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Information Storage Capacity of Connectionist Systems:
The Linear Associator.!?

Dean C. Mumme
and
Walter Schneider

Learning Research and Development Center
Unlversity of Pittsburgh

Abstract

Informatlon theory Is applied to determine the number of items storable In a linear assoclator. An
ensemble of assoclation matrices Is treated as an M-ary symmetric Information channel where M Is the
number associations stored via the outer-product rule. The entropy of the ensemble under the outer-
product learning rule is derived and used to bound the number of usefully-storable items for the
ensemble. In particular, If the ensemble has input dimensionality n, and output dimenslonality n,, and M

reM
assoclatlons between vectors of #1's are stored, then the entropy of each welght Is 1/2log, =.
8272

reM
Assuming Independent weights gives the upper bound 1/2-n[no-logz—2— for the entropy of the ensemble.

The task of the ensemble as an M-ary symmetric channel is correct !dentification of which output-
prototype corresponds to the prototype presented at the input. The corresponding task entropy or task
load for M stored items is M-log2 M which leads to the upper bound

M < 1 1
< -+
nmn, 2 logzM

for the ratio of the number of assoclations storable to the number of weights In the system.

Asymptotically, large matrices can store at most half as many assoclations as there are welghts in the

system. Storage efficiency Is deflned as the number of bits stored In the ensemble divided by the
M

number of bits needed to specify the ensembie itseif. The efficiency can be shown to be less than X
"o
Performance degradation due to storage of correlated vectors |s addressed. A performance merit

parameter, d°, Is derived as a function of matrix size, number of items stored, and correlation between
stored prototypes. This parameter IS shown to decrease with the square-root of M If the vectors are
uncorrelated, otherwise it decreases with M. This Indicates a marked capacity decline In the correlated
case and reveals quantitatively the sensitivity of large systems to prototype correlatlon. In order for
correlation effects to be negligible, the probability p that a 1 occurs should be very nearly 1/2 as M gets

2 1/4
large. A sufficient condition Is that |[p = 1/2] < —-M /%, A sufficlent conditlon for correlation effects
3

‘Paper is based on a thesis by the first author for the doctoral degee in Computer Science st the University of lilinois at
Urbana-Champaign.
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to be prevalent Is |p—1/2] > 2.v/3-M~Y4  This reflects the sensitivity of large systems vector
correlation.

More generally, performance limits are derived by evaluating the task-entropy and using Informatlon
theoretical relations between input, memory, and output random-variables. This has implications for
memory-classification of Input vectors. This task can be viewed as a retrieval on Information-degraded
fnputs (e.g. retrieval on partial or nolsy Input vectors). Performance is limited by the amount of
Information the input vector provides about the correct Input prototype. The amount of Information
provided by the input decreases as more classification *fan-{n® Is allowed. The amount of Information the
input provides and its relation to memory storage and classification can be derived analytically In certain

interesting cases.

Numerical evaluation of derived relations and slmulations are |ncluded to verify the theory. The
Intent of this Investigation Is to provide a basis for the eventual development of an lnformat,lo'n'-theory of

memory.




Information Storage and Classification in
Connectionist Systems:

The Linear Associator

Introduction

The systems under conslderation are an outgrowth of work done on self-organizing automata and
perceptrons {26, 30| and later work In parallel assoclative memories, e.g. {15, 31] Minsky and Papert
in [26] had carried out rather extensive mathematical analysls on perceptrons reveallng inherent
limitations in the classes of problems they could solve. These systems were ®learning® automata expected
to classify Input ®stimull® based on their past experience on ®training® inputs. Minsky and Papert showed
that multiple-stages of perceptrons were required for many problems of Interest yet no training algorithm
was known at the time for muiti-level systems. They concluded in their book that the systems held little

promise and subsequent investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development
of several multl-level learning algorithms (32, 18, 27, 5| descendant offshoots of the perceptron have
regalned Interest. Currently a variety of these automata exist and are known by names such as *Neural-
nets®, "Parallel Distributed Processors® (PDP networks), *Associatlve Memories®. They are collectively
calied "Connectionist Architectures® and have been studied as self-organizing memorles of perception [21]
content-addressable memories, heirarchical knowledge bases, and classificatlon systems |3, 2| models of
human ®neural-computation® {13, 3| of human task performance and attentional learning [37, 35| speech

performance and natural language understanding {36, 33, 11]

These and other efforts have led to guarded optimism for the future of Connectlonist architectures
as knowledge engines or as modeis of human intelligence. Capabiiities and limitations of both task
learning and performance have been demonstrated. However, with the exception of a few mathematlcal

investigations (21, 13, 14, 5, 12| these structures are understood primarily In a qualitative sense.

