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Image Segmentation with Detection of Highlights and Inter-reflections Using Color 

Ruzena Bajcsy, Sang Wook Lee and Ales Leonardis* 

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 

Abstract 

We present an approach to the construction of a computational model for color image segmen- 

tation based on the physical properties of sensors, illumination lights and surface reflectances. 

Using the established model, we perform color image segmentation and detect small inter- 

reflections as well as highlights. 

1     Introduction 

Color is one of the major features in identifying objects, and color vision has been the most 

intensively studied sensory process in human vision. In machine vision, however, the use of color 

has not been the subject of active research, although color has recently received attention as a 

useful property for image segmentation and object recognition. The purpose of color vision is to 

extract aspects of the spectral property of object surfaces, while at the same time discounting 

various illuminations in order to provide useful information in image analysis. The most notable 

applications include recognition and identification of colored objects and image segmentation. 

There have been approaches to image segmentation based on histograms of red (R), green (G) 

and blue (B) values or on transformed values such as YIQ [10] [11], or by using color edges in addition 

to intensity edges [9].    These algorithms are primarily extentions of intensity segmentation to 
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multidimensional processing with extra information provided by color. Thus they cannot distinguish 

between different edge types due to material changes, highlights, shading, and shadow. 

Also, there has been an approach to detection of highlights by combining the traditional segmen- 

tation with physics-based post-processing [4\. Since traditional color image segmentation algorithms 

generally have not accounted for the influence of optical effects on object colors, the method suffers 

from many erroneous regions. If the physical models were included at the segmentation stage, 

many of these regions could be properly classified. The first physical approaches to color image 

understanding have been introduced only recently [1] [2]. Detection of highlights is acheived by 

clustering color points in RGB space using the dichromatic property of dielectric materials. Since 

the spectral curves of the camera and filters are not included in these models, the metric in the 

RGB space varies with the choice of the sensors. 

In addition to highlights, shading and shadow, there are other impediments to observing real 

material changes such as variation of illumination and multiple reflections between objects. Objects 

receive not only the lights directly from illumination sources but also the reflected lights from other 

objects. The latter induces a change of the perceived surface color which we call inter-reflection. 

The process of discounting illuminations from the surface reflectance, namely color constancy, is a 

heavily studied subject in color vision [8] [6] [5], though successful applications are yet limited. 

In this paper we present an approach to the construction of a computational model for color 

segmentation, not only with detection of highlights but with detection of small color changes induced 

by inter-reflections as well. We use the dichromatic model [1] for dielectric materials and develop a 

metric space based on the physical properties of sensors in order to better manipulate light-surface 

interactions. 

We begin in Section 2 with sensing and metric representation of color in a machine vision system. 

In the following section, we describe a method of color constancy using a reference plate. In Section 4 

a surface reflectance model is established from various mechanisms of surface reflections.  Various 



optical phenomena such as shading, shadow, highlights and inter-reflections between objects are 

explained in Section 5, in terms of the established surface reflectance model. In Section 6, we 

propose a method of segmentation and highlights and inter-reflection detection between objects. 

We present some of our initial results in Section 7, and suggestions for further studies are given in 

the following section. 

2     Representation and Sensing of Color 

Representation of color with finite-dimensional linear models has been a topic of many studies 

[12] [13] [7] [14]. There have been some approaches to obtaining characteristic basis functions by 

investigating many samples of daylight and surface reflectances [13] [12]. It has been suggested that 

although the number of basis functions required to completely describe full spectra is essentially 

infinite, a small number of basis functions can provide good spectral approximations of most natural 

illuminants and surface reflectances. Our approach is to represent measured colors in a metric space 

in order to better manipulate physical properties of surface colors for image segmentation. 

Both for surface reflectance and for illumination, we here use' the first three Fourier bases 

for their mathematical simplicity and for their sufficient effectiveness in resolving natural colors. 

Within our framework developed here, however, better models of basis functions (such as the first 

three of Cohen's reflectance basis functions [12] and those of Judd's illuminant basis functions [13]) 

can be used. 

