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Temporal Logic Case Study

Abstract. This report is a case study applying temporal logic to specify the opera-
tion of a bank of identical elevators servicing a number of floors in a building. The
goal of the study was to understand the application of temporal logic in a problem
domain that is appropriate for the method, and to determine some of the strengths
and weaknesses of temporal logic in this domain. The case study uses a finite
state machine language to build a model of the system specification, and verifies
that the temporal logic specifications are consistent using this model. The specifi-
cation aspires to be complete, consistent, and unambiguous. ....

1. Introduction

Software is consuming larger and larger portions of botn the development and maintenance
budgets for large defense systems. One major reason for this is that the system specifi-
cation and the derived software specifications are often incomplete, inconsistent, and am-
biguous. The cost of detecting and repairing a flaw in the specification at test, integration, or
installation is very high. Not only are there executable objects to be changed; user and
maintenance manuals, and many layers of specification, design, and test documents must
be changed as well. To make the specification more complete and flexible, the specification
of the system and the software must be improved in a number of ways. Some of these
improvements are administrative and affect the acquisition and management of both the de-
velopment process and the product development life cycle. Specifications may also be im-
proved by using more systematic and well-documented methods such as Hatley/Pirbhai,
Ward/Mellor, JSD, Statecharts, and other such approaches; most of these are automated
and supported by one or more commercial tool sets. In addition to the above, there is a
large effort underway in the development of software engineering environments to support
both the engineers using these tool sets and the management personnel associated with the
development effort.

Most of these efforts are still based on experience; they rely on the software engineer to
craft his specification carefully, and provide little of the assistance from scientific and math-
ematical theory that the other engineering fields enjoy. This is beginning to change, how-
ever, as the mathematical theories supporting software specification of both sequential and
reactive systems are now emerging. From these so-called formal methods, the software
engineer can, in the future, hope to produce specifications which are verifiably consistent.

* There are many such formal specification techniques being proposed, and this report will not
describe and compare them. There are few instances of application engineers using these
methods to specify a large complex system and formally verify that the specification is con-
sistent. This report specifies the reactive part of a relatively large and complex system. At
some time in the future, this specification can be used to determine to what extent venfi-

* cation is possible. Even if verification cannot be realized, such specifications are still more
precise than English language descriptions, and should contain fewer flaws. Therefore, they

CMU/SEI-89-TR-24
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can be used to specify systems and software in a more rigorous manner than the current
state of the art, until formal verification is achievable.

This report uses temporal logic to specify the operation of a bank of elevators servicing a
number of floors. We describe the elevator only in terms of the user of the elevator, describ-
ing the requirements in terms of actions he takes, and indicators that the system displays to
him. Hence the users push summons buttons on each floor to get an elevator to move to
the floor, and when it arrives and opens its doors, they step inside and push destination
buttons to get it to move to their desired destination floor. When they depress the push
buttons, they light up, and become unlit in an appropriate manner when the elevator travels
between floors. The specification is produced at two levels. The first level is that of the end-
users describing how they wish the elevator system to operate, and the second level is that
of the system engineer adding behavior to provide equitability and efficiency in the perfor-
mance.

The system specification is defined from the point of view of an applications engineer, rather
than the point of view of an expert in temporal logic. For this reason, the chosen elevator
problem contains most of the signals and indicators seen in modern elevators, since the
author was interested in the problem of specifying a complex problem using temporal logic. •
In addition to the temporal logic specification, a model of the specification was also built,
using the State Machine Language (SML) developed by Ed Clarke and others at CMU, and
described in [Clarke 87]. The SML model was then used to verify the consistency of the
formulas, using a toolset called EMC, also described in the previous reference.

1.1. The Elevator Problem

There is no single elevator problem statement from which different solutions have been de-
rived, and the elevator problem chosen here, once again, is somewhat different from these
others. The characteristics of the elevator problem to be specified in detail in this report are
sketched below. Later sections detail the operational specification.

1. There are many elevators serving multiple floors.
2. On board each elevator is a set of destination push buttons, one for each floor,

which backlight when depressed, and remain lit until arrival at the selected 0
floor.

3. On board each elevator are two directional signal lights, one for going up, and
the other for going down.

4. On board each elevator is a set of lights, one for each floor. One of these
lights is always lit, indicating the elevator is at that floor.

5. On each floor there are two summons push buttons, one for summoning the
elevator to go up, and the other to go down. These backlight when pushed,
and remain lit until an elevator arrives that will go in the selected direction.
The top and bottom floors each have only a single summons push button.

6. On each floor, beside each eiuvaioi are two floor directional lights, one show-
ing the direction the elevator will take. When an elevator arrives at the floor,
the appropriate light shows the direction the elevator will take when leaving
the floor. The top and bottom floors have only a single directional light each.

2 CMU/SEI-89-TR-24
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7. Each elevator has doors which are either closed or not closed. Opening, clos-
ing, or emergency stops are not considered. On each floor, there are doors
for each elevator. Both the elevator doors and the floor doors have to be open
for people to enter or leave the elevator at a floor.

8. The specification is not concerned with what happens under failure conditions.

1.2. The Scheduler

To describe the elevator system from the user's viewpoint, the user's expectations on
equality of service must be included in some way. This is an optimization problem, and
depends on many factors, such as statistics of usage and current requests for service. The
solution often contains more than one component. For example, at morning rush hour, the
elevators may "home" to the ground floor, while at the end of the lunch hour, they may home
to the cafeteria floor. All of these problems have to be addressed, but their solutions have to
be abstracted, so that the control of the elevators can be defined independently of the final
scheduling strategies (which may vary with the time of day or the level of service, and may
change over relatively short time periods, as the tenants of the building, or their elevator

*) usage habits change). The approach taken in this paper is to treat all of the elevators as
autonomous, with a few interfaces to a scheduler. The details of the scheduler are un-
defined except for its interfaces, and the constraints on the fairness of that behavior. Hence
each elevator will continue to provide its simple-minded service unless the scheduler issues
a command to override this service to improve the efficiency of operation. One additional
advantage to such an approach is that it is appropriate for distributed fault-tolerant opera-
tion. If the scheduler is not in service, or a processor loses communications with the
scheduler, service will continue to be provided in a predictable, though sub-optimal, manner.

1.3. Review of Other Elevator Problem Specifications

The elevator subsystem was chosen for three reasons.

* There are a number of researchers who have previously chosen to describe
specifications of elevators. Comments on some of these specifications are in-
cluded below. Each such specification is for a different type of elevator system,
making comparisons among different specifications awkward.

* Everyone intuitively understands an elevator's operation, so that little explana-
tion of the problem domain is needed.

* The elevator is quite a complicated reactive system, with many identical compo-
nents (buttons, lights) which require similar behavior from the elevator.

Barringer [Barringer 87] describes a multiple elevator system (using temporal logic) that is
somewhat simpler than the one used here. He has no lights indicating on-board direction, or
floor arrival lights, and the lights in his definition are extinguished when the doors are open-
ing, rather than in advance of arrival. He does, however, include a four-atste door (closed,

* opening, open, and closing), and the logic to cope with "foot in the door" and other emer-
gency conditions.

CMU/SEI-89-TR-24 3



Woodcock and others [Woodcock 87] use the theory of Communicating Sequential Proc-
esses (CSP) from [Hoare 85] to describe the operation of a single elevator system at a
single floor. They use the trace capabilities included in that approach to define such an oper- 9
ation. The operation considers a single summons button at the floor, a two-state door, and
assumes that the light is extinguished when the doors are opened. There are no considera-
tions of elevators moving between floors, or signals within elevators.

Schwartz and others [Schwartz 87] also use CSP to specify the elevator system for multiple
lifts at many floors, with up and down summons buttons at each floor, an emergency button
and a "back in service" consideration. There is an arrival condition specified, which cor-
responds closely to the floor arrival lights in each direction. They do not, however, have
directional lights on the elevator. They use the trace capability 3f CSP to specify the opera-
tion of the elevator in terms of queues for service going up and down, where queue entries
are made by depressing the push buttons, and removal from the queue occurs when the
elevator visits a floor.

In the above two cases (Barringer and Schwartz), where the elevator problem includes on-
board signals and considers elevator motion, the authors considered primitive scheduling
and coordination necessary to the definition of the problem.

4 CMU/SEI-89-TR-24
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2. Terminology
This chapter describes the terminology used throughout the document. The chapter intro-
duces the notations used for temporal operators, describes the sets and sequences used,
introduces some special notations to make the formula more concise and readable, and de-
fines the variables used throughout the document. In addition, the safety conditions are
described, since they are mostly restrictions on the values of the variables.