In this paper, we utllize concepts from Information theory to study a simple matrix model of
distributed memory. Its Information-storage capacity and efficlency are evaluated allowing definition of a

matrix’s storage load factor. Memory performance In problems such as pattern completion can then be
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viewed as a function of matrix loading. Degradation of storage capacity with inter-stimulus correlation

and nolse at the input are also addressed.

This work Is motivated by a simulation-model of human attentlonal learalng developed by the
authors (35|. Though these results are specifically Intended for fuller understanding of the modei, they

apply to a much broader class of *Connectionist® systems.

*Neural-based*® systems

Matrix models of parallel distributed memorles were derived as a simplistlc model of brain cell
computation. In the model, the output of each cell is a real number, y representing the deviation of the
cell’s firing frequency from some reference frequency. As such, y can be negative as well as positive. The

inputs {x ..xn} to the cell are similarly real valued and each input, X; has an associated coupling

X,
1’2
strength w; to the celf which determines the effectiveness of that Input on the cell output. The cell

determines its output by taking the welghted average of the inputs,

1 n
y =;Z vz

1=1

The matrix memory Is constructed from a collection of these cells, each sampling the same set of inputs.
If n, Is the number of inputs to the memory and D, Is the number of cells in the memory, the vector
xE(z‘,z,,,....zn!) of inputs when presented to the Input of the system produces an output vector,
y= (yl.y,,,....yno) given by the relation:

1

y = —Ax

Ty

where A Is the matrix of coupling weights wji connecting the ith input to the jth cell [15, 21]

To store information In this system, two sets of vectors called the Input prototypes {fl,fz.....fM} and
the output prototypes {31'32""'31\4} are used. For each Input prototype fm, the weights of the system are
adjusted so that the 8m vector results at the system output when fm Is presented at the input. The

system Is then sald to assoclate fm with 8 For each m==1,2,....M, the matrix that Is used to associate

fm with g_ (called the mth association) Is the outer-product gmff; (15, p. 18]. To store the M

assoctatlons, these M matrices are added to obtaln:

A
T
A= Z 8l (1)

mas|
The informatlon for each assoclation Is distributed over the whole of A and therefore Is overlald with the

Informatlon for the other assoclations. The resulting interference between assoclations increases with M,

and ultimately {imits the number of assocfations storabie in the system.

In the case that fl,f,,.....f\4 are mutually orthogonal, no interference exists. When fk Is Input to the




system, we have

1
= ;"“fkllzgk. k=12 ... M
I

The matrix produces a multiple of 8, when fk is present at the Input. If the fk are chosen so that

”fk”2=“l then g, Is reproduced exactly (3, p. 804

The synopsis 1s concerned primarily with the case that M> n, sc that the lnput vectors are linearly
dependent and Interference effects must be accounted for. In this case the output vector is onl_y an
approximation of the proper prototype output. Our concern Is the number M of assoclations that can be

stored In a2 matrix of a given size before the output becomes unrecognizable.

Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M assoclations
(fm. gm), m= 1.2,..M for some M. The lnput-prototype vectors are nl-dlmenslonal and the output-
prototypes are no-dlmenslonal. Initiaily, the values allowed for the components are + 1. All input-
prototypes will then have ||fm||2=nl and all output-prototypes ||3m||2=no. Later we can generalize but
this case Is {nteresting in itself as these values represent saturation extremes of the Inputs/outputs. A
value of 1 represents a cell firing at Its maximum rate and a value of -1 represents the mintmum rate.
Storing prototypes of this limited form corresponds to the cells each producing a ®polarized® response to
an Input vector that [tself Is the result of a previous stage of saturazed- cells. The vectors are assumed to

have an unblased distribution of £1°s as explained later.

