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1. Introduction. Interesting questions concerning homogeneous chaos, scaling,

and the Feynman integral have been brought to light in a recent largely

heuristic but fascinating paper of Hu and Meyer [5]. Our purpose here is to

indicate a way of resolving these questions as well as others which have arisen

in the course of our research.

Let IR+ denote the nonnegative real numbers and let T0 = 0(IR+) be the

space of continuous functions x on I+ such that x(O) = 0. P1 will denote the

standard Wiener measure on T0(IR+. Every f C L 2(O(1+). P1 ) has an expansion

in Wiener chaos:

(1.1) = - Ip(f )'

where f E L 2 (IR), the symmetric functions which are square integrable over +,

and where I denotes the p-fold multiple Wiener-ItO integral.

Hu and Meyer offer the following "formula" in terms of the expansion

(1.2) E(f) = . _ Tr (f2 0)
k 2kk!

The formula (1.2) is to give the "Feynman integral" of the random variable f

when a2 is purely imaginary and when the right-hand side of (1.2) makes sense.

The first problem coming from the Hu-Meyer paper is that of giving a

rigorous treatment of the k-trace, Trkf p, of fp where k=O,1....[p/2] and [p/2]

denotes the greatest integer in p12. We will do this in Section 3. but, for

the purpose of this introduction, the reader may think of Trkfp as given by the

(oversimplified) formula 0

113

(1.3) (Trkf )(s2k+1.....sp) S k fp (s 1 sl.....s k. Sk' s2k+l'... s)ds1 -.dsk.

IR +
A.lwlability Codes

!Avail and/or

I Special

L*m4m!
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The difficulties with (1.3) are clear since f is defined only up to sets ofp

Lebesgue measure 0.

One would like to connect formula (1.2) with the usual notion of the

scalar-valued analytic Feynman integral of f obtained by starting with the

Wiener integral

(1.4) S f(ax)dPl(X)

0

2

for a > 0 and analytically continuing to a purely imaginary. Comparing (1.1)

and (1.2). the naive hope would 'e that for a > 0.

(C- )k Trk(f20 if p=2k is even,

(1.5)1(f ()dP(x) = 2kk!p

(1.5) 0 =10 if p is odd.

However, (1.5) is too naive since, for a X 1, I p(f p)(ox) is defined only on a

set of P -measure 0. (More will be said about this in Section 2A.) In order

to obtain a correct version of (1.5). the function I (fp) needs to be extended.

Perhaps the first thing that comes to mind is to replace I p(f p) in (1.5) with

Ia (f ) where Ia(f ) is the Wiener-It6 integral corresponding to the variance

pp p Pp2

parameter a . This does not produce the desired result however because, even

though the integral makes sense, we obtain

(1.6) 1 Ia(fP)(ax)dPl(X) = 0.

We will show in this paper how to define N[Ip (f p)] which we will call the

natural extension of the random variable I (f ), and we will obtain the desired

formula:

( (a()k k r (f 2k if p=2k is even,

(1.7) 0 NIp (fp 0(oxdPl(Xf = is
40 }0 If p is odd.
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N[I p(f p)] will be defined in terms of the "scale-invariant i2-lifting" (to be

defined in Section 2C) to random variables on 60([R+) of certain (p-2k)-forms

(k-O,1.....[p/2]) on the Hilbert space L2 ([+).

Hu and Meyer have made the suggestion that in studying the problem of

extension of I p(fp ) it might be more natural and basic to start not with Wiener

space but with the Cameron-Martin space IY on which the pth order "multiple

Wiener integral" is nothing but a homogeneous p-linear form Pp defined on X.

Since P (1) = 0 for all a > 0. ,p is obviously not a random variable in the

usual sense. A theory of "accessible" random variables on a Hilbert space

regarded as a finitely additive Gauss probability space has been developed and

applied to problems of nonlinear prediction and filtering theory in the recent

book by Kallianpur and Karandikar [13]. It turns out that this theory is the

appropriate setting for the development of Hu and Meyer's ideas. A key concept

is the notion of a lifting map to a suitable representation space, an idea that

goes back to I.E. Segal (see the references in [13). These questions will be

taken up in some detail in Section 2C.

It is perhaps worth remarking (although we will not emphasize this point

of view in the present paper) that by taking a different choice of

representation space, for example, an abstract Wiener space or the white noise

space (Wffi) where p is the countably additive Gaussian white noise measure on

the space V'([d of Schwarz distributions on *d, one can obtain extensions of

our main results to these spaces.

Theorem 5.1 is a key result in our development. It asserts that the

p-form 4 (fp) on L2 (IR.) associated with f£ L2 (IR+) has a scale-invariant V2
p p p s +

__4Clifting if and only if the limiting trace, Tr f , exists for k = 0.1.....[p12].p

Further, it expresses this lifting as a finite sum of multiple Wiener-It6

integrals. The fact that the trace conditions are shown to be necessary as

well as sufficient is connected with the definition of the limiting trace.
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T-r f (see Section 3).P

The Feynman integral provided the initial motivation for the present work,

and it, in conjunction with this paper and the paper of Hu and Meyer [5].

suggests several further questions. However. the discussion of the Feynman

integral below is limited to issues closely related to those already raised in

this introduction.

This paper is addressed primarily to probabilists, but we hope that it

will also be of interest to analysts who are concerned with the Feynman

integral. With this in mind, the next section on preliminaries is rather

detailed. Further, we will use the notation of analysis, in particular.

integrals instead of expected values, whenever it seems likely to be clearer to

an analyst.

We finish this introduction by outlining the contents of the paper.

Section 2 deals with preliminaries; the material is essentially known although

some of it is not readily available in the literature and there may be a few

novel points. Scaling in Wiener space is reviewed and facts about Wiener-It6

integrals are outlined with special attention paid to scaling. Finally, the

scale-invariant lifting of functions on L2 (IR+) to random variables on Wiener

space CO(IR+) is defined.

In Section 3, the limiting k-trace, Tr fp. is introduced and studied.

Section 4 contains two crucial lemmas which give the results of Sections 5 and

6 in the special case where fp E L2(IRp) has a finite expansion in terms of a

tensorial Hilbert basis (*0 .. .@i ) for L2(IRP).

The key result expressing the lifting of a p-form on L2 (D+) as a finite

sum of multiple Wiener-1t0 integrals or. alternatively, as a p-form on Wiener

space is given in Section 5. In Section 6. the point of view is reversed and

multiple Wiener-1t6 integrals are written as finite sums of liftigs of p-forms

on L2 (R+).
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The natural extension N[I p(f p)] of I p(f p) is defined in Section 7 and we

show how to write N[I p(f p)] as a finite sum of multiple Wiener-It6 integrals.

At this point it is easy to rigorously establish the connection between formula

(1.2) of Hu and Meyer and the usual definition of the scalar-valued analytic

Feynman integral. This is carried out in Section 8.

During the course of writing this paper. the work of H. Sugita [15] was

brought to our attention by S. Watanabe. Sugita's paper and this paper have

rather different goals but, among the concerns of [15]. are questions similar

to the results of Section 5 of our paper.
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2. PRELIMINARIES

A. Scaling in Wiener space. A rather detailed treatment of this topic and

its relationship with the Feynnan integral and other matters as well as

references to the earlier literature can be found in the paper [9] of the first

author and Skoug. Here we need the basic facts in the setting of Wiener space

on the infinite interval IR+. This is the setting of the paper of Hu and Meyer

and we follow their discussion for a while.

Given any a > 0. let

Qa := {x E IC0 : [xx]t = a
2 t for all dyadic t. t > 0}

where

[xx] lm21 (k+l)t kt 2
[x,x] t := lim I-O [x( ( ~)n _X(n)]2

n k=0O 2 2

It is known [5.9] that Wiener measure P1 on O(IR+) is carried by Ql and that
-1

the scaled measure P P o corresponding to the Wiener process with

variance parameter 02 is carried by Q a. Clearly. f2aIn n 2 0  if 01 x o2 and

so P and P are mutually singular. Note: When we say that P is carried by01 02 0

Q we mean that P (0 ) = 1 and not that (a is the topological support of Poa

indeed, the topological support of P is T0 for each a > 0.

Clearly a function F is defined P a- almost surely (Pa-a.s.) on 90 if and

only if it is defined P-a.s. on Q. Since 0 a = oIand P = PI 1a - l F is

defined P a-a.s. if and only if F 0 a is defined P -a.s. Thus the Change of

Variables Theorem allows us to write

f F(ox)dPl(x) = f F(y)dPa(y).
0 0

or. equivalently,

(2.1) 1 F(ax)dPl(x) = f F(y)dPa(y).
0 a
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Next, for the convenience of the reader, we state some definitions and

results that are given in [9]. Let "-.(j0(IR+)) denote the a-algebra of Borel

subsets of 'O(IR+). When (T 0 a ) is completed, let V9 be the resulting

a-algebra of P -measurable sets and let a be the collection of P -null sets.a a a

A subset A of T0 is said to be scale-invariant measurable provided that aA E

for all a > 0. A scale-invariant measurable set N is said to be scale-

invariant null provided PI(aN) = 0 for every a > 0. A property which holds

except on a scale-invariant null set will be said to hold scale-invariant

almost surely or s-a.s. The collection of scale-invariant measurable

(respectively, scale-invariant null) sets will be denoted V (resp.. S). In

fact, it is easy to show [9, Prop. 3] that Y = n V and N = nlN , and,
>0 a a>O a

further [9, Prop. 4]. A E V (resp., A E A) if and only if A n n a E vf (resp.,
a a

A n a S ) for every a > 0. Theorem 5 of [9] gives a rather helpful

characterization of V and X:

(i) A C V if and only if A has the form

A=(UA )UL
>0

where each A is a P -measurable subset of D and L is an arbitrary subset ofa a a

T 0\ U 0 . Further, for A written as above, P (A) = P(A ) for every a ) 0.
0 aa>O a

(ii) N E A if and only if N has the form

N=(U N)UL
a>Oa

where each N is a P -null subset of 0 and L is an arbitrary subset ofa a a

0 aua>O

A function F: 0( +) ---* IR is said to be scale-invariant measurable

provided that it is measurable with respect to the a-algebra V. Every Borel



measurable function and so certainly every continuous function is scale-

invariant measurable. Let F: C0 -4 DR have domain D. It is not hard to show

[9. Theorem 19] tht F is s-a.s. defined and scale-invariant measurable if and

only if, for each a > 0. the restriction of F to fa is P -a.s. defined anda a

Pa-measurable. Functions F and G from If0 (R+) to IR are said to be equivalent

(F-G) if and only if they are equal s-a.s. This is much more refined than the

usual equivalence relation which requires only that F and G be equal P1 -a.s.

If the function G is identically 0 on T0' then it is not surprising that its

Feynman integral is 0. It is possible to have a function F such that F = C

P 1-a.s. but the Feynman integral of F fails to exist (or, alternately, exists

but is not 0). Such examples and others from [9] show the necessity of using

the refined equivalence relation in connection with the Feynman integral. On

the positive side, if C has an analytic Feynman integral and F = G s-a.s., then

F has the same analytic Feynman integral.

B. Multiple Wiener-It6 Integrals. We want to recall one of the ways in

which the Wiener stochastic integral I(0). * E L2 ([R+), is defined. We will

pay special attention to scaling since, except for Section 3. this issue will

concern us throughout the rest of this paper. Il(O) is often called the

"Wiener integral". We avoid this terminology since, for many, the Wiener

integral refers to integration with respect to Wiener measure.

We begin by defining Ii(#) for step functions *. Given t C (0,+-), a

partition 0 = t (tI < ... t = t of [O.t] and real numbers c ... cn . let

n
(2.2) 4(s) : iC(ti ti(s).