2.1. Temporal Logic

Temporal logic is a well-developed branch of modal logic [Hughes 681, and is thoroughly
described in [Rescher 71]. Temporal logic has been proposed as applying both to the speci-
fication and verification of program behavior, and to the specification of system behavior.
The first significant proposals for using temporal logic to describe program behavior came
from Pnueli, and his later paper [Pnueli 851 is a good survey of the field. Other good general
descriptions of the applicability of temporal logic are [Lamport 861 and [Lamport 83]. There
have been numerous papers from Clarke and others demonstrating this applicability; [Clarke
86] and [Clarke 87] describe the development of tools to automate the process. A more
complete description of the specific temporal logic model used in this report is given in Ap-
pendix 1.

The specification of a system in temporal logic is usually divided into safety conditions, live-
ness conditions, and fairness conditiors; and we shall follow this breakdown.

1. The safety conditions are those which must not occur in operation of the sys-
tem. In the elevator specification, for example, the up directional light and the
down directional light cannot both be lit simultaneously. Another example of a
safety condition is that a backlit push button must not come on without the
button having been depressed.

2. The liveness conditions specify what the system must do. For example, when
a push button is depressed, the backlight must come on and stay on until an
elevator is present at the selected floor.

3. The fairness conditions describe how nondeterministic specifications are to be
resolved. For example, if the whole elevator system is dormant (no requests),
and two destination buttons are depressed simultaneously, we can specify the
action to be taken nondeterministically. The fairness condition could express
that we do not select the up direction every time such a race condition occurs.

Temporal logic allows the system operation to be defined nondeterministically, and to in-
clude fairness conditions such that one course of action does not necessarily dominate.
The users section of this report describes the system deterministically, and the systems sec-
tion demonstrates how one can specify either deterministically or otherwise. In the case of
the elevator, thp difference is not significant. However, in general, it is best to specify a
system nondeterministically, since this is the most general specification and postpones the
operational details until later in the development process. Often the advantage in thus
postponing such a decision is that there may be a distinct benefit of one way over an other,
which does not become obvious until later in the life cycle.

CMU/SEI-89-TR-24 5



2.2. Temporal Operators

The expected logical operators used throughout are and (A), or (v), not (-,), equivalence 9
(=), and Implies (-+).

The temporal operators to be used are listed below, and the bold word in the description of
the operator is the word to be visualized when reading the formula.

1. 0 a: This means that eventually a will be true.

2 []a : This means that henceforth a is true.

3. Oa : This means that at the next state (instant in time) a will be true.

4. .a : This means that at the previous state (instant in time) a was true.

5. a =* b : This is read as strictly Implies, and it means that henceforth, if a is
true, then b is true. (a =* b) =df []( a -4 b).

6. a U b : This means that a is true until the state (instant in time) when b oc-
curs. The strong until implies that b will eventually occur. In addition, a must
always be true in the present.

7. a = b: This means that a is strictly equivalent to b. (a = b) =df a[ ] (a b).

2.3. Sets and Sequences

The sets in the system are:

1. Set of elevators : I; set of directions : J = {up, down.

2. Sequences of floors : M = [1,2, ..., IMI]; M'[1,2, ..., IM-1 1]; M_ = [2, ..., IMI].
3. Set of destination push buttons : IM M I*M.

4. Set of on-floor summons buttons: MJ a M*J (1, down) - (IMI, up).

5. Set of on-floor arrival lights : IMJ S I*M*J - (V I c I, (1,1,down))
- (V I ( I, (l,IMI,up)).

2.4. Special Notation

1. It is convenient to define a condition at a floor in the current direction the S
elevator is traveling beyond the current floor (for example if the current floor is
4, and the current direction is up, then any floor number greater than 4).

3 m eJ ml M (m,ml) E M'M, ((M > ml) A U = up)) v ((M ml) A U = down)).

2. It is useful to indicate the concept of "in the opposite direction".

-.l AU=Up) =down

--,J A = down) S up

6 CMU/SEI-89-TR-24
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2.5. Variable Definitions
* The indicators and signals visible to the end user are each described below, and the vari-

able definitions for each are given.

The on-board variables are defined below.

1. For each elevator I there is a light for each floor m, indicating that the elevator
* is in the vicinity of that floor. el_positionl,m

2. For each elevator there is a light signaling that the elevator is traveling up, and
another that it is traveling down. el_dlrectoni, where J= (up, down}

3. Each elevator's doors are either opened or closed. eldoors.closedI

4. For each elevator, there is a set of destination push buttons, one for each floor
* m. When a push button is depressed, it indicates that the traveler wishes the

elevator to stop the elevator at the selected floor. eldestdepri,m
5. Each destination push button is backlit to indicate that a request for service

has been made, and is yet to be honored. The button is also backlit while it is
depressed, until it is released. el_dest._ltlIm

* The on-floor variables are enumerated below.

1. On each floor there is a summons button in each direction, with the obvious
exception of the first and last floors. They are depressed to indicate that the
traveler wishes an elevator to come to floor m, and take him in the chosen
direction 1. flsummdeprm,,

* 2. Each summons push button is backlit to indicate that it has been depressed.
fl_summ lltm,j

3. On each floor, there are two indicators next to each elevator. These indicate
that an elevator is stopping or is stopped at the floor. These are defined for all
floors; though the indicators for the top floor going up, and the bottom floor

* going down are not ever set or reset, they are defined for consistency of termi-
nology. fldlirectlonl,m,1

4. Each elevator has a set of doors on each floor. fl.doors.closedl,m

2.6. Scheduler Interfaces0
The elevators must have a scheduler deciding which elevators stop to service summons
buttons, or move to service summons button demands when some of the elevators are dor-
mant. The functionality of the scheduler itself does not concern us here, since this belongs
to the realm of optimization theory, but the scheduler's interfaces are important. The signals

* described below represent the results of the scheduler. The scheduler could obviously dis-
turb operations-for example, it could issue a command to each elevator to ignore the re-
quests for a summons button. To evaluate the operation of the system, we must put restric-
tions on the expected behavior of the scheduler. These are expressed as fairness con-
ditions in a later section. Each elevator will work autonomously, stopping at a floor if the

* appropriate conditions are set. These conditions are described in a later section. The
scheduler can override some of these conditions in the interest of more efficient operation of
the elevator system.

CMU/SEI-89-TR.24 7



1. The scheduler can override the decision of an elevator I to stop at a flrm in
some cases. The precise description of the cases will be given later.
schstopoverrldel,m,j 9

2. The scheduler can prevent an elevator I from leaving a floor m in the direction
J, in response to a summons request. schstart overrldel,m,j

3. The scheduler can cause the elevator I traveling in direction J to stop at a floor
m. schstoPl,m,j

8
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3. Safety Conditions
The safety conditions describe conditions of the operation which are disallowed. Most of the
safety conditions in this context are necessary to describe conditions that are mutually in-
consistent, such as the fact that the elevator cannot be going up and down at the same time.
There are a few, however, forbidding absurd operations such as lights coming on of their
own volition.

3.1. On-Board Safety Considerations
1. The elevator must only indicate movement in one of the two directions, or no

direction. It cannot simultaneously show movement in both directions. If both
indicators are unlit (false), then this means that the elevator is stopped.

V I rI, (1 -, ( el-dlrectloni, Up A el--directlonl,down)
2. The elevator can only be shown to be at one floor at any time.

V I E I, 3 ml E M , el_positIonljml = (V m r (M - ml), -, el_positioni,m)
3. When an elevator destination push button is lit, it must previously been

depressed or lit. This prohibits the light from coming on autonomously.

V (l,m) E IM, el-destlitm = , (eldest-litim v eldest depri,m)

3.2. On-Floor Safety Considerations
1. For each elevator only one arrival light at one floor can be on at any time.

Having no arrival light on is always valid. The light can only be on when the
elevator is in the vicinity of the floor.

V (I,ml,Jl) e IMJ, fldlrectlonli,ml, I = el_posiltlOnl,ml A (V (m,J) e( MJ
-(ml ,Jl)), -, fl-dlrectlonlm,j)

2. In addition, there are two variables which are always false.

V I e 1, [f (-, fI_directioni,1 ,down A -i fl-dlrection,M,UP)
3. The floor summons lights must not be lit, unless at the previous state they

were lit or the push button was depressed.

V (m,J) e MJ, fl-summJlltm,j =* 9 (fl-summ-litm,j v flsummdeprm,j)
4. The floor doors can be open only if the elevator doors are open and the

elevator is at the floor.

V (1,m) E IM, [] -' fldoorsclosdi,m -c- eldoorsclosed A

elpostlonI,m

Note that this prohibits more than one door being open at one time for any elevator, since
only one of the elpositlonl m values can be true at any instant.

CMU/SEI-89-TR-24 9
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3.3. Scheduler Safety Considerations
1. It would be ridiculous to have a scheduled stop at the same time as as over-9

ride in the same direction.

V (l,mj) r= IMJ, [I -, (sch stop__overrideIMiJ A sch -stoplmj)
2. In addition, the elevator must always stop at the top and bottom floors.

