brackets represent elements that are generated only if all of the
roles in the element are present.
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Ruleset:
Rule 1. G(BUY) =

Rule 2. G(PERSON) =

Rule 3. G(OBJECT) =

Rule 4. G(BOOK) =

Function TENSE-FUNCTION:

TENSE-FUNCTION(X, Y) =

it (X = BUY)

<AGENT>,

TENSE-FUNCTION(BUY, <TENSE>),
<THEME>,

{"from" <POSS>},

{"for" <CO-THEME>}

<NAME:> or "someone”

<TYPE> or "something"

"a" {<COLOR>} "book" {"by" <AUTHOR>}

Figure 41

then it (Y = present) then “"buy”
else if (Y = past) then "bought”

Figure 42
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Figure 43

To generate the content of the symbol BUY in Figure 43, first apply Rule 1:

Step 1. Apply Rule 1:

G(BUY) = PERSON1,
TENSE-FUNCTION(BUY, past),
OBJECT1,
“from" PERSON2

When Rule 1 is apglied, <AGENT>, <TENSE>, <THEME>, and <POSS> become PERSON1,
past, OBJECT1, and PERSON2, respectively. Note thai the optional phrase containing <CO-
THEME> is removed because there is no CO-THEME arc in the network.

The Direct Replacement Algorithm now operates on each element of the resuit
(PERSON1, TENSE-FUNCTION(BUY, past), OBJECT1, “from", and PERSON2) one at a time.

When Rule 2 is applied to PERSON1, TENSE-FUNCTION is evaluated with values BUY
and 'past, Rule 3 is applied to OBJECT1, and Rule 2 is applied to PERSON2. The result is:

*Jack bought* BOOK1 “from Sue”
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Applying Rule 4 to BOOK]1 results in:

"Jack bought a red book from Sue"

Grammar-based techniques for Realization direct the generation process with grammar
rules. Augmented Transition Networks are historically popular as grammar generators. One
of the earliest grammar-based language generation systems ([Simmons and Slocum; 1972))
used an ATN to generate sentences from semantic networks. [Goldman; 1974)] describes the
use of an ATN to generate language from a Conceptual Dependency knowledge representation.

David McDonald's work in developing a program called MUMBLE ([McDonaid; 1984))
is a grammar-based, domain-independent, portable tool for generating English sentences
from varying representations of knowledge. Interfacing MUMBLE to an Expert System
requires the definition of functions that translate a knowledge structure into a “realization
specification” for MUMBLE. The trick in defining the functions is to make them as general as
possible so that a relatively small number of functions are able to work together to create
specifications from a large number of knowledge structures. That task is considered to be
part of the Planning phase of NLG. MUMBLE "realizes” the specification shown on the next
page as "Fluffy is chasing a little mouse.”
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(discourse-unit
head (general-clause
head (chase
(general-np
thead (np-proper-name “Fluffy”)
:accessories (:number singular
‘gender male

:determiner-policy no-determiner))
(general-np

head (np-common-noun "mouse”)
:accessories (:number singular
:;gender neuter

:determiner-policy indefinite)
:further-specifications

(:attachment-function restrictive-modifier
:specification (predication_to-be
(adjective "little"))))
:accessories (:tense-modal present
progressive
:unmarked)))

Figure 44
MUMBLE Input Specification for
"Fluffy is chasing a little mouse.”

McKeown's TEXT system and McDonald's MUMBLE have been integrated, with a parsing
component called RUS (a predecessor of IRUS-86), to form RTM (RUS-TEXT-MUMBLE)
([UPENN; 1986]). RTM accepts a limited number of requests in English for definitions of,
descriptions of, or comparisons between terms in a military database, formulates
appropriate responses, and outputs those responses in English.
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Vil. Commercially-Available Natural Language Processing Systems

Natural Language Processing technology has achieved a degree of domain-independence
that makes portable interfaces feasible for some applications. Portability to various back-end
domains allows such systems to be useful as commercial products. Language translation,
database access, and (to a lesser degree) expert systems, are applications for which
commercial interface systems are available. Of the systems described in this section,
INTELLECT, PARLANCE, and Language Craft have trademark protection.

