Evaluation of Three Commercial Microclimate Cooling Systems

AD-A219 083

Bruce S. Cadarette, M.S., Barry S. DeCristofano, M.S., Karen L. Speckman, M.S., and Michael N. Sawka, Ph.D.

Three commercially available microclimate cooling systems were evaluated for their ability to reduce heat stress in men exercising in a hot environment while wearing high insulative, low permeability clothing. Five male volunteers performed three 180-min experiments (three repeats of 10 min rest, 50 min walking at 440 watts) in an environment of 38°C dry bulb (Tdb), 12°C dew point (TdP). The cooling systems were: 1) ILC Dover Model 19 Coolvest (ILC), mean inlet temperature 3.0°C; 2) LSSI Coolhead (LSSI), mean inlet temperature 14.5°C; and 3) Thermaor Cooling Vest (THERM), mean inlet temperature 28.3°C. Endurance time (ET), heart rate (HR), rectal temperature (Tre), mean skin temperature (Tsk), sweating rate (SR), rated perceived exertion (RPE), and thermal sensation (TS) were measured. A computer model prediction of ET with no cooling was 101 min; ET was greater (p < 0.01) with ILC (178 min) than THERM (131 min) which was greater (p < 0.01) than LSSI (83 min). The subjects self terminated on all LSSI tests because of headaches. Statistical analyses were performed on data collected at 60 min to have values on all subjects. There were no differences in HR, Tre, TS, or TS values among the cooling vests. The subjects' Tsk was lower (p < 0.05) for the LSSI than THERM; and RPE values were higher (p < 0.05) for LSSI than the other two vests. These data suggest an improved physiological response to exercise heat stress with all three commercial systems with the greatest benefit in performance time provided by the ILC cooling system.

In certain situations, both civilian and military personnel have to work in contaminated environments. For example, they may be required to clean up toxic waste, fight fires with noxious fumes, and face possible exposure to chemical weapons. Any of these situations requires wearing impermeable or semi-permeable protective clothing to prevent contamination from the environment. While this clothing is reliable for protecting the wearer from the external environment, it also creates a microclimate which does not favor heat dissipation (21). The lack of permeability greatly reduces the potential for evaporative and convective cooling, so that metabolic heat as well as external heat sources serve to drive up the wearers' body temperatures (5,6,13). Strenuous physical exercise performed with high skin and core temperatures will lead to reduced performance and possible syncope (15). To work for any extended period in this clothing the wearer must be provided with a cooling system to reduce or eliminate the body heat storage (5,6,13).

Numerous microclimate cooling systems, designed to cool the area between the body and clothing layer, have been developed and tested over the years (7,9,10,13,16,17,19,20,22,23). Many of these systems have been developed by the military to meet their requirements for combat vehicle crewmen (21). However, commercially developed microclimate cooling systems have been manufactured to meet the needs of the private sector. Periodically, the military will evaluate commercially available systems to determine if off-the-shelf items can meet its unique needs (3). This study evaluated the physiological responses of humans exposed to an exercise-heat stress when equipped with each of three commercially available microclimate cooling systems.

MATERIALS AND METHODS

Five healthy males volunteered after being informed verbally and in writing of the purpose and procedures of the research. Each expressed understanding by signing a statement of informed consent. All subjects were medically screened prior to involvement in the study. Anthropometric measurements of height, weight, and percent body fat estimated by skinfold thickness at four sites (4) were obtained. The mean (+ S.D.) subject age was 23 ± 2 years. This manuscript was accepted for publication in May 1989.
minutes, subjects requested removal or the medical monitor determined a subject should cease exercise for his safety.

Analyses of variance for repeated measures were used to analyze physiological responses at the completion of 60 min of exercise, as well as for analyses of total exposure time and SR for each test day. A multivariate regression analysis was used to compare the subjects' change in T_\text{re} among the three cooling systems. All analyses were performed on data obtained during the first 60 min as it was the final time with complete data sets for all five subjects. Tukey’s test of critical difference was used for post-hoc tests. All differences are reported at p < 0.05.

RESULTS

The subjects' metabolic rate during exercise was 440 (±68) W and found to be consistent throughout the three heat stress tests. The mean, actual cooling rate (Fig. 1) provided by the vests was calculated to be 244 (±68) W for ILC, 222 (±29) W for LSSI, and 108 (±17) W for THERM, with THERM values being less (p < 0.05) than the other two systems. An endurance time (±68) (Fig. 2) for subjects with ILC at 178 (±4) min was greater (p < 0.05) than with both other vests, and exposure time for subjects with THERM at 131 (±47) minutes was greater (p < 0.05) than with LSSI at 83 (±18) minutes.