We define I(o): 0C "-- + by

n
(2.3) II()(x) := I ci[x(ti) - x(tiil)].

i=1
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Note that for such step functions *, Ii(4) is defined on all of 'rO(I+) and is

alco given by the Riemann-Stieltjes integral

(2.4) Ii(,O)(x) = ft 0(s)dx(s) = j+0(s)dx(s).

11 has the following properties: If 4 and P are step functions and c is a

real number, then

(i) I1(cO) =cY );

(ii) Ii( + ) = Ii(1) +

(2.5) (iii) E[I(O)] = I (4)(x)dP,(x) = 0:
To(IR+)

(iv) E[JI11(,0) 12] = 110,12
22

(v) E[11()1 1()] L , 2(+)

In particular, 11 is a linear isometry from the vector space of step functions

Into L 2(eO(IR+).P 1) = L2(01 ,P1 ). Since the step functions are dense in L2 (IR+),

I has an extension to all L2(R+ ) and the extension has properties (i.)-(v.) in

(2.5). The following suggestive notation is sometimes used,

(2.6) Ii(0)(x) f *(s)dx(s),

1+

even though the right-hand side of (2.6) cannot be interpreted as an ordinary

integral with respect to a function of bounded variation.

For the Wiener process with variance parameter a. a > 0. formulas

(2.2)-(2.4) are unchanged but (2.5) becomes

(i) 1a(cO) = c ( a);

(ii') 1a(# + a) = I +(1) + ()

(2.7) (li') Ep [I,(#)] f a I(0)(x)dP (x) = 0;a To(It+)Ia
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(iv') Ep [I(j7) 12 ] = 21, 12
a

(v') Ep y= 2 ( . L 2 +)

For step functions #. the a in the notation I10 is not actually necessary.

1

However. for general # C L2 (IR+). it serves to remind us that Ic'(#) is an

element of L2 (TO(IR).P) = L2(afyPa).

When # is a step function, for every T, a > 0 and x C T0(E+),

I1(*)(ox) = OIl(#)(x). (In fact, whether T is present or not is actually

irrelevant in this case.) In particular, for a > 0 and x C 01l

(2.8) Ij(,)(ox) = aIC()(x).

The Proposition to follow shows that (2.8) can be extended to # E L2 (I+).

Proposition 2.1 For every a > 0 and # C L2 (]R+) we have

(2.9) Il(#)(ax) = aI,(#)Cx )

P -a.s.

Proof. Given # C L2(IR+), take a sequence (#n) of step functions such that

"#n -#2 -- + 0 as n -- + a. Then by (i), (11) and (iv) of (2.5).

(2.10) IlaIll{) - d1l( )ll2 = a 21111() - 1l( n" 2
nL2(P 1  IL (P1)

# 2,-n"2 --+ o

as n--.w. Further, using (2.8), (2.1) and (i), (i') and (iv') of (2.7). we

see that

•- a. li( )II 2 II 
L2(p1)
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(2.11) = [IO(.)(o) - 1(4n){)J 2 dP1(x)

Sl()(y - l(n(y]2dPo(y)

a 2 11 -1 .2 --40

n 2

as n --4 . Formula (2.9) now follows since (2.10) and (2.11) show that both

sides of (2.9) are the limit of the same sequence (aIl(On)). o

Remark 2.1. When 0 is a step function, I1(O) is defined on all of T0(R+)

and. in particular, is defined on every Qa , a > 0. However. for general

C C L2 (R+). we only have I1(0) defined Pl-a.s. on 1l" Ia(0) may be regarded as

an extension of If(O) to a function which is defined P -a.s. on Q a. Doing this

for every a > 0 results in a function which is s-a.s. defined and scale-

invariant measurable. Since this is the only extension of I1(0) that we will

consider as we continue, we will simply write I,(#) instead of Ic(0) even when

this function is acting on 0l . With this notation, Proposition 2.1 assertsa

that for every # C L2 (R) and a > 0,

(2.12) Il(4,)(ax) = aIl(O)(x)

Pl-a.s..

The situation will be quite different for p 2 and 4 C L2(OR). The

multiple Wiener-It6 integral Ia (4) corresponding to variance parameter a2 will
p

be defined P -a.s. on Q and will provide an extension of Ip (4). However.

unlike the case p = 1. I (4) will not be the only extension of Ip (4) of

interest to us; we will also be Interested in the "natural extension."

N[I (4)]. Because of this, we will retain the a in the notation Ia (4) when
p p

p 2.

Remark 2.2. Let £ L2 (R +). If desired one can choose a representative

• m m g
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in such a way that 11{O) is everywhere defined on 0(R+) and satisfies (2.12)

for all a > 0 and x IC0(]1+). Simply take Ii(O) to be 0 off of U f? and on
a>0 o

those x in Q1 for which YO(#) is not already defined; finally, for

ox C Q = o I , take Ii(O)(ax) to be aIl(O)(x). Formula (2.12) shows that this

everywhere defined function and the original function must agree s-a.s.; that

is, P -a.s. for every a > 0.

Next we want to discuss the definition and some of the properties of the

multiple Wiener-1t0 integral I p(f) where f E L2 (]R ) and p 2. We begin by

defining Ip (f) for "special elementary functions" f. Parts of our discussion

are adapted from the book of the second author [11, pp. 136-138].

Given t C (0.+-), a partition v: A An of [O,t] into Borel measurable

subsets and a set of real numbers (a 1 . ip: i 1.....n for each

j = 1....,p} such that a = 0 when not all of i.. are distinct,
I'" p p

let

n
(2.13) f(sl. . sp) l .. a... )A (s .  s

p. p 1 I - p

Such a function is called a special elementary function. It is an important

fact that the set S of all special elementary functions is a dense subspace ofP

L2 (IR).

For f C S and given by (2.13), the multiple Wiener-It6 integral of f isp

defined P -a.s. onTO(I+) (or on 01) by

n
(2.14) Ip (f)(x) :=I I .. ilal.. i pIN ~i)(X)*"'*IIl((Al)(x)"

p1.. oip= 1'' p I1 1I

I acting on S has the following properties where fg C S and c C IR:

(1) 1 p(Cf) = cI p(f) (Pl-a.s.);

p" pl i N
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(ii) I p(f+g) = Ip(f) + I p(g) (Pl-a.s.);

(iii) Ip(f) = Ip(f) (P1-a.s.) where f denotes the symmetrization of f;

(2.15) (iv) E[Ip (f)] = f I (f)(x)dPl(X) = 0;
T oIR+)

(v) EflI p(f),2j = E[JI p)j 2

p p
= p! 11f11 < p!lf11I ;

(vi) E[I p(f)I p(g)] = E[I l )Ip (g)]

= p! (f'g) 2 p

From (i), (ii) and (v) of (2.15), we see that I has an extension to allp

of L2 ( ). In fact, this extension continues to have all of the properties in

(2.15).

Now we turn to the multiple Wiener-It6 integral I1a(f) (a > 0. f E L 2(IR ))

2
corresponding to Brownian motion with variance parameter a It will turn out

that If(f) is defined P -a.s. on Q.
p a a

We know from our earlier discussion of II that for every # C L 2(+) and

every a > 0. Ii(1) is defined P -a.s. on Q . Hence, for every f E S . I (f) is
a aP

defined P a .s. on P by the right-hand side of (2.14). Further, from (2.12),a a

for every a > 0.

(2.16) I(f)(ax) = oPI (f)(x) (Pl-a.s.).

p p ( 1-as)

It can now be shown that If acting on S has the properties listed in (2.17)
p P

below. Further, Ia can be extended to all of L2 (DR) with the extension
P

continuing to have the properties in (2.17):

(i) I(cf) = CI a (P a.s.);

Iii a(f+g) =1,7(f) + 10(g) (P -a-s.);
p p p a

(iii) 1(f) = 10(f) (P -a.s.);p p a
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(2.17) (iv) Ia(f)(ox) = a'I (f)(x) (P-a.s.);
P p1

(v) Ep [1a(f)] = f I(f)(x)dP (x) = 0;

a p 0C(R,

(vi) EP [I'(f)12] = E[1Ia(7)12J
a

= a2pp ,12 a21p! 11f,12

2~ 2

(vii) EP [I,(f)I a )] = EV LIC(f)I (g)]
a op '~]

= a

Putting together the functions I (f) on all the 0 's, we obtain an
p a

extension of I p(f) to U fD which is s-a.s. defined and scale-invariant
a>Oa

measurable. Further, using (2.16), we can employ the same device as in Remark

2.2 and choose a representative which is defined on all of *e0(D+) and satisfies

(2.16) for every a > 0 and x C ToER+

C. Lifting and Scale-Invariant Lifting. An extensive discussion of the

concept of lifting and its applications to prediction, filtering and smoothing

along with references to the literature can be found in the book of Kallianpur

and Karandikar [13]. We begin by recalling various facts connected with the

canonical Gauss measure on a separable Hilbert space H over M. Let 9 denote

the class of orthogonal projections on H with finite dimensional range. For

T C 1. let

{T -(B): B e i(w(H)), the Borel class of the range of v).

T is a a-field for each fixed 7 and T := U T is a field of subsets of H. 4

will denote the finitely additive canonical Gauss measure on H; i.e., the

measure with characteristic function e (h C H) (13, p. 62]. ji is only
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finitely additive on T but is countably additive on T for each fixed ir.

(H,.%.) is called a finitely additive canonical Hilbert space.

A representation of p is a pair (L,P) where P is a countable additive

probability measure on some measurable space (0.A) and L is a mapping (or. more

precisely, an equivalence class of mappings, see [13, p. 81]) from H into the

space of IR-valued random variables on (fM,P) such that L is linear in the

following sense:

L(alh I + a2h2 )(w) = alL(hl)(u) + a2L(h2 )(w) P-a.s.

for h1,h2 E H. ala 2  IR. and such that for all C EC .

p(C) =P C Q: (L(hl)(o),....L~h.)()) C B)

where

C = {h C H: ((hhl),. (h.h)) C B)

with hI ..... h in H and B a Borel subset of UJ. It is well known that a

representation of p always exists. In the main body of this paper, we will

take (0.) to be (T%(o+), !%(T0(IR+)) and P to be one of the scaled Wiener

measures P a a > 0. The representation L will be chosen as
a °

(2.18) L()(x) = 1

where # C H = L2 (+) and x C T0 ( +).

A function f: H -- IR is a Borel cylinder function if and only if it can be

written as

(2.19) f(h) = g((h.hl).....(h.hk))

for some k l I and hl..-..hk in H where g: -._R is Borel measurable. We

define Rf. the lifting of f, to be

(2.20) R(f)(*) := g(II(hl)(* ) ..... Ii(hk)(*)).
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In light of Proposition 2.1 and Remarks 2.1 and 2.2, we see that Rf is defined

s-a.s. (that is, Pa -a.s. for every a > 0).

a
Let a > O. O(H, ) will denote the class of functions f: J- -.I with the

following properties: For all v C 0. the function for(h) := f(rh) is

T7 -measurable and for all sequences {rN) from 9 converging strongly to the

identity (tN -+ I), the sequence {R(fOrN)) is Cauchy in Pa-probability. Under

these circumstances, one can show that all these sequences converge in

P -probability to the same limit R (f), called the a-liftinz of f. R (f) is

defined P -a.s. An f in 5&H,.) will be called a a-accessible random variable.
aa

The lifting usually discussed is, in our present terminology, the 1-lifting.

If f has a a-lifting for all a > 0. we let Rf = R f on 0a and we call Rfa a

the scale-invariant lifting (or s-lifting} of f. In this case, for every

a > 0, Rf is defined P -a.s. Thus Rf is s-a.s. defined and scale-invariant

measurable. A function f which belongs to e (H.0i) for every a > 0 will be

called an s-accessible random variable.

