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1. RESEARCH ACCOMPLISHMENTS

Research for ONR Contract "Statistical Inference From Sampled Data" has been concerned in the

past 6 years (1984-1989) with studies in the general area of statistical signal processing. Contributions

were made in a wide range of topics many of which were motivated by practical problems in

communication systems and digital signal processing. The following is a list of the main topics on which

the research was focused:

A. Frcq :e-ncy Wa,,enumc,, 3i,-tral Estimation Using Random Acoustic Arrays.

B. Spread Spectrum Communication Systems.

C. Probability Density and Regression Estimation for Dependent Data.

D. Parametric and Nonparametric Spectral Estimation.

E. Adaptive Linear Estimation Algorithms for Dependent Processez

F. Inference for Continuous-Time Processes from Sampled Data.

The research under this contract resulted in the publication of 19 papers in mathematical, statistical,

and engineering journals. In addition, several papers were presented and subsequently published in

proceedings of conferences. Copies of these works were routinely sent to the Office of Naval Research,

Mathematical Sciences Division. The followlAg is a list of the joumal publications under this contract.
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1. E. Masry, "The Estimation of the Frequency-Wavenumber Spectrum Using Random Acoustic
Arrays - Part I: Performance of Beampower Pattern Estimators," J. Acoustical Society of America,
Vol. 76 (July 1984), pp. 139-149.

2. E. Masry, "Closed-Form Analytical Results for the Rejection of Narrow-Band Interference in PN
Spread-Spectrum Systems - Part I: Linear Prediction Filters," IEEE Trans. Communications,
COM-32 (August 1984), pp. 888-896.

3. E. Masry, "The Estimation of the Frequency-Wavenumber Spectrum Using Random Acoustic
Arrays - Part II: A Class of Consistent Estimators," J. Acoustical Society of America, Vol. 76
(October 1984), pp. 1123-1131.

4. E. Masry, "A Class of Generalized Szasz Operators and their Convergence Properties,"
Mathematica, Vol. 13 (1984), pp. 45-56.

5. E. Masry, "Closed-Form Analytical Results for the Rejection of Narrow-Band Interference in PN
Spread-Spectrum Systems - Part II: Linear Interpolation Filters," IEEE Trans. Communications,
COM-33 (January 1985), pp. 10-19.

6. D.F. Gingras and E. Masry, "Spectral Density Estimation from Nonlinearly Observed Data," J. Time
Series Analysis, Vol. 6 (1985), pp. 63-80.

7. E. Masry and L. Milstein, "Performance of DS Spread-Spectrum Receiver Eml vir,. Interference-
Suppression Filters under a Worst-Case Jamming Condition," IEEE Trans. anunications,
COM-34(January 1986), pp. 13-21.

8. E. Masry, "Recursive Probability Densy Estimation for Weakly Dependent Stationary Processes,"
IEEE Trans. Information Theory, IT-32(March 1986), pp.

9. E. Masiy and P. Rao, "On the Choice of the Timeout Distribution in Decentralized Ran'4 , Access
Systems," IEEE Trans. Communicailers, COM-34(May 1986), pp.501-504.

10. E. Masry and B. Picinbono, "Linear/Nonlinear Forms and the Normal Law: Characterization by
High Order Correlationr," 4nna& 1rLT-viwUre Statist Math.. Vol 1q(1987). Pa,-t A, pp. 417 42.

11. E. Masry and L. Gyorfi, "Strong Consistency and Rates for Recursive Probability Density
Estimators of Stationary Processes," J. Multivariate Analysis, Vol. 22(June 1987), pp. 79-93.
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12. E. Masry, "Almost Sure Convergence of Recursive Density Estimators for Stationary Mixing
Processes,- Siatistics & Probability Letters, Vol. 5(1987), pp. 249-254.

13. D.F. Gingras and E. Masry, "Autoregressive Spectral Estimation in Additive Noise," IEEE Trans.
Acoustics, Speech, and Signal Processing, ASSP-36(April 1988), pp. 490-501.

14. S. Cambanis and E. Masry, "The Performance of Discrete-Time Predictors of Continuous-Time
Stationary Processes," IEEE Trans. Information Theory, IT-34(july 1988), pp. 655-668.

