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ABSTRACT

This report contains the results of the research project entitled:
"Microcracking and Toughness of Ceramic-Fiber/Ceramic-Matrix Composites
Under High Temperature" supported by the AFOSR. Microcracking mechanisms
and toughness of Nicalon (SiC)/SiC composite at elevated temperature are
studied analytically and experimentally. First the fiber distribution
patterns in the ceramic composite are determined by observing the specimens

under optical and scanning electron microscopes. Thus the effect of fibers

and fiber interactions on the microcragk propagation are investigated
analytically through the single-fiber, the two-fiber, and the ring models.
Monolithic SiC specimens are tested under varying temperature to determine
the effect of temperature on the toughness of the matrix material. The
Nicalon/SiC composite specimens are then tested at various temperatures.
The combined effect of temperature and fibers on the toughness of the matrix
is expressed by introducing the concept of "apparent fracture toughness".
The experimental results indicate that for the Nicalon /SiC composite the
"apparent fracture toughness" decreases with local volume fraction of fibers

Vf and temperature. An analytical model to predict this behavior is

developed and wused in the analysis of the experimental data. Finally,
recognizing the importance of the fiber/matrix interface on the overall
toughness and strength of the material, an experimental/analytical technique
Acoession For
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1. Introduction

As is well known ceramic matrix composites have recently attracted a
great deal of attention due to the promise they hold for developing high-
temperature resistant materials with high togghness. Up to now the
structural applications of ceramics and ceramic composites have been limited
becagse of the fact that their brittleness makes them an unlikely candidate
in applications where high toughness is required. But the combination of
advanced manufacturing techniques and new ceramic composites appears to
satisfy both conditions of resistance to high-temperature oxidation and high
toughness. The current study focuses on one such material, namely,
Nicalon/SiC composite manufactured by Amercom, Inc., Chatsworth, CA.

It has long been recognized that the low toughness of ceramics results
from the presence of microcracks or voids in the material. These
microcracks may develop due to inclusions, thermal expansion mismatch, phase
transformation, or thermal expansion anisotropy. Whatever the initial
agent, under sustained mechanical and/or thermal loading, these microcracks
may coalesce into a critical flaw, causing the failure of the material. 1In
fiber reinforced ceramic composites the failure mechanism is much more
complicated because of the presence of fibers. For example, under uniaxial
tension fiber matrix microcracks may appear. At sustained loading these
cracks may join other cracks to form a dominant flaw or may be deflected at
the fiber/matrix interface. It appears that the fiber/matrix interface
plays an important role in the overall toughness and strength of the
composite. For instance, a relatively weak interface may help deflect
matrix cracks while a strong interface may lead to fiber fracture and the

eventual catastrophic failure of the composite. The literature on factors




affecting the toughness of ceramics and ceramic composites is extensive.
The microstructural dependence of fracture parameters of ceramics are given
in {1-12]. Particle and grain size effects are studied in [13-17].
Microcracking in particulate ceramic composites due to thermomechanical
stress is investigated in [18].

In this work microcracking in Nicalon/SiC ceramic composite is studied
for thermomechanical loading. Monolithic SiC (matrix material) and
composite specimens are first observed under microscope, and the fiber
distribution patterns are identified. Thus analytical studies relevant to
typical fiber distribution patterns (e.g., a single fiber embedded in an
infinite medium, two isolated fibers, a ring distribution of fibers, etc.)
are performed and the consequences on matrix microcracking are discussed.
Next the toughness of matrix material (SiC) is determined under various
temperatures (up to 800 C) using the micro-indentation technique [19,20].
The effect of fibers on the "apparent fracture toughness" of matrix is
determined experimentally - again wusing the micro-indentation technique. A
theoretical model predicting the microcracking behavior is then developed.
Finally, the debonding strength of the interface at the initiation of
debonding is determined by a method combining experimental results and

finite element calculations.

2. The Material: Nicalon/SiC Composite

The material studied is Nicalon/SiC puichased from Amercom, Inc.,
Chatsworth, CA. The properties of the const tuents are given in the

following table:




Young's Modulus Coefficient of Thermal
E (psi) Expansion %X (in/in/ C)
Fibers (Nicalon) 26x10° 3.1x10°°
. . 6 ’ -6
Matrix (SiC) 55x10 4.3x10

It should be noted that this material is a reversed composite. That is,
stiffness of the matrix (SiC) is greater than that of the fibers (Nicalon).

The volume fraction of fibers Vf is approximately 0.35 and the void volume

fraction Vd is about 0.15. The composite 1s manufactured wusing the

chemical vapor deposition (CVD) method.