Machine Translation

SYSTRAN was one of the first Machine Translation systems to be marketed. There are
currently about 20 transiators at the Commission of the European Communities (CEC) in
Luxembourg who use SYSTRAN for routine translation, followed by human post-editing, of
about 1000 pages of text per month in English-to-French, French-to-English, and English-
to-ltalian translations. Large dictionaries, having over 100,000 entries, appear to play a
key role in the success of those applications. General Motors of Canada uses SYSTRAN for
English-to-French and English-to-Spanish translations of various manuals, such as vehicle
service manuals. The productivity of human translators has been reported to have been sped-
up by a factor of three or four with SYSTRAN in use.

TAUM-METEO is considered the world's only example of a fully-automatic MT system.
The system scans the nationwide weather communication network of the Canadian
Meteorological Center (CMC) for English weather reports, translates them into French, and
sends the transiations back out over the communications network automatically. The system
detects its own errors and passes offending input to human editors. Output deemed correct by
METEO is dispatched without human involvement. With an input of over 24,000 words per
day, the system correctly transiates 90-95% and shuttles the other 5-10% to human
translators. Although TAUM-METEO operates in a constrained domain and is not extensible or
portable, similar systems could be built for similarly restricted domains.

The current state of MT and MAT systems, while not producing output as good as human
translation, saves time and money. Future improvements in quality and cost reductions can
be expected to improve the state of automatic language translation systems.
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Natural Language Front-Ends to Databases and Expert Systems

NLMenu (or NaturallLink) is marketed for persona! computer use by Texas
Instruments, Inc. as a Natural Language front-end for user databases. The NLMenu screen
displays one or more menus to a user, each menu offering a string of words or a class of
domain objects. An interface user selects an item from one of the menus to form the next
segment of the input statement, then a new set of menus, having appropriate 'next' selections,
appears. A user constructs a query by selecting items from consecutive menus. At any time,
the available choices are all appropriate. As a result, any query constructed with the system
is guaranteed to be within the limits of the system's grammar. User errors of typing,
spelling, and improperly phrased question are eliminated, and users do not have to guess at
the extent of the domain coverage. NLMenu represents an interesting, practical, and unique
media for querying databases. It may serve as a viable means of communicating with software
systems in many appropriate situations, but its characterization as a Natural Language
interface is questionable. It is mentioned here because it is marketed as Natural Language
software.

The first major commercial NL interface for databases, INTELLECT (formerly called
ROBOT ([Harris; 1977]), is produced by the Artificial Intelligence Corporation in Waltham,
Massachusetts [Al Corporation; 1980]. INTELLECT provides access to a number of Database
Management Systems on IBM, Honeywell, and Prime computers. Initial versions of the
system had to be tailored to the user's domain with several weeks of effort by the Al
Corporation (AIC) for each installation. More recently tailoring is done by systems staff in
user installations with the aid of documentation and training provided by AIC.

The Symantec Corporation of Cupertino, California, produces Q&A ([Hendrix; 1986])
for Natural Language database access on the iBM personal computer and its compatibles. Q&A
is a descendent of NL research conducted at SRI International in the 1970's that produced the
LADDER system ([Hendrix, et al; 1978]).

The most recent arrival on the database interface commercial scene is PARLANCE from
BBN, Iinc. ([BBN, Inc.; 1988]). As part of the marketing fee for the system, BBN configures
PARLANCE to a user's relational database. The application of PARLANCE to a Navy database is
described in [Bates; 1989].

Language Craft ([Carnegie Group, Inc.; 1985]), marketed by Carnegie Group, Inc.,
Pittsburgh, Pennsylvania, is used to construct Natural Language Interfaces to databases and
expert systems. Language Craft evolved from work at Carnegie Mellon University that
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developed the XCALIBUR system. XCALIBUR provides NL access to an expert system that
configures VAXTM systems to customer specifications. The Carnegie Group provides
specialized training for people wishing to use Language Craft to develop interfaces. To develop
an interface, "caseframes"” are designed which are matched against user inputs. The caseframe
example below outlines possibie ways of requesting a map display system to zoom-in on an
area of the map. "“"panes™ is an identifier for a caseframe which, in this instance, describes
display panes on a screen-displayed map.

