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Scientific Discovery
as Problem Solving

Herbert A. Simon
Carnegie-Mellon University

Scientific discovery is a central topic both for the philosophy of science and for

the history of science, but it has been treated in very different ways by the two

disciplines.1  Philosophers of science have been concerned mainly with the*

verification (or falsification) of scientific theories rather than with the origins of the

theories or the processes by means of which they were derived. In fact, until very

recently, most philosophers of science denied that a theory of discovery processm

was possiblq, and that Is probably still the malority view in the discipline (Popper,

1961). Within the past decade or so, however, a weak trickle of Interest In discovery

has grown Into a sizeable stream (Nickles, 1978).

Historians of science, on the other hand, have long been interested In the

discovery process, and have experienced no special difficulty In studying it. I do not

mean by this that it Is easy to study. Since data are mostly lacking at the more

microscopic level -- the hour by hour progress of an investigation -- they have viewed

it on a more global scale, usually relying on publications as a principal source of

data. Sometimes, however, and especially in recent years, they have gained access

to more detailed accounts of scientific work: for example the diaries and

correspondence of Darwin (Gruber, 1974), and the laboratory notebooks of Faraday

(1932-36) and Hans Krebs (Holmes, 1980). These sources allow a discovery to be

traced, If not minute by minute, at least experiment by experiment.

Cognitive psychology Is a third discipline that has long had an interest in

t in this Paper. I have drawn extensively upon ScsWI OAoVwy ComoutafonWa Exorftn of fe
Ci'vaf*A ProOeu. Cambridge, MA: MIT Pres. 1967. an account of research carried out over a decade
with my Co-authors Pat Langley, Gary L. Bradshaw, and Jan M. Zylkow. Of course. I alone am
responsible for this particular expression of our views, but the ideas are a wholly joint product.
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scientific discovery. Since psychology Is especially concerned with thinking at the

micro-level, progress toward understanding the discovery process has been Impeded

by the absence of appropriate data. To make up for this lack. psychologists have

sometimes had to rely upon anecdotal accounts of discovery, never wholly reliable, or

upon experiments which elicited behaviors that might or might not be correctly

regarded as creative (Glass, Holyoak. & Santa, 1979, pp. 432-440).

The development of modern cognitive science, combining research methods

drawn from psychology and artificial intelligence, has produced a new burst of activity

In the study of scientific discovery (Glere, 1988). The substantive innovation sparking

this activity Is a theory of human problem soMng that has been constructed over the

past thirty years which might be capable of accounting for scientific discovery as well

as for more mundane kinds of human mental activity. The methodological innovation

sparking the new research has been the use of electronic computers to simulate

human thinking, and accordingly, the use of computer programs as theories (systems

of difference equations) of thinking (Newell & Simon, 1972).

I will begin my account of these developments by trying to define what we

would mean by a "theory of scientific discovery," what the shape or form of such a

theory, descriptive or normative, might be. Next, I will describe the theory of human

problem solng that has emerged from the research in modern cognitive psychology

(or, to include the simulation aspects, cognitive science). With these preliminaries out

of the way, I will say something about the theory of discovery that has emerged, its

relatlon to the theory of problem solving and the evidence that supports it.

Shape of a Theory of Discovery

Arguments agains the possibility of constructing a theory of scientific discovery

fall Into two major categories. Stated simply, the first argument is that a successful

2
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theo"y of discovery processes would predict discoveries, hence make them -- an

obvious Impossiblity. The second argument is that discovering a theory requires a

screative" step, and that creativity is inherently unexplainable in terms of natural

processes.