V I r= 1, [] (sch...stoPI,M,Up A sch-StOPI,M,down A sch StOP111 ,down A
sch stopl,i,up)

3. The scheduler will never have all elevators with a start override in the same
direction at the same time.

V J J, II ~(V I 1 , sch-start overrldel,m,J)

10 CMU/SEI-89-TR-24



4. User's Viewpoint
We start by describing the user's view of how the elevator should operate. This view is
restricted to what the user can do and see. This allows for many different implementations
of elevator operation.

1. When a summons push button is depressed at floor m for direction 1, it is also
backlit, and will remain backlit until a floor directional light shows that any

* elevator I is stopping at floor m in the direction J. The button is always lit while
depressed, indicating to the user that the system is responding to the request
for service even if there is an elevator already at the floor with its arrival sight
set in the requested direction.

V (m,J) r MJ, flsumm deprm,j =* flsumm_litm, j U ( 3 i E I,
fldirection I m,j)

V (m,J) r MJ, (-, fisumm deprm,j A ( 3 i E I, fldlrectloni,m,j) -
fl_summ litm9j

2. When the floor directional light is on, the elevator is at the floor, and eventually
its doors will open. The floor directional light comes on shortly before the
doors open, to give the user time to move to the appropriate elevator. This
formula explicitly states that after turning a floor directional light on, the
elevator cannot change floors and the floor directional light stays on until the
doors have opened.

V (l,mj) E IMJ, fl-dlrectloni,m,j =( fl_directlonj,mj A el_..positloni,m) U
(0- fldoors closedl,m A fl-doorsclosedi,m)

3. When the doors eventually close, the floor directional indicator lights are also
extinguished.

6 V (I,mj) c IMJ, (. -' fldoors closedl,m A fldoors.closedl,m) =

fldirectlonli,m,j
4. When the user enters an elevator, with its floor directional light set, he expects

the directional light in the elevator to be in the same direction as that indicated
by the external floor directional light.

V (I,m,J) e IMJ, fldlrectlonlm =* eldirectlon,1

5. When an on-board destination push button is depressed, it is also backlit, and
will remain backlit until an associated floor directional light is lit.

* V (I,m) E IM, el dest-deprim => el dest.lltl,m U ( 3 1 e J, fl directlonl,m,j)

V (1,m) r IM, (-, eldestdeprim A ( 3 J J, fldlrectlonl,m,j) -

eldest Ilti,m

CMU/SEI-89-TR-24 11



6. If a destination light is backlit, and if it is in the direction indicated by the direc-
tional light, the elevator will proceed to this selected floor without turning
around.

V (,ml) E IM, (3 m 4 ml, el-destillt9m A eldlrectlonij A

el_posltloni,m) = el-directlonl, | U elposltlonl,m
7. As the elevator moves, and passes floors, the on-board directional indicators

are updated. That is, if the elevator is at floor m, and going up, it must remain
at floor m, until either it reaches floor m+l, or its directional light is extin-
guished.

V (l,m) e I*M', el_positlonl,m A el-dlrectlonlup =* (el_posltlonl,m U
((elpositloni,m+1  A el dlrectlonl,up) v (-i el dlrectloniup A

el._posltloni,m))) 0

V (l,m) r I*M., el_positlonl,m A el-directlon,down = (elpositlonl,m U
((elpositionI,m.1 A el_directlonl,down)v (-, el dlrecton,down A

el-posltloni,m)))
8. The user also wishes that the service be equitable and efficient.

a. Equitable service dictates that each request is given roughly equal pri-
ority, and that service to one user should not be much worse than ser-
vice to other users.

b. Efficient service has two components. The first component is related
to the service provided; that the elevator system should respond as
quickly as possible to each request (within the equitable constraints).
The second component has to do with the cost of service (this is of
more concern to the systems engineers than the users, but is put here
for completeness).

1
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5. System Engineer's Viewpoint
The user's viewpoint holds under all conditions, but there are many refinements to be added
to make the system work effectively. For example, having every elevator going from bottom
to top and back continuously, stopping at every floor, would satisfy the user conditions de-
scribed in the previous chapter, with the exception of equitable and efficient service. One
could even provide equitable service, by maintaining constant "headways" between the
elevators as they move up and down. This, however, would be an inefficient way to operate
the elevator subsystem. The systems engineer has to add formulas to further refine the
operation of the system. This chapter considers some of these refinements. The intro-
duction of some logical functions makes the description of operation much simpler. I then
tackle the problem of refining the user's specifications further to clear up some ambiguities.

5.1. Useful Compositions into Functions
There are many conditions which keep arising in the specification; rather than describing
such conditions repeatedly, they have been gathered into some definitions here. Their use-
fulness will become apparent later. The functions are enumerated below as compositions of
the atomic propositions, and the interactions between the functions are described later.

1. The elevator is referred to as being dormant if certain conditions hold, indicat-
ing that the elevator has nothing to do just now. An elevator I, dormant at floor
m is represented by the variable dormantl,m . The dormant conditions indicate
that the elevator is at rest at a floor, with its doors closed, no destination push
buttons backlit, and no summons buttons at that floor backlit.

V (I,m) E IM, dormantlm =
eldoorsclosed I A elposltlonl,m A ( V J E J, .- el-directionl, A -,

fldlrectlonim,j)
2. A strong-continue for an elevator in a given direction exists if there is an

on-board destination push button backlit for a floor in the direction being con-
sidered. It is designated as a strong_continue, since, if the elevator already
has the directional indicator set in direction J, it must continue to move in that
direction.

V (I,ml,j) e IMJ, strong_contlnueiml,1 = (3 m el ml, el dest llti,m)

V I - I, [] (-i strongcontInuel,1 ,down A -" strong-contlnuel,IMuP)
3. A weakcontinue condition in a given direction indicates that there is a sum-

mons button backlit at a floor in the direction being considered. It is called a
weak continue, since the scheduler can override this condition to provide more
efficient and equitable service.

V (mlJl) r MJ, weak continuemljI = (3 m 1 ml, fi-summilltm,j)

[I (-, weak-contlnuel,down A -, weak-continue IMI,up)
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4. A continue condition in a given direction indicates that there is either a
strong_continue condition, or a weakcontinue without a sch startoverride.

9
V (l,ml,j1) r IMJ, contlnue,m,J = strongcontlnue,m,J v
(weak continuel,m,J A -, schstart overridei,m,j)

Note that, by definition of both strong and weak continues, the condition below
is true. 9

V (i) E I, [1 (-, contlnue,l,down A -, contlnue,Mi,up)
5. The function stopati,mj indicates that the elevator I has reason to stop at

floor m, and indicates that it will travel in direction J. Note that at the same
floor, the functions in both directions can each be true simultaneously.

V (I,m,J) e IMJ, stopatl,m,j = (elposltlonl,m A (el_destiltl,m v
(fl-summ-lltm,j A -,sch_stopoverrlde,m,j) v sch stoPl,m,j)

6. In addition, we define that the elevator must stop at the top and bottom floors.

V I r I, [] (stop._atl,1,d o w n A StOPatI,M,UP)

5.2. Becoming Dormant
When the doors have just closed, it the elevator has no need to continue in the indicated •
direction, then the on-board directional indicator will become extinguished. Since the doors
are closed, and the floor and elevator directional lights are extinguished, this places the
elevator in a dormant condition.

V (I,m,j) e IMJ, (o- - eldoorsclosed A el doors closed I A e_pos9tlOnlm A eldirectlonl j A S
contlfnuel,m,j) -el.directlonl,j

5.3. Dormant Conditions
When the elevator is dormant, there are some conditions which will cause it to become non-
dormant, and these are described below. These are expressed nondeterministically, and it is
assumed that a fair choice will be made, as is described in the section labeled fairness.

1. When the elevator I is dormant at a floor m, and a user pushes the on-board
destination button for the floor m, the light should only be on while the button
is depressed, and the doors should simply re-open with no directional lights •
set. The door's reopening does not conflict with any of the directional Z:-r;,-is.

V (1,m) E IM, (dormantl,m A el destlitl,m) =* -, eldoorsclosedi
2. If the elevator is dormant at a floor, and a summons button at that floor is lit,

the doors will reopen, with the floor indicator reset to the new direction. If only •
one summons button is lit, then the directional light comes on in that direction.
If the up and down buttons are pushed simultaneously, we specify a nondeter-
ministic choice as to which directional indicator will be lit.

14 CMU/SEI-89-TR-24



V (I,m,J) r IMJ, (dormantl,m A fisummlitm,j A -1 fisummltm,.j) =>
0 (fl-directlon,m,j A -- eldoorsclosed)

V (I,m) c IM, (dormantim A fLsummlltm,down A flsummiltm,up)
0((fldlrectlonl,m,down vfl-dlrectloni,m,up)A-,el-doors closed)

3. When the elevator is dormant at a floor, and a condition to cause it to go to
another floor has arisen, it will switch on the on-board directional indicator in
the appropriate direction. The up direction is given prefercnce in this cas,.