15. A. Krieger and E. Masry, "Convergence Analysis ot Adaptive Linear Estimation for Dependent
Stationary Processes," IEEE Trans. Information Theory, IT-34(July 1988), pp. 642-654.

16. E. Masry, "Random Sampling of Continuous-Parameter Stationary Processes: Statistical Properties
of Join, Dcnsity Estimators," J. Multivariate Analysis, Vol. 26(August 1988), pp. 133-165.

17. E. Masry, "Nonparametric Estimation of Conditional Probability Densities and Expectations of
Stationary Processes: Strong Consistency and Rates," J. Stochastic Processes & Applics., Vol.
32(1989), pp. 109-127.

18 A. Krieger and E. Masry, "Constrained Adaptive Filtering Algorithms: Asymptotic Convergence
Properties for Dependent Data," IEEE Trans. Information Theory, IT-35(November 1989), pp.
1166-1176.

19. E. Masry and S. Cambanis, "Trapezoidal Monte Carlo Integration," SIAM J. Numerical Analysis,
Vol. 27(February 1990).
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II. DESCRIPTIVE SUMMARY OF PROBLEMS AND RESULTS

A descriptive summary of the research problems studied under this contract and the nature of the

results obtained is now presented for each of the principal areas listed in Section I.

A. Frequency-Wavenumber Spectral Estimation Using Random Acoustic Arrays

The use of an array of sensors for underwater acoustic measurement is standard. In an array ot

equally-spaced elements, the use of spacing greater than half-wavelength leads to wavenumber aliasing

[11; aliasing can be reduced by using aperiodic arrays. There has been increasing interest in random arrays

[2][3] which are aperiodic arrays whose elements' positions are selected at random. The interest is

particularly motivated by the idea that a field of randomly deployed, freely drifting, sonobuoys ca be used

to form a high gain array for underwater acoustic measurements. An array is totally random if the

sensors' locations are realizations of independent identically distributed random vectors [2]. Thorn et al
[2] derived fundamental properties of random arrays such as the mean and variance of the pattern

function and its power.

Among the generic signal processing tasks of an array system is the estimation of the frequency-
wavenumber spectrum of the ambient noise field. When the array systein is random, the estimation of the

frequency-wavenumber spectrum from data collected at its output is quite complex. Hinich [3] proposed a

conventional (periodogram) approach and showed that the estimator is asymptotically unbiased provided

that the density of the number of sensors per unit area tends to infinity; thus the sensors must cover the

plane densely. The practical significance of this approach is clearly doubtful.

In [4][5] we provided a quadratic-mean convergence analysis of appropriate estimates of the

frequency-wavenumber spectrum of the ambient noise field, in n-dimensional Euclidean space, from data

collected by a totally random n-dimensional array. In contrast to [3] the density of the number of sensors

per unit volume was allowed to be arbitrary. For a class of frequency-wavenumber spectral estimates, we

provided closed-form expression for the asymptotic bias and covariance of these estimates. The estimates
were shown to be consistent in quadratic-mean as the observation interval length T and the number of

sensors M tend to infinity ( the array can be arbitrarily sparse). The rate of quadratic mean convergecrcw

was determined. The dep'~h,-ne of the mean-square estimation error on the parameters of the system,

such as the observation length T, the number of sensors M, the probability density of the sensors'

positions, and the number of sensors per unit volume was investigated.
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B. Spread Spectrum Communication Systems

Spread Spectrum communication systems offer immunity against narrow-band interference. This

can be further improved by employing linear mean-square estimation techniques[6]-[8] for the estimation

-,1 sube.quent suppression of the interference. These techniques exploit the distinct spectral

characteristics of the interference, which is generally narrow-band, and that of the pseudo-noise (PN) or

direct sequence (DS) signals which are broad-band. When the interference is modeled as a multiple tone,

the improvement in the performance of the system due to the employment of linear interference-

suppression filters has been thoroughly studied in [6]-[8].

In [9][10] we provided an analytical study of the performance of PN spread spectrum

communication systems, using interference-rejection filters, when the interference is modeled as a

stationary process with arbitrary spectral density. In [9) linear predictive filters were employed and in

[101 linear interpolative filters were used. Specialized results were obtained for interferences which are

either bandlimited or have rational spectral densities. In each case, the additional improvement in the

performance of the receiver was investigated particularly its dependence on such factors as the

interference power and the number of taps of the filter.

