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Information Storage Capacity of Connectionist Systems:
The Linear Associator. '2

Dean C. Mumme
and

Waiter Schneider

Learning Research and Development Center

University of Pittsburgh

Abstract

Information theory Is applied to determine the number of Items storable In a linear assoclator. An

ensemble of association matrices is treated as an M-ary symmetric Information channel where M Is the

number associations stored via the outer-product rule. The entropy of the ensemble under the outer-

product learning rule Is derived and used to bound the number or usefWtulV-toraUe Items for the

ensemble. In particular. If the ensemble has input dimensionailty n, and output dimenslonality no , and M
reM

associations between vectors of *I's are stored, then the entropy ot each weight is 1/2la 2 ---.
weM

Assuming Independent weights gives the upper bound 1/2.n/no.lOg 2 - for the entropy of the ensemble.

The task of the ensemble as an M-ary symmetric channel Is correct Identification of which output-

prototype corresponds to the prototype presented at the Input. The corresponding task entropy or task

load for M stored items Is Mlog2 M which leads to the upper bound

M I 1
-< -+-

nn 0  -2 log 2 M

for the ratio o the number of associations storable to the number of weights In the system.

Asymptotically, large matrices can store at most halt as many associations as there are weights In the

system. Storage efficieneVy Is defined as the number of bits stored In the ensemble divided by the
M

number of bits needed to specify the ensemble Itself. The efficiency can be shown to be less than -.
"'"O

Performance degradation due to storage o correlated vectors Is addressed. A performance merit

parameter, d'. Is derived as a function of matrix size, number of Items stored, and correlation between

stored prototypes. This parameter Is shown to decrease with the square-root of M if the vectors are

uncorrelated. otherwise It decreases with M. This Indicates a marked capacity decline In the correlated

case and reveals quantitatively the sensitivity o large systems to prototype correlation. In order for

correlation effects to be negligible, the probability p that a I occurs should be very nearly 1/2 as M gets

large. A surficient condition Is that Ip - 1/21 < -. M-l/ 4 . A sufficient condition for correlation effects

1Paper is based on a thesis by the first author for the doctoral degee in Computer Science at the University or Illinois at
Urbana-Champaign.

2This research is funded by a grant from the Office of Naval Research.
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to be prevalent is Ip - 1/21 > 2."3"A1/4. This reflects the sensitivity of large systems vector

correlation.

More generally, performance limits are derived by evaluating the task-entropy and using Information

theoretical relations between Input, memory, and output random-variables. This has Implications ror

memory-classification of Input vectors. This task can be viewed as a retrieval on Information-degraded

inputs (e.g. retrieval on partial or noisy Input vectors). Performance Is limited by the amount or

Information the Input vector provides about the correct Input prototype. The amount or Information

provided by the Input decreases as more classification hfan-lng Is allowed. The amount of Information the

Input provides and Its relation to memory storage and classification can be derived analytically In certain

Interesting cases.

Numerical evaluation of derived relations and simulations are Included to verily the theory. The

Intent of this Investigation Is to provide a basis for the eventual development of an informatlon-theory of

memory.



Information Storage and Classification in

Connectionist Systems:

The Linear Associator

Introduction

The systems under consideration are an outgrowth or work done on self-organizing automata and

perceptrons [26, 301 and later work In parallel associative memories, e.g. [15, 311 Minsky and Papert

in [261 had carried out rather extensive mathematical analysis on perceptrons revealIng inherent

limitations In the classes of problems they could solve. These systems were 'learning" automata expected

to classify Input "stimuli based on their past experience on "training" inputs. Minsky and Papert showed

that multiple-stages of perceptrons were required for many problems of Interest yet no training algorithm

was known at the time for multi-level systems. They concluded. in their book that the systems held little

promise and subsequent investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development

or several multi-level learning algorithms (32, 10, 27, 51 descendant offshoots of the perceptron have

regained interest. Currently a variety of these automata exist and are known by names such as 'Neural-

nets', 'Parallel Distributed Processors' (PDP networks), *Associative Memories'. They are collectively

called 'Connectionist Architectures' and have been studied as self-organizing memories of perception 1211

content-addressable memories, helrarchical knowledge bases, and classification systems [3, 2 models of

human 'neural-computation' [13, 3[ of human task performance and attentlonal learning 137. 35[ speech

performance and natural language understanding [36, 33. 111

These and other efforts have led to guarded optimism for the future of Connectionist architectures

as knowledge engines or as models of human intelligence. Capabilities and limitations of both task

learning and performance have been demonstrated. However, with the exception of a few mathematical

investigations [21. 13. 14. 5. 121 these structures are understood primarily in a qualitative sense.

