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Abstract. We describe an approximation scheme which can be used to estimate unknown parameters
in moving boundary problems. The model equations we consider are fairly general nonlinear

b diffusion/reaction equations of one spatial variable. Here we give conditions on the parameter sets and
model equations under which we can prove that the estimates obtained using the approximations will
converge to best-fit parameters for the original model equations. We conclude with a numerical
example.

Moving boundary problems appear in a large variety of applications. For example, in [4], a
nonlinear diffusion equation with moving boundary is derived to model the effects of biofilm growth on
the adsorption properties of carbon particles (activated carbon filters are widely used to remove
pollutants from water). In [7], parabolic partial differential equations involving moving boundaries are
employed to model the elongation of the acrosomal process (a key step in the fertilization of an egg).
Finally, the one dimensional, one phase Stefan problem is well known as a model for the melting of ice
(see, e.g., [5]).

There are many approaches to solving these problems, both analytical and numerical (see, e.g.,
[5], [1]). We are interested in numerical methods for the parameter estimation, or inverse problem; we
collect data by observing a process which we assume can be modeled by a moving boundary problem.
We then try to estimate unknown parameters appearing in the model equations by minimizing a least-
squares fit-to-data criterion.

Our approach to solving the parameter estimation problem is that of [3] (see also [2] and the
references of both). The infinite dimensional model equations are replaced by an approximating system
of ordinary differential equations which have attractive computational features. We estimate the
unknown parameters within these approximating equations. We prove that the estimates obtained
using the approximate model equations converge in an appropriate sense to best-fit parameters for the
original equations.

Specifically, suppose the process in question can be modeled by a moving boundary problem
having the following form:

ut = (5(t,x) ux + r(t,x)u) + p(u) + f(t,x) 0 <x <s(t), 0 < t <T

u(0,x) = u0 (x) 0 < x < s0 ;

(1) all( Ux + Vu)j , - a 1 2 u(t,0) = g(t),

a 2 1( D Ux + 'u)L + a 2 2 u(t,s(t)) h(t) 0 < t < T;

d,= gf(su; ) 0 < t < T ; sO) s

where one of all or 0 1 2 , and one of a 21 or a 2 2 may be zero, and the others are

positive; the functional 1f may have a variety of forms, to be discussed in more detail below, and y

represents a parameter which is, in general, a function of (t,x). We assume uo, f, g and h are known-
the unknowns in the above system might be any of 9, V, p, aj, f, or so, denoted in the following by

the vector q. Let us assume here that the observations are in the form of point evaluations, i.e., we

have data {fij } corresponding to u(ti, xj), where (u,s) is a solution of (1). Then we can formulate
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304 K. A. MURPHY -

the parameter estimation problem as:

(9) Minimize J(q) = m Ifi ij - u(tixj;q)I2  for qEQ subject to (u,s)

a solution of (1).

Given the general model discussed above, we require further that the following hypotheses be satisfied
in order to prove convergence of the parameter estimates.

(H1) We assume that (1) has a unique solution (u,s) E C([0,T]; H1(0,s(t))) x H'[0,T]
with u(t,x) _ 0 and s(t) -es > 0.

(112) We assume, for any 7, 5 satisfies I'(s,ul) - G(su 2)( < A(s)Ju 1 - u2 1 and

I'J(slu) - (s2 ,u)I < p(IuooI)Is1 - s21 with A and p both continuous.

(H3) We shall search for the parameters 5, V, and - within compact subsets of
C([0,T] x [0,s(t)]), with the additional requirement that there exists a positive
constant d such that all 9 satisfy 9(t,x) _> d; we search for p within a
compact subset of C(0,U) (U is an a priori upper bound on u) with the
additional requirement that there is a constant L such that all p satisfy

IP(01) - P(0 2)1 L10, - 021 for 01 ER; all ao and so belong to compact subsets

of R+.

The second hypothesis is satisfied, for example, by the model equations for the

activated carbon problem of [41, in which CJ involves an integral over the spatial variable of a nonlinear
function of u (see the numerical example below). This hypothesis is also satisfied by one of the models
of [7] for elongation of the acrosomal process, in which 5 involves u(t,s(t)). It is not satisfied, however
by the Stefan problem, in which GF involves ux(t,s(t)).