In [11] we investigated the spectral characteristics of the worst-case jammer, assumed to be a

narrow-band Gaussian process, under a joint power and bandwidth constraints. An expression for the

average probability of error is derived for a DS spread-spectrum communication system. The

effectiveness of the suppression filter under these conditions was studied and illustrated for various

combinations of system parameters.

C. Probability Density and Regression Estimation for Dependent Observations

Probability density and regression estimation play an important role in communication theory,

pattern recognition and classification [12]-[18].

Nonparametric density estimation for stationary random processes (dependent observations) has

been receiving increasing attention in recent years. Rosenblatt [19] considered nonrecursive kernel-type

density estimation for Markov processes; Takahata [20], Robinson [21][22], and Castellana and

Leadbetter [231 dealt with similar estimators for mixing processes. These works are primarily concerned

with establishing quadratic-mean convergence and asymptotic normality of nonrecursive density

estimators.

Under the current contract we initiated an investigation into the the statistical properties of recursive

kernel density estimators for stationary processes. In [24] we established the quadratic-mean

convergence, along with the asymptotic expressions for the bias and covariance of such estimators, for
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mixing processes. Also. asymptotic normality was established. In [25] [26] we derived sharp almost sure

convergence rates for the marginal density estimators of vector-valued staticnary rmixing processes. In

[27] we investigated the almost sure convergence of recursive kernel-type estimators for the joint

probability densities, conditional densities, and conditional expectations of scalar-valued stationary

mixing processes. Specifically, For each integer m I and integers 0=i i <i 2 < < ia let

f(x; i,) =f(x .  x,; i. im) be the joint probability density function of the random variables

Xi ..... Xi., which is assumed to exist. For any integer p, 1 -p <m, put i_ =(i . . . . . i.) and

i;-p = (ip+i ..... in). The conditional probability density function of X7= (Xj1 i,., Xji.) given

X = (Xj, ..... Xji,) is denoted by

f(x2 Ix1) A f(x 2; i-px;) - f(x; /m)

where x1 E R P , X2 E R' -P and x = (x1, x 2) E R n. Let q be a Borel measurable function on Rm -p such

that E I q(X) I < -. The conditional expectation of q(X3) given X = u is denoted by
Q(u) = E[q(Xj") I X = u].

A special case of interest is when m = p +1 and q (y) = y for which Q (u) = E [X.+, I X - u] is the usual

regression function. In [27] recursive kernel estimators ,f(x; i.), fn(x2 I xI), and Q(u) are defined and

their strong consistency and almost sure convergence rates are established.

D. Parametric and Nonparametric Spectral Estimation

In the area of nonparametric spectral estimation, we considered in [28] the problem of estimating

the spectral density function O(A) of a stationary Gaussian process {Xk} -=- from observations that have

been distorted by a known zero-memory nonlinearity. Such distortions may be due to the presence of a

nonlinear device in the data communication system; an n-bit quantizer is an example. Certain aspects of

this problem were considered earlier by Rodemich [29], McNeil [30] and Brillinger [31]. In [28] we

considered the case where the nonlinearity f is real, bounded, odd, and nondecreasing function on the real

line. The output process is { Yk=f(Xk)Ik--.- and the problem is the estimation of the spectral density 0 (A)

of the input process X from the knowledge off and a finite set of observations {Yk} =1 of the output

process Y. In [28] we introduced a class of spectral estimates and its quadratic-mean consistency is

established along with the asymptotic expressions for the bias and covariance. In addition, the asymptotic

normality of the spectral estimates is derived. Our results extend those of Brillinger [31], where a signum

nonlinearity f (x)=sign[x ] was considered, and refine and correct those of [291 [30].

In the area of parametric spectral estimation we considered in [32] the problem of estimating the

spectral density of an autoregressive (AR) stationary process from a finite set of noisy observatie-s. A

modified spectral estimator based on the high-order Yule-Walker equations was considered. Joint
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asymptotic normality of the spectral estimator is established ilong with - precise expression for its

covariance matrix. The work extends the results of Akaike [33] for the noise-free case, and complements

die work of Pagano [34] where nonlinear regression method is used. The advantage of using the (linear)

high-order Yule-Walker equations is the simplicity of implementation.