In this paper, we utilize concepts from Information theory to study a simple matrix model of

distributed memory. Its information-storage capacity and efficlency are evaluated allowing definition ofa

matrix's storage load factor. Memory performance In problems such as pattern completion can then be

t This resaerch supported by a grant from the Office of Naval Research
.. ,,, bllty Cofts;Avai, ad/or

I 1st Secili



viewed as a function of matrix loading. Degradation of storage capacity with Inter-stimulus correlation

and noise at the Input are also addressed.

This work is motivated by a simulation-model of human attentlonal learning developed by the

authors [351. Though these results are specifically Intended for fuller understanding or the model, they

apply to a much broader class of OConnectlonlsto systems.

lNeural-based" systems

Matrix models of parallel distributed memories were derived as a simplistic model of brain cell

computation. In the model, the output of each cell is a real number. y representing the deviation of the

cell's firing frequency rrom some reference frequency. As such. y can be negative as well as positive. The
inputs {x 1 ,x 2 ... x to the cell are similarly real valued and each Input, x. has an associated coupling

strength w. to the cell which determines the effectiveness of that Input on the cell output. The cell

determines its output by taking the weighted average or the Inputs,

PU

i=1
The matrix memory is constructed from a collection of these cells. each sampling the same set o inputs.

If n Is the number of Inputs to the memory and n0 Is the number of cells In the memory, the vector

x (Xi z ...... Zn) o inputs when presented to the Input o the system produces an output vector.

y (yl.y. ...... yo ) given by the relation:

I
y - -Ax

nI

where A is the matrix of coupling weights wji connecting the Ith Input to the Jth cell 115. 211

To store Information In this system, two sets of vectors called the Input prototypes (fIX2 ..... M and

the output prototypes {gg 2. . . . .M are used. For each input prototype f M the weights of the system are

adjusted so that the g vector results at the system output when fm Is presented at the Input. The

system Is then said to associate f with g . For each m=1.2...M, the matrix that Is used to associate

f with g (called the mth association) is the outer-product g IF7 [15. p. 181. To store the M

associations, these M matrices are added to obtain:

Af
A g r T~~ 1

rn-Im

The Intormation for each association Is distributed over the whole of A and therefore Is overlaid with the

information tor the other associations. The resulting Interference between associations increases with KM

and ultimately limits the number o associations storable In the system.

In the case that f2'_ .M are mutually orthogonal, no Interterence exists. When fk Is Input to the
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system, we have
2

M

At T

n I

4k112gk k 1.2,. M.
n I

The matrix produces a multiple of gk when fk Is present at the Input. If the fk are chosen so that

Jfklj=--nj then gk Is reproduced exactly [3, p. 8041

The synopsis Is concerned primarily with the case that M>n I so that the Input vectors are linearly

dependent and Interference effects must be accounted for. In this case the output vector Is only an

approximation of the proper prototype output. Our concern is the number M of associations that can be

stored In a matrix of a given size before the output becomes unrecognizable.

Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M associations

(frm. g ), m= 1.2,....M for some M. The Input-prototype vectors are ni-dimensional and the output-

prototypes are n0 -dimensional. Initially, the values allowed for the components are * 1. All Input-

prototypes will then have 11fml12= n 1 and all output-prototypes 11g I 2=no. Later we can generalize but

this case is Interesting In Itself as these values represent saturation extremes of the Inputs/outputs. A

value of 1 represents a cell firing at Its maximum rate and a value of -1 represents the minimum rate.

Storing prototypes of this limited form corresponds to the cells each producing a polarized" response to

an Input vector that Itself Is the result of a previous stage of saturated cells. The vectors are assumed to

have an unbiased distribution of *ls as explained later.

