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1. Introduction. Interesting questions concerning homogeneous chaos, scaling,
and the Feynman integral have been brought to light in a recent largely
heuristic but fascinating paper of Hu and Meyer [5]. Our purpose here is to
indicate a way of resolving these questions as well as others which have arisen
in the course of our research.

Let R+ denote the nonnegative real numbers and let @0 = @0(m+) be the
space of continuous functions x on R, such that x(0) = 0. P1 will denote the
standard Wiener measure on %0(R+). Every f € L2(@0(R+). Pl) has an expansion

in Wiener chaos:

=3 L
(1.1) f -p§O 5T ().

where fp € Li(mf). the symmetric functions which are square integrable over RE,
and where Ip denotes the p-fold multiple Wiener-Itd integral.

Hu and Meyer offer the following "formula” in terms of the expansion
(1.1):

2 .k
(1.2) E(f) =3 {o-1) " r kg

k 2Kk 2x) -

The formula (1.2) is to give the "Feynman integral” of the random variable f
when 02 is purely imaginary and when the right-hand side of (1.2) makes sense.
The first problem coming from the Hu-Meyer paper is that of giving a
rigorous treatment of the k-trace, Trkfp. of fp where k=0,1,....{p/2] and [p/2]

denotes the greatest integer in p/2. We will do this in Section 3, but, for
the purpose of this introduction, the reader may think of Trkfp as given by the

(oversimplified) formula

k
(1.3) (Tr fp)(s2k+1.....sp) = ék fp(sl'sl'""sk'sk's2k+l""'sp)dsl"’dsk'
+

Availability

O
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The difficulties with (1.3) are clear since fp is defined only up to sets of

Lebesgue measure O.

One would like to connect formula (1.2) with the usual notion of the
scalar-valued analytic Feynman integral of f obtained by starting with the
Wiener integral
(1.4) J f(ox)dPl(x)

%

for 0 > 0 and analytically continuing to 02 purely imaginary. Comparing (1.1)

and (1.2), the naive hope would ‘e that for o > O,

k
Lgiil—-Trk(f2k) if p=2k is even,
1 27k!
(1.5) £ o7 Ip(fp)(ax)dPl(x) =

(0} 0 if p is odd.

However, (1.5) is too naive since, for o # 1, Ip(fp)(ax) is defined only on a
set of Pl-measure 0. (More will be said about this in Section 2A.) In order
to obtain a correct version of (1.5), the function Ip(fp) needs to be extended.
Perhaps the first thing that comes to mind is to replace Ip(fp) in (1.5) with
Ig(fp) where I:(fp) is the Wiener-Itd integral corresponding to the variance
parameter 02. This does not produce the desired result however because, even

though the integral makes sense, we obtain
1 .o
(1.6) J = I (f )(ax)dPl(x) = 0.
¢ P! PP
0
We will show in this paper how to define N[Ip(fp)] which we will call the

bl

natural extension of the random variable Ip(fp). and we will obtain the desired

formula:

k
{o-1) T?k(fzk) if p=2k is even,

1 oK1

(1.7) £ o7 N[Ip(fp)](ax)d?l(x) =
0 0o if p is odd.




3

N[Ip(fp)] will be defined in terms of the "scale-invariant 22-1ifting" (to be
defined in Section 2C) to random variables on @0(R+) of certain (p-2k)-forms
(k=0.1.....[p/2]) on the Hilbert space L*(R,).

Hu and Meyer have made the suggestion that in studying the problem of
extension of Ip(fp) it might be more nmatural and basic to start not with Wiener
space but with the Cameron-Martin space ¥ on which the pth order "multiple
Wiener integral” is nothing but a homogeneous p~linear form wp defined on #*.
Since Po(ﬂ) =0 for all o > O, wp is obviously not a random variable in the
usual sense. A theory of "accessible" random variables on a Hilbert space
regarded as a finitely additive Gauss probability space has been developed and
applied to problems of nonlinear prediction and filtering theory in the recent
book by Kallianpur and Karandikar [13]. It turns out that this theory is the
appropriate setting for the development of Hu and Meyer's ideas. A key concept
is the notion of a lifting map to a suitable representation space, an idea that
goes back to I.E. Segal (see the references in [13]). These questions will be
taken up in some detail in Section 2C.

It is perhaps worth remarking (although we will not emphasize this point
of view in the present paper) that by taking a different choice of
representation space, for example, an abstract Wiener space or the white noise
spﬁce (#'.1) where u is the countably additive Gaussian white noise measure on
the space 9'(Rd) of Schwarz distributions on Rd. one can obtain extensions of
our main results to these spaces.

Theorem 5.1 is a key result in our development. It asserts that the
p-form Wp(fp) on L2(R+) associated with fp € Li(mf) has a scale-invariant 22
lifting if and only if the limiting trace, T?kfp. exists for k = 0,1,...,[p/2].
Further, it expresses this lifting as a finite sum of multiple Wiener-Itd
integrals. The fact that the trace conditions are shown to be necessary as

well as sufficient is connected with the definition of the limiting trace,




T?kfp (see Section 3).

The Feynman integral provided the initial motivation for the present work,
and it, in conjunction with this paper and the paper of Hu and Meyer [5].
suggests several further questions. However, the discussion of the Feynman
integral below is limited to issues closely related to those already raised in
this introduction.

This paper is addressed primarily to probabilists, but we hope that it
will also be of interest to analysts who are concerned with the Feynman
integral. With this in mind, the next section on preliminaries is rather
detailed. Further, we will use the notation of analysis, in particular,
integrals instead of expected values, whenever it seems likely to be clearer to
an analyst.

We finish this introduction by outlining the contents of the paper.
Section 2 deals with preliminaries; the material is essentially known although
some of it is not readily available in the literature and there may be a few
novel points. Scaling in Wiener space is reviewed and facts about Wiener-Itd
integrals are outlined with special attention paid to scaling. Finally, the
scale-invariant lifting of functions on L2(R+) to random variables on Wiener
space CO(R+) is defined.

In Section 3, the limiting k-trace, T?kfp. is introduced and studied.
Section 4 contains two crucial lemmas which give the results of Sections 5 and
6 in the special case wvhere fp € Li(mf) has a finite expansion in terms of a

tensorial Hilbert basis (¢, 8...8¢, ) for L2(®P).
1 P
The key result expressing the lifting of a p-form on L2(R+) as a finite

sum of multiple Wiener-Itd integrals or, alternatively, as a p-form on Wiener
space is given in Section 5. In Section 6, the point of view is reversed and
multiple Wiener-Itd integrals are written as finite sums of liftings of p-forms

on L2(R,).
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The natural extension N[Ip(fp)] of Ip(fp) is defined in Section 7 and we
show how to write N[Ip(fp)] as a finite sum of multiple Wiener-Itd integrals.
At this point it is easy to rigorously establish the connection between formula
(1.2) of Hu and Meyer and the usual definition of the scalar-valued analytic
Feynman integral. This is carried out in Section 8.

During the course of writing this paper, the work of H. Sugita [15] was
brought to our attention by S. Watanabe. Sugita’s paper and this paper have
rather different goals but, among the concerns of [15], are questions similar

to the results of Section 5 of our paper.




2. PRELIMINARIES

A. Scaling in Wiener space. A rather detailed treatment of this topic and
its relationship with the Feynman integral and other matters as well as
references to the earlier literature can be found in the paper [9] of the first
author and Skoug. Here we need the basic facts in the setting of Wiener space
on the infinite interval R+. This is the setting of the paper of Hu and Meyer
and we follow their discussion for a while.

Given any o > 0, let

Q, := {x € @0: [x.x]t = a2t for all dyadic t, t > 0}

where
271 (k+1)t kt,~2
[x.x]t := lim 2 [x( = ) - x(—;)] .
n k=0 2 2
It is known [5,9] that Wiener measure P1 on @O(R+) is carried by Ql and that
the scaled measure Pa ‘= P1 o a-l corresponding to the Wiener process with
variance parameter 02 is carried by 1 . Clearly, @ NN_ = ¢ if o, # o, and
a o, 0 1 2
so Pa and Pa are mutually singular. Note: When we say that Pa is carried by
1 2

ﬂa we mean that Pa(Qa) = 1 and not that Qa is the topological support of Pa:
indeed, the topological support of Pa is @0 for each o > O.
Clearly a function F is defined Pa- almost surely (Pa-a.s.) on @0 if and
only if it is defined P -a.s. on 2 . Since ] =o0fl, and P_ = P 00—1. F is
o g o 1 g 1
defined Pa-a.s. if and only if F o o i{s defined Pl—a.s. Thus the Change of

Variables Theorem allows us to write

I F(ox)dP,(x) = [ F(y)dP_(y).
4 14

0 0
or, equivalently,
(2.1) J F(ax)dPl(x) =J F(y)dPa(y).
Y] Y]
1 g
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Next, for the convenience of the reader, we state some definitions and
results that are given in [9]. Let %:%(@0(R+)) denote the g-algebra of Borel
subsets of @0(R+). When (@o.%.?a) is completed, let 90 be the resulting
o-algebra of Pa-measurable sets and let Na be the collection of Pa-null sets.
A subset A of %o is said to be scale-invariant measurable provided that oA € 91

for all o > 0. A scale-invariant measurable set N is said to be scale-

invariant null provided Pl(aN) = 0 for every 0 > 0. A property which holds

except on a scale-invariant null set will be said to hold scale-invariant

almost surely or s—a.s. The collection of scale-invariant measurable

(respectively, scale-invariant null) sets will be denoted ¥ (resp., N¥)}. In

fact, it is easy to show [9, Prop. 3] that ¥ = N ¥,and ¥ = N 4 _, and,
>0 g>0

further [9, Prop. 4], A € ¥ (resp., A € X) if and only if AN Qa € 90 (resp.,
AN Qa € Na) for every o0 > 0. Theorem 5 of [9] gives a rather helpful

characterization of ¥ and A:
(i) A € ¢ if and only if A has the form

A=(U Aa) UL
0>0

where each Aa is a Pa-measurable subset of Qa and L is an arbitrary subset of

fo\agona. Further, for A written as above, Pa(A) = Pa(Aa) for every o > O.

(ii) N € ¥ if and only if N has the form

N=(U Na) UL
o>0

where each Na is a Pa-null subset of Qa and L is an arbitrary subset of

e\NuUn .
04557

A function F: eo(m+) ~— R is said to be scale-invariant measurable

provided that it is measurable with respect to the o-algebra ¥. Every Borel




8
measurable function and so certainly every continuous function is scale-
invariant measurable. Let F: @0 — R have domain D. It is not hard to show
[9. Theorem 19] tht F is s-a.s. defined and scale-invariant measurable if and
only if, for each g > 0, the restriction of F to Qo is Pa—a.s. defined and
Po—measurable. Functions F and G from ?0(R+) to R are said to be equivalent
(F~G) if and only if they are equal s-a.s. This is much more refined than the
usual equivalence relation which requires only that F and G be equal Pl-a.s.
If the function G is identically O on @0. then it is not surprising that its
Feynman integral is O. It is possible to have a function F such that F = G
Pl-a.s. but the Feynman integral of F fails to exist (or, alternately, exists
but is not 0). Such examples and others from [9] show the necessity of using
the refined equivalence relation in connection with the Feynman integral. On
the positive side, if G has an analytic Feynman integral and F = G s-a.s., then

F has the same analytic Feynman integral.

B. Multiple Wiener-Ité Integrals. We want to recall one of the ways in
which the Wiener stochastic integral Il(¢). ¢ € L2(R+). is defined. We will
pay special attention to scaling since, except for Section 3, this issue will
concern us throughout the rest of this paper. Il(¢) is often called the
"Wiener integral”. We avoid this terminology since, for many, the Wiener
integral refers to integration with respect to Wiener measure.