To motivate the method of storage measurement, we make an analogy with digital memory. The
address to the memory can be viewed as an input vector and the retrieved data as the output vector. A
particular address vector and the data vector stored at the address location can be regarded as a vector-
assoctation palr. The number of bits represented by the data vector is the Informatlon the system
provides upon performing the input-to-output assoclation. For digital memory, the number of bdits
represented Is the same as the number of bit-locatlons in the data vector and so is ldentical with the
dimenstonality of the data vector. Storage Is defined as the amount of Information per assoclation
multiplied by the number of associtlons stored In memory. Storage capacity Is the maximum storage

the system can provide. In this case, the storage capacity Is limited by the number of storage locatlons of

"
“The oorm ||]| refers to the euclidean norm.




the memory. Though the dimensionality of both the input and output vectors Is specified in advance, the

data items are not. That is, the number of items that can be stored Is not determined by what they are.

For the matrix memory, the storage Is llkewise given by the information per assoclation muiltiplied
by the number of assoctations stored. The dimenslonality of the input and output prototypes are speciflied
in advance, but the prototypes themseives are not. For this reason, the storage of the memory !s not
deflned for 2 particular matrix but rather for a class of matrices all of the same size. The class of outer-
prod-:ct matrix-assoclators of a given size Is the sét. of all matrices that can be generated from vectors of
+1's via equation (1). An association Is not considered to be stored In a particular matrix of the class

unless unless it Is explicitly included In the sum, (1) that determines the matrix.

Unilke digital memory, the Information per association can be characterized in two ways. The first
{s to present for arbitrary ¥ € {1.2,...M} the k'Y Input prototype to the system, and regard the matrix-
output as a probabilistic rendition of the k"‘ output prototype. On the average, (over all matrices of the
class) given M, the matrix-output will provide a certain amount of Information about the prototype

output and this is taken as the informatlon provided by the associatlon.

The second method Is to consider the matrix as an informatlon channei. The k‘h Input Is presented
to the system and an output is generated. The latter Is compared with each prototype-output vector via
a similarity measure and the best prototype match Is chosen. This Is called an output declsion. If the

lth

output prototype Is chosen, an error Is ldentified with s';é k. The probabliity of error averaged over
the matrix-class Is taken as the error probabllity for the associator as an M-ary symmetric channel. The
average mutual information between the output and {nput Is thus deflned. This average is considered as

the Information per assoclation.

In elther case, the storage is the product of M and the Information represented by a single
assoclation. [Initlally, the storage of the matrix Increases proportionally with M. The error probabllity
Increases with M as well so that the Information per assoclation gradually decreases. For some value M'
of M, the Information per assoclation begins to diminish more rapidly than M Increases. At this point,
storing more assoctations decreases total information storage of the system. The system has reached its

storage capacity.

For the second case, we deflne for each matrix-size, N, the matrix channel of size N on M
associations. It consists of the ensemble of all possible matrices with ng = N that can be constructed
from a set of M prototype-palrs (fm. gm). Once a set of assoclations Is chosen for storage, a partlcular
matrix Is selected from the ensemble via equation (1). This matrix Is deterministic and therefore is not a
'channel In the usual sense. The storage for a particular matrlx constructed from M assoclatlons Is defined

as the storage of the matrix channel from which It was selected.




The matrix-channel does not require that the system reconsiruct the appropriate output response as
does the first storage characterization. The matrix channel merely selects the best match from among the
M prototype-outputs. Therefore one would expect the number of associations storable In the matrix-
channel to be larger than in the first type of assoclator. The storage capacity of the matrix-channel
identifies the maximum number of useable3 assoclations that can be stored. Use of the channel for Input-
classification will require storage at some fraction of this maxima=) figure. Our objective is to quantify the
maximal flgure as a function of channel-size and use it to determine memory requirements for particular

classification tasks. For this purpose, matrix-channel will considered in what follows.
Bounds on Storage Capacity

Assumptions and Notation

This analysis assumes important relative magnitudes among the parameters. We assume
n, > 100, i=1,2. The number of assoclatlons, M satisfles n. << M<<2™ i=1,2% The upper
bound In this case Is assumed to exceed M by many orders of magnitude. This assures that sampling
without replacement Is virtually ldentical to sampling with replacement and simplifies the analysis. An
optimal value M. of M will be shown to exist that Is less than the net-size, nng,. Therefore, as long as

the net-size is insignificant compared with 2'".. § = 1,2 the assumption on M Is justifled.