For any a > 0. we let !1(H.4) denote the set of all f E V (H. ) such that

for all sequences frN1 from 9 with rNT I.

(2.21) f [R(foN) - R(fo N) 2 dp -*0

T0

as N. N' -- a. Note that if f C 5?(HL), then

(2.22) f jR(f)1 2 dP < c.
T0

When f C aH~) we call Ra(f) a a~ lifting. If f belongs to 'e.(H4L) for

all a > 0. we call Rf := R f on 0 , a scale-invariant -lifting. If Rf is a
scale-invariant i-aifting then, for every > 0. Rf is defined P -a.s. and

belongs to the space L2 (T0(+)aP) which can be identified with L2(nP ).
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3. THE LIMITING K-TRACE. There are various possible ways of defining the k-trace of

a function f~C LC(IR). However, we focus our attention primarily on the limiting

k-trace, r f p, since it will appear in all of our pxincipal theorems in Sections

5-8. Three other definitions of k-trace will be given. A simple case of the first

of these (see Definition 3.1) will be involved in the definition of the limiting

trace. The other two will be introduced at the end of this section where it will be

shown that, for a large class of functions, all four k-traces exist and agree.

Rosinski discussed a Hilbert space valued trace in [14]. The limiting trace

will be defined as the limit of certain simple cases of these traces. We give the

definition from [14] just in the setting which concerns us. A somewhat more detailed

discussion can be found in our earlier paper [8] and, of course, in [14].

Definition 3.1. Let f C L2 (UR) and let 0 k [p/2] where [p/2] denotes the

greatest integer in p12. We take Trof := f to begin with. ForP P

1 k [p/2], we say that Trk f exists and equals h C L (Ip -2k) if and only if for
p 5

2 kevery CDXNS (i.e., complete orthonormal set) (ej) for L (IR+),

S S fp (sl ..... sk;sk+l ..... S2k; ,..... )e (sI ... sk)e (sk+ 1 ..... 20
j=l kl....k 5 ~lk

+ +

(3.1) ds ...dsk dsk+l...dS2k

= h(.

where the series on the left-hand side of (3.1) converges to h in the norm on

L 2 O -2k.

In the main body of this paper, we will need Tr kf as just defined only for theP

special functions described in our first proposition. Let (#i) be a CONS for L2 (IR.+)

so that {*i @'@i:i = 1,2,.... ,$=1..p} is a CO)IS for L2(IR).
1 p

Proposition 3.1. Suppose that f C L 2 (D+) has an expansion of the following form

•~~ ~ + m| |
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in terms of the CONS {l... 0#1 described above:

N
(3.2) fP i I  a il

Then Trkf exists for every k, 0 k < [p/2], and we haveP

k N N
(3.3)Trfp = ( a ip)ij ..

J2k+l.'" ip=l j ..... k= 1  11..... kJk2k1l . p

Proof. Let (e ) be any CONS for L2(U I). By Definition 3.1 it suffices to show

that the series

cN
(3.4)= 1 kf k[  I. a =lil ..... I 0 pilS)"'i(Sk)0i (sk + l ) ° ' ' **

Ji R xRkl. =1 p 1 k k+

0i2k (S2k)* #i2k+l pSjkl)"'"#ip(Sp)J-e (s l ..... k )eJ (sk+1 .... S2k)dsl-...*dsk "

ds k+l'...dS2k

converges to the right-hand side of (3.3) in the norm on L2( +P-2k). But the series

in (3.4) equals

N O N
(3.5) 1 1 ( .1 =ail..,p 0kl... 00 )

iI1... 4 2k=1 J=l '2k+1 ..... p p 2k+ p

(0, 0_0 ... * i. .eL2( k*# )k

N N
= IT ( ati .... i 01 '  #)
iI .... i 2k =1 i12k+l"..... p=1 p 2k+1 p

1(0.. 6 0 e( pt

J=l I t k'e J)Ik+l e2k

N N
( a .... I#I ' '  01 2k

=1p 2k+ p 1 k k+
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N N

( IT1I a jl Jl' '*'Jk'Jk'2k+l . p)02k+l p
i2k+1 ..... ip=l j l .....Jk= 1  . . .. .

with the series in (3.5) converging in the sense of the norm 11*L 2I p-2k . The fact
L(+ )

that fp is symmetric implies that the coefficients a . are symmetric and this

is used in the last equality in (3.5). 3

In Proposition 3.6 near the end of this section, we will give a result which is

more general than the one which we have just proved. However. Proposition 3.1 is all

that we require in our development of the limiting k-trace, our main concern.

Next we take advantage of Proposition 3.1 and define Trf P

Definition 3.2. Let f C L2 (Il+). Civen any CONS (0i) for L (1%) and any

positive integer N, let

N
(3.6) fN - ai 0 ...''® €i

S1 .... p p

where a= *(f p, . .. ). For k=1,....[p/2], the limiting k-trace, Tkr f1 .. p 1P p'

exists provided there is a g C L 2 (R p 2k) such that

(3.7) llTrkf,) - gll -- + 0 as N----

2-kfor every CONS (0,) for L (IR+). The function g is, by definition, Tr fp . We take

Trf := f
p p

kIt is natural to ask if Tr f exists and equals Tr f when f has a finite

expansion as in Proposition 3.1 above. The answer is in the affirmative. For the

purpose of showing this and for some work further on. it will be helpful to state

explicitly the following well-known result.
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Lemma 3.1. Let {0i) be a ONS for a separable Hilbert space H over R. For each

N. let PN denote the orthogonal projection onto sp[ 1 .. .. . N]' the linear span of

(11 ..... ON)" .Then for any , u.qv in H. we have

N
(3.8) 2~ Ou j v j(3.s~~~J=l (u )*'j) =  ('Pu. PN~v)•

Proposition 3.2. Let(,'i) be a OONS for L2 (+) and suppose that

fp CL ( Ut)has the expansion

M
(3 .9 ) f = 2 a ll 0p... " i

il..ip=l p1 p

Then T-rf exists and
p

(3.10) T-kfp = Trkf .

Proof. Let (#i) be any OONS for L2 (1R+). According to Definition 3.2. we must

show that

(3.11) IITrkfN - Trkf 12 - 0

as N . Let b( ) b = ..p. 60 " To show (3.11) it suffices, by

Proposition 3.1. to show that

N NII I. ( I- bj , * ip 2k+l@ """@

2k+l# ...i. Jk -1 b ..... Jk'Jki2k+l .. i pP

M M
(3.12) - 1 I a ,Ip )*2k+l@0 '' pi I

i2k+1 . P .... Jk'k2k+ .... P

--# 0 as N --* w.

From the expansion (3.9) we see that
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M
b. I a .. u(' 0 . ~uIO , . ..0

1 'p u,.. *up=1 11 p 1 p 1 p

M
(3.13) 1 a uI (4' **, O *4' 1* O 0

Using (3.13) to justify the first equality and Lemma 3.1 to justify the third, we can

write

N N
(3.14) 1 (11 =1 J 9 I -j = l j ' " J ' k 2 ~ , . . 0 k 10 . .02ktli*' p ~1~ k 1

NN

j jkl * .ip1jI ' k ~ p 12 12

11Pu2k' 0 k 'U 2k+l # 2k+1 p 0

V~kl'."V =1 4,V2k+ 1 0 . pVP 2k+1 . 01 p )IV2k+1 . ' p- p

-I I a (l... 1 4, )(4' 4, ))

V~kl..-v P=1 u ... u =1 1 .  ,i 1 ' 1 1  U2  1

N N

(1 ('u 2k- l' 0 Jk)*a* kMi -1 ('u2k+1'0 2k+1 - ,v2k+l 0 2k+l
k= 2k+1

N

11 p p p p V2k+ 1 p

- I v 1 Is 7-u= a ul .. U(*4' N'pu 2 ,U2- 'P N4 u 2k
V2k+10.. ..v p U1 .. ,ulp~ up U ki 2

(4u kl'PNv2k.1 'P p 'Pvp )' 2k+I '- " p
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= 2 U p l U . ..1 p 1N P N ' 2 - ' 2 k -i 'P N ' 2 k

Vki.1 1 (P NPu 2 k+l' IV2k+l1 PNPu p vp)2k+ 10..OV P

v a kUl"i 'N'u =

=ul, .. U =1 Ul . u p (PU1 'N PU2 O .2k 1' P 2k

Vkl--v p ,. =1 2k+1 p 2k+1 p 2ki-1 p

= U u 1 a " ~ 1'. ' , u l ~ l 2 ) . . - P 2k -i *P ~ ' 2k ) P 'U 2k + 1i . 0( o
p

We finish by taking the limit in the norm 111L 2 (Mp-2 k) of the last excpression in

(3.14) thus obtaining

N N
(3.15) lrn . Y. b )*

N-4Wi 2k+' * ... i= j' k = 1 lj.-.kj'I2~'*'p 2k+1 p

- I a Ul{.. lim (*uuop " U4 P JNIPu P~ :i@ ...01 Nu 11
u..., u p=1 P 'pN-4m 1 U2 U2k-1 2k 2k+1 p

=1 ... a u('Pu 'u 'U ~ ' *1 u )'PU*
Ul.. u p=1 u1 .. 1 2 2k-i 2k u2k+l up

M M

- i2k+l** . 1( ipJ~kIJ'l **kJk2k+i* .' ip 2k+ ip

and so (3.12) is established and the proof is complete.0

Rema~rk 3.1. For the finite sums (3.9). the oversimplified formula (1.3) for the

k-trace of f Pdoes actually give Tr kf Pwhich equals, by Proposition 3.2. Tir4f
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It is desirable to have theorems insuring that Tr f exists for a large class ofP

f 's; Theorem 3.1 is one such result.P

Theorem 3.1. Let f C L2 (IR+). Suppose that there exists a CONS (4i) for L2(IR

such that. in the expansion

(3.16) f = I a i I i
P... .ip=1 1....p 1 p

the coefficients (a i are inel

Then for every k. 0 k [ [p/2], T fp exists and is given by

( 3 .1 7 ) T fp = ' ( a i .... p ) 2 k + l ... '

2k+1 .... =1 . Jk= 1  1

Proof. Because of our assumption on the coefficients, the inner series in

(3.17) is absolutely convergent. Further (3.17) is absolutely summable in

i2k+l .... i in the space L2 I ) since

0 0

i .... ip=l J . . Jk= l l l ..... Jk'Jk'2k+l 1p ... 2k+l

-I a J ~ l J

We now seie tha the ir a1 o. 3(.
i~~k~l****~~~i~i pl-"'k- 1 kkk

We now see that the right-hand side of (3.17) makes sense and belongs to L p-2k

Next let (#,) be any CONS for L2(R+). To complete the proof, it suffices to

show that

N Nlim I ( I b ...... i k*l@...@ i

11M k I I 1
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(3.19) = . i j 7 Jk=lajl,jl . ' ,Jk' k i2. . i k+ ... &
p2k+1 21 P

where

(3.20) bi ... i = poi 0 )

Ip .. i p p

1 p-2

and where the limit in (3.19) is in the norm on L 2 (jRp 2k).