We begin by defining Il(¢) for step functions ¢. Given t € (0,+®), a

partition O = to<t1<...<tn = t of [0.t] and real numbers Cpr--enco . let

n
(2.2) #s) = Texie ¢ q(8):

i-1°
We define Il(¢): eo(m*) — R by

n
1z1ciEX(ti) - x(ti~l)]'

(2.3) LL(¢)(x) :




9
Note that for such step functions ¢, Il(¢) is defined on all of TO(R+) and is

alsc given by the Riemann-Stieltjes integral
(2.4) I,()(x) = S #(s)dx(s) = Jp #(s)ax(s).
+

I1 has the following properties: If ¢ and ¥ are step functions and c is a
real number, then

(1) I,(co) = eI, (4):

(11) I,(8+v) = 1(8) + I,(¥):

(2.5) (i11) E[1;(¢)] = J TI,(¢)}(x)dP (x) = O;
eo(m+
(iv) ECIT,(#)1%] = nen

(v)  E[L (), (¥)] = (¢.¥) -
14777 L2(R+)

In particular, I1 is a linear isometry from the vector space of step functions
into L2(€b(m+).P1) = L2(91,P1). Since the step functions are dense in L2(R+),
I1 has an extension to all L2(R+) and the extension has properties (i.)-(v.) in

(2.5). The following suggestive notation is sometimes used,

(2.6) I,($)(x) = [ ¢(s)ax(s).
IR+

even though the right-hand side of (2.6) cannot be interpreted as an ordinary
integral with respect to a function of bounded variation.
For the Wiener process with variance parameter o, o > 0, formulas

(2.2)-(2.4) are unchanged but (2.5) becomes
(1) 1{(ce) = cI(4):
(1) 17(e + ¥) = 17(9) + I{(¥):

(2.7) (111') E [Ia(¢)] = J Ia(¢)(x)dP (x) = 0;
Pa 1 go(m+) 1 o
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(iv')  Ep [115()1%] = oPuend
ag

1, 2

(v')  Ep [IT(9)I](W] = 6°(s.9) :

P -1 1 2

o L™(R,)

+
For step functions ¢, the o in the notation IT is not actually necessary.
However, for general ¢ € L2(R+), it serves to remind us that IT(¢) is an
2 2
element of L (%O(R+).Po) =1L (ﬂb'Pa)'
When ¢ is a step function, for every 7, 0 > 0 and x € %O(R+).

II(¢)(ax) = aIl(¢)(x). (In fact, whether T is present or not is actually

irrelevant in this case.) In particular, for o > O and x € Ql‘
(2.8) 17()(0x) = o1 ($)(x).
The Proposition to follow shows that (2.8) can be extended to ¢ € L2(m+).

Proposition 2.1 For every o > O and ¢ € L2(R+) we have

(2.9) I7()(ox) = oI ($)(x)
Pl-a.s.

Proof. Given ¢ € L2(R+). take a sequence (¢n) of step functions such that

u¢n-¢n2 ~— 0 as n-—® Then by (i), (ii) and (iv) of (2.5),

2 2 2
(2.10) ol (¢) — ol (¢ )N I,(¢) - I, (¢ N
g 1 o i‘'n L2(P1) o 1 ) l( n) L2(P1)

azu¢—¢nn§ —0

as n — ®, Further, using (2.8), (2.1) and (i'), (ii') and (iv') of (2.7), we

see that

2
n(¢)o0 - °I‘(¢“)"L2(p1) = I1](¢)o0 - 17(¢n)oauL2(Pl)
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(2.11) = @) ) - 19(3_) (o%)1%dP, (x)
1

"

S 70) - 1,(9,)(v)1%4P_(y)
1

2 2
g H¢—¢nH2 — 0

[

as n — ©, Formula (2.9) now follows since (2.10) and (2.11) show that both

sides of (2.9) are the limit of the same sequence (oIl(¢n)). o

Remark 2.1. When ¢ is a step function, Il(¢) is defined on all of @0(R+)
and, in particular, is defined on every Qa. o > 0. However, for general
¢$ € L2(R+). we only have Il(¢) defined Pl-a.s. on 01. I?(¢) may be regarded as
an extension of Il(¢) to a function which is defined Pa-a.s. on Qa. Doing this
for every o > O results in a function which is s-a.s. defined and scale-
invariant measurable. Since this is the only extension of Il(¢) that we will
consider as we continue, we will simply write Il(¢) instead of IT(¢) even when

this function is acting on Qa. With this notation, Proposition 2.1 asserts

that for every ¢ € L2(R+) and o > O,

(2.12) I,()(ox) = ol ($)(x)

Pl-a.s..

The situation will be quite different for p » 2 and ¢ € L%(®P). The
multiple Wiener-Itd integral I;(¢) corresponding to variance parameter 02 will
be defined Para.s. on Qa and will provide an extension of Ip(¢). However,
unlike the case p = 1, I;(o) will not be the only extension of Ip(¢) of
interest to us; we will also be interested in the "natural extension,”

N[Ip(¢)]. Because of this, we will retain the o in the notation I;(¢) when

P22

Remark 2.2. Let ¢ € L2(R+). If desired one can choose a representative




_—

12
in such a way that Il(¢) is everywhere defined on %O(R+) and satisfies (2.12)

for all o > O and x € QO(R+). Simply take Il(¢) to be O off of U Da and on
>0

those x in Ql for which Il(¢) is not already defined; finally, for

ox € Qa = of),, take Il(¢)(ax) to be aIl(¢)(x). Formula (2.12) shows that this

10

everywhere defined function and the original function must agree s-a.s.; that

is, Pa-a.s. for every o > O.

Next we want to discuss the definition and some of the properties of the
multiple Wiener-Itd integral Ip(f) vhere f € Lz(mf) and p 2 2. We begin by
defining Ip(f) for "special elementary functions" f. Parts of our discussion

are adapted from the book of the second author [11, pp. 136-138].

Given t € (0,+»), a partition m: Al.....An of [0,t] into Borel measurable
subsets and a set of real numbers {ai g ij =1,....,n for each
1 i

J =1,....p} such that a, i = O when not all of il""'ip are distinct,

1 g -
let

n

(2.13) f(sl.....sp) = bX i XA % %A (sl.....sp).

i,....i =111 p i i

1 P 1 p

Such a function is called a special elementary function. It is an important
fact that the set Sp of all special elementary functions is a dense subspace of
2.0P
L (R+).

For f € Sp and given by (2.13), the multiple Wiener-Ité integral of f is

defined Pl—a.s. on @0(R+) (or on Ql) by

n
(2.14) I_(f)(x) := 3 L, )(x)oee oI (x, )(X)-
pr 11.....1p=1a 1o--eeipl xAil * 1 xAip

Ip acting on Sp has the following properties where f.g € Sp and ¢ € R:

(1) Ip(cf) = pr(f) (Pl—a.s.);

_
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(ii) Ip(f+g) = Ip(f) + Ip(g) (Pl-a.s.):
(iii) Ip(f) = Ip(f) (Pl—a.s.) where f denotes the symmetrization of f;

(2.15) (iv) E[I()]= I I(£)(x)dP)(x) = 0;

€(R,)
) EL01% = 1D
= p! H?Hg < p!Hfﬂg ;
(vi) ELI(6)I,(&)] = EL1,(D)1, (&)
= p! (f.g) :
P g L2(Rf)

From (i), (ii) and (v) of (2.15), we see that Ip has an extension to all

of LZ(RE). In fact, this extension continues to have all of the properties in

N

.15).

Now we turn to the multiple Wiener-Itd integral I;(f) (c >0, f€ L2(RE))
corresponding to Brownian motion with variance parameter 02. It will turn out
that 19(f) is defined P -a.s. on Q.

p o g

We know from our earlier discussion of I1 that for every ¢ € L2(R+) and
every o > O, Il(¢) is defined Pa—a.s. on Qa. Hence, for every f € Sp. Ig(f) is
defined Pa-a.s. on Qa by the right-hand side of (2.14). Further, from (2.12),

for every o > O,
(2.16) I:(f)(ax) = opIp(f)(x) (P,-a.s.).

It can now be shown that I; acting on Sp has the properties listed in (2.17)
below. Further, I; can be extended to all of LZ(RE) with the extension

continuing to have the properties in (2.17):

(1) I;(cf) = ch(f) (P-a.s.):
(i1) I:(f+g) = I;(f) + I;(g) (P-a.s.):
(111) 19(£) = Ig(?) (P -a.s.):

e
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(2.17) (iv) Ig(f)(ax) = apIp(f)(x) (P-a.s.);
o o .
(v) Epa[Ip(f)] =€(f)(m+)1p(f)(x)dpa(x) = 0;

: 2 T2
(vi) B [I(0)I7] = ELIT ()17

o

o?Pp1 u?ug < o2Pp! Ilfllg;

(vi1) Ep [IN(I3(@)] EPU[I;('F)I‘;(E)J

o*Ppt (f.g) 2 p.
L™(R})
Putting together the functions Ig(f) on all the ﬂa's. we obtain an

extension of Ip(f) to U ﬂb which is s-a.s. defined and scale-invariant
0>0

measurable. Further, using (2.16), we can employ the same device as in Remark
2.2 and choose a representative which is defined on all of QO(R+) and satisfies

(2.16) for every o0 > O and x € @0(R+).

C. Lifting and Scale-Invariant Lifting. An extensive discussion of the
concept of lifting and its applications to prediction, filtering and smoothing
along with references to the literature can be found in the book of Kallianpur
and Karandikar [13]. We begin by recalling various facts connected with the
canonical Gauss measure on a separable Hilbert space H over R. Let % denote
the class of orthogonal projections on H with finite dimensional range. For
meE P let

€, = {r_l(B): B € %(w(H)). the Borel class of the range of w}.

€ is a o-field for each fixed # and € := U Qw is a field of subsets of H.

v €Y

will denote the finitely additive canonical Gauss measure on H; i.e., the
—siiniZ

measure with characteristic function e (h € H) [13, p. 62]. u is only

‘_
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finitely additive on € but is countably additive on %ﬂ for each fixed 7.
(H,€.,u) is called a finitely additive canonical Hilbert space.

A representation of p is a pair (L.P) where P is a countable additive
probability measure on some measurable space ({1,d) and L is a mapping (or, more
precisely, an equivalence class of mappings, see [13, p. 81]) from H into the
space of R-valued random variables on ({,4,P) such that L is linear in the

following sense:
L(alh1 + a2h2)(w) = alL(hl)(w) + a2L(h2)(w) P-a.s.

for h,.,h

1P €H, a

1'39 € R, and such that for all C € ¢,

n(C) = Pl € : (L(hl)(w)--.--l-(hj)(w)) € B}
where

C={h €H: ((hh),....(h.h))) €B)

with hl""’hj in H and B a Borel subset of Rj. It is well known that a

representation of p always exists. In the main body of this paper, we will
take (Q.,4) to be (@0(R+). %(?0(R+)) and P to be one of the scaled Wiener

measures Po' o > 0. The representation L will be chosen as

(2.18) L(4)(x) = 1,(4)(x)

2
where ¢ € H = L"(R,) and x € @o(R+).
A function f: H — R is a Borel cylinder function if and only if it can be

written as

(2.19) f(h) = g((h.hl).....(h.hk))

for some k 2 1 and hl""'hk in H where g: Rk — R i{s Borel measurable. We

define Rf, the lifting of f, to be

(2.20) R(E)(+) := g(1,(h) (). ... T, () ().
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In light of Proposition 2.1 and Remarks 2.1 and 2.2, we see that Rf is defined
s-a.s. (that is, Pa—a.s. for every o > 0).

Let o > O. ES(H.u) will denote the class of functions f: H — R with the
following properties: For all v € #, the function fow(h) := f(wh) is
@w—measurable and for all sequences {rN} from ® converging strongly to the
identity (wN — I), the sequence {R(foﬂN)} is Cauchy in Pa—probability. Under
these circumstances, one can show that all these sequences converge in
Pa—probability to the same limit Ra(f). called the g-lifting of f. Ra(f) is
defined Pa—a.s. An f in Qg(H.u) will be called a o-accessible random variable.
The lifting usually discussed is, in our present terminology, the 1-lifting.

If f has a o-lifting for all o > O, we let Rf = Raf on ﬂa and we call Rf
the scale-invariant lifting (or s-lifting) of f. In this case, for every
o > 0, Rf is defined Pa-a.s. Thus Rf is s-a.s. defined and scale-invariant
measurable. A function f which belongs to Qg(H.u) for every o > 0 will be
called an s~accessible random variable.

For any o > 0, we let 2§(H,u) denote the set of all f € QS(H.u) such that

for all sequences {WN) from # with w1 I,

(2.21) I [R(fomy) - R(fomy.)|%aP_ — 0
€ o
as N, N' — . Note that if f € $§(H.u). then

(2.22) 5 IRA£)|%P_ < .
e o a
0
When f € ﬁi(H.u). we call Ro(f) a o-¢& _lifting. If f belongs to Qg(ﬂ.u) for

all o > 0, we call Rf := Raf on qa. a scale-invariant ¥ -1ifting. If Rf is a
scale-invariant 92—lift1ng then, for every o > O, Rf is defined Pa—a.s. and

belongs to the space LZ(QO(R+).PO) which can be identified with L2(00.Pa).
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3. THE LIMITING K-TRACE. There are various possible ways of defining the k-trace of
a function fp € Lﬁ(mf). However, we focus our attention primarily on the limiting
k-trace, T;kfp. since it will appear in all of our principal theorems in Sections
5-8. Three other definitions of k-trace will be given. A simple case of the first
of these (see Definition 3.1) will be involved in the definition of the limiting
trace. The other two will be introduced at the end of this section where it will be
shown that, for a large class of functions, all four k-traces exist and agree.

