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INTRODUCTION

Many electronically conductive polymers [1l] can be reversibly switched
between elec;fonically insulating and electronically conducting states [2].
For polypyrrole, this redox switching reaction can be written as

-(Py)-y + nBF,~ ----- > -(Py'BF, )q-(Py)yn- + ne’ (1)
where Py and Py' are reduced and oxidized monomer units in the polypyrrole
film, and BF,” is a charge balancing counter-ion, initially present in a
contacting solution phase. Equation 1 shows that ions must be incorporated
into, or expelled from, the polymer phase during the redox switching reaction.
In many cases, the rate of this reaction is controlled by ion-tranrport in the
polymer phase [3,4].

The switching reaction plays an integral role in nearly all of the
proposed applications of electronically conductive polymers [5-7]. In most
cases, significant benefit would accrue if the rate of this reaction could be
accelerated. The above discussion suggests that one approach for enhancing
the rate of the switching reaction would be to enhance the rate of charge-
transport in the polymer phase.

We have recently described a procedure for controlling the supermolecular
structures of electronically conductive polymers [8). This procedure yields
polymers with fibrillar supermolecular structures. We have shown that
polypyrrole films which have this fibrillar supermolecular structure support
higher rates of reductive charge-transport than conventional polypyrrole

films. We report preliminary results cf these investigations in this

communication.




EXPERIMENTAL

All reagents were purified as described previously [9]. The
instrumentation used has also been previously described [9]). Results from two
different types of polypyrrole will be discussed here. These are - ordinary
polypyrrole which was electrochemically synthesized at a conventional Pt disk
electrode {9], and fibrillar polypyrrole which was synthesized within the
pores of a microporous host membrane [8]. Throughout this paper these
materials are referred to as "conventional polypyrrole" and "fibrillar
polypyrrole."
Preparation of Fibrillar Polypyrrole, Fibrillar polypyrrole was prepared by
electrochemically synthesizing the polymer within the pores of commercially
available Anopore Al,0, filtration membranes [10]. These membranes contain
linear, cylindrical, 0.2 um-diameter pores. The porosity is ca. 65 %; the
membranes are ca. 50 um thick.

In order to synthesize polypyrrole in the pores, one surface of the
Anopore membrane must be converted into an electrode. This was accomplished
using the fabrication procedure shown schematically in Figure 1. One face of
the membrane was first sputter-coated with a thin (ca. 50 nm) layer of Au;
this Au layer was too thin to bridge-over the pores at the Anopore surface
(Figure 1b). Ag-Epoxy (Epotech 410-E) was used to attach a Cu lead wire to
this Au film (Figure lc).

The membrane/electrode was then immersed into a commercial Au plating
solution (Orotemp 24, Technics, Inc.). Au was galvanostatically electroplated
on top of the sputter-coated Au layer (current density = 2 mA/cm?).
Electroplating was continued until the pores were completely covered with Au

(5 min) (see Figure 1d). This thick electroplated Au layer was then covered




with epoxy (Torr Seal, Varian). Part of the opposite (Al,0,) side of the

membrane was_also coated with epoxy so that only a 0.5 cm? area of the Anopore
membrane was left exposed (Figure le).

An Au microelectrode is present at the base of each of the pores in the
exposed portion of the Anopore membrane shown in Figure le. These Au
electrodes were used to electrochemically synthesize a polypyrrole fiber in
each of the Anopore pores. An acetonitrile solution which was 0.5 M in
pyrrole and 0.2 M in Et,NBF, was used for these polymerizations. A
conventional one-compartment cell with a Pt counter and a saturated calomel
reference electrode was employed. Polymerization was accomplished
galvanostatically at a current density of 0.6 mA/cm? of exposed membrane area.

The electrosynthesis described above yields a composite of the porous
Anopore host membrane and the polypyrrole fibers (Figure 1f). The host
membrane was dissolved away by immersing the composite into 0.2 M NaOH for 15
min. This yielded an ensemble of isolated polypyrrole fibers, connected at
their bases to the substrate Au layer (Figure 1g). An electron micrograph of
such an ensemble is shown in Figure 2.

