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PREFACE

This report was prepared for the Safety and Survivability Technical Area of
the Aviation Applied Technology Directorate, U.S. Army Aviation Research and
Technology Activity (AVSCOM), Fort Eustis, Virginia, by Simula Inc. under Con-
tract DAAJO2-86-C-0028, initiated in September 1986. This guide is a revision
of USARTL Technical Report 79-22, Aircraft Crash Survival Design Guide, pub-
lished in 1980.

A major portion of the data contained herein was taken from U.S. Army-
sponsored research in aircraft crash resistance conducted from 1960 to 1987.
Acknowledgment is extended to the U.S. Air Force, the Federal Aviation
Administration, NASA, and the U.S. Navy for their research in crash survival.
Appreciation is extended to the following organizaticns for providing accident
case histories leading to the establishment cof the impact conditions in
aircraft accidents:

° U.S. Army Safety Center (USASC), Fort Rucker, Alabama
0 U.S. Naval Safety Center, Norfolk, Virginia

] U.S. Air Force Inspection and Safety Center, Norton Air Force Base,
California.

Information was also provided by the Civil Aeronautics Board, which is no
longer in existence.

Additional credit is due the many authors, individual companies, and organi-
zations listed in the bibliographies for th2ir contributions to the field.
The contributions of the following authors to previous editions of the Air-
craft Crash Survival Design Guide are most noteworthy:

D. F. Carroll, R. L. Cook, S. P. Desjardins, J. K. Drummond, J. L. Haley,
Jr., A. D. Harper, H. G. C. Henneberger, N. B. Johnson, G. Kourouklis,
Dr. D. K. Laananen, P. A. Rakszawski, W. H. Reed, M. J. Reilly, S. H.
Robertson, L. M. Shaw, G. 7. Singley, III, A. E. Tanner, Dr. J. W.
Turnbow, and L. W. T. Weinberg.

This volume has been piepared by S. P. Desjardins, Richard t. Zimmermann,
Akif 0. Bolukbasi, and Norman A. Merritt of Simula Inc.
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INTRODUCTION

For many years, emphasis in military aircraft accident investigation was
placed on determining the cause of the accident. Very little effort was ex-
pended on the ¢rash survival aspects of aviation safety. However, it became
apparent through detailed studies of accident investigation reports that
significant improvements in crash survival could be made if consideration
were given in the initial aircraft design to the following factors that
influence survivability:

1. Crash Resistance of Aircraft Structure - The ability of the aircraft
structure to maintain living space for occupants throughout a crash.

2. Tiedown Strength - The strength of the linkage preventing occupant,
cargo, or equipment from breaking free and becoming missiles during
a crash saquence.

3. Occupant Acceleration During Crash Impact - The intensity and dura-
tion of accelerations experienced by occupbants (with tiedown assumed
intact) durine a crash.

4. Occupant Crash Impact Hazards - Barriers, projections, and loose
equipment in the immediate vicinity of the occupant that may cause
contact injuries.

8. Postcrash Hazards - The threat to occupant survival posed by fire,
drowning, exposure, etc., following the impact sequence.

Early in 1560, the U.S. Army Transportation Research Command* initiated a
long-range program to study all aspects of aircraft safety and survivability.
Through a series of contracts with the Aviation Safety Engineering and Re-
search Division (AvSER) of the Fiight Safety Foundation, the problems associ-
ated with occupant survival in aircraft crashes were studied to determine
specific relationships among crash forces, structural failures, crash fires,
and injuries. A series of reports covering this effort was prepared and
distributed by the U.S. Army, beginning in 1960. In October 1965, a special
project initiated bty the U.S. Army consolidated the design criteria presented
in these reports into one technical document suitable for use as a designer’s
guide by aircraft desigr engineers. The document was to be a summary of the
cuivent state of the art in crash survivai design. The Crash Survival Design
Guide, TR-67-22, published in 1967, realized this goal.