Using the information obtained from preliminary testing and considering
the size of the heating chamber of the furnace, the test specimens were
designed as follows:

12 pc. of (1/2)"x(1/2)"x(1/4)" 3-D braided Nicalon/SiC specimens

infiltrated by CVD to a minimum density of 2.3 g/c.c.

6 pc. of (1/2)"x(1/2)y"x(1/4)" silicon carbide coated graphite
specimens coated on one face with SiC by CVD to a minimum
thickness of 0.020 inches.

The first set of specimens 1s used to determine the effect of fibers on
matrix microcracking and the shear strength of the fiber/matrix interface.
The second set is used to determine the fracture toughness of the matrix at
varying temperatures.

An examination of the composite specimens under microscope reveals that

there are basically four fiber distribution patterns: (a) an isolated fiber

(Photo 1), (b) two isolated fibers (Photo 2), (c) a circular array (ring) of




fibers (Photo 3), and (d) closely packed, randomly distributed fibers. The
microcracks could be in the matrix or at the interface. Thus the analytical
studies presented in the next section are based on models simulating the

observed configurations.

3. The Theoretical Studies

The analysis for each specific model considered is outlined below.

(a) The_single-fiber model

This model 1is designed to simulate situations seen in Photo 1. It is
assumed that a single fiber is embedded in an infinite matrix. The

microcracking configurations studied are shown in Fig. 1.
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(a) Radial Crack in Matrix (b) Interface Crack

FIGURE 1.
First the stress fields for the uncracked configurations are computed
in closed form for temperature rise as well as mechanical loads. Consider a
ceramic fiber of radius R embedded in an infinite ceramic matrix as shown in
Fig. 2. If the temperature is increased by T, the stresses in the fiber

and the matrix can easily be found by considering a uniformly loaded




cylinder and a plane with a hole and matching the displacement at their

common boundary. After some algebra, we obtain:

(0. =0
for r<R{ IF _ (in the fiber); )
Ogg = ©
r Ter © ;(%)2
for r > R 1 - R (in the matrix); (2)
- (Y2
L 9gg = ()
where
_a (1+v ) - a (l+v)
D Wa—Y Y (3)
and
1+v l-v_.-2v2
A - —2, —fL £ (4)
E E
m f

Here (Em, v am) and (Ef, Ve af) are the Young's moduli, the Poisson’s

ml
ratios and the coefficients of thermal expansion for the matrix and fibers,

respectively. Assuming AT > 0, 1i.e. heating, and considering that VoV

one may conclude immediately that if am< ac, (aoo)matrix is tensile and may
induce radial cracks in the matrix. On the other hand if am> ag,
(arr)matrix is tensile with the possibility of debonding along the fiber-
matrix interface. In practice of course, in addition to the thermal

stresses described above, one has to include also the mechanical stresses
due to external loading and the residual stresses induced in the material

during the manufacturing process.




Radial crack in the matrix. Consider the radial crack geometry shown
in Fig. 1(a). The formulation of this problem for uniaxial loading is given
in [21]. Here instead of external loads, the crack surface will be loaded
with the residual stresses derived in the previous section and expressed by
Eq. (2). Referring to [21], after some simplification the formulation of
the problem 1in terms of the crack surface displacement derivative f(t) can

be written as:

c+R (£) c+R
J i_i dt + J (ky1(x,8) + k (x,t)]£(t)dt

R R 11f
W(Em+l)
- ——p(x), R < x < c+R: (5a)
me

with the single valuedness condition:

c+R
f(t)dt = 0; (5b)
R
where
g (00) = 2oy gE + —2(stRE) (125
11s™’ T ot-st T2 9y x? t
4s s(s?-R2) s3(s2-R2)2
*+ A1 t)xz(t-s)2 T Rit(t-s)3
A,R?
2,1 3R? = RZ
k(08 = T (M) - MEAD -1 50
. l-m_ . Ef-mEm . R2 . Z¢ " m(:m+1) ‘
1 = = 2 T = ’ I =z = (= = . ’
1+ - _f+m X =0 (_.f~t-m)(_.f 1+2m)
Em Ef

(6)




For the problem und2r consideration. the crack surface will be loaded with

the negative of residual stress T given in Eq. (2). Thus,

—R2
P(X) = 3. | (7

To solve the singular integral equation (5a), the following normalization

is used:

X = %p + R + 7, for R<x <c+tR and -1 < p < +1;

t = %r + R + %, for R < t<c+R and -1 < r < +1;
£(t) = g(r);  ky (x,8) =Ky (0,75

P(x) = q(p); K pp(x,€) = Ky p(p,7). (8)