The vector-prototypes are chosen by independently assigning values £ 1 to the components. The
probabllity that either vaid2 Is taken is 1/2. Random vectors will be referred to with bold capltols (e.g.
X) whereas specific vector-outcomes are denoted in bold lower-case. For m=1,2,...M, the Input-
prototypes are Fm and the output-prototypes are Gm when considered as random vectors. The
components of the input vectors will be Indexed by *1*® (e.g. Fki) and the output vectors will be indexed by

®}j®*. Therangeoflls 1.2.....nl and thatof } is 1.2.....no.

It X,.X,.....X_ are Independent identically distributed (i.5.d.) random varfables (r.v.’s) on {-1.1}
with p = P(X'.=l) and S is thelr sum, then S Is binomial with parameters £+ 1, n, p. We denote this by

S ~ Bin(£1,n,p). Simllarly, If X Is 2 normal r.v., with mean g, and variance >, we put X ~ N(u.0).

The matrix-associator will be referred to as *A®". Whether 3 random matrix or a particular outcome
Is being dlscussed should be clear from context. To be consistent with the ®1, J* Indexing of Input and
output vectors, *1* wlill refer to the column and *}® to the row of a matrix entry, e.g. Aji' We deflne Lhe

k'® matrix-output as

g, = Af, (2)

3
“Usable® for the purposes of input-classification

4 . .
For positive parameters, *y > > 2z indicates that y is minsmally 10-2 and is typically much larger.




(The constant l/n' Is dropped) and write the corresponding random vector as G'k' The dot-product of

the k"h matrix-output and the lul prototype-output Is Dkl with outcome dkl'

Parameters that take values in {-1,1} are referred to as °"bits® with -1 acting as the logical *0°.
Logical operations on these parameters are defined in this context as are terms “parity®, *compliment®

(logical), ete.

Derivation of Storage Limits

Glven the M Input-output prototype-palrs (fm, gm), the matrix defined by equatlon (1) Is seen as the

b outer-product or association-plane s completely determined

sum of M outer-product matrices. The m'
th
by the n+ng bits of fm and i Its JI"" component, mji s the product rmigmj' which takes values in

{-11}. The m®
th

assocliation-plane Is not changed if both fm and 8, are multiplied by -1. Thlis Indicates
that the m ~ piane represents at most nl+no~l bits of information. The nﬁ.-no-l entries t:r;at, make up a
particular row and column, are easily seen to be independent, so that nl+no-1 is also the lower bound. In
fact, the entries of the row and column are enough to determine every other entry in the plane. To

th th

llustrate, examine the k-~ row and I columa and the entry mji=rmigmj' The three entrles (blts) m .,

$

my, and mjl determine mji so that the parity of these four numbers Is even.” Therefore each assoclation-

plane represents ezactly "l+“o'l bits.

When the assocfation-planes are summed Information is lost. Storage is bounded above by the
Information contalned in the weights (entries) of the associator. An assessment of the matrix entropy
provides a2 bound on the number of assoclation palrs storable. To beg!n, it can be shown that the entropy
or self-informat,on of a r.v. X ~ Bin(41,n,1/2) Is virtually identlcal to that of a normal r.v. with
varlance n. The Aji are Bin(+1,M,1/2) so each has entropy H(AJ.‘.) = ;-Iog2 27eM. An upper bound on
the matrix entropy can be obtained by assuming independence of the individual welghts. One multiplys

1
the weight-entropy by the number of weights In the system to get H(A) = ;nlno-log2 2reM

For M stored assoclations, there are M! ways to map the M (distinct) Inputs to the M (distinct)
outputs. To produce an output vector for each {nput prototype that results in a correct output-decision,
the matrix entropy must exceed log, M! ~ M-]log2 M — log, e|.° For M<M~ we must have

1

;nlnolog,., 2reM > M{log2 M- log,.‘ el

which leads to

5'I'l':erefore exactly half of the 18 concievable configurations of these four bits are possible.

GFOP M > '-’4'-"10‘.101., M > log, ¢ so that the log, ¢ term can be ignored. Even for M as small as 3000 however, the

approximation log,, M! == log,, M is reasonably accurate.