Now using (3.20) and the symmetry of the b's to justify the first equality below

and Lemma 3.1 to justify the third equality, we can write

N N
(3.21) 1 1 j =bl'Jl .... ., 1 kI-I'Jk' i 2k+l .. 0... Ipgokl " "@ i

2k+ p 1 C k 1.....il .2k+l p

N N 0

SI ,i = V .Ii .. -I a . ., g o0 .) L
0-0J1 .... . i..... ""2( ki'* l '"0* k ) +-2

1k+1 1' JkL ) P k+1 2k+1 (IRk

N
( I (i l 0 0 i i"l ...04yi)'Pi" 0..
2k+1 .... i=1 2k+1 p 2k+1 p 2k+1 p

= I. a

w N

2k+1 .... ' 13 1. *'Jk= 1  1 (k .I I 1Jk

N

=12k+ . 2k+l p 2k+1 p 2k+1 p 2k+1 p

41,09i 0. .. O i..
2k+1"
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m w

.i 1  'I;.. i'~~* "'%i )
1 . P- aii 1 1 € i.. k.P k+1a .... ip I. .. . .. i.=1.

2k+1klp 2k+l p

where PN and PN are the orthogonal projections onto sp[(Oj *... i k=l] andN1 1k ..... ~

sP[( N ]2kl respectively.

Beginning with the last term in (3.21). we write

(3.22) 1 ai .. i .
1 .. . ( .p. ...i1 k k1 + " k

i ..+l .,il 2k+1 p 2k+1 p 2k+1 p

ij, .. '=1 iil..... ip( 1i®" k Ptk+I k 2+

0 0O

0= ... " ) I a. i p P i . . ..' i

1 P .. ' P% 10 - 4

i l . . . . i = 1_ 2 t i = p

where the next to last equality is an easy consequence of the Fubini Theorem for the

Bochner integral [4, Theorem 3.7.13] and where the last equality is valid since, for

each fixed i ...... ik'

I a. I.. p 1' ik + l " .. .t 1 =

is a convergent series inL2(-r2k).

It remains to use the results of (3.21) and (3.22) to take the limit indicated

on the left-hand side of (3.19). We will first carry out the calculations and then
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make some comments on their validity.

N N
im ( . b p)i k+

N.-4 i 2k+1 .... p=l J1.....Jk = 1  1'J .... Jk'jki2k+l ..... 2k+l" ip

(3.23) = lrm . (*i ' .. **i k'PNPi k ... " i
N-w i I 1 1 k k+l 2k

W

*Pi( I ai pi '
i 2k+1....i p=1 .p 2k+l p

CO W

I .. tkl N' "1 0..." ... 'p pNP 9..0* y Ia
i ... i2k=l "k k+l 2k i2k1 ... ip=ll p 2k+l

S0O

2k -1 1 k k+l k 2k+l"' p=1p2l

2k+ p1 k=laj'j1 .... Jk'Jk'2k+l ...... p)12 
0 ..' i

2klp' 2k+1 p

The second equality in (3.23) follows from the Dominated Convergence Theorem for the

Bochner integral [4, Theorem 3.7.9] where we are thinking of the sum over i1 ..... i2k

as the Bochner integral. The necessary domination holds since

0
llk 10 .. @@ k *PN ¢bIk+ . . ~)P ( I a I  ,121 l* ... + ¢i) 11

11,P1<+ 1.. 0p~ .. 0... p Ni 0.. i)i

1k .... l 2k ...... i =1 k1p

111 p 2k+l p

and! ( ail 1) ( o. Henceill .... 0i2k =1 12k+16 .... *Ip=1 ... p

I .. i J is an integrable dominating function which is independent
12k+l .... p
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of N. The fourth equality in (3.23) follows from the Fubini Theorem for the Bochner

integral much as the second equality in (3.22) did. 0

The next proposition will give us some information about f and Tr f under theP P

assumption that Tkr f exists.

p2
Proposition 3.3. Let f C L2 (IRp ) and suppose that Trf exists. Then for any

CONS d*i) for L2 (IR+) and associated expansion

W

(3.24) fp = I a ... pi i ..... ip=la  I ....

for f, we have that the limit

N
(3.25) lim 7. a(3.i jl kla 'J ... Jk'o ill* Jk' i"2k+1 ......

exists for all i2k+l ..... i p, and that

W do(3.26) ( 2 'kk~2~" i <0(3.6)1 1=1ji. 0k=1la 1 Jl ..... Jk' jk" 2k+1 ...... ip)2

2k+lV p l

where the inner sum in (3.26) is taken to mean the limit in (3.25). Further, we have

the formula
€00

---k M CO :
(3.27) Tr4kf p = k I =,, .0iip) # .2k+ 1  '

2k+1j 1 j .....kJk.ik+l . p

where the inner sum in (3.27) is again interpreted as the limit in (3.25) and the

outer sum is the limit in the L2(IRp-2k)-norm.

Proof. By Definition 3.2 and Proposition 3.1.

N NAN := I j = l .... Jk'jk i2k+l ...... p)#i2k+l0 " ".. ii2k+ .. = j....Jk=la ll'

2kV p 1 k |i
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(3.28)
2 p-2p

in L(2 + )-norm as N - Hence for fixed i~k+l.

®'" ®i') (kfp. ®i)
(3.29) ('N, i &+,..1 . r

2klpp 2k+1 p

But for N max(i+ ..... i ).

N

(3.30) (9iN #i' .. ip) = a- p
2k+1 ...p A= 1 Jkl .Jk.k..l .

Formula (3.30) and (3.29) show that the limit in (3.25) exists and equals the

coefficient of ... @0I, in the expansion of Trf . Inequality (3.26) and
c k+1 P P

formula (3.27) then follow immediately. 0

Proposition 3.3 gives conditions on the coefficients (a which are

necessary for the existence of T-kr f . Are these conditions also sufficient? Let usp

state this in more detail. Let (ai . ) be a sequence in £2 which satisfies

(3.25) and (3.26) and let f be given by (3.24). Does Tr f necessarily exist? Thep p

answer is "No" as the following example shows.

Let p=2 and take ai i= i i2

I2 0 If I1 J i2.

Then (a ll,)c 2 and

N 1 1 1 N+1
lim IT a = limraI -+- + ... N +
N-4w j1=lal' l N-0 2"3N4

a limit which exists and is the sum of the alternating harmonic series. The

condition (3.26) does not enter into the picture here since p=2. Now let

C 0 ( -1) i + 1

f i1, 1 2=1 1 2 1 2 il 0# To see that Trkf does not exist,
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take a permutation of the positive integers such that the corresponding rearrangement

of the alternating harmonic series has a different sum. Let ( i}) be the CONS

obtained by making the associated permutation of the #,'s. Let f =

I bi 1 i42 i1 i2 be the expansion of f2 in terms of the CONS { i i2}. In order
ilVi 2=1 2 21

for Trlf2 to exist, Proposition 3.3 requires that the equality

N N
lim I b -lim n a hold. However, this equality fails since 2 b
N-4w ji1=1 i ' I -0 j1I=1 Jl i i I l

is a rearrangement of the alternating harmonic series converging to a different

number.

Taking p=2 simplified the discussion of the example above but, in fact, one can

also find such examples with p>2 where the condition (3.26) does come into considera-

tion.

Next we obtain two results which involve iterated limiting traces.

Definition 3.3. Let f~ L2 P(IR). If Tr f exists for k-O,,l . .. [p,2], we say

that f has all of its first order traces. Whenever Tr f exists, it belongs to
P P

L 5 -(2 ) and, for v=O,l....,[(p-2k)/2], it may possess a v-trace F7' [Tr fp] If all
S + p

of these traces exist, k-O,l,....[p/2], v=0,l,...,[(p-2k)/2], we say that f has attP

of its second order traces. These second order (or iterated) traces are said to be

consistent with the first order traces provided that

- fp --4r+k.Tr[Tr f ) Tr f , , k-O,l,...,[p/2], v=Ol...[(p-2k)/2].

We can, of course, consider third and higher order traces. However, the next

simple proposition assures us that we get nothing new beyond the second order.

Proposition 3.4. If f C L2(I0) has all its first and second order traces and

they are consistent, then all the third order traces of f also exist and are

consistent; that is, if O~k [p/2], O~v [(p-2k)/2] and OKI [(p-2k-2v)/2], then
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Tr (r- UETr f J} exists and

(3.31) -Tr C T-r f p]} = Trk++,(fp).

Prof By assumption, "[-Tr-r f ] exists and -r [-Tr- fp = T-r +uf p. Hence,

T-r{Tr[r f ]} Tr4{Tr" £P) = Tr& f

It may well be that even the second order traces yield nothing new. At any

rate, the following proposition is not hard to prove.

Proposition 3.5. Let f C L2 (+). Suppose that there exists a CONS (*,) for

L2(I+) such that, in the expansion

W
f p T ., la ill ..... 1 4t1 . 0'P lp'

.... *i p=1 p 1p

the coefficients (ai i ) are in 01.

Then f has all its first and second order traces and they are consistent.P

Proof. By Theorem 3.1. f has all its first order traces and, for 0 k [p/2].P

W 0

(3.32) T-r£fp = i VI. = ( .Jk=laJlJl Jkjki +l . ip)*i1i 0 "''0
p 2k+1 p

Since

I a Jl... Jk 'jk ' 2k+ l '.' i
22k+lk... p .... ' p

i 2k+1' ... pffi jl I ....Jk
= ll 1  .j .-. Jk j " k ..... 0 P

we see that the coefficients in the expansion (3.32) for T-r fp are in e1" Again
applying Theorem 3.1, we have that for all v, 0 v [(p-2k)/2], TVr u(Tr f p) exists

and
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(3.33) TVr (T r fp) -- -[

2(k+v)+l .I p Lk+l .. .Jk+v 
=I0

*l . . Jk= I a j l ..... j k'Jk Jk+l'jk+l .. .Jk+v'Jk+v 'i 2(k+v)+l . .ip)

2(k+t)+l p

But the e I-assumption on the coefficients (ai ..... allows us to use the Fubini

Theorem on the inner sums in (3.33) and obtain

fp

a
i =lU,...j 'l p l ' k+v' Jk+v' i2(k+v)+l . pJP2(k+v)+l pi2(k+v)+l .... pl1.. k+v = .....

which equals, by Theorem 3.1, T-rr+Vf p a

We finish this section by giving two further definitions of the k-trace of a

function f and showing that, under the assumptions of Theorem 3.1 and Propositionp

3.5, all four k-traces exist and are equal. Further interesting questions concerning

these k-traces and the relationships between them remain to be studied but will not

be pursued in this paper.
k

We begin with the definition of the tensorial k-trace, Trtk f
t P

Definition 3.4. Let f C L2(+). First we take Trof := f . For lk [p/2],
p st+ t p

Trkf exists and equals hEL2 (0+ 2 k ) if and only if for every k CONSs (#(J)

J=l.... ,k for L2 (+) and for every enumeration el,e 2 .... of the tensorial CONS

( (1)0... "(k)) for -2(I+).
1 " k

'I f fs'-'k %+ *,...,*)

j=l k, k P'

e( (S ..... Iskej (-k+l.....S2k)d s l ' '" dSkdSk+l". dS2k

(3.34) =h(.)
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where the series on the left-hand side of (3.34) converges to h in the norm on

L2 (P+ 2k).

Comparing Definitions 3.1 and 3.4, it is clear that if Trktf exists, then Trk f
p t p

exists and Trk f = Trk f . Further, Tr f and TrI f are exactly the same object since
t p p t p p

Definitions 3.1 and 3.4 are easily seen to coincide for k=l.

Next we define the iterated k-trace, Trkfp. This is the definition of k-trace
i p*

which was given by Hu and Meyer [5].

Definition 3.5. Let f 6 L2 (0R+). We take Trof = f and Trlf := Tr1 f
i p p ip Pp

provided that Tr f exists. If Trlf exists, it belongs to L (I+ 2 ). If this
p p +

happens and if Trl[Tr1fp] exists, we let Tr(f) : Tr (Tr f ). For lkK[p/2]. TrkfIp p ip

is defined by iterating this procedure k times

Tr kf := Tr 1(---(Trl(Tr1 fp))-)

ip p

whenever the k successive 1-traces involved all exist.