Then Eqs. (5a,b) become:

+1 +1
J ] 8ln)y, . QJ ) [Klls(p,f) + Kllf(p,f)]g(r)df

1 TP 2 )
ﬂ(Em+1)
- Tq(p), -1 < p < +1; (9a)
m
and
+1
g(r)dr = 0. (9b)
-1

The normalized crack surface displacement g(r) is singular at 7 = *1 and may

be written as [22]:

—G(ry

vk (10)
J1-1(1l+71)

g(r) =




where G(r) is a bounded function and -1 < 8 < 0 is given by {21] as:

2cosmB + (Aj+A,) - 4A, (B+1)2 = 0. (11)

At the crack tip embedded in the matrix the stress intensity factor can be

defined as:

x-R+c

Lim
k(c) = J2lx-R¥e)Toy (2,00 | gy (12)

Using Eqs. (5a), (8) and (10) and after some lengthy algebra, we obtain:

2u
k(e) = -Z .
m

szzﬂc(l). - (13)

Noting that KI = Jxk(c), then the strain energy release rate is found to bef

K%(l-v;)

6 = — g = § (1-v2)k%(e); (14)
m m
or
¢ = X (1-v2)rS(KE)2, (15)
m Jec

Defining i = ¢ and noting that k(e) | ok’ (e), Eq. (15) becomes:
c

- X 2 o 252 .
GI Em(l vm)Re[k (e)]%0°. (16)

The radial matrix crack will propagate when the strain energy release rate

reaches the «critical strain energy release rate of the matrix, i.e., when

10
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GI > (GIc)matrix' Equating Eq. (16) with (GIc)matrix’ we obtain the
critical fiber size as:
(G, ) . E
R Ic matrix m . (17)

c x(1-u;)e[k'(e)]252'

However, the crack size (or €¢) is not known a priori. Therefore, we can
determine only a minimum critical fiber size which will occur when

g(e) = e¢[k'(e))? is maximum. Thus,

min _ (GIc)matrixEm _ (18)
c m(l-v2) [g(e)] 0%

Formula (18) can be used to conservatively determine the critical fiber size
for radial matrix crack suppression.
As an example, the fibers are assumed to be SiC and the matrix a glass-

ceramic (lithium aluminosilicate or LAS) with the following properties (23]:

E - 85GPa: wv =0.2: a=9x10"%/°C;
m m m

-6 .
Ef= 200 GPa; V= 0.2; o= 4x10 “/°C.
(C.): rorface = 20 Pa-m; AT = -1000°C;  (Ky ) .. .. =2 MPa/m; or
- 2 2 - -
(GIc)macrix (KIc matrix(1 Vm)/Em 45.18 Pa-m.

Equations (9a) and (9b) are solved numerically for the material combination

defined above by using the collocation technique described in [24,23].

. s . c ,
Figure 3 shows the variation of g(e¢) with R It is seen that the curve




passes through a maximum around [g(e)]max = 0.075. It must be noted that

the wvariation of g(e¢) shown in Fig. 3 is for the specific material
combination wused in the example. To assess the effect of the elastic
properties on the value of g(e¢), results are obtained for various ratios of

Em/Ef ranging from 0.2 to 5. These results are shown in Fig. 4.
As can be seen from Fig. 4, surprisingly the Em/Ef ratio has little

effect on g(e¢). Therefore, one curve can represent all practical material

combinations, including the Nicalon/SiC being studied here. Using the value
[g(e)]max- 0.075 and substituting into Eq. (18), we obtain Rzlna 148pm,

which is larger than the actual fiber size used in such composites.
Interface crack alon the fiber/matrix boundary. For this case, the
crack geometry is shown in Fig. 1(b). It is well known that at the
interface crack tip the stresses and strains have an oscillatory singularity
[26-30] and the stress intensity factors cannot be defined by using their
classical definition. Instead, we will determine the strain energy release
rate at the crack tip which is not affected by this peculiar behavior. The
problem does not appear to have been solved for thermal stresses. Using the
solution given by Toya [3l] and the superposition principle we present here
a solution for the residual stress loading expressed by Eqs. (1) and (2).
For the plane loading shown in Fig. 5, the strain energy release rate at the

interface crack tip is given as [31]:

G = %kRAO(1+4A§)rN§sinaexp[2Ao(n-a)]; (19)

where

12




Bo

k=15 Vo= (eetSep )/ (B *E ne); Bo = B(L+Ee) /(B +E pe)
1+ 1+=
k m f
Ay, = Z(—;_; + P f); Ao = -Adnv/2m;

d
N = (co-b) + LEEON_-T Jexp[1(24-a)423o(a-m)]; o = Go+iHo;