E. Adaptive Linear Estimation Algoriths for Dependent Data

In recent years adaptive linear estimation based on the principle of steepest descent and its

variations have been applied in a wide range of problems such as filtering (351, pattern recognition [36],

line enhancement [37], antenna processing [38], and interference suppression in spread-spectrum

communication systems 1391. Probably the most widely-used algorithm is the so called "Widrow LMS"

algorithm, which uses the gradient method to find the direction of the steepest descent and at each

iteration replaces the true gradient vector by its instantaneous estimate. The main advantage of the LMS

algorithm is the simplicity and the relative low complexity of its implementation. The algorithm is

defined as follows. Suppose {aj I and zj I are two jointly stationary second-order processes representing

the desired signal and observation process, respectively. Suppose we wish to estimate ak from n

observations xj , j=k-n+1.k in a linear fashion
'I

ak= h, Xk-+I = h T Xk
i=1

where

h =(h 1.  h)T

and

Xk = (Xk-,.+ ..., Xk)• (3)

The optimal linear mean-square filter h * which minimizes the error E [(ak - ak)2] is given by

h*=R- ' b

where R is the covariance matrix of the data vector xk,

= E [Xk k

and b is given by

b =E[ak x .

When the second-order moments of {ajI and {xj} are unknown, R and b are not available to determine

the optimal filter h*. The LMS algorithm adapts the filter's coefficients to the incoming data: at the

(k+l)- "instant", we have an estimate hk+I of h* given recursively by

hk+1 = hk + t xk (ak - xk hk), k=l,2,... (4)
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hi =0

so that the value of h is updated with the kh incoming block of data Xk. The constant p. is the adaptation

step size of the algorithm. The signal estimator at the kth instant is then

ak - hXk

The LMS algorithm (4) is simple to implement and requires little storage. Furthermore it is applicable

not only to stationary inputs but also to slowly time-varying processes by tracking system parameters in a

nearly optimum way. In terms of the convergence properties of the LMS algorithm, one is usually

concerned with establishing asymptotic expressions for the filter's coefficients estimation error

E Jj hk-h* I
2

and for the signal estimation error

E[(,k - ak) 2]

when the number of adaptation steps k becomes large.

Under the assumption of independent input vectors { .}, the performance of LVIS algorithm has

been extensively studied in the literature (see [35], [40] and the references therein). The assumption of

independent input vectors makes the analysis more tractable but in many applications it is not a realistic

model. Furthermore, for scalar-valued processes {xj}, the assumption of independent input vectors { } -

see (3) - cannot hold since successive vectors share all but one of their components. Analycis of the LMS

algorithms when the input vectors {.j.} are correlated is considerably more complex due to the highly

nonlinear nature of the algorithm. Some results are available in the literature under fairly restrictive

conditions: an assumption of M-dependence on the observation process {xj} is made in [411, an

assumption of bounded conditional moments is made in [42] which excludes the important Gaussian data

case.

During the the contract period, we initiated a comprehensive study of the convergence properties of

the LMS algorithm and its variants under general dependence structure on the signal and observation

processes (aj and (xj 1. In particular we investigated the following aspects.

i) In [43] we provided a convergence analysis of a modified LMS algorithm under the fairly weak

assumption that the input processes satisfy a mixing condition (strong mixing or p mixing). In this

analysis it was assumed that the optimal Wiener-Hopf coefficients are known to lie in a bounded subset of

R'; however, it was shown that for broad classes of randcsn processes such sets can be determined

without actually solving the Wiener-Hopf equations. The results of this work provide sharper bounds on

the mean-square error of the coefficients' and signal estimates than those obtained in [441.

ii) In [45] we provided a convergence analysis of a constrained LMS algorithm for dependent

processes satisfying various mixing conditions. The need for such algorithms arises from the fact that in
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many applications the optimal finite impulse response filter of order n is restricted such that 'ts

coefficients lie in a subset of the n-dimensional vector space R". For example, in antena beam-forming

the need to control the magnitude of the sidelobes imposes such a constraint [46][47][48]. Similar

situations arise in parametric spectral estimation such as the Pisarenko harmonic retrieval [49]. In these

references, the performance of the constrained LMS algorithm was evaluated either by simulation or

under the assumption of independent input vectors. In [45] wke considered two distinct constraint sets: A

boundcd hypercube in R', which leads to a magnitude-constrained algorithm, and a bounded

hvpersphere, which leads to a quadratically-constrained algorithm. The purpose of the algorithm is to

provide a linear estimate ak of ak from the observation vector xk = (xk, : ..... .Xk,)T where xi,, =xk-i+1.