In order to derive our approximating equations and to facilitate convergence arguments, we
transform the original problem to one of fixed extent, and then, as in [3), we rewrite the equation in
variational form. The transformation is accomplished by setting y = x/s(t), letting U(t,y) = u(t,x),
U0 (y) = u0 (x), F(t,y) = f(t,x), D(t,y) = 9(t,x), V(t,y) = Y(t,x), and r(t,y) = 7(t,x). Let us
assume for definiteness that all boundary parameters are nonzero, and aol = a2 1 = 1. We define
X = 111(0,1) and let (.,.) denote the inner product in H°(0,1). We then replace equations (1) by:

(Ut, V,) = (D Uy, Oy) - 1 (V U, Oy) + 6 (y Uy, 0) + (p(U), ;b) + (F, ¢

-I. (g(t) + a 12 U(t,0)) 1(0) + 1 (h(t) - a 22 U(t,l)) 0()

(2) for all V e X, t e [0,T]

U(0,y) = Uo(y)

6= Gi(s,Vu;r) 0 < t < T; s(0) = so.

We define an approximating subspace XN C X as the span of the set of cubic B-splines defined on a

uniform mesh of [0,1] (see [8]), and let pN: X - XN be the orthogonal projection in the H0 topology.
Our approximations will then be the solution (UN, sN) to the coupled system:

(UN, I) = (s)y) (V UN, Oy) + -- (y UN, A) + (p(UN), k) + (F, )

- 4 (g(t) + a1 2 UN(t,0)) 0(0) + s (h(t) - Q2 2 UN(t,l)) 0(1)
(2 N) for all 0 E XN, t E [0,T]

UN(oy) = pNU0
N  = j(sN,uN;r) 0 < t < T; sN(o) o.

d
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Any unknown variable coefficients must be approximated in addition to the state
approximation described above. Just as is described in [2], [3], we approximate variable parameters

with linear splines, replacing the parameter set Q by an appropriate finite dimensional approximating
set QM. The corresponding computationally tractable parameter estimation problem is given by

(9N.M) Minimize JN(q) _ UN i (t ; q) for qE QM subject to (UN,sN)

a solution of (2 N).

The system of equations (2N) represents a system of ordinary differential equations which can be
implemented very efficiently on the computer (the details of the numerical aspects will appear in a
forthcoming manuscript; a limited discussion has appeared in [6]). The optimization problems ( 9 NM)
are solved for various values of N and M, resulting in a sequence of best-fit estimates. As in [2], [3] the
crucial result in proving that solutions of (9 N' M) converge (subsequentially)
to a solution of (9) is that (UN(qN'M), sN(qNhM)) converges (in an appropriate sense) to (U(q), s(q))

for any sequence qNM which converges to q (in an appropriate sense). Such a convergence statement

can be proven under the hypotheses (Hi) - (H3) above, with the addition of:

(114) There exist constants 2, K such that sN(t) _ s > 0 and IAN(t)I < K for all N
and t E [0,T].

The above hypothesis can be met for the same two problems mentioned after (H2). Given a priori
knowledge about solutions of (1), one can modify the equation for AN by replacing UN with a
constrained version, UN; this constrained approximate state is constructed in such a way that both

(114) is satisfied, and IU- ONioo < JU- uNIL. (thereby ensuring that 5(sN,fJN) is a good

approximation to 55(sN,UN) The details of these arguments will appear elsewhere.

We present the results of a test problem, motivated by the activated carbon model of [4]. Our
equations are (1) with

Is(t)(
-= J0(t)( - 7(t))dx,

V 0, p E 0, all = 1, a12 = 0, o21 = 1, and a 2 2 = 1. We give the results of two estimations,
both of an unknown diffusion coefficient. In both cases, our data is taken to be u(ti,0) for ten values of
time. To generate data, we have first chosen functions u and s, and a "true" diffusion coefficient 9,
and then determined f, g, h, /, u 0 , and so so that (1) holds. We assume all parameters are known
except 1. In the first case, we estimate 5 = (x). The true (transformed) coefficient is given by
D(y) = e-y . In Figure 1, we have plotted the result of the estimation, using M=5 for the parameter
estimation and N=6 for the state approximation. For the second example, we estimate 13 = 5(t), with
the true coefficient given by 9 = D(t) = cos(t). The results of this estimation, again using M=5 and
N=6, can be seen in Figure 2.

We also refer the interested reader to [7], where an example of the Stefan problem appears. As
mentioned above, the Stefan problem violates (112), however, the numerical method is nonetheless
successful.
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