To motivate the method of storage measurement, we make an analogy with digital memory. The

address to the memory can be viewed as an input vector and the retrieved data as the output vector. A

particular address vector and the data vector stored at the address location can be regarded as a vector-

association pair. The number of bits represented by the data vector Is the Information the system

provides upon performing the input-to-output association. For digital memory, the number of bits

represented Is the same as the number of bit-locations In the data vector and so Is Identical with the
dimensionality of the data vector. Storage is defined as the amount of information per association

multiplied by the number of asocitlons stored in memory. Storage capacity Is the maximum storage

the system can provide. In this case. the storage capacity Is limited by the number of storage locations of

2The norm 111 refers to the euclidean norm.
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the memory. Though the dimensionality or both the Input and output vectors Is specified In advance, the

data Items are not. That Is, the number or items that can be stored Is not determined by what they are.

For the matrix memory, the storage Is likewise given by the Information per association multiplied

by the number of associations stored. The dimensionality or the Input and output prototypes are specified

In advance, but the prototypes themselves are not. For this reason, the storage of the memory is not

defined for a particular matrix but rather for a cla.a of matrices all of the same size- The class or outer-

prod,'ct miatrix-associators of a given size Is the set of all matrices that can be generated from vectors of

±1's via equation (1). An association Is not considered to be stored In a particular matrix of the class

unless unless It Is explicitly Included In the sum. (1) that determines the matrix.

Unlike digital memory, the Information per association can be characterized In two ways. The first

Is to present for arbitrary k E {1,2.M) the kth Input prototype to the system, and regard the matrix-

output as a probabilistic rendition of the kth output prototype. On the average, (over all matrices of the

class) given M, the matrix-output will provide a certain amount of Information about the prototype

output and this Is taken as the Information provided by the association.

The second method Is to consider the matrix as an Information channel. The kth Input Is presented

to the system and an output Is generated. The latter Is compared with each prototype-output vector via

a similarity measure and the best prototype match Is chosen. This Is called an output decision. If the

It h output prototype Is chosen, an error Is Identified with i y6 k. The probability of error averaged over

the matrix-class Is taken as the error probability for the associator as an M-ary symmetric channel. The

average mutual information between the output and Input Is thus defined. This average Is considered as

the Information per association.

In either case, the storage Is the product of M and the Information represented by a single

association. Initially. the storage of the matrix Increases proportionally with M. The error probability

Increases with M as well so that the Information per association gradually decreases. For some value M

of M. the Information per association begins to diminish more rapidly than M Increases. At this point.

storing more associations decreases total Information storage of the system. The system has reached Its

storage capacity.

For the second case. we define for each matrix-size, N, the matrix channel of size N on M

assoc'ations. It consists of the enainble of all possible matrices with n1n0 = N that can be constructed

from a set of m, prototype-pairs (ft, gm). Once a set of associations Is chosen for storage, a particular

matrix Is selected rrom the ensemble via equation (1). This matrix Is deterministic and therefore Is not a

channel in the usual sense. The storage for a particular matrix constructed from M associations Is denned

as the storage of the matrix channel from which It was selected.
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The matrix-channel does not require that the system reconstruct the appropriate output response as

does the first storage characterization. The matrix channel merely selects the best match from among the

M prototype-outputs. Therefore one would expect the number of associations storable In the matrix-

channel to be larger than In the first type or assoclator. The storage capacity of the matrix-channel

Identifies the maximum number of useable3 associations that can be stored. Use of the channel for Input-

classification will require storage at some fraction of this maxlmal figure. Our objective is to quantify the

maximal figure as a function of channel-size and use It to determine memory requirements for particular

classification tasks. For this purpose, matrix-channel will considered In what follows.

Bounds on Storage Capacity

Assumptions and Notation

This analysis assumes Important relative magnitudes among the parameters. We assume
i. 4

n. > 100, i=1,2. The number of associations. M satisfies n. < < M <2"' i=1,2. The upper

bound In this case Is assumed to exceed M by many orders of magnitude. This assures that sampling

without replacement Is virtually Identical to sampling with replacement and simplifies the analysis. An
C

optimal value M or M will be shown to exist that is less than the net-size. nn O. Therefore, as long as

the net-size is Insignificant compared with 2rn, i = 1,2 the assumption on M is Justified.