For the three-dimensional linear model, surface reflectance and illumination can be represented 

as a weighted sum of basis functions expressed as: 

2 

S(x,y,\) = J2<Ti(x,y)Si(\), (1) 
t=0 

2 

E(x,y,X) = Y^€j(z,y)Ej(\), (2) 
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Figure 1: Fourier basis functions 

where S{(X) and Ej(X) are the basis functions, and &i(x,y) and Sj(x,y) are the scalar weighting 

factors at (x,y). The basis functions 

50(A) = 1, Si(X) = sinX, S2(X) = cosX (3) 

are shown in Figure 1. ■ 

The color image sensing is performed with a CCD camera using filters of different spectral 

responses.   The measured color signal I(x, y, A) is obtained as a product of the spectral power 

distribution (SPD) of illumination E(x,y, A) and the spectral response of the surface reflectance 

1 

function S(x>y, A), i.e., 

J(x, y, A) = E(x, y, A) • S(x, y, A). (4) 

With 3 filters (usually R, G and B), the quantum catch or the measured signal from the camera is 

given by 

Pk(*>y)= I '1(x,y,X)-Qk(X)dX, (5) 

where Qk(X) and pk(x,y) for k = 0,1, 2 are the spectral response of the k—th filter and the camera 

output through the ft-th filter at (x,y), respectively.   The wavelengths Ai = 400 nm and A2 - 
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Figure 2: (a)Spectral responses of 3 filters, (b) Spectral response of CCD and IR filter 

700 nm cover the range of the visible spectrum. Figure 2 (a) shows the spectral response of the 3 

filters: Qo(A), <5i(A) and Q2(A). The curves are obtained from filter measurements with a spectro- 

photometer and are multiplied by the product of the spectral sensitivity of the CCD camera and 

the infra-red cut-off (IR) filter which is shown in Figure 2 (b). The filters integrate the spectral 

responses over the given range, and consequently act as an anti-aliasing filter in sampling the color 

signal. 

With 3 basis functions, the relationship between the sensor response, illumination and re- 

flectance is given as 

p = nae = Qsa (6) 

where the elements of HCT and Q6 in the fc-th row and j'-th (or i-th) column are respectively 

a- 

n- 

fX2      2 

J*l    .=0 

/A2    2 

1    jmO 

EjQkdX, 

SiQkdX. 

(7) 

(8) 



3 Color Constancy 

To obtain the surface reflectance of objects, which is the primary information for image analysis, 

the influence of illumination should be discounted from the measured color in the image. This 

process is called color constancy. While the general solution for color constancy with unknown 

illumination demands complex algorithms and some spectral and/or spatial constraints [15] [6], it 

is simple to remove the known illumination measured with a reference object. One assumption is 

that the objects of interest are illuminated by light sources of the same SPD, and the reference 

object is applicable. If we use a reference plate with known reflectance <7re% the SPD of illumination 

obtained from 

e
re/ = (jrre/)-V (9) 

represents the spectral composition of the global illumination throughout the image area. With 

the normalized £™Jrm, the calculation of 

a = (n*5«*»)"1/» . (10) 

leads to the color signal under whitened illumination expressed as: 

I(x,y,\)    =   eo(x,y)-[a0{x,y)So(\) 
(11) 

+<Ti(x, y)Si(X) + a2{x,y)S2(X)]. 

4 Surface Reflectance Model 

Once the effects of color illumination have been eliminated, the color image I(x,y,X) represents 

only the surface reflectance properties multiplied by the illumination intensity e0- 

The analysis of the color image demands proper models for various optical phenomena of surface 

reflections. We use the dichromatic model for dielectric materials such as plastic, paper and paint [1] 

[3]. The surface reflectance of dielectric materials has two different optical properties. Highlights 

are from specular reflection and depend on the refractive indices of the vehicle materials.   On 

6 



ther other hand, body or diffuse reflection occurs inside the material due to the pigments. The 

distribution of pigments determines the color of the exiting light by selectively absorbing certain 

wavelengths. 