Synthesis of conductive polymer fibers necessitates exposure of the
polypyrrole to strong base (see above). Strong base has a pronounced, and
deleterious, effect on polypyrrole electrochemistry [11]. The work of Ingands
et al. suggested that the effects of strong base can be reversed by subsequent
exposure of the base treated polypyrrole to strong acid [12]. Therefore the
final step of our procedure for the preparation of polypyrrole fibers was to
immerse the fibers in a solution of 1 percent HBF, to remove any base from the
polymer. Finally, the fibers were rinsed with water, rinsed with

acetonitrile, and transferred to a solution of 0.2 M Et,NBF4 in acetonitrile




for electrochemical characterization.

Pre ventjiona ol rrole Films. Conventional polypyrrole films

were synthesized (as per above) onto 0.5 cm?

Pt disk electrodes [9]; a current
density of 1 mA/cm?® was employed. To assess the effects of the base/acid
treatment, discussed above, on the electrochemistry of polypyrrole, several of
the conventional films were also treated with the base/acid regimen.
Electrochemjcal Analysis. A large amplitude potential step experiment was used
to evaluate the rates of reduction of the various polypyrrole films. The film
was first equilibrated at an applied potential of 0.15 V vs. SCE; the film is
quantitatively oxidized at this potential. The potential was then stepped to
a final potential of -0.65 V vs. SCE [13]; this drives the film reduction
process to completion. The charge-time transient associated with reduction of
the polymer film was recorded.

Because the reduction of the film is driven to completion, the charge-
time transient ultimately reaches a plateau value (see e.g. Figure 3). The
time required to achieve 95 percent of this plateau charge (ty;) was used as
the qualitative measure of the rate of the reduction process. Comparisons of
tgs values between films will only be valid if the films contain the same
total quantity of polypyrrole. The quantity of polypyrrole can be controlled
by varying the charge delivered during the polymerization. We prepared
various fibrillar and conventional films, containing the same quantity of
polypyrrole, so that tys values could be compared.

RESULTS AND DISCUSSION

Figure 3 shows the charge time transients for an untreated conventional

polypyrrole film, a conventional polypyrrole film which had been given the

base/acid treatment (vida supra), and a fibrillar polypyrrole film (also




treated with base/acid). All of the films contain the same amount of polymer.
Note first that all three films deliver the same total quantity of charge
(plateau val;e is the same for all films). Thus, neither base/acid treatment
nor changing to the fibrillar supermolecular structure changes the
stoichiometry of the "doping” reaction.

Figure 3 also shows that the base/acid treatment diminishes the rate of
charge-transport (compare the charge-time transients for the treated and
untreated conventional films). In spite of the deleterious effect of the
base/acid treatment, the rate of reduction for the fibrillar film is
significantly higher than for the conventional films (Figure 3). This point
is reinforced by the ty data shown in Table I. For each quantity of
polypyrrole, the fibrillar film shows significantly lower ty's than the
conventional film. These data clearly indicate that the rate of reductive
charge-transport is faster in the fibrillar films than in the conventional
films.

CONCLUSIONS

We have shown that polypyrrole films with a fibrillar supermolecular
structure support higher rates of reductive charge-transport than equivalent
films with the conventional morphology. Since the reduction of polypyrrole
corresponds to the discharge reaction in a polypyrrole battery, the data
obtained here suggest that batteries incorporating fibrillar polypyrrole
cathodes could delivery higher current densities than analogous batteries
incorporating conventional polypyrrole cathodes. It is also worth noting that
in addition to the higher charge-transport rates presented here, we have shown
that extremely narrow conductive polymer fibers have much higher electronic

conductivities than corresponding conventional polymer films {14].
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Table I. tgq values associated '"ith the reduction of various

polypyrrole films.

tgs (sec)?

Polymerization Untreated Treated® Fibrillar®
Charge (m”) Conventional Conventional
95 4.0 £ 1.2 6.6 £ 1.2 1.7+0.4
190 6.5 0.4 10.7 £ 0.7 2.7 +t1.6
285 7.2 0.8 12.2 + 2.3 3.7 0.5
380 9.3 +£0.8 15.3 £ 0.6 5.9 2.1

® Time required to reduce the film to 95 % of .aximum charge value.

b Polymer was expnsed to base, then exposed to acid, see text.




Figure Captions
Figure 1 Schematic of preparation of fibrillar polypyrrole. See
text for details.
Figure 2 Scanning electron micrograph of fibrillar polypyrrole.
Figure 3 Charge vs. time transients for the reduction of various
polypyrrole films. All films contained the same quantity of
polypyrrole (polymerization charge = 190mC). -e= conventional
polypyrrole film which had been treated with base then acid (see
text for details). — untreated conventional film. —e= fibrillar

film.
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