The vector-prototypes are chosen by independently assigning values * I to the components. The

probability that either va, a Is taken is 1/2. Random vectors will be referred to with bold capitols (e.g.

X) whereas specific vector-outcomes are denoted In bold lower-case. For m=1,2.M. the Input-

prototypes are F and the output-prototypes are Gm when considered as random vectors. The

components of the Input vectors will be Indexed by "i" (e.g. Fki) and the output vectors will be Indexed by

•J'. The range or I Is 1.2,....n, and that of J Is 1,2 .. . .n O .

If X.X 2 ..... X are Independent identically distributed (i.i.d.) random variables (r.v.'s) on (-I.i)

with p = F(X =i) and S Is their sum. then S is binomial with parameters ± 1. n. p. We denote this by

S - Bin( 1,np). Similarly, If X is a normal r.v., with mean p, and variance A2. we put X -- N(p&,a).

The matrix-associator will be referred to as A. Whether a random matrix or a particular outcome

Is being discussed should be clear from context. To be consistent with the 6I, JO Indexing of Input and

output vectors. 110 will refer to the column and 9j9 to the row of a matrix entry, e.g. A. We define the

kth matrix-output as

9k Atk (2)

3 .Usable' for the purposes of input-claasirication

4 For positive parameters, "y > > z" indicates that y is minimally 10.3 and is typically much larger.
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(The constant 1/n, is dropped) and write the corresponding random vector as G' . The dot-product or

the K th matrix-output and the Ith prototype-output Is D ki with outcome dkl.

Parameters that take values in (-1.1) are referred to as 'bits' with -1 acting as the logical '0'.

Logical operations on these parameters are defined in this context as are terms *parity*, Ocomplimentg

(logical). etc.

Derivation of Storage Limits

Given the M Input-output prototype-pairs (fm Srn), the matrix defined by equation (1) is seen as the

sum of M outer-product matrices. The m outer-product or assoclatlon-plane is completely determined

by the nI+n 0 bits or fm and g m . Its jith component, mj Is the product rmigmj, which takes values in

(-1,1). The mth association-plane Is not changed Ir both fm and gm are multiplied by -1. This Indicates

that the mth plane represents at most nI+n 0 -1 bits or Information. The nI+n 0 -1 entries that make up a

particular row and column, are easily seen to be Independent, so that nI+n 0 -1 is also the lower bound. In

tact, the entries of the row and column are enough to determine every other entry in the plane. To

Illustrate, examine the kth row and It h column and the entry mji=r migmj. The three entries (bits) mki,

mkl and mj determine mji so that the parity or these rour numbers Is even.5 Therefore each association-

plane represents exactly nI+n 0 -1 bits.

When the association-planes are summed Information Is lost. Storage Is bounded above by the

Information contained In the weights (entries) ot the assoclator. An assessment of the matrix entropy

provides a bound on the number o association pairs storable. To begin, it can be shown that the entropy

or self-lnrormaton or a r.v. X- Bin(:k1,nI/2) Is virtually Identical to that of a normal r.v. with

variance n. The A.. are Bin(±I.M,1/2) so each has entropy H(A) -- og2 21reM. An upper bound on

the matrix entropy can be obtained by assuming Independence of the individual weights. One multiplys
1

the weight-entropy by the number of weights In the system to get H(A) = nfno0 .log 2 2feM

For M stored associations, there are M! ways to map the M (distinct) Inputs to the M (distinct)

outputs. To produce an output vector for each Input prototype that results In a correct output-decision.

the matrix entropy must exceed log 2 M! % MIiog2 M - log 2 el.5 For M<M* we must have

I
-n noiog, 2ffeM > Milog2 M - log, ej

which leads to

5 Therefore exactly half of the is concievable configurations of these four bits are possible.

For M > 2.2-10 4,log, M 3o log, e so that the log, e term can be ignored. Even for M as small as 3000 however, the

approximation log, %1! = log, M is reasonably accurate.