Since its initial publication, the Design Guide has been revised and expanded
teour times to incorporate the results of continuing research n crash resis-
tance technology. The third edition, published in 1971, was ihe basis for
the criteria contained in the original revision of the Army’s military stan-
dard PIL-87D-1290, "light Fixed- and Rotary-Wing Aircraft Crash Resistance”
(keference 1). The Tourth eoition, published in 13280, eatitled "Aircrart
Crash Survival Design Guide," expanded the document to five volumes, which
have been updated by ithe current edition to include information and changes

*Now the Aviation Applied Yechnology Uirectorate, U.S. Limy Aviation
Resesveh and Technolouy Activity, U.S. Army Aviotion Systems Command
{AYSCOM).
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developed from 1980 to 1987. This current edition, the fifth, contains the
most comprehensive treatment of all aspects of aircraft crash survival now
documented. It can be used as a general text to establish a basic under-
standing of crash impact conditions and the techniques that can be employed
to improve chances for survival. It also contains design criteria and check-
lists on many aspects of crash survival and thus can be used as a source of
design requirements.

It should be emphasized that the Design Guide is to be used as a guide, not
as a specification.

System specifications should reference applicable crash-resistant design
specifications, such as MIL-STD-12906, MIL-S-58095, and MIL-S-85510, or should
include specific criteria seiected from the Design Guide or other sources.

The current edition of the Aircraft Crash Survival Design Guide is also pub-
lished in five volumes, Volume titles and general subjects inciuded in each
volume are as follows:

Volume I - Design Criteria and Checklists

Pertinent criteria extracted from Volumes II through V, presented in the
same order in which they appear in those volumes.

Volume II - Aircraft Design Crash Impact Conditions and Human Tolerance

Crash impact conditions, human tolerance to impact, military anthropomet-

ric data, occupant environment, test dummies, accident information re-
trievai,

Volume III - Aircraft Structural Crash Resistance

Crash load estimation, structural respcnse, fuselage and larnding gear re-
quirements, rotor requirements, ancillary equipment, cargo restraints,
structural modeling.

Volume IV - Aircraft Seats, Restraints, Litters, and Cockpit/Cabin
Delethalization

Operational and crash impact conditions, energy absorption, seat design,
Titter requirements, restraint system design, occupani/resiraint system/
seal modeling, delethalization of cockpit and cabin interiors.

Volume V - Ajrcraft Postcrash Survival

Postcrash fire, ditching, emergency escape, crash locator beacons.

This volume (Volume IV) contains information on aircraft seats, litters,
personnel restraint systems, and hazards in the occupant’s immediate environ-
ment. Following a general discussion of aircraft crash resistance in Chap-
ter 1, a number of terms comnmonly used in discussing crash impact conditions,
seats, and occupant protection are defined in Chapter 2. Chapter 3 presents
design considerations for aircraft seats, and Chapter 4, principles for
crash-resistant seat design. CEnergy absorption is discussed in Chepter 5.




Principles for cushion and: personnel restraint system design are presented in
Chapters 6 and 7, and strength and deformation requirements for seats and
littars are stated in Chapters 8 and 10, respectively. Retrofit applications
for seating systems are discussed in Chapter 9. Cockpit delethalization,
including protective padding, is discussed in Chapter 11.

The units of measurement shown in the Design Guide vary depending upon the
units used in the referenced sources of information, but are mostly USA
units. In some cases the corresponding metric units are shown in parentheses
following the USA units. For the convenience of the reader a conversion
table of some commonly used units follows.