This estimate is of the form

ak = wT Xk

w.,here w is the vector of filter coefficients, with a fixed dimensionality n, constrained to a bounded set S in

R". When the second-order statistics of the processes (aj) and (x} are known, the optimal mean-square

filter coefficients w. is obtained by solving the following problem:

min E[ak - ak]2
WE S

where, for a magnitude-constrained algorithm, the set S is defined by

S = (w: [wi <B, i= .r,

wi is the ith component of w, B is a finite constant; for a quadratic-constrained algorithm, the set S is

given by

S = (w :Ilwll-< B} I

where 1I is the Euclidean norm in R". We show in [45] that the adaptive algorithm, when the second

order statistics of {a }- and {xj I}J are unknown, takes we toin

1'k+l =P[(I -xkx ) wk +.akxk], k=O, 1,.....

a =kwk, k =0, l...

where the operator P is a projection from R' to S. We show in [45] that for input processes obeying

fairly weak mixing conditions, we have

lim sup Ell k -w.11z <u C (5)

k

and

E[ak - ak] 2 = E .+ Ek

with
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lim SUP k :5A C 2 . (6)
k -+

Here E. is the mini ium MSE corresponding to the optimal constrained Wiener-Hopf filter w., Ek is the

excess MSE of the algorithm, and Ci, i = 1,2 are positive constants. Note that the bounds i;i (5)(6) are

proportional to the adaptation step size M and thus have the same form as the bounds established in the

literature for the unconstrained LMS algorithm with dependent data (e.g. 141] [42]).

F. Inference for Continuous-Time Processes from Sampled Data

Let X = {X(t), -< t <-) be a continuous-time stationary process, {tk) be the sampling instants,

and {X(tk)} be the discrete-time observation processes. We are interested in estimating the statistical

structure of tl., process {X(t), -- 0< t <-cI from a finite set of discrete-time observations [X (tk)1 i

Particular functions of interest are the family of finite-dimensional distributions and densities of the

process X, the correlation tunction C(t) and spectral density O(A) of the process X. Clearly if the the

sampling instants {tk } are equally-spaced, consistent estimates of the joint densities of the process X trom

the observations (X(tk)} is not feasible; similarly, if the processX is not bandlimited, consistent estimates

of C (t) and 0(A) from equally- spaced observations is not possible due to aliasing.

During the contract period we considered in [50] the problem of consistently estimating the family

of finite-dimensional densities of the process X from discrete-time observations. Let

f(x;'r)=f(xl.....x,+I;TI,r 2 . .,Tm) be the joint probability density of the random variables

X(O),X ),X( 2.....X(Tm), 0 < Tr1 <r 2 <...<r,, , which is assumed to exist. Let K(x) be a bounded

nonnegative function on R ' +' satisfying

K(x)dx = 1 , lim Ilxll'+t 1 (x) = 0,
R - UzI 4--* - -

and let K,(x)=(l/b'+1)K(x/b,). Similarly, let W(u) be a bounded nonnegative function on Rm

satisfying

f W(u)du = 1, lim 11ul1" W(u) = 0,
R' ilull - -* - -

and put Wn(u) = (1/bm)W(u/b,). Civn the observations {X(tj),tj) !+ we estimate f(x;l) by

'I

-- j.=l -

where

m-I

a(r)=p(r) H p(Ti-'i),

= (X (tj).X(t+ 1 ) ... X(tj+,)) and Dj = (tj+Itjtj+2-tj, .. .. j+-tj). Here the sampling instants {ti I

are assumed to be a r,.-ewal process on [0,-), p (t) is the probability density function of the interarrival
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1
times which is assumed to be positive on [0,,,) with finite mean - We allow the average sampling rate

/3 to take any positive value and consequently, no minimum sampling rate fl is required. We established

in [50] the quadratic-mean convergence of f,(x;V)as the sample size n tends to infinity along with precise

asymptotic expressions :or the bias and variance/covariance. In addition, we established the asymptotic

normality of the estimators f,(x;Tr). These results in [50) are shown to hold for continuous-time processes

X which are either strong mixing orp mixing.