M 1 log2 M + log2 2xe

Y/ O 2 log2 M - log2 e

Generally we can Ignore the term log, e and since log 2 2ne P 4, an approximate bound Is

M 1 2
- < ----
",n, 2 log 2 M

For the systems considered, the right side of the Inequality will not exceed I for M near M . As the

net-size approaches Inflnity. M Is seen to lie beneath one-half the net-size. An Important observation

here Is that though one row and one column are enough to specify the bits In each associtlon-plane. the

other bits act to preserve Information stored In the plane when the planes are summed together. Without

the additional bits, the entropy of the row and column alone becomes j-(n, + no)log2 2reM. This is much

smaller than the entropy calculated above and will serve as a lower bound. The assumption of

Independent weights Is false for Individual assoclation-planes but should be accurate for M near M since

the Inter-correlations between bits In a given plane should be Swashed outs by *counter-correlatlons" In

the other (independent) planes In the sum.

Measuring Similarity

The output decisions of a matrix-assoclator depend on the similarity measure used at the output. A

given system will perform differently under different similarity measures. Therefore, the performance of a

system must be defined with respect to a particular similarity measure. The genera; definitlon of

similarity measure follows from the Hamming distance function. Denning {-1.i)* to be

(X E R" I z i E {-1.1}. i=1.2 .... n}, the Hamming Distance Is the function

HD:(-i.1}" x {-1.i}" - R given by HD(x.y) z. - yi. The Hamming DIsance Is the
2 '-I

number of components at which x and y disagree. Its negative Is a similarity measure on (-i.1}. If V Is

an n-dimenslonal vector-space, then a similarity measure is a function S:VXV-. R such that for

x.y E V.

I. S(X.y) = S( y.x)

2. For x. y E (x E VI IxII=I), S(x.y) Is maximized by x=y.

3. For x.y.w. E (-i.I}". HD(x.y) < HD(w.) implies S(xy) < S(w,s)

Under this type or similarity, x and y are to said to be more similar thaai w. z whenever S(x.y) < S(w.z).

The function Is maximal for similar vectors. Condition 3 requires the similarity measure to be consistent

with the negative Hamming dl:tance similarity, -HD(x. y) on

Ve allow the word 'minlmumlzedl to be replaced by 'maximized' In 2 with the reversal o" the

Inequality In 3. This results In a function that Is minimal for similar vectors. The negative of a

sim~l:arty function Is therefore also a similarity function.
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Examples of similarity measures Include those based on Minkowski Metrics. For Instance, either or

the rorn-s S(x.y) Iz. --J or S(x,y) = + y;I . p > 0 or their negatives can be used.

An Inner-product can also be used. e.g. the dot-product, S(x.y)= zy,. The dot-product has

several advantages the first or which Is the relative ease of analysis It provides. The dot-product detection

distributions are readily Identified. Additionally the dot-product similarity criterion should be a good

benchmark for the expected performance of systems that are cor,-fed to the output of the matrix-

associator. This Is because an associator often determines Its output by comparing the matrlx-lrput with

Its stored Input-prototypes via the dot-proauct similarity measure. The resultant output is constructed as

a weighted sum or the output-prototypes according to how similar their respective Input-prototypes are to

the matrix-input. Ir an ussoclator or this form Is connected to the output of a first-stage matrix-

assoclator. It will function best If the first stage always produces a vec.-r that Is close to the "correctO

input-prototype or the second stage with respect to dot-product simliarit).

Detection

The dot-product will be the subject of the analysis, so that S(x, y) will represent this function.

Detection will consist of placing fk at the Input of the matrix, determining the output 9'k and calculating

S(9' k' gm) for m=1.2 ..... M. The value or m for which this quantity Is largest will be chosen as the best

match. Since the vectors were originally chosen randomly, the dot-products produced are random

variables. The distribution of S(G'k , Grn) varies according to whether m = k The condition m = k Is

the match condition and defines the match distribution for the system. The condition m 3 k is the

no-match condition defining the no-match distribution. Determination of the distributions will

allow evaluation or the probability P of an incorrect output-decislon.

The dot product Is G k.GI, k- 1,2....,M where G' AFk. and A is given by (1). More

explicitly.
G k - AFk

M
=~FT Fk
rn m

M

= Z (FFk)Gm (3)
rn-I

From this Dkl Is seen to be.