Rosinski discussed a Hilbert space valued trace in [14]. The limiting trace
will be defined as the limit of certain simple cases of these traces. We give the
definition from [14] just in the setting which concerns us. A somewhat more detailed

discussion can be found in our earlier paper [8] and., of course, in [14].

Definition 3.1. Let f € L2(BP) and let O ¢ k < [p/2] where [p/2] denotes the

greatest integer in p/2. We take Trofp i= fp to begin with. For

mp—2k

1 ¢ k £ [p/2]. we say that Trkfp exists and equals h € Lz( ) if and only if for

every CONS (i.e., complete orthonormal set) (ej) for L2(R§).

«© .
3 J fp(sl'""sk;sk+1""’s2k; """')ej(sl""'sk)ej(sk+1""'52k)
++
(3.1) dsl...dsk dsk+1"‘ds2k
= h(*),

where the series on the left-hand side of (3.1) converges to h in the norm on
LYR. 7).

In the main body of this paper, we will need Trkfp as just defined only for the
special functions described in our first proposition. Let (01) be a CONS for L2(R+)

so that {¢, ©...8 = 1.2,....2=1.....p} is a OONS for L(RP).

|
1 ip e

Proposition 3.1. Suppose that fp € Li(mf) has an expansion of the following form
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in terms of the CONS {¢i @...@¢i } described above:
1 P
N
(3.2) fp =i .?.i » ail.__.‘ip¢il®...® ¢ip.

Then Trkfp exists for every k, 0 { k < [p/2], and we have

y N N
(3.3)Trf ) = s ( p>

a
_ 1 Jyedyeecendyedyidon g i)e ®...8¢
12k+1""'ip_1 jl....,jk-l 1'¥1 k'“k’ "2k+1 i

Proof. Let (ej) be any CONS for L2(R§). By Definition 3.1 it suffices to show

that the series

® N
(3.4) = J [ 3 a, g #5 (51)0 .00, (s.)¢ (sy,)°...°
- _ Ve 1 i, VkTd k+1

=1 gy ip=t p 11 X k+1

¢, (sop)e ¢4

2k 2k+1(52k+1)‘. . ..¢ip(sp)].ej(sl. s .. .sk)ej(sk"‘l' .o 's2k)dsl. e .dsk.

dsk+1-...-ds2k

converges to the right-hand side of (3.3) in the norm on L2(R+p-2k). But the series

in (3.4) equals

N © N
(3.5) 3 3 ( 5 a (¢ 6...8¢, )

il.....12k=l J=1 i2k+l"" p

4. 0.0 ¢ . .
W 1y eJ)L2(m‘j) (

N N
= 3 ( I a

il.....i2k=1 12k+1"" p-

(2

(¢, ©...0¢, .e. )(¢
j=1 1 L3,

0...0¢, .
. - )

= b3 ( 2 a g *i

A=l e igiigey

©...0¢ ) (¢ ©...0 .9, e...@¢i2k)
L PYWPRRRE p p 1 k k+l
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N N
. _ e g Jqedye-aadyadyed IR | i i
12k+1""'ip_1 jl.....Jk-l 1'71 k’ k' "2k+1 P 2k+l P
with the series in (3.5) converging in the sense of the norm li-ll . The fact
2, p-2k
L (R+ )
that fp is symmetric implies that the coefficients a, g are symmetric and this
1l
is used in the last equality in (3.5). 8]

In Proposition 3.6 near the end of this section, we will give a result which is
more general than the one which we have just proved. However, Proposition 3.1 is all

that we require in our development of the limiting k~trace, our main concern.
. =k
Next we take advantage of Proposition 3.1 and define Tr fp.

Definition 3.2. Let f_ € L2(P). Given any CONS (3,) for L%(R,) and any

positive integer N, let

N N
(3.6) f = p> a $, 8...8 ¢
P.(¢,) £t 51 S RRRETL M B i
‘s =K
where a =(f_,¢,®...8. ). For k=1,...,[p/2]., the limiting k-trace, Tr f_,
11.....ip ) il ip p

exists provided there is a g € L2(Rf-2k) such that

kN

(3.7) WTr fp'(¢i) -gl-—0 as N—Do

for every CONS (¢i) for L2(R+). The function g is, by definition, T?kfp. We take

Trf :=f .
P P

It 1s natural to ask if T?kfp exists and equals Trkfp when fp has a finite

expansion as in Proposition 3.1 above. The answer is in the affirmative. For the
purpose of showing this and for some work further on, it will be helpful to state

explicitly the following well-known result.




m

20

Lemma 3.1. Let (¢i) be a CONS for a separable Hilbert space H over R. For each

N, let PN denote the orthogonal projection onto sp[¢1.....¢N]. the linear span of
(¢1,....¢N}. Then for any ¢u,¢v in H, we have

N
(3-8) 2 (a0 9 = (R,

Proposition_ 3.2. Let(wi) be a OONS for L2(R+) and suppose that
2 pP
fp € LS(R+) has the expansion
M
(3.9) f = 3 a R I VI
.o 1'°"""%p "1 P

Then T?kfp exists and

=k k
3.10 Tr'f =T .
( ) T p r fp

Proof. Let (¢i) be any OONS for L2(R+). According to Definition 3.2, we must

show that
k N k
(3.11) nTrf -Trf_ _ — 0
p.(¢,) P L2(m3 2k,
as N —m o, Let b1 { = (f_.¢. ©...8¢, ). To show (3.11) it suffices, by
ll"‘l p il i
P P
Proposition 3.1, to show that
N N
i 3 ( b b )é ®...0¢
. - J 'J ""DJ vj .i 0---.1 i i
i2k+1""'ip'l jl.....jk-l 191 k'vk’ "2k+1 p 2k+l P
M M
(3.12) - 3 ( 3 a W ®...8y 1
- - J 'J ""QJ tj -i o---.i i i
12k+1""'ip'1 Jl""'Jk'l 1'9 k'“k" "2k+1 P 2k+l P

— 0 as N — o,

From the expansion (3.9) we see that
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M
b, = 3 a (v . ©...&y .¢.0...8¢. )
11' ‘ip Upe--ohu =1 % 'up ! up M1 1p
M
(3.13) = 2 2 . »u (wu '¢i ) .(¢u ¢i )
Upoeens up=1 1 p 1 "1 P P

Using (3.13) to justify the first equality and Lemma 3.1 to justify the third, we can

write

N N
(3.14) p) p>

(e .8
12k+1.-.-.ip=1 Jlgon-njk

b, .,
=1 17 e e donay - 1 p

N N M
- 3 3 A L CRLR IR IR

Ny
= = =1 Y1° Uy, ¢ J
12k+1""'ip—1 jl.....Jk—l ul.up-l 1 1 2k-1 *k

)

Y CRRRT R

. ) (v
3 Iop+1 o Ip

kK Yoket

[+ +]
( 3 (v ©..8y .4, 8.8 )¥ 8...8y )

v v v v
v2k+1.....vp=1 2k+1 P 2k+l p 2k+l P

© © N

= E 2 a 2 (Wu1'¢j1)(\pu2'¢jl))"'

u,,. _
V. =1 u .....up-l 1 Jl_l

v .U (
2k+1-... p 1 p

N N

(3 O, 900, 403 @

- u — - u !
3=l T2k-1 fopep=l  2k+1

¢ ) (v

N
Vok+1

))ee.ne

lowet Lope1

N
( Z(v, .9, J(¥, .9, )V ®...8y
i1 =1 up ip vp ip Vok+1 vp

L M
2

= 3
,2v.=1u,,...,u =1
P

. B O P ) Oy P )
ok+1*" " p 1 P

Ypeees 2k-1 2k

(v Py ) AR 720 A 1) 8...8y
Uop el N Vok+1 up N vp Vok+1 vp
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M
= 3 a (. Py ). ..o (¥ Py ).
Upeeeusl Y1t Nuy Uoy-1 Nugy
[+ ]
3 (P Y Yoo o (P )Y 8...8y
N™u v N'u ""v 77v v
v2k+1.....vp=1 2k+1 " 2k+1 P P 2ktl P
M
= b a (. Py )e...°(y Py ).
T e e e Nu, Uop-1 NUgy
(-]
2 (P, @...8P v ¥ ®...& ¥ ...y
N'u N'u_'"v v v v
v2k+1.....vp=1 2k+1 P 2k+l P 2k+1 P
M
= b a (v. Py Yoo ..o (v P Y (P )®...8(P v ).
ul""'up=1 u.....up uy N u, Uop -1 N Ugy N Ugpa1 N up

We finish by taking the limit in the norm Il 2 -9k of the last expression in

LE@®0)
(3.14) thus obtaining -
N N
M
- “142 gt -“p{rlqi-: (g Bty ) Oy, Py MO, T '“”N"up]}
M
=u1-2 -ulp=1a“1'''‘'“‘;(;h"'l'\’J".‘z).'''.(\"“21«1'\““21<N“21<+10'“0 w“p
M M
) 12k+1..?..1p=1 jl..?..Jk=lajl'J1"'"Jk'Jk‘12k+1"'"1p)wi2k+1@...e wip'
and so (3.12) is established and the proof is complete. a

Remark 3.1. For the finite sums (3.9), the oversimplified formula (1.3) for the

k-trace of fp does actually give Trkfp which equals, by Proposition 3.2, T?kfp:
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It is desirable to have theorems insuring that T?kfp exists for a large class of

fp's; Theorem 3.1 is one such result.

Theorem 3.1. Let fp € Li(mf). Suppose that there exists a OONS (¢i) for L2(R+)

such that, in the expansion

[
(3.16) f = b3 a v, 8.0y, .
P 11” =1 11.....ip il ip
the coefficients (a ) are in &_.
il.....ip 1

Then for every k, O  k < [p/2]. T?kfp exists and is given by
-—-)k o« 0
(3.17) Tr fp: 3 ( 3

Y’ ®...0p,
Logaps - ip=l 3paeeendy

a .
=1 dpedpeeecndpedpedopgg e 1 opy i

Proof. Because of our assumption on the coefficients, the inner series in

(3.17) is absolutely convergent. Further {3.17) is absolutely summable in

i2k+1""'ip in the space L2(RE-2k) since
o «
(3'18)12k+1..?..1p=1 (jl..?..jk=1a31'j1""'Jk'jk'i2k+1""'ip)¢i2k+lg...®¢ip
o «
i 12k+1..§..1p=1 jl..?..jk=1ajl'jl'""Jk'Jk'i2k+1""'ip
® «
¢ 12k+1..?..1p=1 Jl..?..jk=1 I TRE PRREREE W8 ML PUCPRRTL I "

We now see that the right-hand side of (3.17) makes sense and belongs to LZ(RE-zk).