It is an immediate consequence of the definition that Trk f behaves well with
I p

respect to iteration: Let k and v be nonnegative integers such that k + v K Ep/2] and

suppose that Tr k+f exists. Then Trv(Trkf ) exists and Tr k+vf = Tri(Trkfp).
i I 1 p Ip

In Proposition 3.1 we saw that Tr kf exists for functions f possessing finitep p

tensorial expansions. The proposition immediately below goes considerably further.

Provosition 3.6. Let fp C L2(IR+) and suppose that there exists a (XNS (#t) for

L 2(R+) such that the coefficients (a .. in the expansion forp

wp

f a #I '.. 1 belong to 1 "
P for .... Tp=al ... p 1 p

Then for O~k Ep/2], Trkf exists and is given by
P
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(3.35)Tr kf=2k+l ip=l j ' aljl I ... Jk'jk,1 2k+1 ...... ip)i2k+l " pi + 1 ...... Jk=l

Proof. Let (ej) be any CONS for L2( R+). It suffices to show that

0

SJ f pS1 .. sk . k+l '.2k'S2k+l .. s)J=l k k

e (s,....sk)e (Sk+I..... 2k)dl... dskdsk+l... ds2k

(3.36) = ( a i ).... 2k+l '"

12k+ 1 ' . p* . l' i' k .. .Jk pk' p2k+1 p

where the series in j converges in the L 2 (,R 2k ) norm. For the moment, we fix j and

consider the integral on the left-hand side of (3.36) with f replaced by its seriesP

expansion:

(3.37) 1 .. 1 i .... ipi l(s )' ' ik( sk ) . ik+l( sk+l ) ' '' '* i 2 k ( s2 k ) i2 k + 1
_Rkki~
+ +

" S2k+l)"" ""i (sp)]e(sl ..... sk)ej(sk+l .s 2k)dsl'... dsk-dsk+l. .. ds2k"

Now the sequence of partial sums

Nl ..... p

il ... "p 1 p

is a sequence of L2(U+) kernels converging to the L2(Rp ) kernel fp. It follows that

the associated integral operators converge in Hilbert-Schmidt norm, hence in operator

norm and so certainly in the strong operator topology. Thus the expression in (3.37)

equals

(3.38) ap (Sk) e+'Skl#tk(Sk+l)"""

/ I I I I1 I RkI I k I~
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*2 (s2k)ej(sk+l.... .s2k )* 2k+ ( S2k+l)* ... • p (sp)ds 1"'" dskdsk+l .. ds2k

I  a..... ip=l ( Iek'j) (*ik+1" • e.)2k+ " " "

Returning to the left-hand side of (3.36) and using our results so far we can

write

£p (s 1 ......skd~ ..dsk

If , 'p)ej(sl,....sk)eJ(sk+l...s
2k )ds1 ..

w 
MO

(3.39) = . % =7. 1al ip(il ...00ik eJ)(*ik+lS...@#i ,e)# 0 ...'00
J=l il .... Ip =1 I... 2k ) 2k+1 p

a1 f..(00... 00~ 1 .. )(# i--1 p)I

i .... ip=1 pJ=ll k k+p p

CO

=1 p ( k' aI . ~ 2k ) 2k+ @ " ®p

0

- I aa0

12k+1 .... ip =1 l* k *....1 **Jk"Jk2k+1 ..... P.

where the last equality follows from the fact that the coefficients (ail I) are

symmetric and in e 1" We will finish the proof by justifying the second equality in

(3.39): The sequences (# *i.. 0 e ) and (# 0 .. 60i ej) are in e as functions
11 1 ke k+l 2k

of J. Therefore 1(#il@... 0ikej)I ( ik+l .i 2k 9ej)I is in e and, in fact.

0 e

=I~ ".. ".* ik eI ) @*~'eOI$l I S.. Iil•

= 1 k k+1 2k

- 1.
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Using (3.40) and the Rl-assumption on the coefficients (aip ) and thinking of

the sums on both sides of the second equality in (3.39) as Bochner integrals, we can

now apply the Fubini Theorem for Bochner integrals [4, Theorem 3.7.13) and obtain the

desired equality. 0

Corollary 3.1. Under the assumptions of Proposition 3.6. the tensorial trace,

Trtkp. exists and Trk f = Trkf

Proof. This is trivial since the existence of Trkfp implies the existence of

k
Trk f and their equality. 0

t P

Corollary 3.2. Under the assumptions of Proposition 3.6, the iterated trace,
k k Tkp

Trif. exists and Trf =Trf

Proof. When k=1, the iterated trace and Tr1 f are the same. Hence Tr1f
p i p

certainly exists and

(3.41) Tr1fp I I a i...
- 3 (Jp 1 j la jl , 3  ,. p i 3 p .

Now the coefficients in the expansion (3.41) are again in eI as a function of

i ..... i since

W 0 W 0O

IT Jl=laJlPi 3. * .. a . , 1 ja1li . i I (
S3 ' ... ipl I =13' pI i3 ..... 1 ip=1 JlI=1 '"' p

Thus Tr 2fp := TrlI[TrlIfp] exists and

ip p

(3.42) Tr2 f II( I a
(3.4}-- ii5 .. 1 J2=1 J1=1 'J1'J2'J2'5 ..... p5

But the e l-assumption allows us to rewrite the iterated inner sums in (3.42) as a

double sum and we obtain
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(3.43) TrI2f 1 . a 0 a.. 0
iP is .... ip=l jl. 2= 1 j 1j 2 j2 5 1 5.. p 5 p

Comparing the right-hand side of (3.43) with the right-hand side of (3.35) in the

case k=2. we see that Tr f = Tr2 f . This argument may be continued toi p p
k=3,.... [p/2]. 0

Corollary 3.3. Under the assumptions of Proposition 3.6 for O~k [p/2]. the four

k-traces Tr f, Trkf p, Trkfp and Trkfp all exist and are given by the right-hand side

of (3.35).

Proof. This follows immediately from the results above and from our earlier

result, Theorem 3.1, on the limiting trace. 0
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4. THE CASE OF FINITE EXPANSIONS. Two of our main results relating multiple

Wiener-It6 integrals and liftings of p-forms will be given in this section in the

special case where the function f involved has a finite tensorial expansion. TheseP

results will serve as key lemmas for the next two sections where the corresponding

general results will be proved.

We begin by introducing some notation which will be useful in this section as

well as further on. Given #i C L2 (R+), let Ei=Ii(*i). Formula (2.12) from

Section 2B then says that for every a > 0.

(4.1) Ei(ox) = afi(x) Pl-a.s.

Recalling Remark 2.2, we can even regard fi as everywhere defined on 0(IR+) and

satisfying fi(ox) = afi(x) for all a > 0 and x C 10

Given g C L2 (IRP). there is an associated p-form *p(g) acting on H=L2 ([R+):

(4.2) Pp (g)(h) = f g(s 1 . s-. Sp )h(Sl)*... h(sp)ds1...ds
I+R

= (g.h P) 2 _p.L (M+)

where hop(sl,..... Sp) = h(s1 )-...-h(sp). Note that fi = 11(01) is the lifting of the

1-form (and cylinder function) 0l(#i) defined by 4*1(*i)(h) = (*i.h). (See (2.19) and

(2.20) in Section 2.C.)

Let (#i) be a CONS for L2 (R+) so that (*i S'"O*i ) is a CONS for L2(P). We
+ p

work throughout the rest of this section (unless we explicitly say otherwise) wtth an

f C L2 (D+) whtch has a finite expansion,Pxp~ s~o +

N
(4.3) fP aI ..... 1pp

p

It will be convenient for us to explicitly state as a lensa a simple consequence
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of the It8 decomposition formula. It6's decomposition formula, (4.5) below, can be

deduced from assertion (3.4) of Theorem 2.2 of [6].

Lemma 4.1. Let f, C L 2 (IR) have the finite expansion (4.3). Then for any

ar > 0,

N
I a(f)=aI .. 0
pp p il **.i= 1 ai i p i* pi

N

2 Na

Proof. The first equality in (4.4) is an immediate consequence of the linearity

property of I a on L2(IRP). The key to the second equality is the ItO decomposition

formula mentioned above:

I a(# ... @#i ) = a 1i(,i 1 .@~~~

(45) 2 P;1  a~2 -

e11 p-i e p

where the symbol -indicates that the eth function # is omitted leaving a

(p-2)-fold tensor.

Applying (4.5) we obtain

I aI #t0... ,i p
pp

p p ~ 1 e -p

(4.6) ~ 1 a ,i 1.'i l# .. 0#1 X
1' p1 pp -
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where here as below we have suppressed the limits of summations on the ik's all of

which range from 1 to N. Note that the first sum on the right-hand side of (4.6) is

exactly the first sum on the right-hand side of (4.4). Hence, it suffices to show

that the second sum on the right-hand side of (4.6) equals the second sum on the

right-hand side of (4.4). Accordingly, using the symmetry of the coefficients to

give the second equality below, we can write

2 
p-1

(. a0 p( T I'2. ... 6i p i.0 )}i1.. . i 1.....i e 1 p 2 # 1# eP I p

pp-1

2 p-1  a

(4.7) -" a 2 aiI ..... ie , .. 9, 1 -2(i '  # @
1 1 1 - 1  ...1 p - 1' e e -" I e1

2p-i ip 1 a(i 1'0 "®',, ' '@ i- aie"i' I . ... . 0i p-.
0=1 iI .... 9 p-1 1 a 1

2 p-1.a=....I aj jp iI 2(#j 0...@ 0 p#
= Ye=l jl .. Jp-1 1 2'J '2 .... 2-

a 2z (p-l) IT ai 2 .. I "'a@

iI ..... , i p 1 ttl 2-1p-1 P2#2 #1p-1

which establishes the desired expansion. 0

We are now ready for the first of the crucial lemmas mentioned in the opening

paragraph of this section. The formula involved appears in a paper of Balakrishnan

[2, p. 26]. Balakrishnan's proof is tersely written and his result is for

"band-limited white noise" in the case a=1; nevertheless, the key ideas in our proof

appear in Balakrishnan's argument.

Given a positive integer p and a nonnegative integer k such that

0 k [p/2], let

(4.8) Cpk P!
Pk (p-2k) !2k k1
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These constants will appear frequently throughout the rest of the paper.

Lemna 4.2. Let f C L2 (RP) be given by the finite expansion (4.3). Then, for

any a > 0. we have

N

(4 9) 1 a( ai  I a,0...®@ i
p p) il..... ip=l ' p 1 1p

[p/2J k2k N N-I(-l)au~Cp i+1..."I... "klaiii' ik

k=0 (-k ip1 i 1 *** I1' il ....' k i2k+1 ... p

• *12k+l p1

[p/1 k k

k1 (-1) ka2kCp ,k R[EP4_2k(Trkf)

Proof. The subscripts on the a's range from 1 to N throughout the proof, but,

for purposes of simplification, we will suppress this range in the notation.

The first equality in (4.9) comes simply from (4.3) and the linearity of Ia
p

acting on L2(1+P). The fourth equality comes from formula (2.20) for lifting cylinder

functions, (4.2) above and the fact (see Propositions 3.1 and 3.2) that

(4.10) Trkfp = I 1 a i I i i + ii "...®0i0
i2k+i ..... ip iI ..... pi k 1 1*' k' I 2k+l..... 2k+1 p

Our main task then is to establish the second equality in (4.9).

We proceed by induction on p. When p=l. the sum over k reduces to the k=O term.