V (1,m) E IM, dormantl,m A^ continuelmup A o fldirectlonl,m,down
eldlrectloni,up

V (1,m) e IM, dormantim A contlnuel,m,down A -, continuel,m,up A -o

fl-dlrectlonl,m,up : 0 el dlrection,down

The scheduler could always intervene to cause the elevators to react in the manner it de-
sired. For example, with all elevators dormant at the same floor, we would expect the
scheduler to prohibit all but one from responding in each direction.

5.4. Floor Indicators

The user's view described most of the interactions in terms of floor directional indicators. It
did not, however, specifically address how these were set. The resetting was defined, by
stating that when the doors are open, the elevator remains at the floor until they close, and
all the floor indicators are reset. Since we use the strong until, this indicates that such a
condition must eventually occur. The setting of the indicators is more complicated, as is
detailed below.

1. For the in-between floors, the indicator is set to the direction of motion if the
following conditions occur. These conditions are represented by the functionstop-atl'm'j.

a. If the elevator stops at a floor due to a destination push button being lit
for the floor, and the continue condition is set.

b. If the elevator is to stop for a lit summons button in the direction of
motion, with no scheduler override to prevent stopping.

c. A guard on this activity is that the floor summons light in the opposite
direction has not yet been set. This is needed to prevent the summons
in the opposite direction from being set before the conditions to cause
a continue in the same direction occur.

V (I,m,j) E IMJ (eldirectionlj A StOp_Otl,m,j A continuel,m,j A

fldlrectIonl,m,._,j) = fl_dIrectIonl,mJ

Note that this will not cause conflicts with the floor directional indicator in the
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0

direction of motion to be set at the top and bottom floors, since
continuel,,down and continue,M,up are defined as always false. Hence,
this will not violate the safety conditions previously given in section 2.4.2. 9

2. For the in-between floors, the indicators are set opposite to the direction of
motion if the following conditions occur. Note that this assignment includes a
next(°) operator to allow time for the floor directional light in the current direc-
tion to be determined unambiguously. The on-board directional lights will also
change.

a. There is no need to continue in the current direction.
b. The floor directional signal in the current direction is not set.
c. The stopat function in the opposite direction is true.

0
V (l,mj) E IMJ (eldirectionlj A -i contlnuel,m,j A - fldirectlonl,m,j ̂
stopti,m,.,j) A contlnuel,m,.,j= 0 fldlrectlonlm,i.j

Please note that this condition always sets the floor directional light correctly
at the top and bottom floors.

Note that in all of the above formula, when fl_dlrectionmi is true, then by the previous
formula in the user's specification, el directon, J must also be true, and from the safety
conditions formula then both fl direction m-.j and el directloni, are false. This as-
sumes that there are no inconsistencies between these invoked formulas and any other for-
mula. •

5.5. Other Stopping Conditions
The systems engineer has now specified almost everything in his domain, however, a close
inspection of all of the above formulas indicate that once an elevator is moving in a direction,
it will continue in that direction until it reaches the last floor in that direction unless a specific
condition exists at an in-between floor. This could be left to the scheduler to clear up, but
since it is not difficult, it may as well be included as part of the controller. We can specify
that if the elevator is at a floor, and there is no reason to stop and set a floor directional light,
nor any reason to continue, then it should switch off the on-board directional light, thus ef-
fectively stopping the elevator at that floor in a dormant condition, without causing the doors
to open.

V (IjTij) r IMJ (el_.posltlOnl,m A eldlrctlfonlj A -, continuei,mj A -n fl_.dlrectlonl,mj 0

eldirecton, j

This formula will also cause the elevator to become dormant if it reaches the top or bottom
floor with no on-board buttons lit, and no summons button lit, due to the definition of the
continue functions being false at the extremities.

16 CMU/SEI-89-TR-24
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6. Fairness Conditions
The fairness conditions represent restrictions to the manner in which nondeterministic con-
ditions are handled. The fairness conditions assert that in such cases, the same path will not
always be taken. In this specification, there is only one such applicable condition, namely
when the system is dormant, and the up and down summons push buttons are backlit simul-
taneously, the system should not always select one of the directions. The condition of inter-
est is repeated below from section 4.3, paragraph 2.

V (l,m) E IM, (dormanti,m A fI_summIltm,down A flsummIltm,up) o(
fldirectloni,m,down vfldlrectoni,m,up)

As is obvious from the above, the choice of direction is arbitrary and nondeterministic. The
fairness condition must ensure that each time this condition arises, the same direction is not
always chosen.

V (l,m) E IM, [] 0 (dormanti,m A fl summiIltm,down A fI_summlitm,up) - o
fldlrectioni,m,down

V (1,m) r IM, [1 0 (dormanti,m A flsummjlitm,down A fl__summ litm,up) -- 0+

fldlrectionl,m,up

If these fairness conditions are not imposed, for example by always preferring the up direc-
tion, then the single elevator can be prevented from turning on the floor directional light
down, by pushing the up summons button as the doors close, causing the up directional
light to come on, and the doors to re-open. Obviously this can continue forever.
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7. Verification
0 One of the benefits of using Temporal Logic to specify the operation of a system is that the

system can be verified to be consistent, and some conclusions can be reached about com-
pleteness and ambiguity.

* 7.1. Example 1

This example shows how the logic can be interpreted as a state machine, and illustrates
some of the strengths and weaknesses of this approach. The reader unfamiliar with the
state machine representation used may refer to Appendix 1. The example is for the trivial
case of a single floor destination push button and its associated directional indicator light in
a system with a single elevator, ignoring all of the other considerations. The English state-
ment of the problem is given below.

When the floor summons push button is depressed, it is also backlit, and will remain backlit
until the associated floor directional light is lit.

The definition of the three atomic propositions (variables) are:

1. flsummdepr: when this is true, the push button is depressed, and when it is
false, the push button is released.

2. flsumm_lit: when this is true, the push button is backlit, and when it is false,
the light is unlit.

3. ft.direction: when this is true, the floor directional light is lit, and when it is
false, it is unlit.

Two formulas which jointly describe the behavior of the push button are listed below.

1. flsumm__depr =. flsumm_lit U fl_dIrectIon
2. (-, fltsummdepr A fi direction) =* -, fisumm_lit

The system can also be represented as a state machine, with eight states, as can be seen
from Table 1. The relationship R is defined below in Table 2.

state number 1 2 3 4 5 6 7 8 state 1 2 3 4 5 state 1 2 3 4 5
fl aldepr F T r T F T F T 1 z z z 1 z • z
flsumm lit F T T T F F T F 2 z z z 2 x z z
fl direction r r F T T T T F 3 z X • 3 z a a

4 a z 4 z •
Formula 1 t t t t t f t f 5 a • 5 z •
Formula 2 t t t t t t f t

Table 1 Table 2 (R) Table 3 (R*)
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path number 1 I 2 I 3 1 4 1 5 1 6 * 7
path 1235 1124 1125 114 115 11234 *135
fl_sum depr F T F F I F T T I F T F I F T I FF F TFT *F F F
flisumnnlit F T T F I F T T I F T F I F T iFF I F T TT *F T F
fldirection F F F T I F F T I F F T F T I F T I F F FT *F F T

Table 4.

In Table 1 the line labeled Formula 1 shows the truth value of the first of the two formulas
specifying the system, and the line labeled Formula 2 shows the truth value of the second
specification formula. As can clearly be seen, one or the other formula is invalid for three
states (6,7,8) in the truth table. States 6 and 8 are invalid since the destination button is
depressed, and the summons button is unlit, clearly violating the requirements of Formula 1.
State 7 is invalid since it allows the summons light to be on when the directional light is on
and the push button is not depressed, hence violating Formula 2. Thus the two formulas are
only true over this restricted set of states S = (1,2,3,4,5) and are thus consistent with each
other with respect to this set of states. Then Table 1 defines the mapping function P of each
state in S on to the values of the atomic propositions in that state. The relationship R be-
tween the states is shown in Table 2. Thus a complete state machine SM =(S,R,P) has been
defined for the system.

A list of some (7) of the valid paths of states, starting at state 1, is shown in Table 4; the
paths are only shown until they satisfy Formula 1. As can be seen from the table, in each
path whenever the fl..summdepr condition is true, then so is the fl._summ_lit, and it
remains true until the fl.direction becomes true. This means that it satisfies Formula 1,
and the path is valid. When flsumm-depr is false, then Formula 1 does not apply.

However, path 7, which satisfies the formula, is clearly absurd in context, since the light
represented by ft.summ_lit comes on without any push button depression. In this case, we
must accept that the specification is incomplete, since it produces an undesirable behavior.
We must now add the further formula shown below to disallow this condition.

fl_summ_lilt -( fl.summ-lit v fl_summ-depr)

This states that if the light is lit, then in the previous state, either the light was lit or the push
button was depressed. This formula is clearly invalid against SM. We must now change the
relationship R to R shown as Table 3, which invalidates the relation between states 1 and
3, making path 7 in R impossible in R*. This now defines a new state machine SM =(S, R
P), against which all three formulas are valid.