I will not spend much time in debating these points, for they can be refuted by

a constructive proof. After one has described a giraffe to a skeptical listener and

been assured that *there ain't no such animal" the best reply is to exhibit a IMng

and breathing example. Computer programs exist today that, given the same initial

conditions that confronted certain human scientists, remake the discoveries the

scientists made. BACON, described at length In Langley, et al., Is one such

program; KEKADA (Kulkarnl and Simon, 1988) Is another. Neither BACON nor

KEKADA has made (predicted?) a wholly new discovery, but there is no reason in

principle why they should not. Other computer programs - e.g., DENDRAL - In fact

have done so (Feigenbaum et al., 1971).

What do we mean by claiming that these programs are theories of scientific

discovery? We mean, first, that a computer program is formally describable as a

system of difference equations; hence has essentially the same logical structure as

those theories In the physical and biological sciences that take the form of systems

of differential or difference equations. For any given state of the system under

study, such a theory predicts the subsequent state. We mean, second, that the

symbolic processes that enable the programs to make discoveries, or to reproduce

historical ones, can be shown empirically to resemble the processes used by human

scientists. I will have more to say about this evidence presently. 0

Exhibiting "lMng and breathing" computer programs that actually make

discoveries also refutes the argument that creatMty cannot be explained or simulated.

To maintain this claim In the face of the programs' accomplishments would Imply that ry Codes
and/or

3 n
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Kepler, and Joseph Black, and Snell, and Dalton, and Avogadro, and Faraday, and

Hans Kroe, and many others whose discovery processes have been simulated, were

not creative. If they were not, then creatMty is obviously not required for making

scientific discoveries of first magnitude. If they were, then the creative processes

have been simulated. Preferring the latter alternative, I will have more to say

presently about the nature of creatMty.

What kind of evidence would allow us to conclude that the processes in a

computer program were basically the same as the processes used by a human being

In the course of thinking? We have every reason to believe that while some thought

processes are conscious, so that their Inputs and outputs can be reliably reported by

the thinker (Ericsson and Simon, 1984), other essential processes are subconscious

and not open to direct observation or even self-observation. Since the unobservable

processes will be as essential to the theory as the ohuervable ones, we are faced

with the necessity of inferring their presence by indirect means.

This difficulty is no different from those faced continually in all of the sciences.

If, for example, the information processes that allow a person to recognize a familiar

object are Inaccessible to direct observation, as they are. it is equally true that

electrons, atoms, and certainly quarks, are inaccessible to direct observation. The

task of inducing theories from data and the task of persuading ourselves of the

validity of these theories, Is no different in the case before us than in any other

domain of science.

The task of a theory of discovery is to postulate an organization of processes

sufficient to account for the discoveries and for the observable behavioral phenomena

that accompany them. The task of a theory of verification (I will take a Popperlan

position here, but a Bayesian one would do as well) is to test that the theory is not

falsified by any of the observations of the relevant phenomena. In this formulation, a

4
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theory of scientific discovery, like any other theory, is falsiflable but not irrevocably

veriflable. The theory I shall propose here Is a theory of both conscious and

unconscious thought processes described at the level of Information processes or

symbolic processes. If It Is false, that can be shown by demonstrating serious

mismatches of the behavior of the program that embodies It with the behavior of

human beings engaged in creative activity.

The Theory of Human Thinking

One claim implicit In BACON, KEKADA; and similar models of the discovery

process Is that the thought processes of scientists are basically the same as the

human thought processes that have been modeled and simulated in more "mundane"

task environments. The scientist does not think in ways that are qualitatively different

from the ways In which other professionals think, or the ways In which college

students think when confronted with puzzles to solve in the psychological laboratory,

or the ways in which T. C. Mits (The Common Man In The Street) thinks.

Today we have empirically validated theories of the thought processes of

chessplayers, of medical diagnosticians, of subjects solving the Tower of Hanoi and

Missionaries and Cannibals puzzles, of students solving algebra and physics problems,

and of thinkers and problem solvers in many other domains. 2  These tWeories, like

the theories of scientific discovery that are under discussion here, take the form of

computer programs that actually perform the tasks in question. Hence in each case

they postulate a set of processes that is at least sufficient to perform the task. In

addition, a large body of evidence, including evidence from thinking-aloud protocols

and eye-movement records, shows that the processes are closely similar to those

2For reviews of some of the evidence. see Newell & Simon, 1972; or Simon, 1979. 1989).