The magnitude of the image signal is also affected by geometrical factors such as surface ori- 

entation, illumination and viewing directions [16]. So far, we have assumed that the geometrical 

factors are implicitly included either in E(X) or in S(X). More precisely, the geometrical weighting 

can be regarded as the local variation of illumination density on a surface patch. However, since 

the geometrical weighting has different mechanisms for specular and body reflections, it would be 

convenient to include it in the surface reflectance. If we consider the factors as part of the surface 

reflectance of the dichromatic model, the surface reflectance can be modeled as 

S(X) = gs(G)Ss(\) + gB(G)SB(X), (12) 

where Ss(X) and Sß(X) are the specular and the body reflectance, respectively; g$ and gB are the 

geometrical factors for the specular and the body reflection, respectively; and G is the geometrical 

variable that accounts for the viewer direction and the source direction, where each is relative to 

the surface normal.   Now Ss(X) and SB(X) represent the real surface reflectance of object, i.   e., 

albedos. For most vehicle materials, the refractive index is weakly dependent on A. Thus, S$(X) is 

almost constant over the visible range of light, while the body color is determined by SB(X). 

Given that the specular reflection is flat over the spectrum, we can rewrite the color image 

signal as 

/   =    (e0E0 + elE1 + £2E2)- 

[(gsöos + gB&oB)So + gB&\sS\ + ^B^B^], 

(13) 

where 

00 = 9S&QS + gB°~0B,       <Tl = gßöiB,      °~2 = gB^IB- (14) 

By using color constancy, we can remove the terms t\E\ and e2E2. 
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Figure 3: (a)Color clusters on S space, and (b) Spatial variation of intensity due to shading and highlight 

5     Image Analysis on (SQ, Si, S2) 

For identification of the surface reflection mechanisms explained above, we represent the color on 

the orthogonal 3-dimensional S space. The S space is similar to the opponent space which is 

convenient for describing intensity, hue and saturation. The definitions of intensity, saturation and 

hue for our work are defined as: 

intensity = Co, 

hue = arctan ?i, 

saturation = |q,i21 

where   \o\2 

(15) 

vVi2+^2)- 

5.1     Shading and Shadow 

Shading on surfaces of uniform color is due to variations in geometry G in gg(G). As can be seen 

in Equation (13), the shading can be modeled as the weighting of (TQB, a\B ana" a2B by the scaling 

factor gB- This corresponds to a linear cluster of color points through the origin in S space, as 

shown in Figure 3 (a). Shadows are due to the screening of illumination by other objects, which 

can be interpreted as the variation of eo, £1, and £2 for a constant factor. Thus the shadow does 
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not change the shape and the orientation of the linear cluster, but moves the color points toward 

the origin along the line. 

Since the saturation is the slope of this line with respect to the 6o-axis, the saturation values of 

the color points on the linear cluster are constant. The slope of the line can be changed by colored 

illumination. 

5.2 Highlight 

Since the spectral response of the specular reflection is flat for dielectrics, the illuminating light 

is reflected from the surface without any change of color. Under white illumination (or whitened 

illumination by color constancy), highlights add whiteness (ons) to the body colors by g$(G). 

As the result, the color points in S space are shifted upward along the 5*0 direction due to the 

highlights. In general, the distribution of highlights can spatially vary over the wide area of shaded 

matte surface as shown in Figure 3 (b), so that they form planar clusters which include the linear 

clusters made'by shading and shadow on the S space as shown in Figure 3 (a). The planes are 

perpendicular to the S\ — S2 plane under white illumination or whitened illumination by color 

constancy. 

5.3 Inter-reflection 

So far we have been concerned only about the first reflection of light. As there are many objects, 

the object surface of interest receives not only the light from the illumination sources but also 

the reflected light from the other objects. The latter causes the local change of illumination, as 

illustrated in Figure 4. The change of surface color due to the multiple reflections between objects 

is named inter-reflection. 