Next let (¢1) be any CONS for L2(R+). To complete the proof. it suffices to

show that
N N
1im 3 3 b )¢ ®...8¢
- - J-j '----j -J | R | i i
gl WO CEEERL SR PRRREER Vol MR A k' 'k’ "2k+1 p 2k+l p
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0 [ ]
(3.19) = D ( = a W 8...8y.
= 1 dqedqeeaadpidy.d R RS i
12k+1""'ip_1 jl.....jk-l 1'71 k'Y’ "2k+1 P 2k+l p
where
(3.20) b = (f .. 0...0¢ )
il.....ip P i1 1p
(-]
= ) a,, (Y, .8...8y .0, ©...88. )
1i.....1§=1 SERRRUE Nl B 171 i

and where the limit in (3.19) is in the norm on L2(Rf-2k).
Now using (3.20) and the symmetry of the b’'s to justify the first equality below

and Lemma 3.1 to justify the third equality, we can write

N N
(3.21) 3 ( p b
= s PP, PR, NP PP D i)e ®...8¢
12k+1.....1p_1 Jpoeendy =t 1001 k' k"’ "2k+1 P g ip
N N ©
= 3 3 3 a,, (Y, .@...8y,..¢. 8...0¢_ )

- 1l PR SRS BRLS | i)°73 J. 2
12k+1.....1p_1 S PERRRIS 11.....1p-1 1 p 1 k ‘1 k L(mf)
(y,. ©...8y,, ,¢,0...8¢_ ) (v,. ©...&, ..¢ ®...8¢, ) B

i1 SRS A Iy Lz(mf) 10141 1p ot ip L2(RE 2k)
N
° ( b ($, 0.8, ... &...8.)0. ®...8..)
i§k+1""'i;=1 2k+1 P 2k+l P 2k+1 P
[
= 2 a,. )
15,0012 S LERREE
o N
. b ) ( = (wi.e...@¢i..¢3 @...®¢J J(¥y. ©...0y,. .¢J e...@¢3 ))
12k+1.....1p=1 A PERRRRS N5 k "1 k  k+l 2k Y1 k
N
o( 3 (*x' ®...8y .9, ®...86, )(¥; ®...8vy,.)9, o...e¢p))
12k+1""'1p=1 2k+1 P 2k+l P 2k+1 P 2k+l
.w eo--wiﬂ




]
™M
»
™M 8

1.--. p— p i2k+1'.--aip=1 1 k

XY YT VANV O VI T
N"1 1 okn

2k+1 p Lokt
where PN and Pﬁ are the orthogonal projections onto sp[(¢J

sp[ (¢ ..8¢ ) _,]. respectively.
i2k 1 ip i2k+1....,1 =1

Beginning with the last term in (3.21), we write

o«
(3.22) > a,. ($;.8...80  P¥.. ©...80, )
15, 10s1 S CRRREE LS| 1y N el Lox
p
[+
. 2 (P. “‘ ' 0- . -N ' n‘# " N ")‘4‘ "
. w_ UN Y 1Yy 1Y
12k+1“"'ip’1 2k+1 P 2k+1 P 2k+1
(-]
= 3 ' a(\“ w X \p @. [ )P‘\“’
1. 11....,i 1 1y Py 11 12k N1
o0 (-]
= 3 (¥,.8...80, . Pyb,. 6...00 . ) 3 a,,
. oo 1 oG - TN L T R
1’ .9 2k— p
] [}
= 3 (4,.8...00, .. Py, ©.. )Py s a,.
. . 1 1y k+1 2k SRS Lo TS LA
il,....12k=l 2k+1 o3

ORI VI S

p

@...@¢i.

k+l

N
@'..@¢jk)31"

2k

8...8y

e dy

A5 ke

)

1"

=11 and

where the next to last equality is an easy consequence of the Fubini Theorem for the

Bochner integral [4, Theorem 3.7.13] and where the last equality is valid since, for

each fixed il.....izk.
o0
b a,, W ®...8y,,
. P SIS S 1
12k+1""'1p-1 1 p 2k+l p

is a convergent series in L2(Rg_2k).

It remains to use the results of (3.21) and (3.22) to take the limit indicated

on the left-hand side of (3.19). We will first carry out the calculations and then
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make some comments on their validity.
N N
lim b) ( 2 b . .
- P PIPD PR, I S | A W [ ®...9¢
Newo 12k+1""'ip-1 jl.....jk_l 1'71 k'k’ "2k+1 P i2k+1 ip
[+
(3.23) = 1im 3 (wi O...Owi .PNwi @...@wi )
N—wo 11.....12k=1 1 k k+1 2k
[
*Py( b a v ®...8y, )
N i.,..., 171 i
i2k+1“"'ip'l 1 P 2k+l1 p
[+ ] [+ ]
= 3 lim(y, ®...8y Py ®...8¢, )Py( b) a v ®...&. )
. i i N"1 i N i, i1 71 i
11""’12k’1 N 71 k k+1 2k 12k+1""'ip=1 1 P 2k+l P
[+ ] ©
= 3 (wi @...@wi .wi @...@wi ) 3 a, wi @...Qwi
il.....12k=l 1 k “k+1 2k i2k*1""'ip=1 1 P 2k+l P
L «
= 3 3 a ¥ ®...&y, .
PR PRF PRERRT OB WS PICTEREFE N M PHY i

12k+1.....ip=1 jl.....jk

The second equality in (3.23) follows from the Dominated Convergence Theorem for the
Bochner integral [4, Theorem 3.7.9] where we are thinking of the sum over ey

as the Bochner integral. The necessary domination holds since

©
"wile..'@wik'PNwik+lo..'0¢12k)PN(12kf1,...,1p=1a11’""ip¢12k+le...®wlp)"
®
: "12;1. .1p=1a‘1' SR P iy
o
S i2151' 1p=1 |311, 'ipl
00 [
and 2 ( 2 |ai 4 |} < ». Hence
il.....12k=l Lore1’ ..ip=1 1’ p
; |ai g | 1s an integrable dominating function which is independent
Lone1” .ip:l 1’ p
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of N. The fourth equality in (3.23) follows from the Fubini Theorem for the Bochner

integral much as the second equality in (3.22) did. 8]

The next proposition will give us some information about fp and T?kfp under the

assumption that T?kfp exists.

Proposition 3.3. Let fp € Li(mf) and suppose that T?kfp exists. Then for any

CONS (¢i) for L2(R+) and associated expansion

[-+]
(3.24) f = )3 a ¢, 0...0 ¢
p £ -1p=1 1. .1p 1 1p
for fp, we have that the limit
N
(3.25) lim 3 a
N §oooouqi=t I3 de die oo B
exists for all i2k+1""'ip' and that
(] 0 2
(3.26) b3 ( s a (
- PR PIY PIFPRNPORE, S S | veensi)
R ER H B P 1" k'K’ t2k+1 p

where the inner sum in (3.26) is taken to mean the limit in (3.25). Further. we have

the formula

o [ ]
(3.27) T?kfp = 3 ( =

()%, 8.8 .
i2k+l...-.1p=1 JI.---'Jk

a
PR PUT PRRERRE W WL PHIPTRRITE Mo PR i

where the inner sum in (3.27) is again interpreted as the limit in (3.25) and the

outer sum is the limit in the Lz(Rf_zk)-norm.

Proof. By Definition 3.2 and Proposition 3.1,

N N
HEY 3 ( 3

A =1

L ®...89,
i e | P '
2k+1 p 1 k

a
___1 JI-JI--"'Jk'Jk-i2k+1.--- p i2k+1 p
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(3.28) - 'r_r"‘fp
in L2(Rf_2k)—norm as N — o, Hence for fixed iék+1""'ié'
=k
(3.29) (dN.¢i. 0...@¢i.) — (Tr f_, ¢, . 0...@¢i.).
2k+1 P P 2k+1 P
But for N 2 max{iék+1.....ip}.
N

(3.30) (d,.¢.. ©...8¢_,) = b a . '

dN Toke1 ip jl.....Jk=1 jl'Jl""'Jk'jk'i2k+1"'"ip'

Formula (3.30) and (3.29) show that the limit in (3.25) exists and equals the

coefficient of ¢1. O...0¢i. in the expansion of T?kf . Inequality (3.26) and
2k+1 P p

formula (3.27) then follow immediately. o

Proposition 3.3 gives conditions on the coefficients (a i ) which are

il"

necessary for the existence of T?kfp. Are these conditions also sufficient? Let us

state this in more detail. Let (ai 1 ) be a sequence in 82 which satisfies
1o p
(3.25) and (3.26) and let fp be given by (3.24). Does T?kfp necessarily exist? The

answer is "No" as the following example shows.

i+l
'(—L—-li , if 11=12=i.
Let p=2 and take a, 4 =
1°°2 0 , if 11 # 12.
2
Then (ai i ) € &° and
1'°2
N N+1
_ 21,11 -1 .
lim 2 = lim {1 s*+3-g*t---* N }.

a
N j=1 9191 Now

a limit which exists and is the sum of the alternating harmonic series. The

condition (3.26) does not enter into the picture here since p=2. Now let

® © i+l
-1 k
f2 = 3 a, | ‘i 0’1 = E 1 ¢i@¢i. To see that Tr fp does not exist,

=1 "1''2 "1 "2 {=1
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take a permutation of the positive integers such that the corresponding rearrangement
of the alternating harmonic series has a different sum. Let (wi) be the CONS

obtained by making the associated permutation of the ¢1's. Let f2 =

«©
b} b ¢i @wi be the expansion of f2 in terms of the OONS {wi Owi }. In order
1 "2

1;.15=1 1,157,y

2
for T?ﬂfz to exist, Proposition 3.3 requires that the equality

N N ©
lim 2 bJ j, = lim 2 aj j hold. However, this equality fails since 3 bj .
Noo jo=1 “1°71 Nem g =1 9101 341 1'91
is a rearrangement of the alternating harmonic series converging to a different

number.
Taking p=2 simplified the discussion of the example above but, in fact, one can

also find such examples with p>2 where the condition (3.26) does come into considera-

tion.
Next we obtain two results which involve iterated limiting traces.

Definition 3.3. Let fp € Li(mf). If T;kfp exists for k=0,1,...,[p/2]), we say
that fp has all of its first order traces. Whenever T?kfp exists, it belongs to
Lg(mf°2k) and, for v=0,1,...,[(p~2k)/2], it may possess a v—-trace T?v[f?kfp]. If all
of these traces exist, k=0,1,...,[p/2], v=0.1,...,[(p-2k)/2]. we say that fp has all
of its second order traces. These second order (or iterated) traces are said to be

consistent with the first order traces provided that
T?”[T?kfp] = T?”*kfp. k=0.1,....[p/2]. v=0.1.....[(p-2k)/2].

Ve can, of course, consider third and higher order traces. However, the next

simple proposition assures us that we get nothing new beyond the second order.

Proposition 3.4. If fp € Lg(Rg) has all its first and second order traces and
they are consistent, then all the third order traces of fp also exist and are

consistent; that is, if O<k{[p/2]. O<v<[(p-2k)/2] and O<E{[(p-2k-2v)/2], then
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T?C(T?"[T?kfp]} exists and
(3.31) T?e(f?”[f?kfp]} = T?k*”*e(fp).
Proof. By assumption, T?D[T?kfp] exists and T?U[T?kfp] = T?k+vfp. Hence,
T?e{T?”[T?kfp]) = T?e(T?k*”fp} = T?k*”*efp. o

It may well be that even the second order traces yield nothing new. At any

rate, the following proposition is not hard to prove.

Proposition 3.5. Let fp € Li(mf). Suppose that there exists a OONS (wi) for

L2(R+) such that, in the expansion

[ ]
f = b a ‘# ] ..Ow ’
Py = ity 'p
the coefficients (ai i ) are in 81.
'RRRRER

Then fp has all its first and second order traces and they are consistent.

Proof. By Theorem 3.1, fp has all its first order traces and, for O { k ¢ [p/2].

——i{ o« -]
(3.32) 7% = p) ( = & gt Ny eey .
i2k+1.....ip=l jl.....jk=l 1'1 k'’k’ "2k+1 P 2k+l P
Since
[ -] o
b b a
= g Jgedgeeandyadyed I §
i2k+l""'ip'1 Jl.....jk-l 1'“1 k' vk’ "2k+1 P
0 ©
< b 2 a { +»,
- - JlJ "".J |J 'i '--.|i
i2k+1""'1p_l Jl.....jk—l 1'91 k' Yk’ "2k+1 P

we see that the coefficients in the expansion (3.32) for T?kfp are in ¢,. Again
applying Theorem 3.1, we have that for all v, 0 { v { [(p-2k)/2]. T?U(T?kfp) exists

and
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=k ® ®
(3.33) Tro(Trf ) = ) s
Lo i =1 |4 § =1
2(k+v)+1" """ p k+1' """ Ik+p
[}
o ( 3 a
Jl"“'Jk=1 lejln--..Jkojkvjk+lnjk+1--...Jk+vujk+ugi2(k+v)+l,....ip)
.wi @...wi -
2(k+p)+1 p
But the el-assumption on the coefficients (ai { ) allows us to use the Fubini
1 i

Theorem on the inner sums in (3.33) and obtain

= =K

Tr (Tr f
r (Tr p)
[ ] o«
= 2 [j z a v ®...8y
- - J'J ""'J 'J -i o---pi]i i
12(k+v)+1""'ip'l PERRRER W, Th Sie k+v' ‘k+v’ "2(k+v)+1 p) "2(k+v)+1 p
which equals, by Theorem 3.1, T?k+vf . 8|

p

We finish this section by giving two further definitions of the k-trace of a
function fp and showing that, under the assumptions of Theorem 3.1 and Proposition
3.5, all four k-traces exist and are equal. Further interesting questions concerning
these k-traces and the relationships between them remain to be studied but will not
be pursued in this paper.

We begin with the definition of the tensorial k-trace, TrEfp.

2 o
. . = . ’
Definition 3.4. Let fp € Ls(mf) First we take Trtfp fp For 1<k{[p/2]
Tr]:fp exists and equals h€L§(R3-2k) if and only if for every k CONSs (¢£J)).
Jj=1,...,k for L2(R+) and for every enumeration e .y ... of the tensorial CONS
(#{Me...00{K)) ror L2,
1 k
«©
3 S f (s,.....8.; veresSBort *eeres®)
1 %Kk’ Sk+1 2k
i=1 P
it
°J(sl""'sk)ej(sk+l""'s2k)dsl"'dskdsk+1"'ds2k
(334) = h(‘)
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where the series on the left-hand side of (3.34) converges to h in the norm on

L2(RE-2R).