7.2. Example 2
This example verifies that the elevator motion between two intermediate floors is consistent.
This section considers only one elevator, and drops the quantifier I from the original equa-
tions.

The relevant atomic propositions are:

20 CMU/SEI-89-TR-24
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1. el_posltionm

2. el directionj

The formulas to be considered are listed below (note that these differ somewhat from the
ones in the body of the document).

1. V m c M [I el_posltlonm A el directlonup => (el_positionm U
* (el_posltlonm+1 v (--, el directlonup A elJposItlonm)))

2. V (M) E M [I elpositionm A el_dlrectiondown => (eI_posItion m U

(el.posltlonm. 1 v (-, el_dlrectlondown A elpositlonm))

3. V ml E M [I elposItlonml => (V m E (M-ml) -, elposItIonm)

* 4. V J e J [I el dIrectlon =* -, el direction_,1

The 12 relevant states are given below in Table 2.1.

states 1 2 3 4 5 6 7 8 9 10 11 12
elypositinM_1  T F F T F F T F F F F F

el-positionm+ 0  F T F F T F F T F F F F

el-positionm+1  F F T F F T F F T F F F

el-directionup T T T F F F F F F T F F
el-directiOndown F F F F F F T T T F T F

* Table 2.1

It would be tedious to list all of the unacceptable states; suffice it to note there are 20 states
that are disallowed by the safety conditions, that only one of the three values el_posItion
and only one of the two values el-direction can be true at any time.

* The relationship R, between the 12 states, is shown below in tabular form.

1 2 3 4 5 6 7 8 9 10 11 12
1 x x x x x
2 x x x x x x
3 x x x
4 4x x
5 x

6 X x
7 x x
8 x x
9 x x

*10 x x x
11 x x x
12 x x

Table 2.2
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It can be easily checked that the valid paths from the above defined state machine, starting
from state 2, are listed below. Note that a single state change is only necessary in each
case to provide the desired behavior.

path 1 1 2 I 3 1 4
states 2 3 12 5 12 6 12 8
el position._ 1  F IF FF F F F
el positionm Tr I T T T F T T
e1Yositionm+1  F T P F V T FF 
el directonup T T T F T F T 
el directiondownF F F F F F F T

Table 2.3

Unfortunately, inspection of the paths show that path 3 is undesirable, since it allows the
elevator to change floors, while allowing the directional light to go off immediately. If we wish
to maintain the directional indicator across floor changes, then we must state this explicitly.
This can be done by extending Formula 1 as indicated below. The formula below is not
consistent with the old relationship defined in table 2.1, and we need to redo this relationship
by dropping the transition for (2,6) and the similar conditions for the other floors and the
other direction. Only the formula for the elevator to move up is written.

V m e M [] el_postlonm A eldlrectionup = (el_positionm U
(elpositlonm+ A eldlrectlonup) v (-, el directlonup A el_positlonm))
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8. The SML Model
The elevator model was built using the State Machine Language (SML) developed by Ed
Clarke and associates, and described in [Clarke 87] and other publications. The details of
the model programs are given in Appendix 2.

The model consists of three major parts.

1. A first floor, which turns the elevator around, and causes it to wait for a re-
quest at the second or third floor.

2. A second floor, which is modeled completely, allowing the elevator to bypass it
in either direction if there is no reason to stop, or to stop in response to a
summons button or destination button.

3. A third floor, which turns the elevator around, and causes it to wait for a re-
quest at the second or first floor.

The SML model of the elevator is a subset of the temporal logic descriptions due to the
limitations of the tools. Various models were built during the model development stage to
respond to these difficulties:

" Modeling a system which was small enough for the compiler.
" Learning the SML language, and how best to use this language to express the

problem.
" Attempting to achieve as large a system as possible.

8.1. Model Overview
The model could have been done in two different ways:

1. The control of the elevator moving from floor to floor could have been imple-
mented procedurally by a main program; this is referred to as the centralized
approach.

2. The control of the elevator moving from floor to floor could be distributed over
the system, with each module forever in a loop awaiting its activation condition
to occur; this is referred to as the distributed approach.

I selected the second approach, since it seems more appropriate for distributed concurrent
systems. I conducted experiments once or twice during the development of the model to
check whether the distributed control philosophy was causing larger state machines to be
generated than would have been the case with centralized control. This was done at the
early stages, on a small (16) state machine, and in this case the underlying state machines
were identical. At a later stage of development, I took a model using the distributed ap-
proach and converted it to a centralized control program. Once again the same size state
machine was created (238 states) in each case, and the same set of tests were passed by
each approach. I took this as evidence that both representations were equivalent, and stuck

* with the more appealing (to me) distributed approach.
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The layout of the modules is shown in Figure 8-1. Each of the six modules is shown on the
graph, and the control flow between modules is represented by the lines connecting the
modules. A short description of the control flow is given below. Before reading this descrip-
tion, it should be understood that each module is in a forever loop, waiting for specific con-
ditions to arise to cause the module to start executing the body of the loop. When a module
satisfies its outer loop condition, and proceeds to execute the body, it is described in the text
below as being active. While awaiting the initiating condition, it is described as being in-
active.

1. When the elevator is below the middle floor, then atbelow is active, while all
other modules are inactive. When an appropriate push button is depressed, it
will change the variables, and cause the outside wait condition in routine
at_floorjup to be satisfied, and become active. At the same time, the
atbelow module becomes inactive.

2. When the at_floor up module becomes active, it checks whether there are
any conditions requiring the elevator to stop. If there are it sets a floor direc-
tional light on, thus causing the stopping at floor module to become active,
otherwise it changes the elevator position to above, thus causing the at-above
module to become active. Under both conditions, the atfloorup module be-
comes inactive.

3. When the stopping-at floor module becomes active, it goes through the
stopping procedure. When the doors are closed, if there is no reason to move
up or down, the elevator becomes dormant, and the atdormant module is ac-
tivated. In this case, the stoppingat_floor module remains active in case the
condition arises that the elevator is to leave the floor without re-opening its
doors, due to a push button request to visit another floor.

4. When the at-dormant module becomes active, it awaits a push button re-
quest, and sets the appropriate variables depending on the button depressed.
In all cases, it expects the stopping._atfloor module to take care of the further
actions required (such as leaving the floor), and itself becomes inactive.

5. The atabove and atfloordn modules are similar to the atbelow and
at_ftoorjup modules.

6. There is an additional module for the buttons and lights that interacts with all
other modules; to reduce clutter, it is not shown on the figure.
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atabove

at floor d n

Figure 8-1: Elevator Control Modules

8.2. Model Characteristics

Before describing the model, some of the limitations, assumptions, and difficulties should be
enumerated.

1. There are problems of scale, and I was continually trying to change the model
design to allow for a larger scale system to be evaluated.

2. The model is not derived automatically from the temporal logic statements, but
is programmed separately. This gives the modeler freedom of choice in devel-
oping the model. The model described in the report is reasonably close to the
temporal logic descriptions (in some places at least), but some earlier ones
were not so close. In a later section, two different versions modeling the same
temporal formulas will be shown and discussed.

3. I eventually decided to use parallelism to as great an extent as was reason-
able (and could be handled within the scale available in the modeling tool).

4. The modpl is somewhat constructive. That is, some groups of temporal logic
statements can be identified as processes in the model.
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8.3. Variants of the At-dormant Model
There were two different models built for the atdormant module. Both models were in- 0
cluded in the configuration at different stages of the specification development, and passed
various tests during the stages where they were used. In the final stages of the code devel-
opment, the model described in Appendix 2.f was used, and the variant shown in Appendix
2.h was used at earlier stages. The two models are described below, then compared in a
later subsection.

8.3.1. Directly Derived Model
The first of the models is a direct mapping from the temporal logic expressions. It specifies
each temporal logic condition as a branch in a parallel statement, and waits for one or more
of the conditions to ,rise. Guards against simultaneous occurrences are included. The extra 0
conditions are inserted to explicitly represent the inherent nondeterminism when the up and
down floor summons requests are registered simultaneously. This is done by simply intro-
ducing a switch, which allocates the direction differently on each invocation.

8.3.2. Action Oriented 0
The second model is somewhat different, and is based on the fact that one of four con-
ditions arise to conclude the elevators dormancy:

1. It opens its doors with the directional indicators set up.
2. It opens its doors with the directional indicators set down.
3. It sets the elevator up directional indicator, and sets out for the floor above.
4. It sets the elevator down directional indicator, and sets out for the floor below.

The model is built by waiting for any of the initiating events to occur, then choosing which
action is appropriate. This, of course, does not bear a direct correlation to the temporal logic •
formulas. The temporal formulas could be re-expressed to read almost exactly like this
model, but there was no reason to do this.