Dki --- G' G1

rn-l

Since F Fk -- X2== F Fk-and similarly for GGP the sum for Dkl expands to

k = T-n1 msm ksml kimm
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M nI nO

rn-I i-I jrI

The components of the prototype-vectors are chosen independently over (-1.1) with each of these

two values occurring with probability 1/2. This Implies that the terms In (5) are *bits " by our definition

so that Di - Bin(-I.MnInO, /2)when k yA 1. For k = 1,

Ai nI nO0

Mm-i'M 9 k i-il j-1|

and D kk - Bin(±i.(M- 1).nIno,./2). For the assumed range of M. M- I f M so that Dkk and Dki

have the same variance, a = MnIn0 " The two distributions are identical except for the difference In the

means. The mean of the sums In (6) and (5) are zero. The first term In (6) however, is the constant'nIn O .

The match distribution then, has mean i = n1nO and the no-match has mean ; 2 = 0.

The separation, d' of the two distributions Is defined as the absolute difference of the means divided

by the geometric mean or the standard-devIations. Since the same standard-devlation Is common to both

distributions. d' Is the difference between the means measured In standard-deviatlon-length units:

I_ - P21
a D
nfl
,/-n n 0

-vnno/M (7)

The larger the relative separation between between the distributions, the smaller the probability that an

outcome from one distribution will be found near typical outcomes from the other distribution. As we will

see. a large d' will afford a low error-rate. From (7). d' Increases with Increasing net-sIze and decreases

with %I as would be expected. 7

Evaluation of Error Probability

In order to determine the Information storage for a system whose net-size Is n In0 with M stored

assoctatlons. Pe must be determined as a function of M. An error on the ktb Input. P occurs If there Is

an I E {1.2 ...... V), I k c such that D > Dy,. The average over k of P,k "s Pe

Let Rk denote the range or possible values of Dkk. One minus the probability that an error occurs Is

the probability that Did _ Dkk. i.e.

7A matrLx with a large number of stored associations should poorly discriminate between match v.s. no-match output-
prototype vectors
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= P <D/ a. <,aDk2 < a. Dk < ,Dkk < a.Dkk+l < a. D < a)

a rc R.

Since D -G' and Dkt -G'h G the two r.v.'s both contain information from Go and are not
strictly Int pendent. However, the dot-products are Independent given G' k and they each provide very

little information about Its components. We assume then that they are very nearly Independent. This

allows approximation or P bye,k

P -e k FDkk =a) II P Dk1 < a).
a E Rk -Il 7A k

The Dkr k A I are Identically distributed as no-matches, so letting Dk be a r.v. with the no-match

distribution givess

P 1i - V P <a) (Ds)
Pe'k P k : u-R kk (8))

*R
k

If we define F as the distribution Bin(-1.Mnjno,1/2) with mean or zero. and r as the

corresponding density function, then (8) can be written,

e= - F'(a).f'(a- ,s1) (g)P Eka E Rh

where the argument to r" must be displaced by the mean or Dkk. The distribution, F' can be *normalized"

by dividing all dot-product r.v.*s by aD = % to obtain the distribution

F - Bin(±1/v/- nlnO,j.1/2) with mean of zero. The error Pek becomes

Pe, k E F(a)M-1 .f(a - d') (10)
=E Rk

where f Is the density or the normalized distribution F.

The expression above Is not dependent on k. so the average probability P that an Input will

produce an error at the output Is given by equation (10); the matrix-channel has been shown to be M-ary

symmetric. If X represents the input vector r.v. and Y the subsequent output vector r.v., then the

Information per association Is given by

I(XY) = log2 M - P.log2 (N-i) - Hb(P) (11)

where !fH(z) - z 1o&2 z - (1-z) log, (1 - z). 0 < z < I is the binary entropy function.

For a given matrix-class, we evaluate the storage Af.(X:Y) for increasing M until the maximum

storage is round. The maximum Is called the storage capacity of the net. The value Ni or M that

produces the maximum Is called the storage addressabillty or the system under this storage

8 Since Dk = a) - 0, no distinction between fRDk < a) and F(Dk < a) is made.
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characterization. Uniqueness o M depends upon the nature of i(X;Y) as a function of M. This function

is plotted In figure for a net-size o 10S 's . The through-put addressablllty Is the value M0 o M at

which the maximum Is achieved. The function Is believed to be unimodal. Increasing to a maximum

before M reaches the net-size and then decreasing rapidly thereafter. The storage should reach a

maximum before M reaches the bound given by equation and remaining low for larger M as long as

M 2hi. i = 1.2 is satisfied. The numerical analysis carried out to date bears this out. However, a

normal approximation to the distribution F in equation (10) was used and is highly Inaccurate for large
M. Presently, a more accurate approximation Is being devised 1291 Numerical methods based on the new

approximation and actual simulations of assoclator matrices will be used to determine storage or the

systems and the validity of the analysis.