Comparing Definitions 3.1 and 3.4, it is clear that if Trkfp exists, then Trtfp

k 1

exists and TrI:fp =Tr fp. Further, Trtfp and Trlfp are exactly the same object since

Definitions 3.1 and 3.4 are easily seen to coincide for k=l1.

Next we define the iterated k-trace, Tr?fp. This is the definition of k-trace

which was given by Hu and Meyer [5].

Definition 3.5. Let £ € L(RP). We take Tr%f = f_and Trif := Trlf
P s\ + i1'p P i'p P

provided that Trlfp exists. If Trlfp exists, it belongs to L2(RP™2). If this
happens and if Trl[Trlfp] exists, we let Tr?(fp) i= Trl(Trlfp). For 1<k{[p/2]. Tr?fp

is defined by iterating this procedure k times

Tr?fp ‘= Tr1(°-°(Tr1(Tr1fp))°°°).

whenever the k successive l-traces involved all exist.

It is an immediate consequence of the definition that Trl;fp behaves well with

respect to iteration: Let k and v be nonnegative integers such that k + v { [p/2] and

k+v
i

k+v

v, Kk v, k
suppose that Tri fp exists. Then Tri(Trifp) exists and Tr fp = Tri(Trifp)'

In Proposition 3.1 we saw that Trkfp exists for functions fp possessing finite

tensorial expansions. The proposition immediately below goes considerably further.

Proposition 3.6. Let fp € Li(mf) and suppose that there exists a CONS (¢i) for

Lz(m*) such that the coefficients (ai i ) in the expansion for fp.

1

0...@¢1 , belong to &

RS 1
pl p

11.....ip=l 1

Then for 0<k{[p/2]. Trkfp exists and is given by
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[ ] (-]
k
(3.38)Tr = > ( ) [ )e, 8.8 .

a
- — j'j ""IJ -J .i g o0 ey 1
POIRTERPE S R FRRRRE A e S k' Ik’ fok+1 p  2k+l p

Proof. Let (ej) be any CONS for Lz(mf). It suffices to show that

[+ ]
3 J fp(sl"'"sk'sk+1"'"s2k's2k+1""'sp)
+ 0+

ej(sl""’sk)ej(sk+1'""s2k)dsl"'dskdsk+1"'d52k

(3.36) = p> ( p>

Q...@#i
i2k+1..-.,1p=1 Jlg---ojk

2k+1 P

a )¢
PN PRP PERERUT NPF WS SHPRRRTE St

p—2k

where the series in j converges in the L2(IR+ ) norm. For the moment, we fix j and

consider the integral on the left-hand side of (3.36) with fp replaced by its series

expansion:
[}
(3.37) J [ 3 .. ¢, (s.)°...°¢, (s.)*¢ (s ) ALY (Sq.)®
T IPEERERE MOt Thae 1k T,y ke Lop 2K opyg
+

. (52k+1)'...-¢ip(sp)]ej(sl,....sk)ej(sk+1....,s2k)dsl°...-dsk-dsk+l'...-dszk.

Now the sequence of partial sums

is a sequence of Li(mf) kernels converging to the Li(mf) kernel fp. It follows that
the associated integral operators converge in Hilbert-Schmidt norm, hence in operator
norm and so certainly in the strong operator topology. Thus the expression in (3.37)
equals

(3.38) 3 a l""'ip ka k¢il(sl)'...°¢ik(sk)-ej(sl.....sk)¢ik+l(sk+1)-...-

10 1p +xR+
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¢, (sq)e.(sy,q0---185.)9 (s )e...*¢, (s )ds,...ds d ...ds
1o, ' 2k’ ke 271, 1 T2k 1,0p 1 K%Kk+1 2k
[}
= 3 a (¢, ©...0¢, ,e . )(¢ 0...0¢, .,e )¢ 0...0¢, .
1 dpm1 Lpeeeniphily L, 0 top” 37 g4 i,

Returning to the left-hand side of (3.36) and using our results so far we can

write
w0
b 5 fp(sl""'sp)ej(sl""'sk)ej(sk+1""'S2k)dsl"'ds2k
=1 gk, gk
+  +
[ ] @
(3.39) = 3 b a (¢, 8...0¢, e )(¢, ©...8¢, .e.)¢ ®...0¢,
j=1 i1' ’ip=1 il.....ip 11 1k J 1k+1 i2k J i2k+1 1p
o0 [ ]
= 3 a {2 (9, 0...800, e )(9, ©...89, .e))}¢ 8...9¢
PR Lpeeedgf Yy 1,3 Lo 37 ke i
[ ]
= 3 a (¢, ©...8, .6, ©...8. )¢ ®...0¢
TR LR FORE L ik 1ok oker i
-] (-]
= 3 ( 3 a )¢ 0...0¢, .
= 2 dysdgececndyady .t S AL i
12k+1""i =1 jl....jk-l 1'“1 k’vk’ "2k+1 P 2k+1 p
vhere the last equality follows from the fact that the coefficients (ai i ) are
100 ip

symmetric and in el. We will finish the proof by justifying the second equality in

(3.39): The sequences (01 @...0¢1 ,e.) and (¢ ®...9¢, .e ) are in &, as functions
Kk J i i2k J 2

1 k+1

and, in fact,

of j. Therefore I(Oilﬁ...0¢ik.ej)| |(¢ik+10...@¢12k.ej)| is in 81
2 (s, 0...00 )| (¢, ©..00 o)l
=t 1 Wl e g
ot 24 = 2.%
(3.40) <[ =2 (¢i O...@¢i .eJ) [ 2 (¢1 9...89, .eJ) ]
=1 1 k =1 k¢l 2k

g, @...86. Il - llp, ©...86, 1
1 i et Loy

i
[
.
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Using (3.40) and the & -assumption on the coefficients (ai i ) and thinking of

1 1
the sums on both sides of the second equality in (3.39) as Bochner integrals, we can
now cpply the Fubini Theorem for Bochner integrals [4, Theorem 3.7.13] and obtain the

desired equality. o

Corollary 3.1. Under the assumptions of Proposition 3.6, the tensorial trace,

Trkf . exists and Trkf = Trkf .
tp tp p

Proof. This is trivial since the existence of Trkfp implies the existence of

Trifp and their equality. a

Corollary 3.2. Under the assumptions of Proposition 3.6, the iterated trace,

Trkf , exists and Trkf = Trkf .
i'p i'p p

Proof. When k=1, the iterated trace and Trlfp are the same. Hence Trifp
certainly exists and

1 [ 4] [

(3.41) Trifp = b ( Za

_ 28y 3y.dq.... 1 )0, ©.. .80, .
i3 4=l =1 91791073 p’ %1y .

Now the coefficients in the expansion (3.41) are again in el as a function of

13""'1p since
] [+ ] > ©
3 Za < 3 S |a | < o,
— - JIJ Ii v---ui - - J.J .i ...-.1
13.....1p_l jl-l 1°91' 73 p 13.....1p-1 jl-l 1'91° 73 P
2, . ) I |
Thus Trif = Tr'[Tr ' f_] exists and
p P
2 00 (- o
(3.42) Trif = b [ 2( 2a )]e, ©...8¢, .
o _ - PR PR P P PS PR | i i
15.....ip-1 12-1 Jl-l 1'91°92'92'°5 p 5 p
But the el-assumption allows us to rewrite the iterated inner sums in (3.42) as a

double sum and we obtain
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« @
2
(3.43) Trf = 3 ( b3 a )¢ 9...86, .
i'p g oo dp=l J)udp=l S PEP PRF PY5 PY% FYPERRE Migs * i

Comparing the right-hand side of (3.43) with the right-hand side of (3.35) in the
case k=2, we see that Tr?fp = Trzfp. This argument may be continued to

k=3, ....[p/2]. 0

Corollary 3.3. Under the assumptions of Proposition 3.6 for O<k{[p/2]., the four
k-traces T?kfp. Trkfp. Tr%fp and Tr?fp all exist and are given by the right-hand side

of (3.35).

Proof. This follows immediately from the results above and from our earlier

result, Theorem 3.1, on the limiting trace. 8|
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4. THE CASE OF FINITE EXPANSIONS. Two of our main results relating multiple
Wiener-Itd integrals and liftings of p-forms will be given in this section in the
special case where the function fp involved has a finite tensorial expansion. These
results will serve as key lemmas for the next two sections where the corresponding

general results will be proved.

We begin by introducing some notation which will be useful in this section as
well as further on. Given ¢, € L2(R+). let §i=11(¢i). Formula (2.12) from

Section 2B then says that for every o > O,
(4.1) fi(ox) = afi(x) Pl-a.s.

Recalling Remark 2.2, we can even regard Ei as everywhere defined on @O(R+) and

satisfying Ei(ax) = afi(x) for all 0 > O and x € @O(R+).

Given g € L2(R§), there is an associated p—form wp(g) acting on H=L2(RE):

(4.2) wp(g)(h) = ép g(sl.....sp)h(sl)°...'h(sp)dsl...dsp
+
8p
= (g.h'")
=2
where h@p(sl.....sp) = h(sl)°...-h(sp). Note that §i = Il(¢1) is the lifting of the

1-form (and cylinder function) ¢1(¢i) defined by wl(¢i)(h) = (¢i.h). (See (2.19) and

(2.20) in Section 2.C.)

Let (¢,) be a CONS for L2(m+) so that (4, 8...8¢, ) is a CONS for Lz(m;:)_ Ve
1 P

work throughout the rest of this section (unless we explicitly say otherwise) with an

fp € Li(mf) which has a finite expansion,

(4.3) f = 3 a

It will be convenient for us to explicitly state as a lemma a simple consequence
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of the Itd decomposition formula. Itd’'s decomposition formula, (4.5) below, can be

deduced from assertion (3.4) of Theorem 2.2 of [6].

Lemma 4.1. Let fp € Lg(mf) have the finite expansion (4.3). Then for any

o> 0,
g N g
I(f) = b a I(¢, ©...0¢, )
PP g 1.,...,1 TprTd i
fjeeend =101 p 1 p
N o
(4.49) = 3 a I_ (¢, ®...8¢, )
il.- '1 =1 11. ...ip p—l il ip ip
P
~ o>(p-1) 3 a 1° (¢, ©...86, )
A it Tp2YT T
. PRRRERE MIPL. Rt Rt R p-1 2 p-1

Proof. The first equality in (4.4) is an immediate consequence of the linearity
property of I; on L2(Rf). The key to the second equality is the Itdé decomposition

formula mentioned above:

1I%(¢, ©...8¢, ) =17 (¢, ®...86, )
p i1 ip p-1 il 1p_1 1p

p-1
(4.5) - 3

g
oy o2

®...84, 0...86, (. .. )
1 1, 17 1

P

where the symbol ™~ indicates that the 2th function ’i is omitted leaving a
e

(p-2)-fold tensor.

Applying (4.5) we obtain

)3 a 19(¢, ©...8¢, )
T, PRRRRTE M 2O i
(4.6) = 3 a 19 (¢, 9...86, )E
RS RRRR N St 1 1
2 p_1 o ~
-0 3 a g 3 1 o(9, 8...089, ®...00, (¢, .4, )}
RIPINE A 22 P 1 ) p-1 ‘e p
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where here as below we have suppressed the limits of summations on the 1k's all of
which range from 1 to N. Note that the first sum on the right-hand side of (4.6) is
exactly the first sum on the right-hand side of (4.4). Hence, it suffices to show
that the second sum on the right-hand side of (4.6) equals the second sum on the
right-hand side of (4.4). Accordingly, using the symmetry of the coefficients to

give the second equality below, we can write

p-1

2 ~e
o S a ():I (¢ .99, 0...00. )¢, .4, )}
i, 1 dp oy P2%° 1, 1 14y
P
2 p-1 ~
(4.7) =0 b a, : 4 {2 1 o9, 0...09 0.8, )}
SN | AREEEEFIEREEL U ELPAFISE o 1 2 p-1
P-1
2 p-1 o v
=0° 3 3 a I_ (¢, ... ¢ ©...0¢ )
&=l 1.t 1gedpelgeeeeidy olpyqeer iy Po207 1, -1
2Pl (4. 8...9 )
=0 a ] ..9 ¢
- J lj tJ ""IJ — p—2 J j_
2=1 S PRPERTS 1'91°92 p-1 2 p-1
=o” (1) 3 8 44,0 Tpa(® 804 )
PR 1'"1'7°2° " p-1 2 p-1
p-1
which establishes the desired expansion. o

We are now ready for the first of the crucial lemmas mentioned in the opening
paragraph of this section. The formula involved appears in a paper of Balakrishnan
{2, p. 26]. Balakrishnan's proof is tersely written and his result is for
"band-1limited white noise"” in the case o=1: nevertheless, the key ideas in our proof
appear in Balakrishnan’'s argument.