8.3.3. Comparisons
The advantages of the second model are that it uses less parallelism. It is probably closer 0
to an implementation and it produces a significantly smaller state machine (roughly 500
states as opposed to roughly 1000 states for the first model). The disadvantage of the sec-
ond model is the obvious one, that its derivation from the temporal logic formulas is not
obvious or straightforward. On the other hand, the first model is easily derived (and
reviewed) from the temporal logic formulas, but seems awkward for developing an imple- 1
mentation. I chose to use the first model in most of the work, because it is straightforward
and easy to interpret.
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b.4. Model Validation

Obviously the model cannot validate the complete generality of the temporal logic state-
ments, since it could not handle multiple elevators and floors. It did, however, model the
complete operation of a single floor, and its interfaces to the adjacent floors. In validating
the model, I had to transform the temporal logic statements in the document somewhat be-
fore proceeding with the validation. There were some changes in syntax (for example the
operators are all expressed as special text character sets rather than symbols), but these
are relatively unimportant and are ignored here. The major transformations are detailed be-
low.

1. The temporal logic expressions in the report are given with no concept of time.
In the modeling toolset, time is represented as a fixed interval between ticks of
a clock. More to the point, any change in state occurring during one interval
cannot cause another change in state until (at least) the following interval. This
means that some of the formulas expressed in the body of the report required
an additional next operator. For example, the formula describing a push but-
ton depression was transformed as seen below.

V (mJ) E MJ, flsummdeprm,j = 0(fl-summ-litm,j U ( 3 E1,

fldlrectlonim,j))
2. The toolset does not include the previous temporal operator. This means that

we must re-express those formula using this operator, and requires us to use
next operations. One example is shown below, for the "becoming dormant"
condition.

V (I,mj) e IMJ, (-, eldoors_closed I A o ( eldoorsclosedl A el_posltlOnlm A

eldlrectionij - continuel,m,j)) = 00 eLdlrectlonlj
3. The toolset includes the complete branching time temporal logic capabilities

(Appendix 1), whereas the logic in this paper did not require the existential
search through paths.

4. The toolset set is based on propositional calculus, not predicate calculus, and
hence contains no quantifiers over a number of similar objects. The temporal
expressions in the report merely use quantifiers as a notational convenience,
(as opposed to using them to count such items as number of occurrences),
and can easily, if inconveniently, be replaced by a number of individual for-
mulas. Since it was only possible to model a very small system, this was not a
problem. If, however, a larger system were to be modeled, it would be a prob-
lem.
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9. Discussion
The discussion of the findings is organized around some previous work in the classification
and evaluation of software development methods described in [Firth 87] and [Wood 88].
This considers a method to consist of representations of objects, ways of deriving these
representations, and the means of examining the objects for desirable characteristics. In
addition to those characteristics which can be clearly demonstrated in the elevator problem,
I also include some others that are important in most specification domains, but are not
present in the chosen elevator problem. However, I will begin with a general overview.

The temporal logic specification was produced by a specifier (the author), and reviewed by a
single reviewer. This report, of course, has had other reviewers. But in this chapter, all
references to the reviewer are to the one individual who reviewed the specification through
many cycles over a period of months.

The temporal logic specification proved to be a good communication vehicle between the
specifier and the reviewer, even though, in this case, both people were somewhat unfamiliar
with temporal logic, and were struggling with the underlying mathematics as well as the
elevator specification. The specification was written and went through about three review
and rewrite cycles. The first review changed the organization of the report as well as some
of the formulas. The remaining reviews concentrated on the formulas and their consistency.
Since we were still in the throes of understanding the temporal logic, this, of course, cleared
up some of the foggy understanding of the logic, and reinforced my belief that it is easier to
learn a technique by applying it to a small problem. By the last review, the reviewer was
able to point out some rather esoteric problems with the specification, only to find that the
specifier could justify the existing formulas by cross-references to other portions of the spec-
ification, and convince the reviewer of the consistency of the formulas as they existed. This
convinced both the specifier and the reviewer that the temporal logic was extremely appro-
priate for this problem, and improved our understanding of the problem. More importantly, it
assisted our ability to communicate. Not only could we argue over details of the specifi-
cation, but we were able to resolve these areas of disagreement precisely. ! should also
add that the reviewer always felt that there was insufficient explanatory text, while the
specifier was uninterested in expanding the English descriptions.

9.1. Representations
The representations are the objects which specify the system, and the discussion below is
targeted at specific characteristics of systems that the representations should have.

1. The elevator specification is a behavioral specification. The only portion of the
specification which needs to be functional is the scheduler, and it was not con-
sidered. Since temporal logic is a powerful method for describing behavior,
and was chosen as the specification technique for that reason, it 'nomes as no
surprise that it is a good specification technique for the problem. The style of
the specification, is declarative, rather than operational. The SML model is an
operational model of the system's behavior.
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2. The temporal logic as used here exhibits no particular notion of concurrency,
communications, processes, or modularity. Each formula is expressed in a
stand-alone manner, and each will operate concurrently with the other for- S
mulas. Hence the structure is rather flat, and assumes that communication oc-
curs by the global sharing of data.

3. The ability to express the problem nondeterministically was useful in only a
few places, and could easily have been avoided altogether, so this specifica-
tion does not rely on temporal logic's ability to conveniently specify things non-
deterministically. Since nondeterminism is little needed, then fairness does 0
not play a major role in this specification. The fairness of the scheduler inputs
is by far the most important of the fairness issues, but, due to the inability to
scale up the model to more than one elevator, these fairness issues could not
be properly considered.

4. There are no explicit representations of time required in the specification, so
the inability of temporal logic to conveniently deal with such issues as hard
real-time deadlines was not a problem.

5. There are no data abstraction capabilities in SML. As a result, many of the
procedures were repeated with slight changes using the editor. This was pref-
erable to passing many parameters to more general modules, which would
have thoroughly confused the issues.

9.2. Derivation
In this section we will discuss only the derivation of the temporal logic expressions, since the
building of the model should be treated under the heading of examination.

1. I not only lumped all of the safety formula into a single early chapter in the
report, but actually expressed most of these conditions early in the derivation
process, thus simplifying the expression of the liveness conditions. All of the
safety conditions were not written down on a single pass before the liveness
conditions were expressed, but were derived and changed iteratively. In gen-
eral, however, the safety formula emerged early in the derivation process, and
was changed very little in the later stages of correcting the liveness conditions.

2. The liveness conditions were not originally derived as reported in the paper. I
initially organized the report to specify the operation by organizing the specifi-
cation formulas around the different device types (for example, by writing all
formulas associated with the elevator directional lights). This organization
turned out to be cumbersome to review and keep consistent. I then decided to
take the approach of specifying only what the end-user touched and saw.
This caused an additional difficulty of removing some atomic formulas which
had been conveniently introduced (for example, a logical variable indicating if
the elevator was bypassing the floor or stopping at the floor). When such con- 0
ditions were removed (and in some cases replaced by equivalences for
convenience) the specification solidified quickly. A significant early part of the
problem was to remove my knowledge (or guess) of how the system should
work.

3. This allowed me to then refine the user's specification ana derive the system
specification by resolving some open specification issues. At one point I con- S
sidered these to be an overworking of the problem, which I had been tempted
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into by my recent conversion to using temporal logic. My opinion during this
time period was to simply model rather than waste time and paper including
issues explicitly in the specification. However, building a model to satisfy
these conditions consistently was a challenging endeavor, so in the end I was
convinced that the further detail was not only desirable, but absolutely neces-
sary for success.

4. I did not elaborate on the specification by introducing more detail, such as the
manner in which a controller would interact with the elevator devices, ac-
tuators, and sensors to produce the desired behavior, and from this derive a
software specification in temporal logic. This, of course, is important future
work.

9.3. Examination

The examinations conducted were of three different types, namely:

" Review of the temporal logic for consistency and applicability.
" Handcrafting of small state machines to verify some small scale local consis-

tency of the temporal logic.
" Building the SML model to check the consistency of the temporal logic.

The handcrafting of the state machine would have been unnecessary, had I started earlier to
use the modeling languages. However, at least one important point arose from this effort,
so it will be reported.

1. As has been stated too often already, the temporal logic specification was a
splendid vehicle for communicating precisely the behavior of the elevator sys-
tem to a reviewer, and to accommodate the changes that arose from the re-
view. The success of the review process is further emphasized by the fact
that the formulas were consistent with the model.

* 2. The model building in SML relied on the liveness conditions. The safety con-
ditions were largely used for model validation. The SML model has been dis-
cussed in detail in a previous chapter.