Go = [S(N_-T_) (1-(cosa+2Xosina)exp[2Xq(n-a)])

-%(l-k)(l+4A§)(Nw-Tw)sinzac052¢]/

{2-k-k(cosa+2rgsina)exp[2X,(x-a)]};

Ho = [%(1'k)(1+4A3)(NQ-T®)sin2&sin2¢

4u ie

1+=
m

a0

+ {1+(cosa+2X,sina)exp[2Xy (m-a)])]/ |

k{l+(cosat+2rgsina)exp([2X,(n-a)]};

4u iew

d 145
m

1
1 - E(Nm'Tw) +

where ¢ is the rotation at infinity, N is the complex conjugate of N, and
T, N, R, a and > are shown in Fig. 5. To obtain the solution for a

constant crack surface pressure o, which is the loading shown in Fig. 1(b)
and expressed by Egs. (1) and (2), consider the stress distribution for a
cylindrical inclusion embedded in an infinite matrix under uniaxial tension

o, (Fig. 6). The radial stress along the fiber/matrix interface may be

expressed as [32]:

990

Or = 5—(1-c0520) - 200[A(%)2 + B[3(%)‘-4(%)2]c05201; (20)
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where

(1~2uf)nm - (1'2”m)“f
4l(1-2ve)p +uel ’

A=

and

- P HE
PREERRIRE

B

Superimposing to this expression a uniaxial loading o, in the x direction,

with r=R, the radial stress along the fiber/matrix interface becomes

constant (independent of #):

Op = 0o(1-4A). (21)

Thus, to obtain a stress o=constant at the interface, we must have:

oo = a/(1-4A). (22)

The strain energy release rate at the crack tip for the thermal loading

is then obtained by using Eq. (19) with T =N = 2— and ¢ = =. Defining:
y ) © 1-4A 2 8

GE
m

G' = 2(1tv )5k’

(23)

the critical fiber size for the suppression of interface cracking can be

obtained by equating G to G.» the total critical strain energy release rate

of the interface. Again, noting that the crack length is not known a
s . . < s - . . min . s .

priori, we obtain the minimum critical fiber size RC when G' is maximum,

G’ . Thus:
max

14




. G E
grin _ cm
c 2(1+v Yo2G' -
m max

(24)

As an example, we assume the material properties given in the previous
section. Figure 7 shows the variation of G’ with the crack angle a. Again,

it 1is seen that the curve reaches a maximum of G' = 0.53 at a = 65°. With
these values and AT = +1,000°C, Eq. (24) gives R:ln = 11.7um which is of the

same order as the actual fiber size. To assess the effect of the elastic

properties, the ratio of Young’s moduli, Em/Ef, is varied from 0.2 to 5.

Unlike the case of radial cracking, as Fig. 8 shows, for interface cracking
the normalized strain energy release rate G' is heavily dependent on the
elastic properties of the constituents,

(b) Interaction of two fibers

This model is designed to simulate situations similar to those seen in
Photo 2. In this case it is assumed that two fibers are embedded in an
infinite matrix and subjected to mechanical or thermal loads. Again we
considered two crack configurations: (a) a radial matrix crack and (b) an
interface crack as shown in Figs. 9(a) and 9(b), respectively. Due to the
complexity of the geometry, here numerical and approximate methods have been
used to develop the solutions. For the uncracked geometry, the stress
fields in the matrix and at the fiber/matrix interface are determined using
the finite element technique. We have developed a finite element computer
procedure using ANSYS [33] which gives the stress and displacement fields
for 1in-plane mechanical and thermal loadings. Figures 10 to 15 show the

typical stress distributions of the two-fiber model due to thermal loading

15




and Figs. 16 to 21 show the stress distributions due to mechanical loading.
In either case effects of various Young's modulus ratios and fiber spacings
were investigated. It is found that the stress distributions are strongly

influenced by fiber interaction.

malrix
En 4 @
./;'}'* < 0
‘<E;; i 3% — .<222>
‘f.b-ll'
B et
(a) Radial Crack in Matrix (b) Interface Crack
FIGURE 9.