Given a positive integer p and a nonnegative integer k such that
0 < k < [pr2], let

4.8 c , 1= —BL
(4-8) Pk ook 12Kk




40

These constants will appear frequently throughout the rest of the paper.

Lemma 4.2. Let fp € Li(mf) be given by the finite expansion (4.3). Then, for

any o > O, we have

N
(4.9) 19 f )= 3 a 19(¢, ©...88, )
LR VU ! Lpeeendgely i
P

[p/2] N N
= 2 ("l)k"ZRCp.k 2 2 b T CURUE ST B | i

k=0 PYICRREERS N I PPRRRRL B k' 'k’ 2k+1 p

. E ....°F
i2k+1 ip

[p72] | ok X

= 3 (-1 C_, R Tr f

k=0( )7 0™C,  RI¥, o (TrF )]

Proof. The subscripts on the a’'s range from 1 to N throughout the proof, but,
for purposes of simplification, we will suppress this range in the notation.

The first equality in (4.9) comes simply from (4.3) and the linearity of I;
acting on L2(Rg). The fourth equality comes from formula (2.20) for lifting cylinder

functions, (4.2) above and the fact (see Propositions 3.1 and 3.2) that

(4.10) Trkfp= 3 3 a

12k+lno-- p 1.-.. k

¢ 0...0¢i .

il'il"'"ik'ik'i2k+1""'ip i2k+1 p

Our main task then is to establish the second equality in (4.9).

We proceed by induction on p. When p=1, the sum over k reduces to the k=0 term.
Further, when k=0, the a’'s do not have any repeated indices. Thus we see that when
p=1, the third expression in (4.9) is just another way of writing the second
expression.

The case p=2 is readily obtained from (4.4) of Lemma 4.1:

p) a,

19(¢, 8, ) = I a 19(¢, )E, -0° 3 a
4, A P T PRSPl Mo PR PR

i
172 1+i2 1
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3 a, (£ E -d°Za
iy 1i2 e 1

for every

where the second equality comes from the fact that I‘;(¢i ) =¢§
1

1 i

o> 0.

Next we consider an arbitrary integer p making the induction assumption that
(4.9) holds for all integers less than p. (Actually, as pointed out above, we need
only concern ourselves with the second equality in (4.9).) In the string of four
equalities immediately below, the first follows from Lemma 4.1, the third from the
induction hypothesis, and the other two come from interchanging orders of summation.
Since the sums are finite, there is no question about the validity of the interchange

of the orders of summation.

ag o
(4.11) 3 a ”_”1p1p(¢1l@...@¢ip)= 3 a ..1le—1(°1 ®...86, )E,

1 p-1 P

1° o4, ©...80 )

- (p—l)a2 2 a8, 4 4 g _
. 1°'1°2° g1 P 2 p-1

)I° (¢, ©...8, )
p-2 iy ip—l

Pﬁ%l] (p-1)1(-1)%%
S{ 3 -

i k=0 (p-1-2k)!2¥k!

p IERRERE IS N PYWRTRRINS SIPPE I

p=2
21 oy
k=0 (p-2-2k)!2%k! Soparr- e +dpp dpeeeoode 1y

k_2(k+1)

-(p-1)




a £ *...of
1 dpedgedpe s die e dopen e - dpo doke ]

[P_—] (p-1) 1 (-1)%%*

b) a -
U SUUUUNE U ST SO
k-O (p-1-2k) 125! Lopegs oo rdp dpeeeeidy 100 Kk ke Toke p
L ] E .. . .E
loke1 i,
p) Kk_2(k+1)
L2 enenk 5

k=0 (p-2-2k)!2¥k! Sopeatr I

2 a

o€
B
PP PEPRRRS %

veeend. of ...
Tt dpedye e de e don L
Next we work with the second of the two expressions on the right-hand side of

the last equality in (4.11); first we rename the dummy indices of summation, then we

shift the sum over k by 1 and, finally, we rename the indices again:

>
k=0 (p—2—2k)!2kk

ka1 e+ Ip-2

S  a E,  +...°F
108 dy et de e e daker o dpo ok J
P2
2 (p_l)!(_l)k+la2(k+l)
(4.12) = = e
k=0 (p-2-2k)!12¥K! berze 8
3z a
8. 8.l B B ... 8 Es  e...°F
£.....8, 14 k1" 8ke1 Boxea p ey, e
["-] e 2
p-1)!(~-1)" o s
’ » 1 []
o [(p~2—2(k -7 k-1 Copranr ol
2z a £ e...*f
el e, R S Y S TEPORY S e

_————l



H p-1)!(- l)kam‘

k— (p—2k)'2 Lk-1)! P

p

- p> a «...°f
i i,.....4,,.,1,..,1 RS WK i
1'"1 k' 'k’ "2k+1 i2k+1 p
Next we substitute the result of (4.12) for the second expression on the
right-hand side of the last equality in (4.11); then we combine the sums to obtain

(4.9) as desired. We will carry out the combining of sums under the assumption that

p is odd in which case [Eélﬂ = [gﬂ. Finally, we will finish the proof by noting the

adjustments that must be made for the case of even p.

o
(4.13) . ) . ail.....i Ip(¢110...@ ’i )
1- LA ] p p p
I53
(p-1)!(-1)"0 s
e .kk
k—O (p-1-2k)!'2 i2k+1""'ip
3 a 13 ... &
11" "1k 11'11'""1k’ik'12k+l""'ip 12k+l 1p
3, -
+ 3 D= 1) s
- ' -
k=1 (p—2k).2 (k 1)! i2k+1""'1p
X a f ‘...'E
11" "ik 1111""’ik'ik'i2k+1""'ip 12k+1 ip
= 2 a f [ ] of
i.,....1 *1 i
il... '1p 1 1 p
[+
'
+ (p-1)(- l) a (%E'+ p: ) s
k-l (p-1- 2k)!2 (k 1)! i2k+l""'ip
3 a f ‘...'E
£y PER PERRREE WEE P PHCTRRPIE Wt PH 1,
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= 3 a f . of
i......1. 54 1
11.....1p 1 1 P
3 .
2| _qyk 2k
1 G [+4
+ 3 kk
- ] ]
kel (p2Kk)12%! dgypqnene g
b a 14 *...°§
LT et e et 1y i
]
= 3 (-1)“¢:2kcpk
k=0 Sorers -+ 1y
3 a £ «...°f
R R e R T LS R " ! i

which gives the second equality in (4.9) as desired except that we need to make some
comments about the case when p is even.

¥hen p is even, [g—] = [Ez-l—] + 1. The terms from k=1 to k = [2;—1-] can be added
just as in the case of odd p with the same result. However., the second series on the
right-hand side of the first equality in (4.13) will have a

k = [%] = % term which is not present in the first series. The term is just

(p-1)! (-1)P%P 5

a

B. 1,.....1 L RR LRREEL NP LR
o2®  (B-ay ! p/2
p! (-1)P/%P s . 1
B TOPUETTE SUES LR ERRRRL Y2 T2
2p72)22  B- 1) ! p/2
pl(-1)P%P
= P ; atl PRRPIS NYPYE Ny
i e . . . p .
012%(B)! 1 p/2
/2
= (-1)P%Pc 3 a
p.P/2 il....,iplz 111110-.-'ip/2,ip/2
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which is precisely the k = [p/2] term on the right-hand side of the second equality

in (4.9) and so the proof is complete. o

Remark 4.1. Lemma 4.2 makes the idea of the "natural extension"” of
Ip(fp) = I;(fp) rather transparent in the case of fp's with finite expansions. Hu
and Meyer [5] sought to extend Ip(fp) in such a way as to preserve polynomials in
first order stochastic integrals. That this is a reasonable strategy in connection
with the Feynman integral was quite believable to the present authors since it is
consistent with their earlier work, for example [7 or 12], relating the Fresnel
integral of Albeverio and Hoegh-Krohn [1] which deals with certain functions on a
Hilbert space H to the Fresnel (or Feynman) integral of corresponding functions on
the Wiener space [3,10] or abstract Wiener space [12] associated with H.

Applying Lemma 4.2 with 0 = 1, we get the formulas

O v
) = 2 Gk Lorer: : SR E..1k=1a‘1"1"""k'ik°‘2k+1"'"ip
(4.14) CE v E
2k+1 P
(51

k k
3G, Rl g (TEE)]

Since the natural extension N[Ip(fp)] is to preserve polynomials in first order
stochastic integrals, that is, in the fi's. it is clear how N[Ip(fp)] should be
defined in this case; it should continue to be given by either of the last two

expressions in (4.14):

(5 N N
NI (£)] = 3 (-1)*C ) ) a
p'P” p.k _ P DUVE DRV WS WS | veoand
k=0 opepg e dp=l 1peeeeitymt 1100 k* 1k Loken p
(4.15) - F fi




£ ) )
= kzo (-1)°C, y RL¥, o (Trf )]

Since each fi is s-a.s. defined and may even be taken as everywhere defined, the same
can be said of N[Ip(fp)] in the present situation.

In the general case in Section 7 where infinite expansions are involved, we will
need to work harder to define the natural extension. Briefly, for every o > 0, we
will take limits in the space Lz(qa,Pa) of polynomials in first order stochastic

integrals.

In Lemma 4.2 a multiple Wiener-Itd integral Ig(fp) was expressed as a sum of
(p—2k)-forms, k=0,1,...,[p/2]. Lemma 4.3 will express a p~form, restricted to Qa' as
a sum of multiple Wiener-Itd integrals I;_2k(Trkfp). k=0.1,...,[p/2]. Lemma 4.2 will
be the key to the proof of Lemma 4.3 which will, in turn, be essential to the
developments in later sections. Formula (4.18) below is essentially formula (10) in
Hu and Meyer [5], but in [5], it is a remark which is not pursued.

Again fp will be assumed to have the finite expansion (4.3). Hence, the

associated p~form wp(fp) on H=L2(R+) (see (4.2)) will be the cylinder function

(4.16) \Pp(fp)(h) = 11“;”1 =lail"'"1p(¢11.h).“..(’ip'h).
P
Hence \pp(fp) certainly has a lifting,
N
(4.17) ‘Fp(x) = R[Wp(fp)](x) = ii.f”ipﬂail'_'_'1p§il(x)°...°fip(x).

which is a p~form on QO(R+) which may be regarded as everywhere defined.

Lemma 4.3. Let fp € Li(ﬂg) be given by the finite expansion (4.3) and let the

associated p-form Wp = R[wp(fp)] be given on QO(R+) by (4.17). Then s-a.s.
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5]
(4.18) v =Ry (F)]= 3 oX¥c 19 (Tr)
' PP P oy P.kip2k P’

Proof: The various indices i, in the proof vary from 1 to N as in (4.17) but we

J
suppress this fact below. We proceed by induction on p. When p=1, the last

expression in (4.18) reduces to II(E a; ¢, ) which equals Wl as required. The case
i 1

1 1

p=2 is easily obtained from Lemma 4.2:

2

I2(f,) = 3 a E, E 0“3 a
242 i,.i,71.°14 i,.1

1.1, 1''2 "1 "2 1 1'71

2
=¥, -0 Za .
1
o 1
Therefore, Wz = 12(f2) + azTr (f2) as desired.