During the contract period we were also concerned with sampling design problems of continuous-

time processes [51] [521: Let {X(t), - < t < -) be a second-order continuous-time process with zero

mean and correlation function R (t,s). Many problems in detection and estimation involve the evaluation

of the integral

T

I = f f(t)X (t)dt
0

where f is a given function. In practice, the evaluation of I is carried out in a digital fashion; the

observation process X is sampled at n instants T, =[t,, 1 "," ,t- , satisfying

0O<-tn. I <in. 2 < ... <itn.n ! <T,

and based on the samples (X (t,)}n l, an approximation of the integral I of the form

n
[=  Cn~i X (4j~)
i=I

is used. One is then concerned with the performance of such approximation measured in terms of the

mean-square error e' = E[li - i.J 2 . Clearly this depends on the choice of the coefficients {c'*,,})!- 1 which

may be optimal or suboptimal, and on the choice of the sampling instants T,. The sampling design

problem is to find the best location of the sampling points for fixed sample size n or, asymptotically, as

the sample size tends to infinity. For a given choice of the coefficients and the sampling points, optimal

or not, one also desires to find the rate of convergence to zero of the error e2 as n -*- which can be used

to determine the required sample size n for an acceptable level of accuracy of the discrete-time

approximation. We remark that in the context of regression problems, sampling designs were considered

earlier by Sacks and Ylvisaker [531-[55]. Sampling designs for suboptimal integral approximations were

considered by Schoenfelder [56] for the case of processes with no quadratic-mean derivatives.

In [511 the asymptotic performance of linear predictors of continuous-time stationary processes

from observations at n sampling instants on a fixed interval was studied. Both optimal and simpler

choices of predictor coefficients were considered using uniform and nonuniform sampling schemes. The

focus was on processes with rational spectral density. When the process has no quadratic-mean

derivatives, it was shown that both the optimal and suboptimal predictors have the same rate of

quadratic-mean convergence n-2 and the same asymptotic constant which depends on the sampling
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design. The performance of the asymptotically optimal design is compared analytically and

computationally to that of uniform sampling and the improvement factor is determined. When the process

has exactly one quadratic-mean derivative, and a suboptimal coefficients are used, it is shown that

uniform sampling has a rate of quadratic-mean convergence of only n- 1 while nonuniform sampling can

be designed to achieve a rate of n - .

In [52] we considered the problem of Monte Carlo approximation of the integral of weighted

random processes. The simplest Monte Carlo method for approximating the integral

I

J(jX) = f (t) X (t) dt
0

of a function f over a finite interval, uses n independent samples U, ...1, U, from a uniform distribution

over the unit interval, and forms the average estimate

J. (fX) V - f(Ui) X(U;).

The mean-square error of J,(f) is

E[I(fX) - J,,(fX)]2  {Jf2(x)R (x,x)dx - f f (x)R (x,y)f (y)dxdy I
n 00

and thus tends to 0 at the rate of n-1 . No improvement in the rate of convergence is generally expected

from any additional smoothness assumptions on f or on X.

Motivated by the work of Yakowitz, Krimmel and Szidarovszky [57] for the integral of nonrandom

... notions, wc considered in [52] the convergence properties of a trapezoidal Monte Carlo approximation

based on the ordered sample t, 0 A 0< t 1 <t, 2 < ... < t,,, < I A t,+l obtained from the

independent, uniformly distributed samples U1, U2 ,..., Un. The approximation of I(X) is now given by

In (fX) = I VD (t.i) X (tn) + f(tn..i+l) X (t.ij)] (tni+l - tn~j) .

i=O

We show in [52] that when f has two continuous derivatives on [0, 1] and the processes X has one

quadratic-mean derivative, the rate of mean-square convergence of the approximation I,, (fX) is precisely
n- 4 , i.e.,

lim n 4 E [I (fX) - l(fX)]2 = C(f,R)

where the asymptotic constant C (f,R), which depends on f and on correlation function R, is determined

explicitly.
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