The crack configurations shown in Figs. 9(a) and 9(b) are handled as
follows: For the radial crack, we developed an approximate solution in
terms of a singular integral equation. The approximation is due to the fact
that the kernel wused in the singular integral equation is taken from the
single fiber model, while the crack surfaces are loaded with the negative of
the stresses obtained above. This means that Egs. (5) to (18) are still
valid with the understanding that p(x) in Eq. (5a) is now replaced by the
stress obtained for the uncracked two-fiber geometry. The numerical results
are computed for varying material properties and fiber separation (26X) and
are displayed in Figs. 22 to 24. The results indicate that (a) material
properties have very little effect on the normalized fracture energy, g(e),
as shown in Fig. 22; (b) the separation plays a significant role on whether

crack arrest 1is possible (e.g., Fig. 23 indicates that when § is large,

16




i.e., the fibers are far from each other, the normalized strain energy
release rate passes through a maximum making crack arrest possible; on the
other hand when § is small, i.e., when the fibers are close to each other,
there is no possibility of radial crack arrest); and (c) the variation of
the normalized strain energy release rate g(e) is drastically different for
the single-fiber and the two-fiber geometries.

For the interface crack problem, again an approximate solution based on
Toya's single-fiber model [31] 1is developed. First it may be noted that
Toya’'s solution {31] (Fig. 25(a)) can be considered as the superposition of
an uncracked geometry (Fig. 25(b)) and a crack loaded with the negative
stresses obtained in the first part (Fig. 25(c)). Then the strain energy
release rate can be computed by considering only the perturbation problem
shown in Fig. 25(c). Next the thermal- or mechanical-loading induced
tangential and radial stresses at the fiber/matrix interface, as shown in
Figs. 10 to 21, can be approximated in the least square sense to yield the
crack surface tractions prescribed in Fig. 5(¢). Thus in Toya's solution,

Eq. (19), the forces N and T and the angle ¢ are replaced by Ne , T and

q eq

¢eq’ respectivaly. The numerical results are displayed in Figs. 26 to 30

tor thermal and mechanical loading, where the normalized strain energy
release rate is plotted against the interfacial crack angle a. The material
properties and the crack spacing are varied and the results are compared
with those obtained for the single-fiber case. It 1is found that the
properties of fibers and matrix and the spacing of fibers may affect the
interfacial <crack propagation considerably. Furthermore, contrary to the

radial crack case, the variation of G' is similar qualitatively for both the

17




single-fiber and the two-fiber cases, making interfacial c¢rack arrest
possible (see Figs. 27 to 30).

(c¢) The ring model

This model is designed to simulate situations similar to those seen in
Photo 3. The model consists of a single fiber surrounded by a circular
array of fibers. This array of fibers is assumed to form a ring of material
with properties obtained by considering it a composite. The model is shown
in Fig. 31. The stress distribution in the uncracked composite due to
mechanical and thermal 1loadings can be obtained in closed form using

Mitchell's solution [34] for the four regions shown in Fig. 32.

The Ring Model
FIGURE 31.

Assuming plane strain,




€ - —:[g u3(arrs + 0093)] + aszAT; (28)

zz3

i

zz4 E s T2z~ U43(arr4 + 000‘)] + @4 AT. (29)

Equations (26)-(29) can also be written as:

0,1 = uf(arrx + 0&01) - EfafAT; (30)
0,2 = um(arr2 + 0092) - EmamAT; (31)
0, .3 = vs(arr3 + 0563) - Eja3AT; | (32)
0,4 -'V‘3(arr‘+ 0904) “E,,%44T. (33)

ag refer to the Young's moduli,

In these equations Em' Ef, Voo Ve

Poisson’'s ratios and thermal expansion coefficients of the matrix and

fibers, respectively, while Ey, Vi, Eg3,v 3 are the composite elastic

properties for regions 3 and 4, which are described below with the geometry

shown in Fig. 33.

Resinon 3 contains a group of fibers randomly distributed in a
concentric annular domain with inner radius b and outer radius c¢. The

tulus L., Toizseon’s ratlo v, and thermal expansicn coefficiens a.
- -

of the composite are dependent on n, the number of the fibers in this domain

ook ToormeTrical tarameTars.  As chown below. thev can T2 dezerminzd &
wvirtue orf the rule of mixtures:
-~ -~ ) -~
ni- c*-hc-n3¢ o,
E, = E - + E P 34)
3 fc?-b? m c%-b< (
ra- ¢ -h*-na°
Va = Vv "5 v ; (35)
3 fc?-b- m c?-b? '




N o -na2_ . ci-b?-na’
3 fc?2-b? m c2-b?