We now assume that (4.18) holds for all integers less than p and examine the pth
case itself. The k=0 (v=0 in our present notation) term in the third expression in

(4.9) is just Wp. This yields the first of the two equalities that follow:

p/2] +
12
Wp:l;(fp) R G I G 2 0 Ay g i)
v=l i2v+1‘ 'ip 11' “'iv 1'71 v’ v’ 2u+l P
.E .-. .§
i2v+1 ip
[p/2] +1 2
(4.19) = I;(fp) + 3 (-1)""e ”cp.v{ 3 ey oy BB}
v=1 i2v+1""’1p 2v+1 P 2v+l P
vhere c = p a
i2v+1""'ip 11.. "iv il'il" 'iv'iu'i2v+1' 'ip'

Now we can apply the induction hypothesis to the inner sum in the last expression of

(4.19) since v 2 1. Doing this and letting

(4.20) z cy o ‘i

O...@¢i .
2v+1""'ip 2v+1 P

h =
P20 1p 2v+1
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we obtain
[Eﬂ [p-2v]
o 21 oyt 2 on)1o?T o .
(4.21) v =19(f ) + 3 B = 3 ' — 17, o (Tr'h o)}
P PP o (p-2v)12Y r=0 (p-2v-2r)!27r! P p

Now Trr(hp_zv) = Trr[Trvfp] = Trr+vfp where the second equality follows from

Proposition 3.5. Further, applying the Binomial Theorem to (—1+1)k. one sees that

v+l

s (1) L
v!r! k!
where this last sum is over the set {(v.r) € {1,...,k}x{0,1,...,k}: v+r=k}. Using

these last two facts, (4.21) and summing in a different order we obtain

gy Le=2el +1_, 2042
D 1)} r
(4.22) v =1%)+ 3z 3 L _plo 17 o o (TFVTE )
P PP v=1 r=0 (p—2v—2r)!2D Tprpy Prevmer P
)4
o [2] Ap'ozk {;1)v+1 o k
= () + 3 = (3 S ) I g (TrE )
k=1 (p-2k)!2 T P P
B
= 19(f ) + £§] _plo* 1 _ (1r% )
PP g (p-2k)i2kkt PP
[gﬂ 2kC k
= 3 19 Tr f_).
oo p.klp-2k (T p)
and this proof is complete. a
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5. LIFTINGS OF P-FORMS AND WIENER-ITO INTEGRALS. Let fp € Li(mf). ¥We show in
the theorem below that the p-form wp = wp(fp) on L2(R+) associated with fp (see
(4.2)) has a scaled Qz—lifting R[wp] if and only if T?kfp exists for
k=0,1,....[p/2]. Further, in this case, R[¢p] is given by a p~form on Wiener
space or, alternately, by a finite sum of multiple Wiener-Itd integrals. This
result is the key to Sections 5 through 8. Our proof that the trace conditions
are necessary as well as sufficient for the existence of the lifting is tied in
with the nature of the limiting k-trace.

Not only will the theorem below allow us to give in subsequent sections a
solution to the problem which originally motivated our research, but it is
potentially a useful result in connection with white noise calculus [13] where
p—forms play a role analogous to that played by pth homogeneous chaos in Wiener

calculus.

2
Theorem 5.1. Let fp € LS(RE) and let wp = ¢b(fp) be the associated p-form
on H=L2(R+).

¥,(f) has a scaled ¢~ 1ifting R[¥,] 1f and only if T?kfp exists for

k=0,1,....[p/2]. In this case, s-a.s. (that is, for every o > O, Pa—a.s. on
1 ) we have
g
o
(5.1) Ry = 3 a £, «...°€
Pttt e ity I
(p/2]
=3 oPc, 17 (TP )
k=0 P.k p- P

where the second expression in (5.1) is to be interpreted on each 0 as the

N

2 L] L]
limit in the space L (Qa.Pa) of the sequence 3 a, oy 51 cae fi .

11.....ip=1

Remark 5.1. The third expression in (5.1) has the advantage that it is

coordinate free but the disadvantage that it must be changed with each change
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in 0. The lifting Rf is, of course, scale-invariant measurable as well as

s-a.s. defined.

Proof of Theorem 5.1. We begin with considerations which are relevant to
both directions of the proof. Let {WN} be a sequence from #, the class ~¢
orthogonal projections with finite-dimensional range, such that UNTI strongly
and dim(HNH)=dN. We can then obtain a CONS (¢1) in H such that
{¢i: i=1.....dN) is a CONS in UNH. N=1,2,... . It suffices to consider the
case where dN = N. Of course, fp has an expansion with respect to the CONS

(#; 800, ) for L2(R,):

P
[ ]
(5.2) f = 3 a ¢, ©...89
Pyt e dph i
Now
w0
(5.3) ¢, (h) = (fp.h@p) = 3 a, . (#y B)e...o(, .h).
.. =1 71 Tp T p
and so
o
(5.4) v oMy(h) = v (Iih) - s T (¢11.HNh) “(¢; .Oyh)
1' » p- p
[ ]
= >3 a (I ¢, .h)e...+(0 ¢, .h)
11' 'ip=1 il.....ip N ip
N
= b3 a (¢, .h)- (¢, .h)
foeeeatst feeeip 'p
N . @ép
= -h »
(£3.h°P)
where fN (fN . more fully) satisfies
P p.(¢))
N N
(5.5) £ = 3 a 4, 0...00, .
Py T aa iy i
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It is easy to see from (5.4) how to lift the cylinder function prHN:

5.6 R(y_oIl = 3
(5.6) (o) = 2 =
where Ei(x) = Il(¢i)(x).

Applying Lemma 4.3 we see from (5.6) that for every o > O, Pa—a.s. on Qa'

[p72] o kN
5.7 R(y ofl,) = 3 o (Trf).
(5.7 Wpoly) = 2 G adpaalTr )

Now suppose that T?kfp exists for k=0,1,...,[p/2]. Let o > O be given.

We wish to show that

=K, \ o2
(5.8) IR(y oy) - X o°C kI;-zk(T’ £, —0

k=0 p. P 1% .P)
g o

as N — o, However, using (5.7) and properties of multiple Wiener-Itd

integrals (see (2.17)), we can write

[pr2]
IR(y oy) - 3 ¢ IO o (T K¢ )1122
p k=0 pP.K p~ P" L (2..P)
g g
[p/2]
(5.9) = o 17 (1Rl - T i,
k=0 p.kp-2k’ " 'p P12 .p)
g O
[p72) o o 9k 2 kN ok, 2
= 3 (o7C, ) (p-2k) 1 (P )YuTr e - Tr £l o ook

k=0 P P LoD

but this last expression converges to 0 as N — ® by definition of T?kfp.
k=0,1,....[p72].

We now know that wp has a scaled 22—lifting pr that is equal to the third
expression in (5.1). Checking (5.7), we see that for every o > O all three
functions in (5.1) are equal Pb-a.s. on Qo.

It remains to show that if wp(fp) has a scaled !2-lifting. then T?kfp
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exists for k=0,1,...,[p/2]. In fact, we will show that if there exists o0>0
such that wp(fp) has a a—ﬁz—lifting. then T?kfp exists for k=0,1,...,[p/2].
Let (ai) be an arbitrary CONS for H=L2(R+) and let HN be the orthogonal
projection onto sp[al....,aN]. By assumption, we have
(5.10) Ep [R(4,0ly) - pr]z —0 asN—o

It follows that

(5.11) Ep [ROY,°Iy) - R(WPOIIN.)]?‘ —0 as NN — o,

But by Lemma 4.3 and (5.5) - (5.7).

[p/2]

2k o kN kN’
5.12) R(y eol,) - ofl..) = I -
( ) (‘pp N) R(‘Pp N ) 2 0 Cp.k p—2k(Tr fp.(a ) Tr fp.(a ))
k=0 i i
where
M M
(5.13) £ = 3 (f .a, ...8a )a, O...8a, .
p.(a;) et sl Py L i

Using properties of multiple Wiener-Itd integrals (see (2.17)), we have

(5.19)Ep [R( °ly) - R(yelly. )]
g

/2
=[pz ](asz 2 (p-2k) nTeKe
=0 P,

N kN 2
~Tr f ng .
p.(a)" " 'p.(e,) 2

From (5.14) and (5.11), we see that

(5.15) ke kN 2 0 as NN — e
P.(ay) P.(a,)
2 IRp-2k
for k=0,1,...,[p/2]. Because of the completeness of L™( + ). (5.15) shows

=k N

that, for every CONS (ai). Tr fp converges to an element of L2(Rf_2k). Ve

(a,)
still need to show that this limit is independent of the CONS (ai).

Let (ﬁi) be any other CONS for H. It suffices to show that
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kN kN
. -Tr f I .
(5.16) ITr fp’(ai) r (8" —0 asN—o

However,

(5.17)  R(¥,omy ()) R(¥,oly N. (B, ))

(pr2] 4 © Kk.N kN
=k§Oackp2k(Trf (a)T (B))
and so

[p/2] kN kN 2

2p _
(5.18) kfo oP(C, k) (p-2k) NTrf ) p.(a) TrE ®, )5

[p/2] o kN kN 2
= Epa[ kzo o C k 2k('I‘r fp (ai)—Tr fp'(pi))]

Ep ROy (g ) = ROb0ly (g 1"
But the last expression in (5.18) goes to 0 as N — ® since
2
Bp (ROl q.)) = R(4,)1° and Ep [R(40ly (g )) - R(¥,)]

both go to 0 as N — ®. It now follows from (5.18) that (5.16) holds for
k=0,1,....[p/2] as desired.
Hence, for every k = 0,1,...,[p/2]. there exists €52k in L2(IR1_:-2k) such

that for every CONS (ai) for H,

k. N
(5.19) IITr fp.(ai)_gp-2k"2 — 0 as N — o,
=3k
Therefore Tr fp exists as we wished to show. [a]

Next we present some simple consequences of Theorem 5.1. (Much of the
rest of this paper will give further consequences of this theorem.) The first
corollary was already noted and established in the proof above but it seems

worth stating formally.
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Corollary 5.1. Let £ € L2(RP) and let ¥, = ¥,(£ ) be the associated
p-form on H=L2(R+). If there exists o > O such that ¢b has a a—Qz—lifting.
then T?kfp exists for k = 0,1,...,[p/2]. In particular, if wp has an
92-11fting with respect to the standard Wiener measure P=Pl' then T?kfp exists

for k=0,1,....,[p/2].

Corollary 5.2. Let fp and ¢p be as in Corollary 5.1. Then wp has a
scaled #2-11fting if and only if there exists o > O such that ¥, has a
abﬁz-lifting. In particular, if wp has an 22-lifting with respect to the

standard Wiener measure P = P_, then wp has a scaled L2-lifting.

ll
Remark 5.2. Comparing the first two expressions in (5.1) with (5.3). one

sees that the series

(5.20) 3 a

lifts wp in a natural way.

Corollary 5.3. Let fp and f$ be in Lg(mf) with associated p-forms wb and
Wﬁ , respectively. Suppose further that there exists o°>0 such that R(wp) and
R(¢§) both exist in the 00—22 sense (and hence in the scaled—g2 sense).

Then, for every o > O,

[p/2]
2p 2 k. =k, 2
z (o Cp.k) (p-2k)!ll Tr fp—Tr fP"L2(mP‘2k)'

+

2
5.21) WR(y )-R(y )l
.21 ROREN 0 "

(n) __ 2 (n)
In particular, if £ and £, n=1,2..... all belong to Ls(m’j) and 1if ¥ .y ",
n=1,2,... are the associated p-forms all of which possess scaled 22—liftings
R(,). R™), ne1.2,.... then

2
(5.22 IR(y_)-R(y" )N —0 —
) PR O
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for every o > O if and only if
IITrf(n)-Trfll — 0 asn—oo
P P,2,,P-2k
LE@™)

for each k=0,1,...,[p/2].

Proof. This follows easily from (5.1) and properties of multiple

Wiener-Itd integrals. a

Remark 5.3. Often, in order to work with functions on white noise space,
that is on the canonical Hilbert space, (H,€.un). one must lift them to an
associated countably additive representation space. It is sometimes possible
to work directly in the Hilbert space. Corollary 5.3 allows us to do that for
p-forms on H=L2(Rf): the L2(CO(R+).P6)-distance from R(wb) to R(wé) can be

calculated within the Hilbert space.
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6. WIENER-ITO INTEGRALS IN TERMS OF LIFTED P-FORMS. The theorem of this section
will show how to write the multiple Wiener-1té integral I;(fp) as a finite sum of
lifted (p-2k)-forms, k=0,1,...,[p/2]. The o=1 case of this result will lead us in
the next section to our definition of the natural extension N[Ip(fp)] of Ip(fp). At
this point the reader may wish to review Definition 3.3 and Propositions 3.4

and 3.5.

Theorem 6.1. Let fp € Li(mf) and let wb = wp(fp) be the associated p-form on
H=L2(R+). Assume that fp has all its first and second order traces and that they
are consistent.

Then for every o > O, Para.s. on Qa'

[p/2]

o _ _11\k 2k =3k
(6.1) 19(£) = kzo (-1, | RI¥ o1 (TFE)]
[p/2] o [
= 2 (-l)ka2kcp,k 3 ( 3 aJ B RPN, T M { ,....i)
k=0 i2k+1,....ip=1 jl.....jk=1 1'91 k'vk’ 2k+1 p
.E ... .E
Loke i
=k

where R[wp_zk(Tr fp)] is the lifting of the (p-2k)-form wp-2k associated with the

function T?kfp in Li(mf'2k) and where (¢1) is a CONS for L2(R+).