Further, when k=O. the a's do not have any repeated indices. Thus we see that when

p=l, the third expression in (4.9) is just another way of writing the second

expression.

The case p=2 is readily obtained from (4.4) of Lemma 4.1:

I a Ia ) = I aii a 1)f -a 2  ia
i 1I, ' 2 i tl 11 2 .12 list2 2 1 1 1
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= ai  ai2 a
il1i2  i2 1 2 1  ll

where the second equality comes from the fact that a(#i lfor every

a7 > 0.

Next we consider an arbitrary integer p making the induction assumption that

(4.9) holds for all integers less than p. (Actually, as pointed out above, we need

only concern ourselves with the second equality in (4.9).) In the string of four

equalities immediately below, the first follows from LeEma 4.1. the third from the

induction hypothesis, and the other two come from interchanging orders of summation.

Since the sums are finite, there is no question about the validity of the interchange

of the orders of summation.

(4.11) 2 aI al ... .. ioI  ai I a"'" ..0

p ..... p i...Ii ill... Ilp I P-i p

(P-I) 2 '7 i il i Ilap2(#1

i ..... ip- 1 2l ... p-1

= { . a i  I ° a il. Mtpl)
i p i1 l ..... ip_ 1 1l .... Itp-l itp p-1(0 " P I

- 2 (1 a il)I2( 2... 0 )
1i2 p .... i _1  i 1 1 1 . .. p-1

= P2J (i-1)!(-1} a k2k

i p k p k 2k+l p I , p

l* ... P- i pi
•i2k+l"•• "[p-l [p

-p-l 2[ ] (p-2)t{-l) k a2(k+l)

k--O (p-2-2k)12 k! J2k+l .... Jp-2 J1 ..... Jk 'I
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aiii sl . .#j' jk 2k+l'"..'9p-2 E 2kl .. .O p-2

-[~LJ -1)! c 7l ) a 2k l'a i

k* a

f2k+1*-'f p

I I

k=-O (p-2-2k)!2kk! J2k+1"'Jp-2

ilol.I -Ija ill1'l'l'"JkJk'~kl...'ip2f 2k+1l jp2

Next we work with the second of the two expressions on the right-hand side of

the last equality in (4.11); first we rename the dummy indices of summnation, then we

shift the sum over k by 1 and, finally, we rename the indices again:

[2] P,)( k+l a2(k+l)

k=-O (p-2-2k)!2 k! J2k+l"' 'p-2

i2] k+l a2(k+l)
(4.12) 1 k pl!(l

k=-O (p-2-2k)! 1 k ~ 3**

P2 k 2k+"* e

k+1aeie* ...eA IPk+l' 1' i'+3'*' e+ k+1' 2 k+3* ... " E, p

I k' 2k I

k'=l C(p-2-2(k-l)J!2kl(k'-)! e 2k'+l*.J.

I a a e ...ef
1' .. . e k' k ko 2k'+l....p 2k'+1 p
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- k-
k=1 (p-2k)!2 (k-i)! i2k+l .... ip

iI 1... ik a 'i k.. ik i 2k+ 1 ... p

Next we substitute the result of (4.12) for the second expression on the

right-hand side of the last equality in (4.11); then we combine the sums to obtain

(4.9) as desired. We will carry out the combining of sums under the assumption that

p is odd in which case [P-l ] = [2. Finally, we will finish the proof by noting the

adjustments that must be made for the case of even p.

(4.13) 2 ai l Ia(01 .. 0 ..
iI .. . p Ip

(2]k 2k

k=O (p-l-2k)!2kk! 12k+l..... p

,I ai ip i ~l " '"[

I l . Ik il .... i k' ik' 2k+l p 2k+l p

(2]k 2k
+ I pl!-)c

k=l (p-k)2k- l(k-l) ! ii2k+1... . p

il kai £p1l "i .
iI  ... i 1' k 2k+ p 2k+. . p

pi i. p Il i I, . , p

+ I k2" 2k--l ! -12kk

k=l (p-l-2k)12k-(k-1)! 2kl*' + ___ .p

i V a ilol ... i kI I iCl- np E|2~ .. O
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p 
1p p

k=l1 (p-2k)!2kk! i2k+1 i p

..... -I a  i . i k. i k ' iik . i12k+l* .. *I

W1 (- 1 )k2kCp k

k=O i 2k+l... ip

71 ai It ,. f i .

i k 1... . .k' k' 2k+1 p 2k " p

which gives the second equality in (4.9) as desired except that we need to make some

comments about the case when p is even.

When p is even, [ 2] = [ 1 ] + 1. The terms from k=l to k = [P-1] can be added

just as in the case of odd p with the same result. However, the second series on the

right-hand side of the first equality in (4.13) will have a

k = [2= = 2 term which is not present in the first series. The term is Just

2 2

, ai  iI ,1ap
R - 1 i 1 i.io.... I p/2, i p/2

210,22 (2 - 1!I.. /

= P:(-I)p / 2 o p  
a.

2 1 1 . p/2 p/2'p/2
2 (p/2 )2 2  (P-- I)!

-
I .... aip/21 ..... Ip i

R p/2p)P/2 P /2 p/2

= I-1 p/2 i it ... / 11t.... ip/2' /
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which is precisely the k = [p/2] term on the right-hand side of the second equality

in (4.9) and so the proof is complete. 03

Remark 4.1. Lemma 4.2 makes the idea of the "natural extension" of

I (fp) = 1I(f ) rather transparent in the case of f 's with finite expansions. Hu
p p pp p

and Meyer [5] sought to extend I p(f p) in such a way as to preserve polynomials in

first order stochastic integrals. That this is a reasonable strategy in connection

with the Feynman integral was quite believable to the present authors since it is

consistent with their earlier work, for example [7 or 12]. relating the Fresnel

integral of Albeverio and Hoegh-Krohn [1] which deals with certain functions on a

Hilbert space H to the Fresnel (or Feynman) integral of corresponding functions on

the Wiener space [3,10] or abstract Wiener space [12] associated with H.

Applying Lemma 4.2 with a = 1, we get the formulas

[ 21 kN N

I (f) _lkC a0-. .. i ,ik, i k ' i 2k + l "... i

Ip p =k-O p i2k+1.... ip=l iil .... iik=1 1i ik p

(4.14) i2k+ ip

= (-1)kC p ,k R[*p_2k(Trfp] p

k=O

Since the natural extension N[I p(f p)] is to preserve polynomials in first order

stochastic integrals, that is, in the fi's. it is clear how N[I p(f p)] should be

defined in this case; it should continue to be given by either of the last two

expressions in (4.14):

N[I (f )J = P (-1)kC k I aN Nk i .

p k=O k ., ip=l I 1 ..... i=1 1 1 .... k i'2k+l.' p

l kl p
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2 I k k
S1(-l Cp k R[rP_2k(Tr fp)I.
k=O pk p2c

Since each is s-a.s. defined and may even be taken as everywhere defined, the same

can be said of N[I p(f p)] in the present situation.

In the general case in Section 7 where infinite expansions are involved, we will

need to work harder to define the natural extension. Briefly, for every a > 0, we

will take limits in the space L2(Q,Pa) of polynomials in first order stochastic

integrals.

In Lemma 4.2 a multiple Wiener-It6 integral I (f ) was expressed as a sum of

(p-2k)-forms, k=-0l,. ..,[p/2]. Lemma 4.3 will express a p-form, restricted to 0 as

a sum of multiple Wiener-It6 integrals I a2(Trkf ), k=0.1,...,[p/2]. Lemma 4.2 will

be the key to the proof of Lemma 4.3 which will, in turn, be essential to the

developments in later sections. Formula (4.18) below is essentially formula (10) in

Hu and Meyer [5]. but in [5]. it is a remark which is not pursued.

Again f will be assumed to have the finite expansion (4.3). Hence. the
p

associated p-form P/i (f p) on H--L2 R+) (see (4.2)) will be the cylinder function

N
(4.16) 4p(fp)(h) I ai . (*il 'h).' '' *( p h)"

Hence */p (f p) certainly has a lifting,

N
(4.17) #p (x) = R[, (f p)](x) = . ai .... ,ip~ (x)...' E W(x)

p p=~1 p I p

which is a p-form on 0(IR+) which may be regarded as everywhere defined.

Lemma 4.3. Let fp C L2(IF) be given by the finite expansion (4.3) and let the

associated p-form * - = R[*. p(fp )] be given on 0 (R+) by (4.17). Then s-a.s.
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@k
(4.18) IP = R[4,p~fp)] =k[=O-] 2k  ak -2 (T r k fp ) "

p p k1O a pkp-2k p

Proof: The various indices i in the proof vary from 1 to N as in (4.17) but we

suppress this fact below. We proceed by induction on p. When p=l. the last

expression in (4.18) reduces to Ii( ai ( I ) which equals PI as required. The case

p=2 is easily obtained from Le ma4.2:

1 a (f I a2 a

2l2 I2 1 2 il'il

2

*2 a ai 1il
1

Therefore, *2 = la(f2) + A2Trl(f2) as desired.

We now assume that (4.18) holds for all integers less than p and examine the pth

case itself. The k=O (v=O in our present notation) term in the third expression in

(4.9) is just * p. This yields the first of the two equalities that follow:

[p12] v+1 2v
4p=I(f)+ (-l) la C aii i i

= p p v*l p iv iIl, l 1 V V' 2v+1 .... p

i* E ... .ip"''

2v+l* ... p

[p/2] v+l 2v

(4.19) =I (p) + 1 (-1) a C ,V I c i
= p v=l i2 +1 ..... i 2v+1 p 2v+1 p

where c i = I Iai Ii2v+1' .... p ii ..... iv 1'i 1.. iv v 2v+l ... p

V

Now we can apply the induction hypothesis to the inner sum in the last expression of

(4.19) since v 1. Doing this and letting

(4.20) h = I c l i pi2v+l*...** 0

2v+1 p p
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we obtain

[2.) Fp- 2 vjE P2 _ P ! -l~ v 1 2 v 2 p -2 v ) !a 2 r ar

(4.21) 'i' (f ) + 1~ p!(l 12l 2 P.2U!r Ic 2vr(Trrh1,v)}
)p = pfp) + v1 (p-27)!2%v! r--O (p-2v-2r)!2rr! 2

Now Trr(hp_2v) = Trr[Trvf p] = Trr+V p where the second equality follows from

Proposition 3.5. Further, applying the Binomial Theorem to (-1+1) k  one sees that

v+

O~r! k!

where this last sum is over the set {(vr) C {l. ...k}x{0,1,....k}: v+r=k}. Using

these last two facts. (4.21) and summing in a different order we obtain

[g p-2u1
2 2 ( 1)V+Ip2v+2r

(4.22) 4' = Ip(fp) + I v+r I p-2v-2r(TrV+rfP)
p p p V=l r=O (p2vr 2 r}V)+rr! p2 r

a I2-1 p~a2k (-)V+l
= I( +k (I 2O T Ir 2k (Trfk=l (p-2k)!2kk !

k=O2

= f)+ I k I (Trkf )p p k=l (p-2k)!2 k! P-

=Ik=O p.k p-2k (T f)

and this proof is complete. 0
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5. LIFTINGS OF P-FORMS AND WIENER-ITO INTEGRALS. Let f C L2 (M+). We show in
p s +

the theorem below that the p-form Pp = p (f p) on L2 (+) associated with fp (see

(4.2)) has a scaled 2 -lifting R[p ] if and only if Tfp exists for

k=O. 1....[p/2]. Further, in this case, R[+p j is given by a p-form on Wiener

space or, alternately, by a finite sum of multiple Wiener-It6 integrals. This

result is the key to Sections 5 through 8. Our proof that the trace conditions

are necessary as well as sufficient for the existence of the lifting is tied in

with the nature of the limiting k-trace.