(36)

Region 4 is an infinitely extended domain with a hole of radius c¢. The
material in this region is transversely isotropic and the Young’s modulus,
Poisson’'s ratio and thermal expansion coefficient of the material are

determined by the following formulas (see Fig. 33):

E = ——. (37)

where E 1is the Young’'s modulus in x,- X, plane (see Fig. 33), Vf is the

volume fraction of fibers defined as:

_ (n+2)7a? -1 . .
Vf o2 and Vm 1 Vf, (38)
with n the number of fibers inside the ring.
4c?-(n+3)ma? (n+Pma? |
v = Vfuf + (l-Vf)um - 4o2 Ve + - vz Yo (39)
4e?-(n+3)17a? (n+3)mra? |
a = Vfaf + (l-Vf)am - 42 ae + We?  %ns (40)
S B B A Ex (a1
R £7f £ T ace £ ace i

where v and a are the Poisson’s ratio and the thermal expansion coefficient

in che w,-m. plane and IZ,; 15 the Younyg's modulus In the xy direction.
Furthermore

Vyaa -V, (42)
and
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a, = a; (43)
where v, and @, are prOpertiés in x5 direction.

Influence of the surrounding fibers in the ring model is considered in
the average sense. The influence of the surrounding fibers can be adjusted
either by changing the value of b, i.e., changing the closeness of the fiber
cluster or by changing the number of the fibers n in the ring. When the
number of the fibers in the ring is changed, the volume fraction of the

fibers in the ring is changed; and thus the Young's modulus E; Poisson’s
ratio vy and the thermal expansion coefficient ay will all change and the

influence of the ring (fiber cluster) will be different.

The continuity conditions at the interfaces can be written as:

U = Uy, VvV, = Vg, Tegr ™ Trg2 Orpd ™ pyp2’ (r = a) (44)
02 - us, V2 - Va, frgz - ‘rr93| arrz b arrs: (r - b) (45)
uz = u,, Vg = Vg, Trea - Tr&" arr3 - arr" (r = ¢) (46)

Solvirz the equations, we obtain the expressions for stresses in closed

K - R Wby b e e - «e 3 > miaas - O 3 - -
tho LT YRSSLICN WhlLeo are vers LOTMITAY TC rorTIcauc e ner2, 4a

s e oL . -
N [P SOREE cnt

tvpical distribution oI 944 is given in Fig. 34. The crack problem for this

cane oo disccunzed lazoy i Secl 3.

4, Exzerimental Worl

The experimental program is desigred to accomplish the following: (a)

to observe and docuzent the micrecracking patterns of a ceramic-fiber/
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ceramic-matrix composite under high temperature, (b) to obtain the variation
of the fracture toughness of the matrix material with temperature, (c) to
evaluate the effects of such factors as fiber size and distribution, thermal
expansion coefficients, and temperature rise on matrix microcracking of
ceramic composites, and (d) to determine the shear strength at the
fiber/matrix interface.

(a) The experimental set-up

The experiments consist of micro-indenting monolithic and composite
specimens with a microhardness indenter wunder various temperatures and
recording the resulting microcracking patterns using a microscope. For this
purpose an ATS series 3320 split-tube laboratory furnace (Applied Test
Systems, Inc., Butler, PA) which can be heated up to 3bOO°F in 30 minutes
and a Nikon UM-2 universal measuring microscope are used. The indentation
load 1is recorded by a 10-1b super-mini 1load cell (Interface, Inc.,
Scottsdale, AZ) and the temperature is read by a type-B platinum/platinum-
30% rhodium thermocouple. A sketch of the experimental set-up is shown in
Fig. 35. Figure 36 shows the series 3320 split-tube laboratory furnace.

(b) Effect of temperature on toughness of matrix material

The toughness of the matrix material 1is obtained by indenting
monolithic SiC coated specimens described in Sec. 3. The specimens were
first mounted in a bakelite mold, polished with paste of extra fine alumina
and diamond powders (as small as half a micron) and indented with a diamond
Vickers indenter (Wilson Instruments, Inc., Bridgeport, CT). They were then
examined under optical and scanning electron microscopes to document pre-
existing microcracks and only a few of them were observed. To ascertain the

eftect of temperature on the toughness of the material, the testing
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temperature was varied from room (25°C) to 800°C. Thus micro-indentation
tests were carried out at 25°C, 250°C, 600°C and 800°C. At each temperature
level the indentation load P was recorded by the super-mini load cell and
the half size of the impression D, as shown in Fig. 37, was measured by the
Nikon UM-2 microscope. From this informatioﬂ one may calculate the

toughness of the material using a typical formula as given below:

K = 57— (G0 | 47)

Ie w3/2tanw D

where P 1is the applied load, D the half crack length and % = 68° is the
indenter angle. Details of the indentation technique can be found in Lawn
et al. [19] or Evans [20]. The results for the fracture toughness of SiC
at various temperatures are displayed in Fig. 38. One may note that, as
expected, there is some scattering in the results, However, more
importantly it seems that the fructurz toughness of SiC decreases

significantly with increasing temperature. For example KIc decreases from

approximately 4.5 ksi/in at roca tempc.ature to 3.5 ksi/in at 800°C. The

fracture toughness of the matrix was also measured from the composite

1]

ccimens. To preclude anv effect of fibers on the results, the indentation

]

was done in sites with no neighborin fibers. The same results were
g

obtaired. as will be seen later from the results presented in Figs. 40-43.