The local influence of the reflected light from other objects is in fact the local variation of 

illumination. Suppose that we achieve perfect color constancy. In this case the local influence of the 



global illumination 

color A 

body **\\ 

"specular 

color B 

Figure 4: Inter-reflection 

reflected light from otlier objects can be discounted together with the global ilumination. However, 

since we use color constancy for discounting only the global illumination, the inter-reflection remains 

as a local change of surface reflectance. While large inter-reflection results in a completely different 

cluster of points, small inter-reflection can be identified as a small deviation from the linear cluster 

as shown in Figure 3 (a). In general, the color points of inter-reflections do not fall- in the planar 

region formed by highlights and body reflections, since inter-reflection can change the perceived 

hue as well as saturation of the surface. In Figure 4 the specularly reflected lights from the objects 

B have the same SPD's as the original illumination since the specular reflectance of dielectrics is 

spectrally flat.. Thus the specular inter-reflections cannot be distingushed from the highlights. On 

the other hand, the body reflection from the object B produces a local illumination on the object 

A, inducing a change of the perceived surface color of the object A. 

6     Image Segmentation 

Our segmentation method is based on the assumption that the image consists of patches of object 

surfaces which have uniform color, i.e., the image can be divided into many regions of uniform hue 

and saturation regardless of surface structure and finishing. 

10 
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inter- 
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j Figure 5: Color clusters in S space (top view) 

One of the advantages of having the hue information in addition to the image intensity is 

that the hue of a surface is more stable than intensity values under changes in the geometrical 

relationship between the surface normal and the illumination direction. Hue segmentation can be 

done by hue-histograming or region-splitting based on hue values. 

Under white illumination (or whitened illumination by color constancy), the planes formed 

by highlights and body reflections are perpendicular to the S\ — S2 plane as shown in Figure 5. 

Because the highlights are in the same plane as the body color, the specular reflection and the body 

reflection from the same object are segmented together by the hue segmentation. Without color 

constancy, the color cluster due to specular reflection is generally not in parallel with the So axis, 

but rather lies parallel to and points in the same direction as the illumination. 

Further segmentation and detection of highlights and inter-reflections can be achieved using 

saturation values. Figure 6 (a) and (b) illustrate the color clusters in the So — saturation plane 

within a given range of hue values after hue segmentation, and in the projected SI/SQ — S2/S0 

plane, respectively. As shown in the figures, since shading and shadow scale a0, <j\ and o~i by 

the same factor, they do not change the saturation value. Thus, an object region with a given 

color has a constant saturation value. On the other hand, highlights increase only <r0 under white 

11 
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Figure 6: (a) Intensity-saturation plane, and (b) Hue-saturation plane 

illumination, thereby always decreasing the saturation. The inter-reflections may affect <TO, 0\ and 

a2, which implies that hue and saturation change. Although inter-reflections can possibly increase 

the saturation or change the hue values of the surface without affecting the saturation value, in 

most cases they decrease the saturation. This is because the neighboring objects usually decrease 

the purity of the surface color both by specular and body reflection. Therefore application of local 

thresholding on saturation values enables us to separate the color clusters of highlights and most 

of the small inter-reflections from those of body reflections. 

7    Experimental Results ' 

In order to test the algorithm, we perform an experiment on plastic color balls. Four tungsten 

lights are used as illumination sources in two directions (right and left sides). They are spatially 

diffused in order to reduce the contrast between highlights and matte colors. All the measurements 

are in the linear range of our 8-bit image digitizer, and the camera output is linearized by setting 

the gamma correction factor of the CCD camera to 1. Color constancy is performed using a white 

reference plate of known spectral reflectance. 

12 



Figure 7 (a), (b) shows the intensity (So) and saturation images and Figure 8 (a) and (b) shows 

the original image projected on Si, and S% axes, after the color constancy. 

Figure 7: (a) Intensity (So) (b) Saturation 
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Figure 8: (a) Si (b) S2 

Figures 9 and   10 show the color clusters in S space after implementing color constancy.   As 

expected, the color points from highlights form planar clusters while shading makes linear clusters. 
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The deviations from the lines and/or planes are due to the errors and noise in measurements as 

well as the errors in modeling and nonuniformity the surface color. 