[*zoom-in*
type sentential
header 2zoom in Il go in
rases
(levels
:case-marker by
Afiller  $n (level 1l levels))
(map .
:case-marker on
filler  *panes®)]

The header contains key words that identify a match with this caseframe template. Cases
are optional segments that may be included in an input. For each ‘case' the case-marker is a
keyword to match and the filler is a pattem of words that is to follow that keyword. Each
caseframe is defined by the interface builder to allow correct matching of a large number of
possible user inputs. The caseframe shown can match all of the inputs shown below and more.
Additional rules and patterns broaden the breadth of understood user inputs and provide
response generation capabilities that are also based on matched patterns.

Zoom in by 3 levels on the display pane.
By 1 level, go in on the map pane.

Zoom in on the display pane.

By 2 levels on the display pane, zoom in.
Zoom in.

Cognitive Systems, inc. of New Haven, Connecticutt custom-builds NL database
interfaces, based on Conceptual Dependency Theory. An example of their work is the
EXPLORER system developed for a major oil company. EXPLORER retrieves information from
a database containing approximately 175 fields of information on over one million oil wells,
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as well as information on most of the geological formations in North America, and produces
maps displaying geological data and oil well information ([Cognitive Systems, Inc.; undated],
[Shwartz; 1984]).
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APPENDIX A
Transformational Rule Ordering

The following is the ordered list of transformations of the Standard Theory of
Transformational Grammar, from [Akmajian and Heny; 1975]. A line connecting two rules
indicates that an explicit argument for their displayed ordering exists. Although there is not

an argument for every pair, the combination of all of the pairwise orderings leads to a total
ordering.

1. Dative Movement (Optional)

2. Equi NP Deletion (Obligatory)

3. Raising to Object (Obligatory)

4. Raising to Subject (Obligatory)

5. 'For' Deletion (Obligatory)

6. Passive (Optional)

7. Agent Deletion (Optional)

8. Reflexivization (Obligatory)

9. Extraposition (Optional)

10. "It Deletion (Obligatory)

11. Number Agreement (Obligatory)
12. 'There' Insertion (Optional)

13. Tag Formation (Optional)

14. Negative Placement (Obligatory)
15. Contraction (Optional)

16. Subject-Auxiliary Inversion (Obligatory)
17. WH Fronting (Obligatory)

18. Affix Hopping (Obligatory)

19. 'Do’ Support (Obligatory)
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: APPENDIX B
Sample Dialogue with SOPHIE
(A SOPHisticated Instructional Environment)

SOPHIE [Brown; 1974] is a computer program designed to tutor students on the
principles of electronic circuit debugging. The following is a sample of the dialogue that may
occur between a student and the system:

SOPHIE: THE INSTRUMENT HAS A FAULT AND ITS PRESENT CONTROL SETTINGS ARE:

CC 1.0 (CURRENT CONTROL - FROM 0.0 (MIN CURRENT) TO 1.0)

CR HGH (CURRENT RANGE SWITCH, HIGH = 1 AMP, LOW = .1 AMP)
LOAD 20  (LOAD RESISTANCE IN OHMS)

VC 1.0 (VOLTAGE CONTROL - FROM 0.0 SMIN VOLTAGE) TO 1.0)

VR HIGH (VOLTAGE RANGE SWITCH, HIGH = 30 VOLTS, LOW = 10 VOLTS)

Student: What is the output?
SOPHIE: THE OUTPUT VOLTAGE IS 11.7 VOLTS.

Student: What is it in a working instrument?
SOPHIE: IN A WORKING CIRCUIT THE OUTPUT VOLTAGE IS 19.9 VOLTS.
THAT VALUE IS INCORRECT.
(Note the student's use of pronomial reference. "IT" isused!o refer to the output voltage.)