3. The formulas were checked against the limited scale model, and were found
to be consistent. This was a psychological "shot in the arm" for the specifier,
and greatly increased my confidence not only in the elevator specification, but
in the usefulness and applicability of this approach. Two other ramifications of
consistency are listed below.

a. The early handcrafting of a state machine revealed some under-
specification, which would not have been found in the modeling of the
system. Care has to be taken that such underspecification is not

* simply ignored, but that the specifier (and reviewers) seek out con-
ditions that have not been specified.

b. There has been no systematic attempt to look into the concept of over-
specification, which can be defined as a specification formula whose
truth or falsity can be derived directly from the other formulas in the

* specification. This could be a useful concept, if the test specification is
derived from the temporal logic formula. If a formula were determined
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to be an overspecification of the system, then tests are not necessary
to cover this formula, thus reducing the test burden.

Some other important issues, such as maintainability and usability were not specifically ad-
dressed in the case study. However I feel comfortable speculating that the specification,
especially with modeling support, is eminently maintainable. Changes to the specification
can be made, the model can then be changed to accommodate them, and checks for con-
sistency can finally be made. This can all be accomplished without referring to the actual
implementation.
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10. Conclusion
The specification of the elevator problem, the building of models describing its behavior, and
the checking of the consistency of the specification, all led me to believe in the usefulness of
this approach, and convinced me not only that such systems can be specified, but also that
they should be specified. Such specifications allow for consistent and thorough reviewing of
the details of how the system is to operate, and the modeling allows for consistency check-
ing in fine detail. The availability of a supporting toolset allowed me to gain confidence in
my ability to apply the technique, and to find flaws in the logic and the model.

The specification was understandable to a knowledgeable reviewer, who approached the
review with energy and enthusiasm. To successfully use this technique, it would be neces-
sary to educate the people who would read such a specification to some minimal level.
Most readers, such as quality control people deriving test specifications, would not have to
understand the temporal logic to the extent of demonstrating completeness, or of deriving
the formula, but would have to be sufficiently knowledgeable to develop test requirements
from the specifications. The actual end-users could not be expected to understand such
formulas, but their engineering support people, who develop the requirements, would have
to understand the specification.
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Appendix 1: Temporal Logic
Temporal logic is a modal logic and each temporal formula is interpreted as true or false
against a model of the world. I chose to check the validity of a formula against a state
machine in a manner similar to that of (Clarke 84). The state machine SM =(S,R,P) is de-
fined over a set of atomic propositions AP (logical variables), and has the elements de-
scribed below.

1. S is a finite set of states;
2. R is a binary relationship on S, defining the possible transitions between

states; the arc (sI, sj) E R indicates that there is a direct path between the
states sI and si. Obviously if there is no .uch relationship in R, then there is
no arc connecting the two states. Every state must be connected to at least
one other state.

3. P assigns to each state the set of atomic propositions true in that state.

A path a(si) is an infinite sequence of states starting at state si; a(s0 ) =df (SOP S1 s2, ""),
such that each adjacent tuple of states (sl, Sl+1) is in the relationship R. VI 3 I _ 0, (Sl,Sl+1)
* R.

l.a. Branching Time Temporal Logic
The standard notation for stating that the formula f holds at state si in the structure SM is:
SM, sl I=f. When the structure SM is understood, sl J= f will suffice. The operators used
within the body of the paper are from Branching Time Temporal Logic, and are enumerated
below.

1.s 11=plffpE P(si)
2. sI J= - p iff p e P(l)
3. sI I= fl v f2 Iff (sI I= fl) v (sI I= f2)
4. sl J= 0 f Iff VJ, (SI, sj)E) R, sj J= f
5. sl I= * flff VI, (sj, sl) E R, SI I=f
6. so J= 0 p Iff V paths a(s0 ) (3 i 3 i _ 0, 's 1= p)
7. so J= [] p Iff V paths c(s0 ) (V 1 31 0, ( s J= p )
8. so J= p U q Iff V paths a(s0 ) (3 1 I >_ 0, ( sI J= q-) A (VJ 3 0 1 !5:,i, (sJI= P)))
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Appendix 2: Model details
The overview of the model was given in the body of the report, but details of the program
modules are presented here. Each model is described separately as if it were a stand-alone
module, since this makes the presentation more understandable. In actual fact all modules
comprise a single source file, and are compiled as such. The program variable declarations
and the main program are described first, followed by each of the other modules in turn.
The program variables relate directly to the names used in the temporal logic formulas, ac-
cording to the rules listed below.

" Since we are only modeling the middle floor completely, and only have one
elevator, the floor and elevator subscripts are simply dropped.

" El above and elbelow are used to represent the position at the upper and
lower floors (rather than el_position_3 and elposition_1.

* The floor doors were not included in the model.

Some comments here should make the programs more readable.

" Each assignment statement takes a single clock tick to execute. If many state-
ments are to be executed during the same clock tick, they are enclosed in a
compress endcompress statement.

" Each of the statement groups within a parallel statement (groups are separated
by the II symbols) are active simultaneously within the same clock tick. The
break statement in one group causes all groups to exit from the parallel state-
ment. The exit statement within a parallel grouping causes exit from the inner-
most loop, thus also exiting from the parallel statement.

" The delay 3 statement causes a delay of 3 clock ticks.
" The wait(expression) causes the software to wait until the expression becomes

true.
a The raise and lower statements cause the variables to become true and false,

respectively.

" The symbol "1" denotes logicalnot
" The symbol "I" denotes logicalor v.
" The symbol "&" denotes logicaland A.

CMU/SEI-89-TR-24 37



2.a. Main Program
program fllell_7e; 0

input eldest-depr; -- destination button is depressed
output el-destlit; -- destination button is lit

input fl_sum deprup, flosum _depr_dn; -- summons button is depressed
output fl1su-_litup, fl1sum_lit_dn; __ summons button is lit

input fl_su- depr_adn, fl_sumdepr-bup; -- sunmons at above and below floors
output continueup, continue dn; -- continues derived from buttons

output fldirection_up, fldirection_dn; -- floor directional lights
output el directionup, el direction dn; -- elevator directional lights

output elposition; -- elevator at middle floor
output el-above, elbelow; -- elevator above, .below

output el doorsclosed; -- doors closed
output dormant; -- dormant condition

internal nondeterm; -- flag to mimic nondeterminism

procedure wait (exp) -- waits for the expression to become true
while ! (exp) do loop skip endloop
endproc;

compress -- set the initial conditions
raise(elbelow); -- the elevator is below the middle floor
lower(el_direction up); -- its not going up
raise(eldirection dn); -- it is going down
lower(fl_direction up); -- the middle floor direction light up is reset
lower(fl direction dn); -- the middle floor direction light down is reset
lower(elabove); -- the elevator is not above the middle floor
raise(eldoorsclosed); -- the doors are closed

endcompress;
parallel

button-lights;

atfloorup;

atfloor dn;

at above;

atbelow;

stopping_at_floor;

at dormant;
endparallel;
endprog

Table 11.1
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2.b. Buttons and Lights
It is appropriate to start with these models, since they are straightforward, and will help intro-
duce the terminology. Each button/light combination is treated as its own state machine,
running in parallel with each other and with the rest of the system. The SML programs can
be seen in Table 11.2. Each is an instantiation of a single procedure buttlight, with the
passed parameters giving the important details. The procedure button-lights is invoked by
the main program. Five buttons and lights are modeled: the full set of three for the middle
floor, and one each for the below and above floors. The buttons and lights at the above and
below floors are there to emulate the continue functions, which are combinations of the re-
quests of buttons and lights in a more extensive system.

The procedure buttlight is forever in a loop. Within the loop it awaits the depression of the
push button. Then it puts the light on and waits for the condition where the floor directional
light comes on with the push button not depressed, at which point it turns off the light. Note
that depressing the button while it is lit has no effect.
procedure buttlight(depress, fldirection, light)
-- when a push button is depressed, it backlights the button associated with it
-- then waits until the arrival condition to clear the light occurs.
-- Note that this guarantees the light to be on for at least one cycle
loop

wait (depress); -- wait for button
raise (light); -- put the light on
wait( (fldirection) G !depress); --wait till elevator stopping
lower(light); -- put light off

endloop;
endproc;

procedure button-lights
parallel

buttlight(el destdepr, fldirection-up I fldirection dn, el-destlit);

buttlight (fl_sumn_depr_up, fl_direction_up, fl_sum litup);

buttlight(flsumdepr_dn, fldirectiondn, flsummlitdn);

butt light(fl_sum_depr_adn, elabove, continue-up);

buttlight(fl_sumw_depr_bup, elbelow, contnuedn);
endparallel;
andproc;

Table 11.2
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2.c. Atfloor up

This module waits for the elevator arriving at the middle floor from below, and can be seen 0
in Table 11.3. It models the specification in the floor indicators and other stopping conditions
sections, and includes the stopat function. It is somewhat less general than the temporal
logic specification. If there is no reason to continue, the specification requires the elevator
to stop at the floor by turning off the elevator directional light. Close inspection of the SML
model shows that, in this case, the model can turn on the floor directional light in the op- 0
posite direction while it is stopping. This does not violate any of the TL specification.