(o) Zffoes of fiters and wemparstuvre en the “aoparent tourhness" of the
matrix
Just like the case for the monolithic specimens described in
P
Sec. 4(b), each Nicalon/SiC ceramic composite specimen was also first

mounted in a bakelite mold, polished and examined under optical and scanning
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electron microscopes to document the pre-cracking (existing microcracks) and
the fiber distribution patterns used in the analytical model. Again only a
few existing microcracks were observed. The specimens were then heated in
the ATS furnace up to 3000°F. The heated specimens were later examined
under optical and scanning electron microséopes. Again no further
microcracking was observed due to temperature rise alone. This confirms the
claim of the manufacturer and our preliminary calculations, using the
single-fiber model, Sec. 3(a), that for this material microcracks do not
occur under thermal loading alone. The combination of thermal and
mechanical loadings is necessary to generate microcracks.

Next the 1/2"x1/2"x1/8" Nicalcn/SiC composite specimens with fibers
facing up were also polished as before and in the matrix of the composite,
microcracks were generated again using the indentation technique at various
temperatures ranging from room to 800°C. To ascertain the effects of
fibers, the specimens were indented at locations of varying fiber density
and the fracture toughness was calculated using Eqn. (47), as if the fibers
did not exist. Since the fracture toughness described above contains the
effect of fibers, from here on it will be referred to as the "apparent
fracture  toughness" of the matrix material (SiC). The effect of fibers is
introduced through the concept of local volume fraction: A cell of fixed
provortions, Fig. 39, (sav, b/a=3, where 2a is the crack length and 2b is
the total lenmgth of the cell) is selected with the indentation imprint at
the center and several fibers scattered within the composite cell. The

local volume fraction Vf is defined as the ratio of the total cross-

sectional areas of fibers to the total area of the composite cell. As a
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consequence, at each indentation site, one obtains a different local Vf.

The experimental results obtained at room (25°C), 250°C, 600°C and 800°C are
shown in Figs. 40 to 43. In each figure the "apparent fracture toughness"

is plotted against the 1local volume fractiom of fibers, Vf, at a given

temperature. It is observed that the "apparent fracture toughness"
decreases with increasing 1local volume of fibers and also with increasing
temperature. This means that it is easier to generate microcracks at a
location where the density of fibers is higher and when the te&perature is
increased. The result that the "apparent fracture toughness" of the matrix
is decreasing with increasing local voluﬁe'fraction must be expected, since
the composite under consideration 1is a so-called "reversed" composite,

meaning that the matrix is stiffer than the fibers. Here the Young's

modulus of the matrix material (SiC) {is Em-55x106 psi and the Young's

modulus of fibers (Nicalon) is Ef-26x106psi. These results are summarized

in Fig. 44, where the experimental data are presented with fitted straight

lines.

(d) Determination nof interfacial strength and interfacial stresses

The 1interfacial strength at debonding initiation is determined by a
combination of experimental measurements and finite element analysis. First
she  load at debonding irnitiation Is measured. For this purpose some
specimens were micro-indented at room temperature using the Wilson Tukon 300
microhardness tester whose attached microscope enabled us to indent at the
desired site and to observe the ensuing microcracks. For instance, two

perpendicular matrix cracks generated by loading a Vickers indenter at 600
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grams 1is shown in Photo 4. Photo 5 shows a partial interfacial crack
produced at the interface of a fiber which is surrounded by a circular array
of fibers. The Vickers indenter was loaded at 50 grams with an eccentricity
of approximately three quarters of the fiber radius. Photo 6 depicts
complete debonding of two isolated fibers, each was loaded eccentrically
with a Vickers indenter at 50 grams. The eccentricity in either fiber is
about one half of the fiber radius. From these observations we can conclude
that the micro-indentation fracture behavior of ceramic composites is
affected not only by the magnitude and location of the indenter but also by
the distribution of the fibers, i.e. fiber ;nteraction.