5
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used by human subjects.

A reassuring feature of these models Is that they are closely similar in structure

from task to task. What distinguishes thinking in one task domain from that in

another is specific substantive knowledge of the domain, and not the processes used

to apply this knowledge to the task. This commonality of process throughout the

range of tasks that has been studied gives us initial confidence -- a high Bayesian

prior -- that the same processes will also show up in the study of scientific discovery.

What are the underlying common features of this theory of thinking?

Physical Symbol Systems

The foundation for all of the models is the Physical Symbol System Hypothesis

(Newell & Simon, 1976). The hypothesis states that physical symbol systems, and

only such systems, are capable of thinking. A physical symbol is a pattern (of chalk,

ink, neuronal connections, electromagnetic fields, or what not) that refers to or

designates another pattern or a detectable external stimulus. Printed words on a

page are symbols, so are pictures or diagrams, so are numbers. A physical symbol

system is a system that Is capable of inputting symbols, outputting them, storing them

in memory, forming and modifying structures of symbols In memory, companng pairs of

symbols for identity or difference, and branching in its subsequent behavior on the

basis of the outcomes of such tests.

A computer Is obviously a physical symbol system. Its ability to perform these

processes (and only these processes) can be verified easily from its physical

properties and operation. A human brain is (less obviously) a physical symbol

system. It can certainly carry out the processes specified in the definition of such a

system, but perhaps other processes as well.

6
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How Do Computers Think?

That human beings can think is regarded as well established. If we wish to

test this capability in any instance, we give the person a task of the kind that is

regarded as requiring thought and observe his or her performance., That computers

can think Is sometimes regarded as debatable. If we wish to test this hypothesis,

we give the computer a task of the kind used to test whether people think and

observe Its performance. The empirical evidence is by now overwhelming that

computers can perform successfully in many task environments that call for thinking

In humans. Hence we must conclude that appropriately programmed computers

think.

The more Interesting and difficult question is whether a thinking computer uses

the same processes as a thinking person in the same task environment. The

empirical answer is Nsometimes yes, sometimes no." For example, there now exist

some cheesplaying computers that perform at a formidable level, so that they can be

defeated by only a few hundred (at most) of the strongest human players. These

programs demonstrably use processes that differ in important ways from those used

by human players. While, like human players. they draw upon a considerable body

of chess knowledge, they also conduct an enormous search through the tree of

possible moves and countermoves (typically a search through several million branches

at each move). Human players, Including masters and grandmasters, seldom

examine as many as one hundred branches in the game tree before making a move

(de Groot, 1978).

On the other hand, several chess programs have been constructed that behave

in a far more humanoid manner. A program built by Newell, Shaw, and Simon

(1958) selected Its moves by forming and pursuing goals, with a very small amount

of search. It was a weak, but credible, chess player. A mating combinations

7
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program by Baylor and Simon (1966) was very powerful in searching for winning

moves In sharp tactical situations, usually examining far fewer than one hundred

branches and finding many of the celebrated grandmaster combinations that are

reproduced in histories of chess. These programs can be shown to exhibit many of

the phenomena of human chess thinking -- tactical thinking more successfully than

strategic thinking.

These investigations of chess playing can be matched by simulations of human

expertise in many other task domains: soMng puzzles, solving mathematics and

physics problems, making medical diagnoses, detecting patterns in letter and number

sequences, learning languages, understanding problem instructions, and others.

Principles of Human Problem Solving

Let me comment now on the content of the theory of problem soMng that has

emerged from this research. I will focus on four major principles. omitting many

details.