Not only will the theorem below allow us to give in subsequent sections a

solution to the problem which originally motivated our research, but it is

potentially a useful result in connection with white noise calculus [13] where

p-forms play a role analogous to that played by pth homogeneous chaos in Wiener

calculus.

Theorem 5.1. Let f E L2(P) and let q, = (f ) be the associated p-form
p S +p Pp

2
on H=L (I1+ ).

* p(f p) has a scaled 2-lifting R[* p] if and only if Tr fp exists for

k=O,l .... [p/2]. In this case, s-a.s. (that is. for every a > 0. P -a.s. on

0) we have

(.)R*= =ail,.,pi' 'g

p lp 1 p

[p/2] 2k a° i= Z o _,(Tr f)
I aO p.k Ip-2k r-fpk--O ""-

where the second expression in (5.1) is to be interpreted on each 1l0 as the

2 
N

limit in the space L (0laP) of the sequence I a . ii
il .... lip=l 1 ... p

Remark 5.1. The third expression in (5.1) has the advantage that it is

coordinate free but the disadvantage that it must be changed with each change



50

in a. The lifting Rf is. of course, scale-invariant measurable as well as

s-a.s. defined.

Proof of Theorem 5.1. We begin with considerations which are relevant to

both directions of the proof. Let {TN} be a sequence from !. the class -r

orthogonal projections with finite-dimensional range, such that INTI strongly

and dim(NH)=dN . We can then obtain a CONS (*i) in H such that

{#i: i=l ....dN} is a CONS in NH, N=1.2.... It suffices to consider the

case where dN = N. Of course, f has an expansion with respect to the CONS

(,i .. @#i ) for L2 (R+):
1 p

0

(5.2) f 1  a I l i . 1 0

p
Now

(5.3) p h) = (fPhop) aI i p h) (ih).

and so

(5.4) 4,pON(h) = 4p1(7Nh ) -plai . ip(o I Nh)...-(i .Nh)

il ..... ip=lail . i N

N
=a l..i(i~)..{l.h)

p p

w (fN h)
p

p

fN N

(5 .5 ) f = a i ll l 1 p
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It is easy to see from (5.4) how to lift the cylinder function p OffN

N

(5.6) R(4,op°) = 2 ai . ....ip N .. ip pIp

where Ei(x) = Ii{#i){x ) .

Applying Lemma 4.3 we see from (5.6) that for every a > 0. P -a.s. on Q2,

[p/2] k ak N

(5.7) R(P p2fN I a .k I - krfN)

Now suppose that Tkf exists for k=O,l....[p/2]. Let a > 0 be given.P

We wish to show that

[p/2] 2kcp 2 2
(5.8) IIR(4,poff~ -pkT p1 0

k --O L (1 P )

as N -4 w. However, using (5.7) and properties of multiple Wiener-1t6

integrals (see (2.17)), we can write

[p/2] 2k a 2
IIR(4pofN) - 0 a C p.k I

a  ,{(T-r f )11L2

[p/2] 2

(5.9) =11 . a C2kc kI 2 k(Trf 
N - T-rkfp)l12

2
k=O L ( . P )

[p/2] 2k 2 D2 kN 2
= ( (a C k) (p-2k)!(fP-2k 2[Trkf -Trkf pi2

k=O P L2 (+ 2 )

but this last expression converges to 0 as N -- w by definition of Tr p'

k=O, 1....[p/2].

We now know that *p has a scaled i2-lifting RPp that is equal to the third

expression in (5.1). Checking (5.7), we see that for every a > 0 all three

functions in (5.1) are equal P -a.s. on 0.

It remains to show that if p (f p) has a scaled i2-lifting. then Tr fp

..... . . . .- u nm m mp pii nm i nli m l pn
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exists for k=0,1.....[p/2]. In fact, we will show that if there exists >0

such that *, (f p) has a a-i2-lifting, then Trkfp exists for k--O.1,...,[p/2].

Let (ai) be an arbitrary CONS for H=L (R+) and let 1N be the orthogonal

projection onto sp[a I. .aN]. By assumption, we have

(5.10) Ep [R('pOIN) - RPp]2 --* 0 as N -- .

It follows that

(5.11) Ep [R(4, pOlTN) - RCPpOfN,) 2 -- *0 as NN -- w.

But by Len 4.3 and (5.5) - (5.7).

[p/21 k a kNkN

(5.12) RCPpOIN) - R(+,poII) k 1 0 a CpkI 2 kTr f p ( Trkf )f

where
MM

(5.13) f4 =,( d (fp a110... Oael )a i 1 ... @a i

Using properties of multiple Wiener-It6 integrals (see (2.17)), we have

(5.14)Ep [R(4pof.) - R2poff,,)]2

Ep/2J 2L
[p2 (a ,k) 2 (p-2k)!IlTrkfN ,i-TrkfN' Ci)"2

k=-O p k)p. (ai) p.(aid 2

From (5.14) and (5.11), we see that

(5.15) llTrkN a i - T r kf N 1 2 --* 0 as N,N'-.

for k--0,1....[p/2]. Because of the completeness of L2 (-2k). (5.15) shows

that, for every ONS (a). Tr converges to an element of L2 (+"2). We

still need to show that this limit is independent of the CONS (a).

Let ( be any other CONS for H. It suffices to show that
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(5.16) IlTrk'f N )-TrkfN ' ) --+0 as N-*.
p .(a,) .W)2

However,

(5.17) R(jIpON(a i)) - R(pOofN,(p i))

Cp/20 2k a k N kfN
k - 0 C p.I .(Tr f rf )k--O p.kpv-2k p.(a i) p (13)

and so

[p/2] 2p 2 k TNkfN 2
(5.18) 2 o (Cpk)(p-2k) f TrkfN 11

k=O p P (ai (l 2

[p20k k N k N 2

= E k[ . p ,k Ip-2k ( r fp.(aj) - r fp. 0 ia k--O

= Epo,[R(,PpoN, a)) - 2R(*pON,(pi)

But the last expression in (5.18) goes to 0 as N --+ w since

Ep [R(,PoN, (ai)) - R(,Pp)]2 and EpRC*pOUN.(pi) ) - Rp) ] 2

both go to 0 as N --* It now follows from (5.18) that (5.16) holds for

k=10,l,...,[p/2] as desired.

Hence, for every k = 0,1...., [p/2]. there exists - in . ) such

that for every CONS (a,) for H.

(5.19) IITrkfN,(ai)gp112 --- , 0 as N --.

Therefore fr'kf exists as we wished to show. 0

p

Next we present some simple consequences of Theorem 5.1. (Much of the

rest of this paper will give further consequences of this theorem.) The first

corollary was already noted and established in the proof above but it seems

worth stating formally.
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Corollary 5.1. Let f E L2 (IRP) and let 4o = 4p(f ) be the associated
p s +p p p

p-form on H--L 2(R+) If there exists a > 0 such that 4p has a a--f2-lifting,

then Trfp exists for k = O.1.....[p/2]. In particular, if ,p has an

i2-lifting with respect to the standard Wiener measure P=P1. then Trkfp exists

for k--O,1,....[p/ 2 ].

Corollary 5.2. Let fp and .p be as in Corollary 5.1. Then 4p has a

scaled i -ifting if and only if there exists a > 0 such that \p has a

a-!e2-lifting. In particular, if ,p has an i2-lifting with respect to the

standard Wiener measure P = Pi. then 4,p has a scaled L 2-lifting.

Remark 5.2. Comparing the first two expressions in (5.1) with (5.3), one

sees that the series

0 N
(5.20) 1 aI .,i - lim a =1 tpt1' pi ai ... ,.

i l ... p N-P" 11 .... p

lifts 4p in a natural way.

Corollary 5.3. Let fp and p be in L2 (U) with associated p-forms 4, and

4p , respectively. Suppose further that there exists a >0 such that R(qp) and
p 0 p

R(4P') both exist in the ao-!2 sense (and hence in the scaled- 2 sense).
p0

Then, for every a > 0,

.2 [p/2] 2pC )2(P2) ;-* -.k 2(5.21) IIR(+ )-R(Pp)N 2 =12 (a p r k -Tr f1 2  2
p L (+ -P k=O p ?a a +~~

In particular, if f and f(n). n=1,2..... all belong to L
2 (IR+) and if (n)

p p p p
n=1.2.... are the associated p-forms all of which possess scaled 2-liftings

R(, )". R(k(n)). n=1.2..... then
p p

(5.22) IIR(+p)-R(4,')112 p a)

P ,, L 2I ( 0a a a
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for every a ) 0 if and only if

ITr f(n) - r-f p 2 -0 o as n -
P L~s ( + -

for each k-0,1,....[p/2].

Proof. This follows easily from (5.1) and properties of multiple

Wiener-It6 integrals. 0

Remark 5.3. Often, in order to work with functions on white noise space,

that is on the canonical Hilbert space. (H.T.1A). one must lift them to an

associated countably additive representation space. It is sometimes possible

to work directly in the Hilbert space. Corollary 5.3 allows us to do that for

p-forms on H=L2(e); the L2(Co(R ),P)-distance from R(#p) to R(Is') can be

calculated within the Hilbert space.
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6. WIENER-ITO INTEGRALS IN TERMS OF LIFTED P-FORMS. The theorem of this section

will show how to write the multiple Wiener-It6 integral I (f ) as a finite sum of
Pp

lifted (p-2k)-forms, k=O,l,...,[p/2]. The a=l case of this result will lead us in

the next section to our definition of the natural extension N[I p(f p)] of I p(f p). At

this point the reader may wish to review Definition 3.3 and Propositions 3.4

and 3.5.

Theorem 6.1. Let f C L2 (IRP ) and let 4i = 4p(fp) be the associated p-form on
p s+p p p

H-L2(R+). Assume that f has all its first and second order traces and that they

are consistent.

Then for every a > 0, P -a.s. on 11 a

(6.1) 1(f ) p/2] (-1)k2kCkk ))

p p k=O (- k p 2 k(Tr

(p/2] k k0

= 1 (-1)( a ,...,i .1 i

k=O p'k I  P ... =1 Jl .... Jk=l

"fi2k+1 
... p

where RC p_2k(Tir fp)] is the lifting of the (p-2k)-form associated with the

function Trkf in L2 (I- 2k ) and where (#,) is a CONS for L2( +).

f = a " ... p . = 1,(#,). and the sum over the i's in the
Itp 1 p

third expression in (6.1) is interpreted on each Q? as the limit in the space

L 2(0 P ) of the sequence

N a

2kl'" ( p a"l kl ' Jk' k' i2k+l ip) 2k+l " ''  pi2k+l'. .. ip=l ( .... ak=1 . ...* 'k'k 2k l...... p~ 'k l . iP

Proof. We begin by establishing the first equality in (6.1). Our

assumptions assure us. by Theorem 5.1, that the second expression in (6.1) makes

sense and that formula (5.1) can be applied to each function R[+p_2k(Tr f p)] in the

• • , , k f )I inlthe
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second expression in (6.1). Our first equality below is obtained by doing this and

using the consistency of the first and second order traces. The second equality

comes simply from splitting off the k=O. v--O term and the third equality from doing

the remaining sum in a different order. Finally. the fourth equality comes from the

Binomial Theorem;

0 = ,I+(_I)]r =r! I. (-)= ~k

k+v=r kv!