USA Unit Abbr. or Symbol Metric Equivalent Abbr . or_Symbg1
Weight
Ounce 0z. 28.35 grams g
Pound b or # 0.454 kilogram kg
Capacity

(U.S. liguid)
Fluidounce fl oz 29.57 milliliters ml
Pint pt 0.473 liter 1
Quart qt 0.946 liter i
Gallon gal 3.785 liters 1
Length
Inch in, 2.54 centimeters rm
Foot ft 30.48 centimeters cm
Yard yd 0.9144 meter m
Mile mi 1.609 kilometers km
Area

2 2
Square Inch sq in. or in. 6.452 square $q cm or cm

cent imeters ,
Square Foot sq ft or ftz 0.093 square meter sgmor m2
Yolume
Cubic Inch cu in. or in.3 16.39 cubic cu ¢m or cm3
cent imeters

Cudic Foot cu ft or ft3 0.028 cubic meter cu m or m3
Force
Pound b 4 _448 newtons N

4.448 x 105 dynes




1. BACKGROUND DISCUSSION

The overall objective of designing for crash resistance is to eliminate unnec-
essary injuries and fatalities in relatively mild impacts and minimize them
in severe survivable mishaps. A crash-resistant aircraft will reduce air-
craft crash impact damage. By minimizing personnel and material losses due
to crash impact, crash resistance conserves resources, is a positive morale
factor, and improves the effectiveness of the fleet in peacetime and in war.
Results from analyses and research during the past several years have shown
that the relatively small cost in dollars and weight of including crash-
resistant features is a wise investment (References 2 through 13). Conse-
quently, new generation Army rotary-wing aircraft are being procured to
stringent, yet practical, requirements for crash resistance.

To provide as much occupant protection as possible, a systems approach to
crash resistance must be followed. Every available subsystem must be consid-
ered in order to maximize the protection afforded to vehicle occupants. When 2
an aircraft impacts the ground, deformation of the ground 2bsorbs some ener- ¥
gy. This is an uncontrollable variable since the quality of the impacted sur- . .
face usually cannot be selected by the pilot. If the aircrart lands on an

appropriate surface in an aporopriate attitude, the landing gear can be used

to absorb a significant amount of the impact energy. After stroking of the

gear, crushing of the fuselage contributes to the total energy-absorption pro-

cess. The fuselage must also maintain o protective shell around the occu-

pant, so the crushing must take place outside the protective shell. The func-

tions of the seat and restraint system are to restrain the occupant within :
the protective shell during the crash sequence and to provide additional ]
energy-absorbing stroke to further reduce occupant decelerative loading to -
within human tolerance limits. Seat energy absorbers will function under

most conditions of impact surface and attitude and are therefore, a highly

reliable method of limiting occupant loads. The structure and ccmponents

immediately surrounding the occupant must also be considered. Weapon sights,

cyclic controls, glare shields, instrument panels, armor panels, and aircraft

structure must be delethalized if they lie within the strike enveiope of the

occupant.,

It would seem efficient to simply specify human tolerance requirements and an
airvay of vehicle crash impact conditions and then deveiop the helicopter as a
crash-resistant system with an efficient mixture of those crash-resistant fea-
tures that are most efficient for that helicopter. However, available struc-
tural and human tolerance analytical techniques needed to perform, evaluate,
and validate such a maximum design freedom approach to achieving crash
resistance are not sufficiently comprehernsive to be relied upon completely. .
Furthermore, testing complete aircraft early in the development cycie to per- -
mit evaluatign of system concepts is not practical. The systems approach B
dictates that the designer consider probable crash conditions wherein one or N
more subsystems do not perform their desired functions; for example, an e
impact situation in which the landing gear does not absorb its share of the
impact crash energy because of aircraft impact attitude or type of terrain
impacted. Therefore, to achieve the overall goal, minimum levels of crash
protection are recommended for the various individual subsystems with balance
between the two extremes of: (1) defining necessary performance on a com-
ponent level only, and (2) requiring that the aircraft system be designed
only for 1mpact conditions with no component criteria.
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Current helicopter crash resistance criteria require that a new aircraft be
designed as a system to meet the vehicle impact design conditions recommended
in Volume II; however, minimum criteria are also specified for a few crash
critical components. For examnle, strengths and minimum crash energy-
absorption requirements feor seats and restraint systems are specified. All
strength requirements presented in this volume are based on the crash impact
conditicns described in Voiume II. Testing requirements are based on ensur-
ing compliance with strength and deformation requirements. Crash resistance
design criteria for U.S. Army light fixed- and rotary-wing aircraft are
stated in MIL-STD-1290 (Reference 1). All new seats in the cockpit for
pilot, copilot, observer, and student in either rotary- or light fixed-wing
aircraft should conform to the requirements of MIL-S-58095 (Reference 14),
while passenger seats should conform to MIL-S-85510 (Reference 15).