First, most problem solving involves selective search through large spaces of

possibilities. The selectivity, based on rules of thumb or heuristics, allows such

searches frequently to reach success in a reasonable length of time. where an

undirected, trial-and-error search would require an enormous time, and often could

not be completed in a human lifetime. In cases of well-practiced skills, there may

be almost no search at all, the heuristics being sufficiently powerful to select the

correct path to the goal at once. The more difficult the problem and the less

efficient the heuristics, the more search will be involved. (We will expect tasks

demanding creatMty to require a good deal of search, for by definition, the heuristics

available will be weak.)

Second, some of the heuristics that guide search in problem solving are

specific to the task domain, but others are quite general. applying to a wide range
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of domains. Because of their generality, these iatter methods cannot make use of

Information that Is specific to a given domain, hence they are generally called 'weak

methods." When stronger, domain-specific heuristics are not available to a problem

solver, we would expect him or her to fall back on weak methods. Therefore, we

would expect weak methods to play an important role in explorations of new territory

- hence In scientific discovery.

Third, among the most important and widely used problem solving heuristics is

means-ends analysis. The problem solver compares the present situation with the

goal situation and notices a difference between them. Recognition of the difference

cues In memory Information about the operators that might be applied to remove it,

bringing the situation closer to the goal. Once a new situation is attained, the same

procedure Is applied again, until the goal is reached. The effectiveness of means-

ends analysis depends on the problem solver's ability to notice differences and I*

retrieve from memory relevant operators for reducing or removing these differences.

Hence, In the presence of considerable domain-specific knowledge of this kind,

means-ends analysis Is a strong method; if there is little such knowledge, It serves as

a weak method.

Fourth, the domain-specific knowledge that largely distinguishes expert from

novice behavior is stored in memory in the form of productions that is to say, of

actions (A) paired to conditions (C), C -> A. When the conditions are satisfied in a

problem situation (e.g., when the problem solver notices the presence of certain

cues), memory Is accessed for actions that are associated with these conditions.

(E.g., In the case of means-ends analysis, the conditions are what we called

differences, and the actions are operators for removing these differences.) Each

execution of a production Is an act of recognition. Thus, the physician, recognizing

a patient's symptoms, Is reminded of one or more diseases that present these

9
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symptoms and of the nature of these diseases, tests that will discriminate among

them, prognosis and treatment, and so on.

The expert's skill, then, derives from a large base of productions (50,000 Is a

plausible number for human professional-level skills) that allow recognition of relevant

cues In problem situations, combined with an ability to analyse and reason about

Information using me ,s-ends analysis and similar heuristics. In this picture of

expertise, there Is no sharp boundary between "insight" or 'intuition' and analysis.

Insight and Intuition are simply acts of recognition based on the stored knowledge of

the domain, and they Interact with analysis to solve problems. For many simple.

everyday problems, recognition alone may be enough, and little analysis may be

necessary. In more complex situations, recognition of salient cues allows analysis to

take larger and more appropriate steps than If the heuristic search has to depend on

weak methods alone.

The claim, then, that the processes of scientific discovery are normal problem-

solvng processes is a claim that scientific discovery follows the four principles just

enunciated. First, its basic method is selective (heuristic) search. Second it uses

both general and domain-specific heuristics. Third. means-ends analysis. a heuristic

of broad applicability, plays an important role in analysis and reasoning. Fourth.

effectiveness in discovery depends heavily on processes of recognition, making use of

tens of thousands of productions that index memory with familiar and recognizable

cues characterzing common problem situations.

The Processes of Scientific Discovery

Scientists, in their work, do a great many different things. In most sciences,

there is a greater or lesser degree of specialization between theorists and

experimentalists, but the specialization, formal and informal, goes much farther than

10
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this. Scientists discover and define problems, they find appropriate representations

for problems, they dslgn experimental procedures and strategies and plan and

execute experiments, they obtain data by observation, they formulate laws and

theories to account for data, using mathematical and other forms of reasoning, they

deduce consequences from their theories, they invent instruments for making

observations, and they devise explanatory theories to give deeper accounts of

descriptive laws.