To simplify the calculation, the indentation is performed at isolated
fiber locations when determining the interfacial shear strength. On can
then neglect the far away fibers and model the problem as a fiber surrounded
by an infinite matrix. In general, however, the model used is a single
fiber surrounded by an annulus of matrix material with the rest of fibers
and matrix being modeled as a transversely isotropic composite as shown in
Fig. 45. A similar model was developed in [35]. A number of debonding

experiments were conducted and in each case the critical load Pcr' which is

the load at debonding initiation, and the fiber size were recorded. During
the debonding test the indenter is presse at the center of the fiber and
the load is applied incrementally until complete debonding occurs. Through

Leaf2

a regression analysis, it can easily be shown that the critical loads Pcr

are proportional to the square of fiber radii (see Fig. 46). This finding

indicztes that the results are consistent for all the fibers with

different sizes.
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To relate the critical debonding load to the strength of the fiber-
matrix interface, one needs the distribution of interfacial stresses. For
this purpose a finite element model has been developed. In the finite
element model the loading is specified as a concentrated force acting at the
center of the fiber (Fig. 44(b)). In the analysis ANSYS [33] finite element
code 1is wused. Since the geometry and loading are axisymmetric, the
axisymmetric element 1is employed. To check the accuracy of the solution,
the fiber and the matrix are assigned the same mechanical properties and the
results obtained are compared with the closed form Boussinesq’s solution
[34]. The results agree extremely well. The calculations are performed
in two steps, i.e. first a course mesh is used and later a finer mesh is
employed, A typical mesh used in the computation is shown in Fig. 46i. The
normalized shear and radial stresses at the fiber-matrix interface are showﬁ
in Fig. 47. The stresses due to temperature change were also considered and
are displayed in Fig.48. The debonding shear strength is the maximum shear

strength when the load is Pcr' Based on the analysis given above, the shear

strength can be calculated by the following formula:

K
Teslericical = __1 , L (48)
P _/R? Y Ea aT
cr I m

where ¥ 1is a constant (in our euample K = 0.18), Pc* the critical load
(i.e., the 1load at the onset of debonding), Em Young'’s modulus of the

matrix, a. thernial expansion coefficient of the matrix, R radius of the

fiber being tested and AT change in temperature.
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5. Theoretical Prediction and Comparison with Experimental Results

To explain and predict the observed experimental results given in the
previous section, a theoretical model has been developed. In a composite
material, the distribution of fibers may assume many patterns such as an
isolated fiber, two interacting fibers, a ring of fibers, or random. Here
we assume that the fibers form a ring of composite material with elastic
properties calculated based on a volume fraction equivalent to the volume
fraction in the cell described above. The geometry of the modei is shown in
Fig. 49. Since the properties of the constituents are fixed, £from
dimensional considerations, it can be shown that for the ring model the
stress intensity factor for a crack of length 2a in a uniformly loaded

composite can be expressed as:

K; = aoj§3 £(Vg, R/a, ATY, (49)

where o, i{s the crack surface traction, Vf the local fiber volume fraction,
R the fiber radius, and AT the temperature rise. When % reaches the

critical value (ao)c, KI will become the toughness of the matrix,

(X, ) . . Thus the "apparent fracture toughness", which is defined as:

Lcimactrix

(K;o) (0,) J/ma, (50)

apparent

can be eupressed in terms of Vf and R/a as:

(Ki ) pvine
(K. ) - Ic ' matrix (51)
Ic’apparent f(Vf, R/a, AT)'

where
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K1

£(Ve, R/a, AT) = ;;7=;§, (52)

is the normalized stress intensity factor.

The stress intensity factor KI is determined using the finite element

program ABAQUS [36]). Thus for a given R/a and AT, a (K versus Vf

Ic)apparent
curve can be plotted. Numerical results for R/a = 0.95 and T = 25°C, 250°C,
600°C, and 800°C have been computed. The finite element mesh used in the
calculations is shown in Fig. 50. The theoretical results obtained for each
temperature level are plotted against the experimental results and are
depicted 1in Figs. 51 to 54. It is seen tﬁat the agreement between the two
sets of results is good. The model also predicts a decreasing "apparent
fracture toughness" with local volume fraction of fibers. For low volume
fractions and high temperatures, the quantitative prediction is excellent.
However, for large volume fractions and low temperatures, there is some
deviation between the experimental and the predicted results. This is
expected since our model does not take into account the specific
arrangement of fibers around the crack tip and the possible mode II effects,

which mav influence the "apparent fracture toughness" significantly.
: PP g )
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fiter embedded in infinite matrix.
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