M - log2 M+ log2 2%e

1
"I"O 2 logzM—logze

Generally we can ignore the term log2 e and slnce logz 27e =3 4, an approximate bound is
M
"Mo

.
For the systems considered, the right side of the [nequality will not exceed 1 for M near M . As the

2
log2 M

1
< =+
2

net-size approaches infinlty, M. Is seen to lle beneath one-half the net-size. An Important observation
here ts that though one row and one column are enough to specify the bits In each assocition-plane, the
other bits act to preserve information stored in the plane when the planes are summed together. Without
the additional bits, the entropy of the row and column alone becomes %-(nl + no)log2 27xeM. This Is much
smaller than the entropy calculated above and will serve as a lower bound. The assumption of
independent weights is false for Individual association-planes but should be accurate for M near M‘ since
the Inter-correlations between bits In a given plane should be "washed out® by ®counter-correlations® in

the other (independent) planes in the sum.
Measuring Similarity

The output decislons of a2 matrix-assoclator depend on the simllarity measure used at the output. A
glven system will perform differently under different similarity measures. Therefore, the performance of a
system must be defined with respect to a particular similarity measure. The genera; deflnition of
similarity measure follows from the Hamming dIstance functlon. Defining {-1.1}" to be

{x € R"|z;, € {-1.1}.i=1.2...n}, the Hamming Dlistance Is the function

len
HD:{-1.1}" x {-1.1}" — R given by HD(xy) = ;2‘_1 |z; - vJ. The Hamming Disiance Is the
number of components at which x and y disagree. [ts negative Is a similarity measure on {-l.l}. IfVis
an n-dimensional vector-space, then a similarity measure is a functlon S:¥VXV— R such that for

xy € V.

—

. S(xy) = Sly.x)

9

.Forx,y € {x € V]||x|]|=1). S(x.y) s maximized by x=y.

3. For x.y.w.s € {—1,1}", HD(x.y) < HD(w.2) implies S(x.y) < S(w.g)
Under this type of simllarity, x and y are to sald to be more similar thau w, £ whenever S(x.y) < S(w.z).
The function is mazimal for similar vectors. Condition 3 requires the similarity measure to be consistent

with the negative Hamming diztance similarity, —HD(x. y)on {-1,1}".

We 3llow the word *minimumized® to be replaced by *"maximized® In 2 with the reversal o/ the
inequality In 3. This results in a function that Is msnimal for simllar vectors. The negative of a

similarity function s therefore also a similarity functlon.




Examples of similarity measures include those based on Minkowsks Metrics. For instance, either of

n n
the forms S(x.y) = }:,'._l lz.. - y..l" or S(x.y) = Z:'._l |z; + y‘.l’. p > 0 or their negatives can be used.

An Inner-product can also be used, e.g. the dot-product, S(x.y):Z::.'_.l z.y;. The dot-product has
several advantages the first of which Is the relatlve ease of analys!s It provides. The dot-product detection
distributions are readlly ldentified. Additlonally the dot-product similarity criterion should bde a good
benchmark for the expected performance of systems that are corr--ted to the output of the matrix-
assoctator. This Is because an associator often determines its output by comparing the matrix-irput with
Its stored input-prototypes via the dot-proguct similarity measure. The resultant output Is constructed as
a weighted sum of the output-prototypes according to how simllar their respective Input-prototypes are to
the matrix-input. If an assoclator of this form Is connected to the output of a first-stage matrix-
assoclator, it will functlon best if the first stage always produces a vec.ur that Is close to the ®correct®

Input-prototype of the second stage with respect Lo dot-product simlilarity.

Detection

The dot-product will be the subject of the analysis, so that S(x, y) will represent this function.
Detection will consist of placing fk at the input of the matrix, determining the output g’k and calculating
S(g'k. gm) for m=1,2,...,M. The value of m for which this quantity Is largest will be chosen as the best
match. Since the vectors were originally chosen randomly, the dot-products produced are random
variables. The dlstribution of S(G'k, Gm) varies according to whether m = k The conditlon m =k is
the match condltion and defines the match distribution for the system. The condition m ¢ ks the
no-match condition defining the no-match distribution. Determination of the distributions will

allow evaluation of the probability Pe of an incorrect output-declision.