This may not be an exhaustive list of scientists' activities, but It will serve to

Illustrate the wide variety of activities that make up the scientific enterprise. My

claim is that all of these are problem solving actMtles that make use of the basic

processes described In the previous section. Since we now have direct empirical

evidence to support this claim for several, if not all, of these actMties, I would like

to provide some examples that will illustrate the nature of the evidence.

Deriving Laws from Data

The actMty that has been studied perhaps most intensively is the process of

derMng laws from data. A series of computer programs, collectively named BACON,

has successfully simulated the process whereby a substantial number of important

laws of eighteenth and nineteenth century chemistry were induced from data. (For a

detailed account of BACON and related programs, see Langley, et al., 1987,) In all

of these cases, we know the process was an inductive one. without benefit of theory,

because there did not exist, at the time of the discoveries, theories that were

relevant to the derivation.

For example, BACON is able to obtain Kepler's Third Law from data on the

distances and periods of revolution of the planets about the Sun. The discovery

process Is purely Inductive, as was Kepler's, since there existed in his time no body

of theory that would have led to the law - that theory had to wait for Newton,

11
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generations later. The BACON program also obtains Joseph Black's laws of

temperature equilibrium, the law of conservation of momentum, and others, and

discovers atomic and molecular weights from data on chemical reactions.

distinguishing between atoms and molecules along the way. It not only finds laws.

but in a number of instances introduces new theoretical concepts (Inertial mass,

Index of refraction, specific heat, atomic weight, molecular weight) to permit the laws

to be stated parsimoniously. A detailed account of BACON's successes (and

limitations) can be found In Langley et al. (1987).

Other programs, also reviewed In Langley et al. (1987), derive qualitative laws

from qualitative data. The STAHL program, for example, on examining Information

about combustion and reduction reactions, will arrive at the phlogiston theory of

combustion or the oxygen theory, depending on how the reactions are described to

it. (The actual history of the competition of the phlogiston and oxygen theories can

be explained in these same terms.)

Our knowledge of the induction of laws from data is not limited to computer

slmuations of historical cases. We can also present the historical data (unidentified)

to subjects in the psychological laboratory, and examine their attempts to find

regularities in the data. QIn and I (unpublished) have presented 14 students with

Kepler's data; four of our subjects found Kepler's Third Law in one to two hours'

work. When we compare the thinking-aloud protocols of the successful and

unsuccessful subjects, we find that the former, but not the latter, compared each

hypothesis they formed with the actual data and then selected their next hypothesis

on the basis of the specific discrepancies they found. Their heuristics in generating

a sequence of hypotheses closely resembled BACON's, as did the actual hypotheses

they generated. Similar experimental data, with similar findings, have been gathered

for Balmer's law, which describes the wave lengths of lines in the hydrogen

12
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spectrum, and Planck's law of blackbody radiation, both foundation stones of

subsequent quantum theory. Subjects were often able to find these laws In the

laboratory, and the heuristics they used in the search were similar to BACON's.

Planning Experiments

Quite different from the activity of discovering laws in data is the process of

planning sequences of experiments aimed at producing data relevant to a research

goal. For example, the German biologist, Hans Krebs, carried out a series of

experiments over about nine months in 1931-32 that revealed the reactions that

synthesize urea In vivo. (For details of this history, see Holmes, 1980.) Of course,

the experiments were not all planned in advance. On the contrary, each experiment

provided information that led to the gradual (and In one case, sudden) modification of

the research plan.