Data-Dependence of Capacity -

In the forgoing development, we assumed the vector-prototypes were chosen randomly. Random

vectors' tendency toward pairwise orthogonality keeps interference among associations low. Subsequent

sections examine suboptimal prototype storage and retrelval. The object will be to characterize

deleterious effects of storing low-entropic associations.

Storage Efficiency

Storage efflciency of a matrix Is the matrix-storage divided by the information required to represent

a matrix assoclator on M associations. Examination o equation (1) reveals that each entry in an

associator matrix Is the sum of M bits. The range of values o each entry Is the integers between -M and

M. The extremes are realized whenever the bits for that entry all agree In value. Further, the entry will

be be even If and only If M is even. It follows that the number of values an entry can assume Is M+1.

This means that n In0 weights will require nlnOlog2 (M+ 1)on 1 n0 Iog2 M bits for storage. Letting

E- M.(X;Y) be the storage of the net, then we define the efficiency q by

I--

n Inolog2 t

Since I(XY) < log 2 ,M by equation (11), It follows that E < Mog2 Mand we have

Mlog2 M M

I n log 2  M n n 0

From equation , the bound becomes

1 2

2 log" M

If one could take advantage "..' the fact that each weight has entropy 1/2.og, 2'reM. the Informatlon

required to Impllment the matrix becomes 1/2nlnlog, 21reM as stated earlier. One could therefore

define the erfnclency by

1 /2.nn log2 2,reM

Equation stipulates the eflriency defined this way Is less than unity.
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The second of these efficiency definitions might be most appropriate If 1/2nrnolog2 .2neM were the

maximum achievable entropy of the weights. However, a method for achieving the matrix entOpy

nIn0 log 2 (M+ 1) Is being formulated through Judicious choice of the associations to be learned. t

successrul, the maximum storage possible for a matrix would be shown to be n niOg 2 M. The first

definition of efficiency would then Indicate the relation of random storage to optimal storage.

Sensitivity of Storage to Vector Correlation

Previously the vector-components ot the prototype-vectors were independently selected from {-I,I)

with probability 1/2 that either value was taken. If a bias Is made In choosing the vectors so that the

probability that the value I occurs Is p for each vector component, then the storage capacity is adversely

affected. In this sense, the unbiased selection was optimal. Two questions are important for the

consideration of biased vector selection:

1. What does bias cost In terms of reduced memory capacity?

2. How nearly unbiased must the selection process be in order for the matrix to perform nearly

optimally?

The first question addresses the severity ot memory degradation with bias. The second relates to the

practicality of achieving near optimal storage.

The analysis reveals capacity degradation as a consequence of reduced d' due to bias-induced vector-

correlation. The bias, I Is defined as A - lp- 1/21 where the blas-probability p. is the probability

that any vector component Is assigned the value 1. The input may be selected with a different bias than

the output so we let PF be the bias-probability for the input prototypes and pG be the bias-probability or

the output.

To see how bias affects vector correlation, let U and V be n-dimensional vectors on {-1,1} with
S

bias-probability p . When the components are chosen Independently, the probability that a component o

U will agree with Its cnunterpart In V Is

(Lu=V ,)= (u,= ,. = I) + P( = -. V. =-1) i = 1.2 . n.. n.

==(U,.= l)$V= 1) +F U = -i)f~ = -)

2.(p - 1/2)2 + 1/2

S1/2 + 2. 2  (1)

So 1ru i = V.) > 1/2 with equality when p Is 1/2 (A 0).

Ve 'ienne p. (I - to be the probability that Fm F or arbitrary
PF_ PF) F =
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m, m' E (1,2. M} and i E (1.2. n). We say that the Input prototypes are PF-correlated.