Student: What is the voltage between R8 and Q1?
SOPHIE: THE VOLTAGE AT N1 IS 47.6 VOLTS.

Student: What is the BSE emitter voitage of the voltage limiting transistor?
SOPHIE: =BASE

=TRANSISTOR

THE BASE EMITTER VOLTAGE OF Q5 IS -.037 MILLIVOLTS.
(The spelling corrector has detected and corrected two misspellings.)

Student: What about for the current limiting transistor?

SOPHIE: THE BASE EMITTER VOLTAGE OF Q6 IS .349 VOLTS.

(The student is actually asking, "What about the base emitter voitage for the current limiting
transistor?” This is an example of the use of ellipsis.)
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APPENDIX C
Definite Clause Grammar

A Context-Free Gramma:::
sentence === noun_phrase, verb_phrase.
noun_phrase =@ determiner, noun.

verb_phrase <= verb.
verb_phrase =@ verb, noun_phrase.

determiner =g [the].

NOUN s [man].
noun === [anple].

verb == [eats].
verb =——g [sings].

Given the context-free grammar above, Prolog's Grammar Rule Interpreter would
rewrite it into the Prolog code shown below. This example is from [Clocksin and Mellish;
1981].

Prolog code for a small grammar:

sentence(S0,S) :- noun_phrase(S0,S1), verb_phrase(S1,S).
noun_phrase(S0,S) :- determiner(S0,S1), noun(S1,S).

verb_phrase(S0,S) :- verb(S0,S).
verb_phrase(S0,S) :- verb(S0,S1), noun_phrase(S1,S).

determiner([the|S],S).

noun([man|S},S).
noun([apple|S],S).

verb([eats|S],S).
verb([sings|S],S).
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APPENDIX D
Conceptual Dependency (CD) Primitive ACTs

Listed and briefly described here, are the primitive ACTs defined for Conceptual
Dependency Theory. Each of them is described in-depth in [Schank; 1975] and [Dyer; 1983].

ATBANS: Represents the transfer of an abstract relationship, such as possession. One sense of
the word "give” is to ATRANS something to someone eise. To "take" is to ATRANS something to
oneself. ATRANS is also used in conceptualizations of "bought” and "sold".

PTBANS: Represents the transfer of the physical location of an object. For example, "go" is a
PTRANS of oneself from one place to another. "Driving” and *flying” are also represented by
PTRANS. -

MTBANS: Represents a transfer of mental information from one place to another, for instance
from one individual to another as in "speaking” and "talking”, or among distinct parts of one
individual's memory as in "remembering”, “forgetting”, and “learning”.

MBUILD: An action which creates new conceptual structures from old ones. Examples are
"concluding™ and "realizing”.

PROPEL: The application of a physical force, as in "hitting", “falling®, and "pulling".

MOQVE: The movement of a bodypart of an animate organism. The conceptualizations of "waving”
and "dancing” use the MOVE primitive.

INGEST: When an organism takes something from outside itself and makes it internal, it
INGESTs it. "Breathing” and "smoking" are acts of INGESTing.

XPEL: The opposite of INGEST, an organism EXPELs when it takes something from inside
itself and makes it external, as in "sweating” and "crying".

GRASP:; To physically contact an object. Examples are "grabbing” and "hugging".
SPEAK: Any vocalization. "Squeak"” and "quack™ would be included as well as "say".

ATTEND: The act of directing a sense organ. To "hear" something involves ATTENDing one's
ears toward the sounds being made (note, not towards the being or thing making the sounds).
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Terminology Glossary