Although higher levels of crash resistance can be more efficiently achieved
in completely new aircraft designs, the crash resistance of existing aircraft
can be significantly improved through retrofitting these aircraft with crash-
resistant components adhering to the design principles of this design guide.
This can even be achieved while expanding the combat effectiveness of the
aircraft. Examples of this are the successful program to retrofit altl U.S.
Army helicopters with crash-resistant self-sealing fuel systems (Refer-

ence 16), and the U.S. Navy program to retrofit the CH-46, SH-3, HH-3, and
CH-53 helicopters (References 17, 18, and 19) with crash-resistant armored
crewseats.

In an initial assessment, the definition of an adequate crash-resistant struc-
ture may appear to be relatively simple. In fact, many influencing para-
meters must be considered before an optimum design can be finalized. A com-
plete systems approsch should be empioyed to inciude ail infiuencing para-
meters concerned with the design, manufacture, overall performance, and econo-
mic constraints on the aircraft in meeting mission requirements. Trade-offs
between the affecting parameters must he made in order to arrive at a final
design that most closely meets the system’s specifications, Each type of
aircraft may require a different emphasis in the parameter mix. Table 1
summarizes major crash resistance criteria that should be considered during
the preliminary design phase.




TABLE 1.

CRASH RESISTANCE CRITERIA FOR THE PRELIMINARY DESIGN PROCESS

Crash Scenariys

e MIL-STD-1290
def ines predom-
inant impact
conditions

e Single axis and
combination of:

- Vertical impact

- Longitudinal
impact

- Lateral impact

e Post impact
- Rollover

- Pitchover
- Nose plowing

Support of large
mass items

Support of sys-
tems

Occupant support
and protection

Cargo contain-
ment and tiedown

Support of land-
ing gear lcads

Space consistent
with occupant
strike envelope

Emergency exit
structure

Anti-nose plowing
bulkhead(s)

Primary Strugture ~ _Enerqy Absorption

¢ Landing gear

e Controlled struc-
tural collapse

e Crash-resistant
energy-
absorbing
seats

¢ Shedding of large
mass items

- Engines

- Transmissions

- Rotor heads

- txternal stores
- Tail boom

(Shed items must
not impact occu-
pied areas)

e Impacted surface
{soft ground, etc.)

Postcrash
Requirsments

e Emergency egress

- Occupant release
from seats

- Door/exit
opening

- Accessibility
of exits

& Minimization of
fire potential

- Cresh-resistant
fuel systems

- Low-flammability
hydraulic fluid

- WNonso=ri'ng
matus 'ale in
areas of poten-
tial ground con-
tact




2. DEFINJTIONS

2.1 AJRCRAFT COORDINATE SYSTEMS AND ATTITUDE PARAMETERS

Positive directions for velocity, acceleration, and force components and for
pitch, roll, and yaw are illustrated in Figure 1. When referring to an air-
craft in any flight attitude, it is standard practice to use a basic set of
orthogonal axes as shown in Figure 1, with x, y, and z referring to the longi-
tudinal, lateral, and vertical directions, respectively.

W

. +x ROLL X
NOTE: RIGMT-HAND RULE DOES NCT AFPLY.

FIGURE 1. AIRCRAFT COORDINATES AND ATTITUDE DIRECTIONS.