The dot product Is D“ = G'k'Gl' k=1,2,...M where G'h = AF,‘. and A is given by (1). More
explicitly,
G'k = AI-‘,l
M
T
= Z GmFka

mwm|

M
Z (Fm'Fk)Gm 3)

ma=|
From this Dkl {s seen to be,

D,=G'"G
M

me={

Since Fm-l"‘k = Z"’ F_F,.and similarly for Gm'Gl' the sum for D, expands to

=l " mqy ke




Gm,.G‘,. (5)

1?’] S

The components of the prototype-vectors are chosen Independently over {-1,1} with each of these
two values occurring with probability 1/2. This implies that the terms In (5) are ®bits * by our definition

so that D, ~ Bin(x1,Mnn,1/2)when k 7€ I For k=1,

no

M "I "o
D,, = (F,F)G,G,) + }: Z E Fth.Gm’.Gl.,- (8)

musl,m pk k (=] jum]

and D“ ~ Bin(£1.(M—-1)n 1/2). For the assumed range of M, M — 1 =8 M so that D, and D,

n
ro
have the same variance, 0= M"I"O The two distributions are identical except for the difference in the
means. The mean of the sums In (8) and (S) are zero. The first term In (8) however, Is the conscant'nlno.

The match distribution then, has mean B, =nm, and the no-match has mean By = 0.

The separation, d' of the two distributions Is defined as the absolute difference of the means divided
by the geometric mean of the standard-devlations. Since the same standard-deviation Is common to both

distributions, d° Is the difference between the means measured in standard-deviation-length units:

ll"'l = "2'

=van./M (7)

Mno/
The larger the relative separation between between the distributions, the smaller the probablility that an

outcome from one distributlion will be found near typlical outcomes from the other distribution. As we will
see, a large d° will afford a low error-rate. From (7), d' Increases with Increasing net-size and decreases

with M as would be expected.’

Evaluation of Error Probability

In order to determine the Informatlon storage for a system whose net-size is NN,

assoclatlons, Pe must be determined as a function of M. An error on the k“’ input, Pe | oceurs iIf there Is

anl € {1.2...M)}, 1 # ksuchthat D, 2 D,,. Theaverageoverkof P, IsP,.

with M stored

Let R denote the range of possible values of Dkk' One minus the probability that an error occurs Is

the probabdility that D > D“. .e.

A matrix with a large aumber of stored associations should poorly discriminate between match v.s. ao-match output-
prototype vectors




l—Pe'k

Y AD, <aD,<a...D,  <eD,<oD, <a.. .D <a
e € Rh
Stnece Du = G".E-Gi and D“. = G'k'Gr the two r.v.'s both contala informatlon from G‘k and are not

strictly Inucpendent. However, the dot-products are independent glven G'k and they each provide very
little Information about its components. We assume then that they are very nearly independent. This

allows approximatlon of Pe K by

M
Py=1- Y. ADy =9 [ AD, <o
s€ER, tm=1l 9b k

The D,,. k 7 ! are Identlcally distributed as no-matches, so letting D, be a r.v. with the no-match
distribution glves8
M-1 .
P,=1- Y AD < o 'AD, =0 (8)
GGRk

If we deflne F' as the distribution Bin(:tl.Mn,no.l/z) with mean of zero, and  as the

corresponding density function, then (8) can be written,

Py=1- 3 Floyfla—p) ‘ ®)
s € Rk
where the argument to [ must be displaced by the mean of Dkk' The distribution, F* can be ®*normalized®
by dividing all  dot-product r.v.'s by o= Mn[no to obtaln the  distribution
F ~ Bin(+1/V Mnlno,l 1/2) with mean of zero. The error P, i becomes
Po=1-~ 3 AaM'fa-d) (10)
e € Rk

where f {s the density of the normalized distribution F.

The expression above Is not dependent on k, so the average probabllity Pe that an input will
produce an error at the output Is given by equation (10); the matrix-channel has been shown to be M-ary
symmetric. If X represents the Input vector r.v. and Y the subsequent output vector r.v., then the
informatlon per assoctation i1s glven by

IXY)= log, M — P¢~log2 (M~-1) - Hb(Pe) (11)
where Hb(z) = -z log2 z—(1-2) logz (1=2z), 0<z<1 Isthe blnary entropy function,

For a glven matrix-class, we evaluate the storage Af/(X.Y) for tncreasing M untll the maximum
L ]
storage Is found. The maximum Is called the storage capacity of the net. The value M of M that

produces the maximum Is called the storage addressabllity of the system under this storage

Bsince AD, =3) =50, no distinction between HDk < 4)and HDI: < a)is made.
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characterization. Uniqueness of M depends upon the nature of I(X:;Y) as a function of M. This function
is plotted in figure for a net-size of 10°5. The through-put addressabllity is the value M° of M at
which the maximum Is achleved. The function Is belleved to be unimodal, increasing to a maximum
before M reaches the net-size and then decreasing rapidly thereafter. The storage should reach a
maximum before M reaches the bound given by equation and remaining low for larger M as long as
M€ 2%, i =12 Is satisfled. The numerical analysis carried out to date bears thls out. However, a
normal approximation to the distribution F In equation (10) was used and Is highly inaccurate for large
M. Presently, a more accurate approximation Is belng devised {20] Numerical methods based on the new
approximation and actual simulations of associator matrices will be used to determine storage of the

systems and the validity of the analysis.