Krebs began with the decision to try to discover the process of urea synthesis

In vivo, using slices of liver tissue as his experimental materials. The research

problem was an important one, already well recognized in the field, that had not

yielded to previously available methods of experimentation. The tissue slice method

was a new one that Krebs had acquired while working as a postdoctoral student with

Otto Warburg. Krebs' initial strategy was to repeat experiments that had been

performed on whole organs (the method previously used) to see if he could

reproduce their results. Many of these experiments involved testing the urea yield

when a tissue was treated with mixtures of ammonia and an amino acid. The yields

of urea were moderate until a particular amino acid, ornithine, was tested; the yield

with omithine was quite large.

Krebs now switched to a new strategy, which we might call the *response to

surprise strategy. He first sought to determine whether other molecules similar to

ornithine would produce the same high yield of urea. They did not. He then

13
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proceeded to vary the quantities of ornithine and ammonia used and to measure the

changing yfolds. while at the same time trying to work out, using his knowledge of

the chemical structures of the reacting molecules, plausible reaction paths. He

discovered such a path, In which ammonia provided the nitrogen for the urea, while

ornithine served as a catalyst in the cyclical reaction.

Deepak KuIkarni has constructed a computer program, KEKADA, which captures

many of the heuristics that guided Krebs' strategic planning. On the basis of its

experience, It forms expectations about the outcomes of these experiments, and when

the"e expectations are disappointed, It adopts a wrespond to surprlse strategy that

Involves delimiting the scope of the surprising phenomenon and then searching for its

mechanism (Kulkarni & Simon, 1988). Not too surprisingly, KEKADA does a good job

of simulating Krebs' urea synthesis discovery. Mort Impressive, when provided with

the appropriate initial conditions (research problem, available methods, and domain

knowledge), It also simulates closely (1) Krebs' discovery of the glutamine cycle, (2)

some 19th century research on the synthesis of alcohols, and (3) Faraday's research

strategy after his "surprise' in finding that changes in magnetic fields could induce

electric currents.

KEKADA Is able to simulate these disparate phenomena because most of its

experiment-planning heuristics are independent of the precise task domain to which

they are applied. The heuristics for responding to surprising phenomena are critical

In accounting for Its success.

The historical data on the discoveries of Krebs, Faraday, and others, together

with the Interpretation provided by KEKADA shows the experimental process of very

successful investigators to consist In heuristic search through a large space of

possible experiments, the heuristics guiding the selection of each successive

experiment. Many of the basic heuristics are, like the heuristics for exploiting

14
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surprise, quite general and independent of the specific task domain in which they are

applied. Experimentation, It would appear, is a process of heuristic search

resembling closely the processes that have been observed and Identified In other

kinds of problem solving.

Explanatory Theories

When we fit a mathematical function to data, as BACON d 1es. we are at best

providing a parsimonious description of the data. The function, the law, does not

explain why the data are as they are. Thus, Kepler described the relation between

the periods of the planets' orbits and their distances from the Sun; Newton explained

the relation by showing that It followed logically from the Inverse square law of

gravitational attraction. Balmer found a formula to describe the successive lines of

the hydrogen spectrum; thirty years later, Bohr showed that Balmer's formula could

be deduced from hts quantum model of the hydrogen atom. Science Is as

interested in discovering mechanisms that explain phenomena as it is in discovering

laws that describe them. What discovery processes enable explanations to be found?

BACON, as applied to the phenomena of temperature equilibrium, throws some

light on this question. Suppose we provide BACON with some very broad theoretical

concepts: that when substances are mixed together both mass and heat are

conserved; and that the law describing the temperature equilibrium of such a mixture

should be symmetrical In the properties of the components. Then, Black's law of

temperature equilibrium can be deduced from these assumptions. in advance of any

examination of data, and the data simply used to confirm the law. Without these

assumptions, BACON must Induce the law from data with the help of rather arduous

calculations. Thus assumptions of conservation and symmetry can be used as

heuristics to reduce the search required to find laws. If the search Is successful

(with or without the heuristics), the heuristics then provide at least a partial

15
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explanation of why the phenomena are as they are.