Similarly, the parameter PG represents the correlation between pairs of output prototypes. The d'

parameter can be evaluated for the system by determining the mean and variance of both the match and

no-match distributions. The derivation or these Is tedious and non-informative and so will be left to an

appendix. Results pertinent to the discussion will be related here. For the match distribution, the mean

2
ul and variance 01 are

Ju = nf'l I + (M- 1)(2 pF - 1)(2pG - 1)1

2
a, = nInoMl + A(2pF- 1)(2 pG - 1)111 - (2p F - 1)(2pG - i)J (13)

The no-match parameters are

12 = nlnoI(2PF- 1) + (2pG - 1) + M(2pF- 1)(2pG - 1)1

0"2 = n1noMI' + M(2PF- 1)(2pG - 1)(I - (2PF- 1)(2pG - I))l (14)

Ifr and PG are set to 1/2 In the above equations, the mean and variance assume the values for the

unbiased distributions considered earlier. On the other hand, If each bias Is large enough (but not too

close to 1) for the relation

M(2PF- 1)(2pG - I)(1 - (2pF- 1)(2pG - 1)) > 1 (15)

to hold. then both the match and no-match variances can be approximated by

nInO,d 2(2PF- 1)(2pG - 1)(1 - (2PF -1)(2pG - 1)). The absolute difference between the means Is

4nInO(PF- 1)(pG - 1) so that from the deflnition of d' In (7), we have 10

4 n'V no (1 --p)(1 - PG)
d= ____ . (18)

M /(V(2 1)(2p 0 - 1)(1 - (2pF 1)( 2 po - 1))

Whereas d' varied Inversely as %1M In the unbiased case, It varies Inversely as M when a bias Is

present. Therefore. a bias Is thought to severely limit the capacity or the assoclator. On the other hand,

a bias must be present on both the input and output vectors for the effect to be present. Correlated

vectors are not as nearly orthogonal as are uncorrelated vectors. Interference effects will not be present If

the assoclator either maps correlated vectors to nearly orthogonal vectors or vice-versa. In particular. if

correlated Input vectors are associated to uncorrelated output vectors, no resulting capacity degradation Is

present. An assoclator could be used as a *front-end" to other assoclator units In order to translate

correlated Input vectors to uncorrelated outputs for further processing.

Notice the subtle difference between the match and no-match variances. This is not an error!

1oIn this discussion, the correlations are considered as by-products of the bias so that the vector prototypes can be

considered u mutually independent. However, calculation of the match/no-match mean and variances and that of d' was
carried out without the assumption of independence between respective components of the prototype vectors.
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In order for correlation effects not to be signlncant, the bias should be small enough so that the

reverse of the conditions (15) should hold. One could Ignore pF and PG In (14) and (13) If they satlsfledt 1

M(2p - 1)(2pG - 1) _ 1/9

Say for example, the bias of the Input and the output prototypes were the same. We set both pF. and PG

equal to 1/24,2 In accordance with (12). From condition , It follows that AM(2pF- 1 )(2PG - 1) > 1.

The bias, 4 would have to satisfy 12(1/2 ± 2A 2 ) - 112 < i/gM so that 4 cannot exceed 1-M - 1 4

2 V3
Large assoclators with many stored associations will require small values of 4 to perform nearly

optimally. It Is the large systems that will suffer substantial capacity deterioration If care Is not taken to

Insure that the vector prototypes are chosen with nearly even distribution of -1s and l's.

When A Is large enough to limit performance, It Is desirable to substitute d' from equation (10) Into

(10) and (11) to estimate the reduced capacity. A large bias however will compromise the Independence or

the dot-products Dkr. k E {1.2 . M.. M) that was assumed for the derivation of (10). At best. (10)

might be accurate for the smallest values of 4 In the non-optimal range. If we assume p F equals PG' then

the smallest non-optimal value for M associations Is determined from (15) and so must satisfy

M(2pF- 1)(2 pG - 1) > 1

We take 490 to be much greater than 1 and get

,: V--/4

2

An upper bound on the capacity may be found by estimating the entropy of the matrix weights

which will be distributed as Bin(±I,n,p) where p Is determined from p. and pG. Again, only the

smallest values or non-optimal d can be considered by this method since the weights will lose their

Independence as the bias becomes large.

The fraction "I/10' is 4 I but 9 is a perfect square so '1/00 is used.
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