Data-Dependence of Capacity

In the forgoing development, we assumed the vector-prototypes were chosen randomly. Random
vectors’ tendency toward pairwise orthogonality keeps Interference among assoclations low. Subsequent
sectlons examlne suboptimal prototype storage and retreival. The object will be to characterize

deleterious effects of storing low-entrople associations.

Storage Efficiency

Storage efflciency of a matrix Is the matrix-storage divided by the information required to represent
a matrix assoclator on M associations. Examination of equation (1) reveals that each entry In an
assoclator matrix is the sum of M bits. The range of values of each entry is the integers between -M and
M. The extremes are realized whenever the bits for that entry all agree In value. Further, the entry will
be be even if and only If M Is even. It follows that the number of values an entry can assume s M+1.
This means that nn, welghts will require nmlog, (M + 1)~nlno‘log2 M bits for storage. Letting
Y = MI(X;Y) be the storage of the net, then we define the efficlency 5 by

v

]

nlrzolog2 M
Since [(X.Y) < log, M by equation (11), it follows that T < Mlog2 M and we have

A log, M M

nn olog2 M n Mo
From equation , the bound becomes

1 2
-+

2 log, M
If one could take advantage ‘s’ the fact that each welght has entropy 1/2:log, 27eM, the Informatlon

n <

required to Impliment the matrlx becomes l/2-nlnolog,, 2meM as stated earller. One could therefore
define the efflclency by

-

'

7] =
1/2~nlnolog2 2reM

Equatlon stipulates the efficlency defined this way is less than unity.
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The second of these efficiency deflnitions might be most appropriate if 1/2n[nologz -2neM were the
maximum achlevable entropy of the weights. However, 2 method for achieving the matrix entiopy
nlnolog,_,(M+ 1) is being formulated through judicious cholce of the assoclations to be learned. If
successful, the maximum storage possible for a matrix would be shown to be nlnologz M. The first

definition of efficlency would then indicate the relation of random storage to optimal storage.

Sensitivity of Storage to Vector Correlation

Previously the vector-components of the prototype-vectors were independently selected from {-l,l}
with probabllity 1/2 that elther value was taken. If a blas Is made In choosing the vectors so that the
probabllity that the value 1 occurs Is p for each vector component, then the storage capacity Is adversely
affected. In this sense, the unbiased selection was optimal. Two questions are important for the

consideration of biased vector selection:
1. What does bias cost {n terms of reduced memory capacity?
2. How nearly unbiased must the selection process be In order for the matrix to perform nearly
optimally?
The first question addresses the severity of memory degradation with bias. The second relates to the

practicality of achleving near optimal storage.

The analysls reveals capacity degradation as a consequence of reduced d’' due to bias-induced vector-
correlation. The bias, A Is defined as 4 = |p — 1/2| where the blas-probability p, Is the probability
that any vector component s assigned the value 1. The Input may be selected with a different bias than
the output so we let p;. be the blas-probabliity for the input prototypes and p;. be the blas-probability for

the output.

To see how bias affects vector correlation, let U and V be n-dimenslonal vectors on {-1,1} with
[ ]
bias-probabllity p . When the components are chosen independently, the probabillty that a component of

U will agree with {ts counterpart In V Is
AU,=V)=RAU,=1. V‘.=x)+P(U'.=-1. ;== i=12,...,n
= AU; = DAYV, = 1) + AU; = DAY, = -1)
=p?+(1-p)?
* 2
=2(p —-1/2)°+1/2

=1/2 +2:.4% (12)

So P(U'. = V'.) > 1/2 with equality when p. Is1/2 (4 = 0).