Explanation often requires us to consider the phenomena of interest at a more

microscopic level than the level of observation. We postulate unobservable

mechanisms, to account for the observable data. The DALTON program, for example

(Langley et al., 1987), assumes that chemical substances are made up of molecules,

and molecules of atoms of the elements. Further, it assumes that atoms are

conserved In reactions and that volumes of gases (under constant pressure) are

proportional to the numbers of their molecules (Gay-Lussac's Law). Starting with

these assumptions and data about the Inputs and outputs of chemical reactions, it

deduces the chemical formulas of the molecules Involved. For example, on being

told that three volumes of hydrogen and one of nitrogen produce two of ammonia, It

concludes, correctly, that hydrogen and nitrogen are H2 and N2, respectively, and

that ammonia has the formula NH3.

These simple examples show how we can begin to understand the discovery of

explanatory theories as a problem solving process. The process starts with a

representation of the phenomena (in the DALTON case, a particulate representation:

In the case of Black's law, a representation in terms of conserved quantities of

matter and of a substance called heat'). This representation imposes constraints

upon the phenomena that allow the mechanisms to be inferred from the data .. or

even Inferred deductively In some cases.

The question remains open of where representations come from. Answers to

that question are just now beginning to be sought, and I will have nothing say about

them here. But you can gues what my prediction is about them: that

representations are found by means of ordinary problem solving processes.
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The Invention of Instruments

I will comment on one other facet of scientific discovery that has not yet been

studied In as much detail as the discovery of laws in data. the planning of

sequences of experiments, or the discovery of explanatory theories: discovery that

consists in the invention of new scientific instruments.

New instruments are commonly the byproducts of the observation of new

phenomena; and of course new phenomena are commonly the products of new

Instruments. How does this chicken-and-egg process proceed?

Consider the case of temperature and thermometers for measuring it.

Sensations of heat and cold provide human beings with a built-in thermometer

requiring no artificial instrumentation. These sensations do not provide, however, a

quantitative and Invariant measuring scale that could serve as foundation for the laws

of heat. However, experiments on heating various kinds of materials revealed a

common phenomena: that many substances, solids and gases, expand when heated.

By using standard methods for measuring volumes to determine the amount of

expansion, the thermometer was created, in many forms corresponding to different

substances (Langley et al., pp. 313-314). This basic idea was successively refined --

for example, by using the thermometer bulb to magnify the effects -- to produce

instruments that we still use today.

Soon after the thermometer was invented, we find Fahrenheit and Boerhaave,

followed by Joseph Black, laying down the quantitative laws of temperature

equilibrium. The phenomenon of expansion on heating permitted the invention of the

thermometer; the thermometer permitted observation of new phenomena of

temperature equilibrium. A similar story can be told of the invention of such

Instruments as the ammeter and voltmeter following on the discovery of electrical

currents and their magnetic effects. These instruments, in turn, permitted Ohm to
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find his quantitative law of the relation among current, voltage, and resistance.

Heurit search can again account for these discovery processes. One

heurtit suggeM looking for instruments that make use of new phenomena: another,

even more obvious, heuristic suggests using Instruments to find new phenomena.

Intuition, Insight, and Inspiration

We cannot leave the topic of scientific discovery, however, without attending

directly to some of the phenomena that are most commonly introduced Into evidence

as a basis for claims that discovery is, somehow, different from other kinds of

problem solving. It Is often argued that creative discovery depends on such

processes as Intuition, Insight, and Inspiration, and anecdotal evidence is frequently

brought forward to show their essentality. Polncare achieves an understanding of the

FuschsIan functions as he steps onto the bus at Coutances, Kekule conceives of the

benzine ring as, half asleep, he watches the twisting snake of the fireplace flames

grasp Its tail In its mouth, and so on.