procedure at.floor_up
loop

wait(elbelow); -- wait until the elevator is below
wait(elyposition & eldirection_up); -- wait till its coming to the floor
if (el destlit I fl._sum _lit up I !continue_up) -- stopping condition
then -- stop

if(f1_su1n_litup I continue_up) -- indicate going up condition
then raise(f1_directionup) -- indicate going up
else compress -- change to indicate going down

raise(fldirection dn);
lower(el_directionup); 0
raise(eldirection dn);

endcompress;
endif;

else
compress -- pass the floor by

raise (elabove);
lower (elposition);

endcompress;
endif;

endloop;
endproc;

Table 11.3 0
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2.d. At-floor down

1 his moduie waits on ihe elevator aiiving at the middle floor trom above, and can be seen
in Table 11.4. It models the specification in the floor indicators and other stopping conditions
sections, and includes the stopat function. It is somewhat less general than the temporal
logic specification. If there is no reason to continue, the specification requires the elevator
to stop at the floor, by turning off the elevator directional light. This is very similar to the
atfloorup procedure.

procedure at_floor_dn
loop

wait(elabove);
wait (el_position & e1 direction dn);
if (eldestlit I fl_sumnlit_dn I !continue_dn)
then

if(fl_su -- lit dn I continue dn)
then raise(fl direction_dn)
else compress

raise (fldirection-up);
lower(el_direction_dn);
raise (eldirection_up);

endcompress;
endif;

else
compress

raise (elbelow);
lower (el_position);

endcompress;
endif;

endloop;
endproc;

Table 11.4
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2.e. Stopping-at _ floor

I nhs procedure mooeis the actions of stopping the elevator tt the fluvr, and aiso causes the
elevator to leave the floor when the required conditions arise. This is shown in Table 11.5.

1. The procedure waits until the doors are closed and one of the floor directional
lights are on. The decision to turn one of these lights on or off is made in the
at_floor up or atfloordown procedures.

2. The module then delays to model the elevator travel time to the floor, and •
opens the doors.

3. The module then starts a loop, with a parallel statement with three separate
branches.

a. The first parallel condition represents how the elevator reacts when the
doors open. Entry into this condition can occur not only from above,
but from actions within the procedure dormant, since one of the results
of the dormancy condition is to open the doors and turn on a direc-
tional light. This branch delays, then closes the doors and turns off the
floor directional indicators. If the conditions for the elevator to move
are not present, the elevator directional indicators are turned off, and
the dormancy condition is raised. This loop is exited only when the
elevator leaves the floor because of one of two other branches.

b. The second parallel branch represents waiting for the condition to con-
tinue up to arise. This condition can occur immediately after the doors
are closed, or can occur while the elevator is dormant. When the up
condition arises, the elevator leaves for the floor above.

c. The third parallel branch represents waiting for the condition to con-
tinue down to arise. This condition can occur immediately after the
doors are closed, or can occur while the elevator is dormant. When
the down condition arises, the elevator leaves for the floor below.
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procedure stopping__at _floor
loop

wait( a1 doors closed G (fi direction up I fl. direction do )
delay 1; -- wait for arrival to occur
lover (.1_doors-closed); -- open the doors
loop

parallel
loop
vait(!el -doors-closed a el-position);
delay 1;
compress

raise(el-doors-closed); -- close the doors
lover (fl-direction up); -- clear the floor directional lights
lover(fl-direction-do); -- clear the floor directional lights

endoomapres s;
if(I(continue up A el-direction _up)&!.(continue-do a el-direction-do))
then

compress -- make the elevator dormant
lover (el_direction up);
lover (el_direction-do);
raise (dormsnt);

endcompres 5;

endif;
endloop;

* I Iwait(C elposition a continue up G el direction up a el-doors-closed);
compres 7-- eleaogesu

raise (el above); eao osu

lover ( elposit ion);
endoompres s;
exit;

IIwait ( elposition a continue-do A el-directiondon a el-doors-closed);
compress

raise (el below); -- elevator goes down
lower( elposition);

endcompros s;
exit;

endparallel;
endloop;

endloop;
endproc;

Table 11.5
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2.1. Dormant
The~ dorniani mnoduie is a straightforward miapping from the temporal logic statements. Trhe
additional statements were added to include fairness explicitly in the model. This is done by
alternately assigning an up or down floor directional signal when simultaneous requests in
both directions are raised There is no action taken to move the elevator in this module.
The conditions raised cause the correct action to be taken by the stopping at floor module.
procedure at-dormant0
loop

wait (dormant);
parallel

wait (el -dest-lit);
compress

lowr (dormant); lower (.1_doors-closed);
endcompres a;0
break;

11 wait(fl-summlIt up a tfl-sum lit dn);
compress

raise(fl 1direction-up); raise(el-directiono up);
lower (dorma&nt); lower (al-doors-closed);

endcompres 5;

break;
11 wait (fl sum lit dn a& 'f1 sum lit up)

compress
raise(fl _direction do); raise (.1 direction-do);
lower (dormant); loer (el-doors-closed);

endoompres s;
break;

If valt(fl-Suaz lit up & El-summ:lit-dii & non deoer);
compress

raise (fl direction-up); raise (el-direction up);
lower (dormuant); lower (non deter.); lower (el_doors-closed);

andcompres 5;

break;
11 wait(fl-sumMlit up a fl-asum lit do a !non-deter.);

compress
raise (fl direction do); raise (el direction do);
lower (dormuant); raise (non-deter)7; lower (al doors-closed)

andcompres a;
break;

11 wait (continue-UPG I !( El-sm lit-:Up I El-sum lit-do )
compress

raise (el direction-up);
lower (dormant);

endoompres 5;

break;
11I wait (continue do a ! (continue _up I fl sum lit,.up I fl 1sum lit-dn);

compress
raise (al direction do);
lover (dormant) ;

andcoopres ;
break;

endparallel;
endloop;
endproc;

Table 11.6
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2.g. Atabove and Atbelow

The tirst prccdure (Tab!.; 11.7) models the elevator being above the completely modeled
middle floor. When the elevator comes here, it delays for one second, thus allowing some
time for it to arrive. Then it waits for a condition to cause it to turn around and go down, and
finally it returns the elevator to the lower floor.

The second procedure (Table 11.8) is similar, and models the elevator being on the below
floor.

procedure atabove
loop

wait(el above & eldirectionup);
delay 1;
wait(fl sum _litup I flsumm lit_dn I eldestlit);
compress

lower (el direction_up);
raise (eldirectiondin);
lewer(elabove);
raise (elpo-ition);

endcompress;
endloop;
endproc;

Table 11.7

procedure at below
loop

wait (el below & el direction dn);
Wait (fl_s 1litup I 1-_surlit-di I eldestlit);
compress

lower (el directiondin);
raise (el direction up);
lower (el_below) ;
raise (elposition);

endcompress;
endloop;
endproc; table 11.8
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2.h. Second Version of Dormant

This is a second version of the procedure dormant, and is slightly out of context with the S
previously shown version. In this version, not only are the affected conditions represented
more procedurally, but the action to leave the floor is also embedded in the procedure. This
version could not replace the previously described version directly in the complete model,
but it is still useful to see the difference. The two parallel branches are described below.

1. In the first branch, the conditions are modeled for opening the doors when a
destination push button at the middle floor, or one of the summons buttons at
the middle floor is depressed. The conditions for which floor directional light to
turn on are then determined, the light is turned on, and the doors opened.

2. In the second branch, the conditions for leaving the floor are awaited. When
this occurs, the preferred direction is to go up, but if there is no request to go 0
up, the elevator goes down. Note that in this version, the branch models the
elevator's leaving the floor.

procedure dormant_at_floor
loop

wait (dormant)
parallel 0

wait(el_dast lit I fl sum lit up I -fIsum lt dn);
if(fl smlit_up a fl summ lit dn & non deter I

flsum_litup & !flsum lit dn I
oldestlit a !fl_•am lit_dn-& !ontunue_dn)

then
comress

raise (fdirectionup); raise (.odirection_up); 0
raise (el doorsclosed); lower (non_deter.); lower fdormant);

endocompress;
else

compress
raise (fldirection_dn); raise (ol direction_dn);
raise (.ldoors-closed); raise(non determ); lower (dormant);

endoompres 5; 0
endif;
break;

II
wait ( (continue_up I continue_dn ) A !( fl_sumlit_up I fisum lit dn

I eldest_lit));
if (continue up)
then

compress
raise(el_directionup); raise(elabove); lower(el-position);
lower (domzant);

endcopress:
else

compres
raise (el direction_dn); raise (ol below) ; lower (elposition);
lower (do zmant) ;

eiidcompress;
endif;
ezit;

endparallel;
endloop;
endproc;

Table 11.9
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