.
We efine p, = pF2+-(l—p ) to be the probability that F_.=F . for arbltrary

.
F mt m's
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mm € {12..... Mlandi € {1.2,... .n,}. We say that the Input prototypes are p-correlated.
Simllarly. the parameter Pg represents the correlation between pairs of output prototypes. The d’
parameter can be evaluated for the system by determining the mean and varlance of both the match and
no-match distributions. The derivation of these is tedious and non-informative and so will be left to an

appendix. Results pertinent to the discussion will be related here. For the match distribution, the mean

2
#, and varlance o, are

B, =nmyl + (M- 1)2pp = 1(2pg = 1)]

o] = nnoMIL + Mi2pp~ 1)(2pg — DIt — (2P = 1)(2pG = 1)) (13)

The no-match parameters are'

By =nmyl(2pp=1) + (2p5 — 1) + M(2p = 1)(2p; ~ 1)]

o, =nmn M1+ M2pp— 1)(2p; — 1)1 — (2P —~ 1)(2pg — V)] (14)

If Pp and P are set to 1/2 in the above equatlons, the mean and varlance assume the values for the
unblased distributlons consldered earlier. On the other hand, If each blas is large enough (but not too
close to 1) for the relation

M(2p,— 1)(2pg ~ 1)(1 = (2pp~ 1)(2Pg = 1)) > 1 (15)
to hold, then both the match and no-match variances can be approximated by
nlnoMz(zpr.- 1)(2pG - 1)1 —(2p,,.- l)(2pG ~1)). The absolute difference between the means Is

4n1no(pp— 1)(pG — 1) so that from the definition of d' In (7), we havel®

4vVn n (l-pp)(l—PG)

ro

&=
M

(18)

V(2pp— 12pg = 1)(1 = (2P~ 1)(2p — 1))

Whereas 4’ varied Inversely as \/I_W- In the unblased case, it varies Inversely as M when a blas Is
present. Therefore, a blas Is thought to severely limit the capacity of the associator. On the other hand,
a2 blas must be present on both the Input and output vectors for the effect to be present. Correlated
vectors are not as nearly orthogonal as are uncorrelated vectors. Interference effects will not be present If
the assoclator either maps correlated vectors to nearly orthogonal vectors or vice-versa. In particular, If
correlated input vectors are assoclated to uncorrelated output vectors, no resulting capacity degradation Is
present. An assoclator could be used as a “front-end® to other assoclator units in order to translate

correlated Input vectors to uncorrelated outputs for further processing.
[ ]

oNotice the subtle difference between the match and no-match varisnces. This is not an error!

190 this discussion, the correlations are considered as by-products of the bias so that the vector prototypes can be
considered ss mutually independent. However, calculation of the match/no-match mean and variances and that of d' was
carried out without the assumption of independence between respective components of the prototype vectors.
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In order for correlation effects not to be significant, the blas should be small enough so that the
reverse of the conditions (15) should hold. One could ignore Pp and pg in (14) and (13) if they satisfied’!
M(2pp—1)(2p;~1) < 1/9
Say for example, the blas of the input and the output prototypes were the same. We set both Pp and PG
equal to 1/2¢A2 In accordance with (12). From condition , It follows that M(Zpr- l)(2pG -1)>1.

1 -
The bias, 4 would have to satisfy [2(1/2 4 24%) — 112 < 1/9M so that A cannot exceed -7_-M A
2V3
Large assoclators with many stored assoclations will require small values of A to perform nearly

optimally. It Is the large systems that will suffer substantlial capacity deterioration if care Is not taken to

fnsure that the vector prototypes are chosen with nearly even distribution of -1's and 1's.

When A is large enough to limit performance, it is desirable to substlt.pt.e d’ from equatlon (16) into
(10) and (11) to estimate the reduced capacity. A large blas however will compromise the ix;dependence of
the dot-products Dy, k! € {1,2,...,M) that was assumed for the derivation of (10), At best, (10)
might be accurate for the smallest values of 4 In the non-optimal range. If we assume Pe equals Pg then
the smallest non-optimal value for M assoclations !s determined from (15) and so must satlsfy '

M2pp— 1)(2p; - 1) > 1

We take "9° to be much greater than 1 and get

V3

An—M~1
2

An upper bound on the capacity may be found by estimating the entropy of the matrix welghts
which wiil be distributed as Bin(t1,n,p) where p Is determlned from pp and p,. Agaln, only the
smallest values of non-optimal 4 can be considered by thls method since the weights will lose thelr

Independence as the bias becomes large.

i1 . . . :
The fraction *1/10% is « 1 but 0 is a perfect square so *1/0° is used.
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