We now carry out the steps which were just commented on above:

[p/2] (lk2C--

(6.2) ( 12 k2k Rrp.2k(T- p)]
k=O (-) P'~ 2 (r)

pZ-2k]
[p/2] (t (p-2k)!a 2 v  a .--J-+v

Y, I - I p 2 k -2 v(Tr f pk=O (p-2k)!2kk! v=O (p-2k-2v)!2v _ 2

~p-2k1

= ap(fp) + E p2 (-) k 2(k+v) a (T-,k+vfI p f I Ik+v" I,, -2k-2v r P)
k=O v--O (p-2k-2v)!2 .v! f
(k. v)9(O.O)

[p/2 ] p!a2r k ),aI I (f p + I. r M v } -r( r

r=l (p-2r)!2r k+v=r k!v!

= I (fp)
p p

as claimed.

It remains to establish the second equality in (6.1). By Proposition 3.3.

(6 .3)~jk = i(~* '1' ip)'k +ik "®
( . ) r P = i 2 k + l * .. .i p = 1 ( l J - a  i l o i l  .. .J k ' J k ' i 2 k + l " ' P * 2 I .....0 #

so that

0 0.
(6 4 D 2 k (Tr fp)(h)= (~. Z ~ 'l....k= 1 1 ' 'k'2k+l p...
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2k+l1h o p h

and so by Theorem 5.1,

(6.5) RP2(rf)

- 2k+1'" ...i,= JI~~k=ii ~ 1 k1" p2+
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7. THE NATURAL EXTENSION OF A WIENER-ITO INTEGRAL. The case a=l of Theorem 6.1

and the idea that the natural extension should preserve polynomials in the a. 's1

immediately suggests how to define N[I p(f p)].

Definition 7.1. The natural extension of I p(f ) is defined by

(71 E f [p/2:] (1k -i [p/2] (_l )kC(7.1) N[Ip (fp) = -I p_2k(Tr-fp)]

k-p-O kP =k=O Ck

( T a )2 '"

i 2k+1* ... ip=l jl ..... k=1 1'Jl . Jk'jki2k+l .... I p 2k+

The next theorem gives us conditions under which Definition 7.1 makes

sense.

Theorem 7.1. Let fp 6 L2(IRp ) and let 4p = 4p(f ) be the associated p-form
p s +p p p

on H=L2 (+). Assume that f has all its first and second order traces and that

they are consistent.

Then the last two expressions in formula (7.1) are defined and agree

s-a.s. and are scale-invariant measurable.

Proof. Apply Theorem 5.1 and Proposition 3.3 to each of the (p-2k)-forms

4p_2k(Tr fp ), k=Ol,....[p/2]. 0

Next we give a theorem which will express the restriction of N[I p(f p)] to

1e as a sum of multiple Wiener-1t6 integrals I(Tr fp). k=.1 ..... p/2].
a p-2k(T fp )

This theorem will be the basis of our calculation in the next section of the

analytic Feynman integral of NI p(f p)].

Theorem 7.2. Let f C L2 (I+) and let +p = (f ) be the associated p-form
p s + p p p

on H = L2(R+). Assume that f has all its first and second order traces and

that they are consistent.

Then. for any a > 0. we have P -a.s. on fla'

a aa I
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[p/2] 2 k a f).
(7.2) N[Ip (fp) = ( 1) p klp_2k(Tr fp).

k=O

Proof. Proposition 3.4 allows us to apply Theorem 6.1 to the right-hand

side of (7.2); this yields the first equality below. The third equality comes

from reordering the sum and the fourth from applying the Binomial Theorem to

-1)r=[{a2 -1)+(-o 2)]r. Finally the last equality comes from Definition 7.1 and

Theorem 7.1.

[p/2 ] 2 k a -ek
(7.3) 1 (a 2-1) CkI_ 2 k(Trf)

k=O

• { -222 v

-O (p-2k)!2 k! v-_ (p-2k2)!-l a1 p

[(p2k)] 2 k v2__
-p/2]1 2 - p!(a 2_l)(-)a R[)P 2 (Tr f)]

k=0 v-0 (p-2k-2v)!2k+Vk!v!

[p/2] P!2 k 2 v
I !R[Ep 2r([T~rfp)

r=O (p-2 r)!2 r k+v=r k!v!

[p12] r
- r (-1) C p.rR[4, -2 (Tr f )J=r=0 -lrp~rR p.-2 p)

= N[Ip (f p)

as desired. o

Remark 7.1. Formula (7.2) is closely related to (8) in [5]. a key formula

in the paper of Hu and Meyer. However, in [5], the right-hand side of (7.2) is

their "suggested definition" of the natural extension of Ip(fp) to 0 a. Hu and

Meyer do not have one formula (like our (7.1)) which extends I p(f p) to 0 a for

all a > 0. Their "suggested definition" has become a theorem in our
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development. Further, our Definition 7.1 reflects in a rather transparent way

the desire to extend I p(f p) so as to preserve polynomials in the fi's.

Next we give a simple example which will illustrate our formulas and help

to clairfy the idea of the natural extension and the concept of functions equal

2 2
s-a.s. Let := 0, so that f, :  #* belongs to L.(R+). We introduce a

function C: *OQR+) -4 I which is everywhere defined and continuous and with

which we will compare two different extensions of I2 (f2 ): fl -'"R. Let

G(x) := x 2(1)-1.

Using the third expression in (6.1) (or (4.9), the corresponding formula

for finite expansions) with a = 1, p = 2, k = 0,1, we see that Pl-a.s. on EI'

12 (f2 )(x) = f2(x)-l = [1 *(s)dx(s)] 2 _ 1

1 2 2
=[$dx(s)] - =x2(1) - 1

0

where L = Ii(#). Hence 12 (f2 ) = C Pl-a.s. on 1I"

By (7.1). N[I 2 (f2 )] = 12-. In particular, for every a > 0, P1-a.s. on

N[I2 (f2 )J(ox) = E 2(ax)-1 = a2f (x)-1 = a2 x 2(1)-l.

We can also obtain the formula just above by using (7.2) of Theorem 7.2: For

every a > 0, P1-a.s. on O1

= C a-o a--1
N[I2 (f2 )J(ax) 2 .0 12 (Tr f2)(°) + (a -1)C2 ,1 0I(Tr f2 )(x)

= a~f( + 2 -.1 2 2_1 2 (f2)(ax ) + (a2-1)Trlf2 = o212 (f2 )(x) + (a -1)

= 2[f 2(x)-I] + a-1 = a 2f 2(x)-l = a 2x 2(1)-I.

Note that NCI2 (f2 )] = C s-a.s.
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In contrast, we define the extension F of I2 (f2 ) to U 'a by
a>O

F(ax) = I2( . Now Pl-a.s. on 01. F(oax) = a 2 ) = a [ 2(x)-1] =

a2x2 (1)-a
2.

Summarizing the above: N[I2 (f2 )] = C s-a.s. and N[12 (f2 )] = C = F Pl-a.s.

However, for every a i 1. it is not true that F = G Pa-a.s., and, in fact,

P {yfl: F(y) 0 G(y)} = Pl{xCfl: F(ox) A G(ax)} = 1

since G(ox) = 2x2 (1)-I for every x C Q1 whereas F(2x) = a22(1)-a2 p -a.s. on

i.,

We finish this section by discussing briefly a generalization of the

results above. This generalization is related to a further formula of Hu and

Meyer [5]. Let f C L2(RP). We will define the natural extension NCIT(fp))
p 8 + p p

for any T > 0. Again, Theorem 6.1 suggests how this should be done.

Definition 7.2. The natural extension of IT(f ) is defined by
p p

IT [p/1 k 2kC

(7.4) N[Ifp)] = I (-)T C, kR[Cp_2k(Tr fp) ]
k=O

[p/2] k 2 k
-I kl)T

k=O 1pk =Ii2k+l..... ip
mp

ljk" lJ' '. 'Jk'k i2k+1 ..... p 2k+1 p

Under the assumption that f has all its first and second order traces and

they are consistent, we can show Just as in Theorem 7.1 that Definition 7.2

makes sense. Next we ask for a formula extending (7.2).

Theorem 7.2. Under the assumption of Theorem 7.2, for any a > 0, we have

P -a.s. on Q.

. . ... ...... . .a m i i l|iaIi i
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[p/21 ( 2 2 k aL7
p p k--O p

Proof. The argument proceeds just as in the proof of Theorem 7.2 except

that here one applies the Binomial Theorem to

[-T2]r = [(C2-T2 ) + (-2)] .
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8. THE FEYNMAI INTEGRAL OF THE NATURAL EXTENSION OF A WIENER-ITO INTEGRAL.

Every square integrable function on Wiener space, that is, every f in

L 2(Co(IR),P 1 ) = L2(01 ,P1 ) has an expansion in Wiener chaos,

(8.1) f= . 1(f)(p>O P! Ip p)

2P p

where f C L2(IR+). Hu and Meyer have the following formula [5, (7)] in terms
p +

of the expansion (8.1):

(8.2) E(f) = T rk (f2 0)

k 2kk! r f.

The formula (8.2) is to give the "Feynman integral" of f when a2 is purely

imaginary and the right-hand side of the formula makes sense. It is natural to

ask, as Hu and Meyer did, what, if anything, this has to do with the idea of

obtaining the Feynman integral by analytically continuing the Wiener integral

f f(ax)dPl(x). It would seem naively that for the two approaches to be

0

consistent, one should have for any a > 0

1r2-1l Trk(f2k)  If p=2k is even.

(8.3) ,f .1 I (f )(Ox)dPl(x) = i
0(p+)  0 if p is odd.

However, (8.3) is too naive since, P1-a.s., ox is in 12 and it is not clear a

priori how to extend I p(f p) from 0 1 to a. The theorem below will show that

the natural extension N[I p(f p)] described in the previous section produces the

desired formula.

Theorem 8.1, Letp E L2(IRp ) and let p=41(fp) be the associated p-form
p s + p p p

on H = L2(R+). Assume that fp has all its first and second order traces and

that they are consistent.

Then, for every a > 0, we have the form
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(a2-1)kTrk (f 2k)  if p=2k is even,1 {2 kk !2°

(8.4) 
1- N[I(f )](ox)dP(x) =

p(+)  if p is odd.

Further, the analytic Feynman integral of the function - N[I (f is given by
p! p p

the right-hand side of (8.4) with a2 i.

Proof. Formula (7.2) of Theorem 7.2 is the key to the proof. Fix a > 0.

The steps below follow from (2.1), (7.2) and the fact that, for p 1,

S I'(f P)(x)dPa (x) = 0:
CeOR+) p

1 1

p-N[Ip(f p)](ox)dPl(x) = S -. N[I p(f p)](x)dP a(x)19 o lR+ ) P O R ) P

( p/2] (a 2_l) vp! a 2( p
I . P I 2v (i f)(x)dPa(x)

v--O (p-2v)!2 vt T0(IR+) P

K 2 -1k Trf2k if p=2k is even,
212k

l 0  if p is odd.

which is the desired formula. 0

Remark 8.1. It is natural to investigate the class of functions f which

possess a Feynman integral in the sense of [5] and, in particular, to ask if

various functions of interest in quantum mechanics fall in this class. Such

matters are discussed to some extent in [5] and are of interest to the authors

but they have not been our concern in this paper.

We finish this section by stating a result like Theorem 8.1 except that it

involves the natural extension of IT(f ) rather than N[I (fp)].
p p p p

Theorem 8.2. Let the assumptions of Theorem 8.1 be satisfied and let
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T > 0 be given. Then, for every a > 0, we have the formula

1 (
2 -  k  Tr (f2k) if p=2k is even,

(8.5) 7 N[E pT(f p ) ] (x)dPl(x) =

900+ ) P-if p is odd.

Proof. The proof is the same as the proof of Theorem 8.1 except that

formula (7.5) is used instead of (7.2).

Remark 8.2. If we analytically continue the right-hand side of (8.5) to

a =-i, we obtain the analytic Feyranan integral of L-0N[I(fA.
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