-]
f = 3 a oy ¢1 ®...0 ¢1 . Ei = Il(¢i). and the sum over the i’'s in the

P =
11.....ip-1 1 p 1 P
third expression in (6.1) is interpreted on each Qa as the limit in the space

2
L (QU.PO) of the sequence

N ©
2 ( 3 a )E s...°E, .
= JIPRIE PR PRI, I SRS | N I ! i
12k+l""'ip'1 jl.....jk-l 1'Y1 k*vk’ "2k+1 P 2k+l p
Proof. We begin by establishing the first equality in (6.1). Our

assumptions assure us, by Theorem 5.1, that the second expression in (6.1) makes

sense and that formula (5.1) can be applied to each function R[¢p_2k(T?kfp)] in the
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second expression in (6.1). Our first equality below is obtained by doing this and
using the consistency of the first and second order traces. The second equality
comes simply from splitting off the k=0, v=0 term and the third equality from doing
the remaining sum in a different order. Finally, the fourth equality comes from the

Binomial Theorem;
r g—llk
= {1+(-1)] =r! = XToT
k+v=r

We now carry out the steps which were just commented on above:

[p/2]

(6.2) I (-1)¢ 2k ROV 2k(Tr £)]
k=0
[B=2k;
k—O (p-2k) ! 2kk ! =0 (p_2k_2v) 1 2vv ! p—2k—2v p
/2 [tg—k] k k
=17(£ ) + [p?. ! s (=1 pla?(k+) 1© (T )
PP k=0 =0 (p-2k-2v)12K*Vk1yy P2k p
(k.v)#(0,0)
(pr2] _, 2r
g o
=)+ 3 BE— 3 ﬁ?;%- MO o (TF7E)

r=1 (p~2r)!2°  ktv=r

o
IP(fP)

as claimed.

It remains to establish the second equality in (6.1). By Proposition 3.3,

(6.3) T?kfp = 3 ( 3 LT T DUUUI N L)%y @8,
T B P Rt e S A S N - 03 p
so that
(6.4) ¥ 2k(T?kf )(h) = s ( 3 a )
P~ P VTRRREE SN PR S Jpdpee o de die doge 0 3p




* (95 h)e...e(8g h)

2k+1 P
and so by Theorem 5.1,

—k
(6.5)  R[¥,_p (TF¥F )]
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7. THE NATURAL EXTENSION OF A WIENER-ITO INTEGRAL. The case o=1 of Theorem 6.1

and the idea that the natural extension should preserve polynomials in the ai's

immediately suggests how to define N[Ip(fp)].

Definition 7.1. The natural extension of Ip(fp) is defined by

7.1 N[I (f [p§2] ke R Teky (2] n¥c
( . ) [ p( p)] = 10 (-l) p.k [wp-Zk( r p)J = f (_ ) p.k
s ( 3 a )E . E. .
- J 'j ""IJ 'J oi |--o’i i 1l
R N TUIE e k'K 1oke1 p loke p

The next theorem gives us conditions under which Definition 7.1 makes

sense.

Theorem 7.1. Let fp € Li(mf) and let wp = wp(fp) be the associated p-form
on H=L2(R+). Assume that fp has all its first and second order traces and that
they are consistent.

Then the last two expressions in formula (7.1) are defined and agree

s-a.s. and are scale-invariant measurable.

Proof. Apply Theorem 5.1 and Proposition 3.3 to each of the (p-2k)-forms

Tk
¥ (). k=0.1.....[p/2]. 0

Next we give a theorem which will express the restriction of N[Ip(fp)] to
ﬂa as a sum of multiple Wiener-Ité integrals I;_zk(f?kfp). k=0,1,...,[p/2].
This theorem will be the basis of our calculation in the next section of the

analytic Feynman integral of N[Ip(fp)].

Theorem 7.2. Let fp € Li(Rf) and let wp = wp(fp) be the associated p—-form
on H = L2(R+). Assume that fp has all its first and second order traces and

that they are consistent.

Then, for any o > O, we have Pa-a.s. on Qa'




—
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[p/2] k. .0 =%
(7.2) ML) = 3 (®-n¥c, 12 (T ).

Proof. Proposition 3.4 allows us to apply Theorem 6.1 to the right-hand
side of (7.2); this yields the first equality below. The third equality comes
from reordering the sum and the fourth from applying the Binomial Theorem to

(—1)r=[(02—1)+(-02)]r. Finally the last equality comes from Definition 7.1 and

Theorem 7.1.
[p/2] ke
(7.3) 3 (o>-1n¥ o ko 2k(Tr £,)
p-2k
(21 b1k =2 (p-2k) ! (-1)°*® kv,
= 3 RIV, o0, (TT 1,)]
oo (p-2k) 12%! v=0 (p-2k-2v)!2 ! P
[p/2][£2:%kli 2 2
_ v 2v
= 3~ 3 R lLfm‘,) RIV_ oo, (TEXVV8 )]
k=0 v=0 (p-2k-2v)!2 v! P P
(p/2] 2 .k, 2.
= 3T Ry 3 (Fldo) ey, ()]
r=0 (p-2r)!2 (k+v=r Y
(p/2] —or
= 20T, ROy, o (TF7E)]
= N[I(£)]
as desired. a

Remark 7.1. Formula (7.2) is closely related to (8) in [S5]. a key formula
in the paper of Hu and Meyer. However, in [5], the right-hand side of (7.2) is
their "suggested definition” of the natural extension of Ip(fp) to ﬂa. Hu and
Meyer do not have one formula (like our (7.1)) which extends Ip(fp) to qa for

all o > 0. Their "suggested definition” has become a theorem in our
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development. Further, our Definition 7.1 reflects in a rather transparent way

the desire to extend Ip(fp) so as to preserve polynomials in the Ei's.

Next we give a simple example which will illustrate our formulas and help
to clairfy the idea of the natural extension and the concept of functions equal
s-a.s. Let ¢ := X[O.l] so that fl = ¢ ® ¢ belongs to Li(mf). We introduce a
function G: @0(R+) — R which is everywhere defined and continuous and with
which we will compare two different extensions of 12(f2): Ql'—* R. Let
G(x) := x2(1)-1.

Using the third expression in (6.1) (or (4.9), the corresponding formula
for finite expansions) witho =1, p =2, k = 0,1, we see that Pl-a.s. on 91.

Ly(f,)(x) = £2(0)-1 = [J ¢(s)dx(s)] - 1
R,

1
= [Jax(s)]% - 1 = 2(1) - 1
0

where § = Il(¢). Hence Iz(fz) =G P,-a.s. on Ql.

1
By (7.1), N[Iz(fz)] = §2—1. In particular, for every ¢ > 0. P;-a.s. on

Ql'

N[L,(£,)1(ox) = E2(ox)-1 = 0262(x)-1 = o2x2(1)-1.

We can also obtain the formula just above by using (7.2) of Theorem 7.2: For

every o > O, Pl—a.s. on 01.

N[1,(f5)1(0x) = C, (I5(TF £,)(0x) + (02—1)C2'Ilg(ﬁlf2)(x)

19(£,) (ox) + (®-1)TE, = o°Ly(£,)(x) + (02-1)

o?LE2(x)-1] + 0%-1 = 0% 2(x)-1 = o%3(1)-1.

Note that N[Iz(fz)] =G s-a.s.
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In contrast, we define the extension F of 12(f2) to U by
>0 7

PLy(£5)(x) = o [§(x)-1] =

F(ox) = Ig(f2)(ax). Now Pl-a.s. on Ql. F(ox)

02x2(1)—02.

Summarizing the above: N[Iz(fz)] = G s-a.s. and N[Iz(f ]=G=F Pl—a.s.

5)

However, for every o # 1, it is not true that F = G Pa-a.s.. and, in fact,

P_{veQ : F(y) # G(y)} = P {x€Q : F(ox) # G(ox)} = 1

since G(ox) = 02x2(1)—1 for every x € Ql whereas F(ox) = 02x2(1)—a2 Pl—a.s. on

Ql'
We finish this section by discussing briefly a generalization of the
results above. This generalization is related to a further formula of Hu and

Meyer [5]. Let f € Li(mf). We will define the natural extension N[I;(fp)]

for any T > 0. Again, Theorem 6.1 suggests how this should be done.

Definition 7.2. The natural extension of I;(fp) is defined by

[p/2]

T _ _11k 2k =k
(7.4) N[Ip(fp)] = kfo (-1)~ Cb'kR[Wp_2k(TT fp)]
(p/2] “
= 3 (-1)k72kcp y s
k=0 Lopeag s+ 11
©
( 3 a )€ ..., .
Sgeeend= I3 die e tagey 1 ok i

Under the assumption that fp has all its first and second order traces and
they are consistent, we can show just as in Theorem 7.1 that Definition 7.2

makes sense. Next we ask for a formula extending (7.2).

Theorem 7.3. Under the assumption of Theorem 7.2, for any o > O, we have

-a.s. on {
Pa on ),
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[p/2] 2 92k
_-r)

T o =k
(7.5) N[Ip(fp)] = kio (o Cp,kIp-2k(Tr fp).

Proof. The argument proceeds just as in the proof of Theorem 7.2 except

that here one applies the Binomial Theorem to

%17 = [(*?) + (=) 3
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8. THE FEYNMAN INTEGRAL OF THE NATURAL EXTENSION OF A WIENER-ITO INTEGRAL.
Every square integrable function on Wiener space, that is, every f in

L2(CO(R+).P1) = L2(01.P1) has an expansion in Wiener chaos,

(8.1) f= 3 Lo

R L(£).

where fp € Lﬁ(RE). Hu and Meyer have the following formula [5, (7)] in terms

of the expansion (8.1):

2 ..k
- (o7-1) k
(8.2) Ea(f) i 21 : Tr(f

The formula (8.2) is to give the "Feynman integral” of f when 02 is purely

2k)'

imaginary and the right-hand side of the formula makes sense. It is natural to
ask, as Hu and Meyer did, what, if anything, this has to do with the idea of
obtaining the Feynman integral by analytically continuing the Wiener integral

I f(ax)dPl(x). It would seem naively that for the two approaches to be
€
0

consistent, one should have for any ¢ > O

2 ..k
i%;:ll—-Trk(fzk) if p=2k is even,
8.3) 5 Lo (s )(oxar (x) = {2 ¥
€. (R.) P P P
o‘'+ 0 if p is odd.

However, (8.3) is too naive since, Pl-a.s.. ox is in Qa and it is not clear a
priori how to extend Ip(fp) from 01 to Qa. The theorem below will show that
the natural extension N[Ip(fp)] described in the previous section produces the

desired formula.

Theorem 8.1. Let fp € Lﬁ(mf) and let wp = wp(fp) be the associated p—-form
on H = L2(R+). Assume that fp has all its first and second order traces and
that they are consistent.

Then, for every o > O, we have the form
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2 .,k
Lg—:ll—-f?k(f2k) if p=2k is even,

8.4 J  LoN{1 (s )Iex)er (x) = 2'%!
¢ (R )P PP ) .
o‘\'+ 0 if p is odd.

Further, the analytic Feynman integral of the function %T N[Ip(fp)] is given by

the right-hand side of (8.4) with o2 = -i.

Proof. Formula (7.2) of Theorem 7.2 is the key to the proof. Fix o > O.
The steps below follow from (2.1), (7.2) and the fact that, for p 2 1,
f o 12(£ ) (x)dP_(x) = O
¢ (R,) P P

1 1
J ST-N[Ip(fp)](ax)dPl(x) = J ;T-N[Ip(fp)](x)dPa(x)

€ (R+) o\'+

/2] 2
= %T [pE : 19—31132%—- §o12, (T )(x)dP_(x)
©v=0 (p-20)!12°! ¢yR,) P P

2 ..k
12__12_.T?kf2k if p=2k is even,
27k!

0 if p is odd.
which is the desired formula. o

Remark 8.1. It is natural to investigate the class of functions f which
possess a Feynman integral in the sense of [5] and, in particular, to ask if
various functions of interest in quantum mechanics fall in this class. Such
matters are discussed to some extent in [5] and are of interest to the authors

but they have not been our concern in this paper.

We finish this section by stating a result like Theorem 8.1 except that it

involves the natural extension of I;(fp) rather than N[Ip(fp)].

Theorem 8.2. Let the assumptions of Theorem 8.1 be satisfied and let
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T > 0 be given. Then, for every o > O, we have the formula

2 2.k

L%;:I—l—-Tr (f2k) if p=2k is even,
(8.5) J  LN01T(e)(ex)ep (x) = {2
€ (R.) p: P P
o\ + 0 if p is odd.

Proof. The proof is the same as the proof of Theorem 8.1 except that

formula (7.5) is used instead of (7.2). o

Remark 8.2. If we analytically continue the right-hand side of (8.5) to

02=-i, we obtain the analytic Feynman integral of %T-N[I;(fp)].
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