Figure 9: (a) Perspective view (b) Top view 

1 
•sfc 
8fe' 

Figure 10: (a) Front view (b) Side view 

Hue segmentation is achieved using the hue-histogram shown in Figure 11.   The results are 

partially shown in Figure 12 and Figure 13.    After the hue segmentation, application of local 

14 



thresholding in each segment results in the separation of body reflections from highlights and inter- 

reflections. Figure 14 (a) shows separated highlights and inter-reflections which are the deviations 

from the linear clusters of body reflections. Most of the strong inter-reflections are due to the 

specular-specular reflections, since the specular reflection is much stronger than the body reflection. 

The separated body reflections are shown in Figure 14 (b). Inter-reflections are most apparent 

between objects of different colors. 

HUE HISTOGRAM 
hue distribution 

0.00 - 

0.00 100.00 200.00 300.00 
degrees 

Figure 11: Hue histogram 
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Figure 12: (a) Blue (b) Green 

Figure 13: (a) Red (b) Yellow 
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Figure 14: (a) Highlights and inter-reflections (b) Matte 

8     Discussion 

We use objects of saturated colors for our initial experiments in order to demonstrate the efficacy 

of the algorithm under the assumption that objects consist of surface patches of uniform hue and 

saturation (not intensity). The segmentation is performed only in S space without using any spatial 

information. Since separated regions of similar color can be segmented together, segmentation of 

more complex scenes requires partitioning an image in the spatial domain. Therefore, the use of 

spatial information is desirable in order to further improve the segmentation. 

As mentioned earlier, the deviations of surface colors from linear clusters of shading result from 

any measurement errors and noise as well as from the non-uniformity of pigment density. Errors can 

also be generated in the color constancy even with the reference object due to the finite-dimensional 

representations of surface reflectance and illumination. Another important issue is the proper 

determination of the local thresholds on the saturation values, since this is the key to the successful 

detection of highlights and inter-reflections. For our sample image, we obtained the threshold values 

17 



by examining the deviation in the saturation values in uniform color regions. We found that the 

size of the deviations across different parts of the image is about the same. Therefore, the observed 

deviation values can be used for determining thresholds for any measurements from the same 

experimental settings. The detection of highlights and inter-reflections can be further improved 

by locally adaptive adjustment of thresholding. With proper local thresholds, the algorithm is 

successful in detecting small highlights and inter-reflections which cannot be easily clustered in S 

space. Note that the separated inter-reflections do not represent the real color of local illumination 

since the color change due to the inter-reflections is a multiplicative process. 

So far we have used a reference object for color constancy. This was based on the assumption 

that global illumination sources have the same SPD. As we have more illumination sources of 

different SPD's we need general color constancy algorithms to account for spatial variation of 

illumination. Most of the color constancy algorithms suggested so far require the constraint that 

illumination varies smoothly in space. When the illumination sources are relatively close to objects 

and the objects are highly structured, the illumination also varies highly in space depending on 

the surface orientations. Furthermore inter-reflections do not appear smooth in general. Although 

small inter-reflections can be detected and removed by observing the change of surface color, large 

inter-reflections produce completely different clusters of color points which can only be separated 

by color constancy. Currently we are developing a color constancy algorithm which can resolve 

highly varied illumination in space. 

9     Conclusion 

In this technical report we present an approach to color image segmentation with the detection and 

separation of highlights and inter-reflections between objects. To better represent and process the 

image color, a color metric space is developed based on the physical model of the camera and filters. 

18 



The measured color in R, G, B space is transformed into the metric space on a set of orthogonal 

basis functions. With uncorrelated orthogonal values, we can manipulate each component of color 

separately or in combination. Since the usual illumination is spectrally colored, calibration of the 

measured image is performed with a white object of reference to whiten the illumination. While the 

spectral distribution of the object surface is not changed by shading and shadow under the white 

illumination, it is affected by highlights and inter-reflections between the objects. As the highlights 

add whiteness to the object color, they can be detected by observing the change in saturation of 

the uniformly colored objects. The inter-reflections are also detected with the change in saturation, 

as well as in hue values. The experimental results show that within the framework, our model of 

color image interpretation performs well. 
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