ACTs...58, 62

ambiguity...9

anaphoric reference...9-10

associative links...53

Augmented Transition Network (ATN) Grammars...41-45, 69
Autonomy of Syntax Hypothesis...7
backtracking...17, 42

bottom-up processing...13-14

breadth-first processing...17

Canned Text...65

case frame...52, 57-58

Categorial Grammar...32

center embedding...23

Chart Parsing...45-48

Chomsky Normal Form (CNF)...19
Cocke-Younger-Kasami (CYK) algorithm...25
cognitive modeling...7

computational complexity theory...27
Computer-Aided Instruction (CAl)...6
Conceptual Dependency (CD) Knowledge Representation Theory...8, 58-63, 78
context-free grammars...22, 25, 32, 36, 48
context-sensitive grammars...20
data-driven processing...14

deep cases...51

deep structure...26-27, 29, 31-32

Definite Clause Grammars (DCG)...48
definite clauses...48

deictic reference (deixis)...10
dependencies...59-60

depth-first processing...17

derived phrase markers...29

deterministic parser...16

Direct Replacement Algorithm...65-68
Earley algorithm...25

ellipsis...9, 10

embedded sentences...23

expectation-driven processing...58
Extended Standard Theory (EST) of Transformational Grammar...31-32
final derived phrase marker...29

garden path sentences...16

Generalized Phrase Structure Grammar (GPSG)...35-36
generative grammar...26

Generative Semantics...32
Government-Binding (GB) Theory...40-41
grammar...11-12

Greibach Normal Form (GNF)...19
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Terminology Glossary

heuristics...15

Human-Assisted Machine Translation (HAMT)...4
hypothesis-driven processing...13

idioms...8, 63-64

immediate constituent grammars...24
inheritance hierarchy...55

Imelligent Computer-Aided Instruction (ICAl)...6
Intelligent Tutoring Systems (ITS)...6
island-driven processing...15

Katz-Postal Hypothesis...31

left-to-right parsing...13-15
Lexical-Functional Grammar (LFG)...36-39
lexicon...29

linguistics...10, 18-19, 63

look-ahead...17

Machine-Aided Translation (MAT)...4, 71
Machine-Assisted Human Translation (MAHT)...4
Machine Translation (MT)...4, 71
meaning-preserving...31

Message Understanding...5-6

Montague Grammar...32-34, 36

Move-a...40

Natural Language Generation (NLG)...1, 65-69
nondeterministic parser...17

parallel processing...17

phrase marker...24, 29-30

phrase structure grammars...24, 28, 35
p-marker...24

pragmatics...7-8

Preference Semantics...52

production rules...11, 19

pronomial reference...10

property inheritance...55-56

regular grammars...22

rewrite rules...11, 19, 28

right-to-left parsing...13-15

scripts...62

selectional restrictions...28

semantic ATN...50

semantic case grammars...51

Semantic Grammars...50

semantic network...53-58, 66, 69
semantics...7-8, 51

semi-Thue grammars...20

sense network...64

spreading activation...57

Standard Theory of Transformational Grammar...25
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STATEs...58-62

surface cases...51

surface structure...26-27, 29-31, 32, 34
syntactic cases...51

syntax...1, 3, 7, 11-13, 18-48

Text Understanding...5-6

token nodes...56

top-down processing...13-14

Trace Theory...34-35

traces...34-35

transformations...29-30, 31, 32, 34, 35, 40, 41
Transformationai Generative Grammar...26
type (0, 1, 2, 3) grammars...19-24

type nodes...56

underlying phrase markers...29

unrestricted grammars...20

word experts...63

Word Expert Parsing (WEP) Theory...63-64
word sense discrimination network...64
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Software Systems Glossary

INTELLECT.....71,72
IRUS-86.....5,70
LADDER.....72

Language Craft.....71, 72-73
LUNAR.....5, 8, 45
MCHART.....48

PARLANCE.....71, 72
PARSIFAL.....7, 16-17
Plan Applier Mechanism (PAM).....62
PROTEUS/PUNDIT....5

RUS-TEXT-MUMBLE (RTM).....70

Script Applier Mechanism (SAM).....62
SHRDLU.....8

SOPHIE.....6, 50, 76

Steamer.....6

SYSTRAN.....71

TAUM-METEO.... 71

Teachable Language Comprehender (TLC).....58
TEXT.....65, 70

XCALIBUR.....73
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MISSION
of

Rome Awr Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C*I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C®I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.