The principal phenomena that support the claims for intuition, Insight, and

Inspiration are the suddenness with which a discovery is sometimes made (often

preceded by a long period of unsuccessful work followed by a longer or shorter

Interruption), and the fact that the discoverer often cannot explain why it occurred

Just then, or what path led to It. If the signatures of intuition and insight are

suddenness of discovery and Incomplete awareness of the discovery path, then these

earmarks do not distinguish these two processes from the well-known and well-

understood process that we call "recognition."

The ability to recognize particular symptoms, or stimuli, depends on their

famillarft from previous experience and learning. Various models have been

proposed for the recognition process for example, the EPAM model, which
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assumes that long-term memory is indexed by a discrimination net, which sorts the

presented stimulus to find, If It Is familiar, the information associated with it In

memory (Feigenbaum & Simon, 1984). An alternative model. the so-called

PANDEMONIUM mechanism, does a similar sorting job, but achieves it by parallel

rather than serial processing.

The process of recognition has long been studied by psychologists. An act of

recognition generally takes about half a second, or longer. Of great Importance,

while a person Is consciously aware of the result of the recognition process (is aware

of what or who has been recognized), he or she is not aware of the process itself

or the cues that were used to discriminate the stimulus. Recognition is "intutive' in

exactly the sense In which that word is used In the literature of discovery and

creatMty.

I discussed earlier the strong empirical evidence that an expert, in his or her

domain of expertise, holds in memory some 50,000 different cues or symptoms that,

when present in the situation, will evoke a recognition and consequent access to

stored knowledge relevant to the cue. Each expert has 50,000 "friends" and

extensive information about them. Compare this number with the 50,000 to 100,000

words that each of us has In the vocabulary of our native language. The evidence

is compelling that the expert accomplishes most of his or her daily work by means

of this capability for recognizing situations and thereby recalling the knowledge

necessary for dealing with them. At all steps of problem solving, recognition is

Intermingled with analysis, and without It, analysis is hopelessly slow, faltering, and

inefficient.

The recognition mechanism can account quite adequately for Poincare's sudden

discovery as he boarded the bus. It does not, by itself, explain the possible role of

Interruption or incubation, but simple explanations have been provided for these also
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(Simon, 1977, pp. 292-299). The visual aspects of Kekule's experience (which. by

the way, wae first reported by him thirty years after the event) call for other

mechanisms, but have nothing directly to do with the suddenness of the discovery or

Its subconscious origins.

Intuitions, insights, and Inspirations are not only sudden. but they are also

frequently surprising. In our analysis of KEKADA, we have seen that surprise Is

simply a form of recognition - recognition that one's expectations have been

disappointed. To have expectations, one must have knowledge as to what to expect.

As Pasteur put It, 'Accidents happen to the prepared mind.' So again, we come

back to the expert's 50,000 chunks that allow a recognition that something unusual

has happened.

In summary, we do not need to postulate special mechanisms to account for

Intuition, Insight, or Inspiration. These phenomena will be produced by the

mechanism of recognition, which we have already seen plays a key role in every

form of expertise, and which is based, in turn, on the store of indexed knowledge

that every expert possesses.

Conclusion: the Processes of Discovery

This quick and highly incomplete account of the evidence now available about

discovery processes confirms both the variety and heterogeneity of the activities that

make up the enterprise of science and the consistency with which these activities

conform to the pattern of heuristic search - highly selective search that produces

some measure of success even in large and poorly structured problem spaces. Such

phenomena as Intuition, insight, and inspiration derive from the capacity for

recognition that every expert acquires In his or her domain of expertise. No new

mechanisms need be postulated to account for them.
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Of course there Is much room for additional study of the processes of science,

and some processes, like problem representation, have hardly been touched by

research to date. New research may certainly produce surprises, which will no doubt

evoke the *respond to surprise" heuristic, leading to a different picture of the

process. Each person can estimate his own prior probability, based on the evidence

to date, that the theory of discovery will or will not be altered in fundamental

respects.
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