Table I presents physiological responses obtained with the three cooling systems at 60 min of exposure to the heat stress tests. Although there were no significant differences, mean values in three of the four indices of heat stress were highest with the THERM system, which was statistically shown to provide the least cooling. Fig. 3 shows the regression lines for core temperature responses when wearing the three cooling systems. There were no significant differences in the intercept or slope of lines representing the change in T_\text{re} over time when exercising in the three systems. However, these values were also plotted against a prediction line of T_\text{re} changes while wearing MOPP 4 at equivalent exercise with no cooling (12). The predicted T_\text{re} values for no cooling were higher than the mean values observed with any of the microclimate cooling systems. Mean average SR values and HR values also showed no significant difference among the three cooling systems (Table I). T_\text{a} values did show a difference between systems with LSSI (32.7°C) being less (p < 0.05) than THERM (36.2°C) at the 60 min value (Table I).

Subjective evaluations of exertion (Table II) showed significant differences in responses taken at minutes 25, 40, and 55 of heat exposure. The subjects wearing LSSI responded with a greater (p < 0.05) perceived exertion than with both of the other two cooling systems at each time period. However, during no time period did the subjects perceive any difference in thermal sensations among the three vests. Finally, beginning shortly after the start of exercise, all subjects reported a severe and worsening headache when wearing the LSSI system.

DISCUSSION

The insulation and low permeability provided by standard military MOPP 4 level protective clothing exemplify the conditions which would be experienced by individuals required to work in a toxic environment. The
coolant flow reducing the ability to reduce heat storage. While the controls and heat sink of the LSSI are outside the protective garments for easy accessibility, blocked cooling channels require leaving the contaminated area to open the protective equipment and correct the problem. The necessity of changing cooling cartridges every 45 min also presents a logistics problem for sustained use.

The THERM system, while the lightest of the three systems, also provided significantly less cooling than the other two, and would not be expected to provide cooling sufficient to markedly reduce heat storage if an individual were required to work at a higher metabolic level. This reduced cooling was indicated by the tendency for increased physiological responses in the subjects. Two subjects completed the experiments with the THERM system while three were removed with voluntary fatigue. Further, the necessity of changing coolant tanks every 20 minutes creates a major logistics problem for sustained operations. However, because the THERM system cools by the vaporization of the fluorocarbon it will provide a constant rate of cooling for the life of a coolant tank, and not be affected by melting ice as in the other systems. Larger tanks would last longer, but would be heavy and awkward, offsetting the one advantage of the system.

In addition to the individual logistics problems cited for each cooling system, they all have two problems in common with many other self-contained microclimate cooling systems (3,10,16,19,21,23). No tested system was capable of providing sufficient cooling to prevent heat storage in subjects working at a moderate energy expenditure (440 W) in a hot-dry environment. Typically, self-paced work for an average soldier would be expected to elicit 450-550 W (8). At best the ILC and LSSI systems can only provide one half of the necessary cooling, and only for a limited period of time. A further problem resulting from the low cooling capacity of each system was the mean sweating rate of approximately 1 L·h⁻¹ for the subjects. Almost none of this sweat was evaporated inside the vapor exchange resistant protective clothing. The subjects were dehydrating without the advantage of evaporative cooling. This dehydration is not easily counteracted because of the difficulty of drinking inside protective clothing. Dehydration combined with warm skin and exercise can easily result in syncope and heat exhaustion (15).

In conclusion, there are commercially available microclimate cooling systems to help reduce some heat storage for individuals working in a toxic environment. These systems may have some application to civilian problems requiring brief exposure to toxic agents or in situations where the worker can leave the contaminated site for resupply. However, they do not appear to have much military application. Overall physiological and perceptual results from these experiments indicate that the ILC system provides the best support for the individual working in a hot environment with protective clothing. However, the systems tested can provide cooling sufficient to offset only light to moderate work, and all necessitate a large quantity of supplies for sustained operations.

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Laura Myers, Gerald Newman, Robert Oster, George Scarmoutsos, and Craig Strok for their technical assistance and to the test subjects for their hard work and cooperation in completing the research.

Human subjects participated in these studies after giving their free and informed voluntary consent. Investigators adhered to AR 70-25 and USAMRDC Regulation 25 on use of Volunteers in Research. The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other official documentation. Reference to specific equipment, trade names and manufacturers is for identification purposes only and does not imply endorsement by the U.S. Army or the U.S. Department of Defense.

REFERENCES

Aviation, Space, and Environmental Medicine • January, 1990 75