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Abstract

We present a general study relating the geometry of the

graph of a real function to the existence of local times for the

function. The general results obtained are applied to Gaussian

processes. and we show that with probability I the sample

functions of a non-differentiable stationary Gaussian process

with local times will be Jarnik functions. This extends earlier

works of Lifschitz and Pitt, which gave examples of Gaussian

processes without local times. An example is given of a Jarnik

function without local times thus answering negatively a question

raised by Geman and Horowitz.
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Section 1: Introduction
1

Let f: [0,1 -* IR be a Lebesgue function and define the two

measures

(1.1) p(A) E pf(A) I{t: f(t) e A}I, and

(1.2) u(B) E Pf(B) I{t: (t,f(t)) - B1I.

f1 1

Here " denotes Lebesgue measure on II and A e B(PI) is a Borel

12 2set of I while B e B(2R ) is a Bore! set of IR The measure p is

called the occupation measure of f and v will be called the image

of Lebesgue measure on the graph of f. A fundamental question

is, when is p absolutely continuous with respect to Lebesgue

measure? If dp << dx, then the occupation density dp(x)/dx is

called the local time at x. Following [5), we describe this by

saying f has local times.

The survey article [5] gave a full account of what was

known concerning the existence of local times in 1980, and raised

several open questions. This paper addresses two areas of

investigation that were raised there. What is the exact role

that the Jarnik condition J1(t):

ap lim If(t+h)-f(t)laphlim=Ihi
h-O

plays in the existence of local times? Also, if f(t) has local

times, what can be said about the existence of local times for

perturbed functions fa (t) = f(t)+at?
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Our approach to both of these questions is through

geometric measure theory and consideration of the measure pf as a

projection of the measure vuf. The general setup here is: for

z = (t,x) e 2, the function Pc(z) = x Cos a - t Sin a is viewed

as the orthogonal projection onto the line L through 0 and9

(-Sin 9, Cos 8). The two measures pf and vf are related through

the projection P0 by the equation

/f(A) = f(P (A)).

Although it is often the case that little is known about the

specific measure v OP,-1 there is much classical geometric

information about the family of measures {(foP 8
1 }.

Two particularly useful results which are both exposed in

Falconer [4], chapter 6, are

Besicovitch (1939). If B S IR2 is an irregular 1-set, then for

a.a. 9, IP (B)l = 0 holds.

Kaufmann (1968). If u(dz) is a finite Borel measure on I2 with

v ! (dz) LP(dC ) <

2 2 Iz-cl

then for a.a. e the measure P 1 is absolutely continuous.

These results can become an effective analytic tool for

discussing the occupation measures pa of the functions
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f a(t) = f(t)+at. The first necessary step here is a simple

change of variables argument. The second key ingredient is the

following geometric lemma proved in Section 2.

Proposition 2.2. Let D = ft: J1 (t) does not hold). That is,

t e D iff

ap lim inf lf(t+h)-f(t)l < I

h O1

Let
G(f:D) = {(t,f(t)): t e D}

denote the graph of f above D. The set G(f:D) has a-finite

linear Hausdorff measure ''I and the restrictions Pliner Husdrffmeaure andtheresricion z-fG(f:D) and

!1 IG(f:D) to G(f:D) of v f(dz) and It1 (dz) are mutually absolutely

continuous. Moreover, if J = [O,1]-D is the class of Jarnik

points, then each subset E c G(f:J) with vuf(E) > 0 has

non-a-finite A 1 measure.

The following minor modification of Theorem 5.2 is proved

in Section 5.

Corollary 5.2'. Suppose that f is a non-Jarnik function in the

strong sense that IJI = 0 where J = {t: J1 (t) is satisfied).

Suppose also that the approximate derivative

f() = f(x+h)-f(x)
f(X) =ap lim
ap h-*.0

exists at most on a set of Lebesgue measure 0. Then, for a.a. a,

the occupation measures pa of fa (t) = f(t)+at are purely

continuous singular.
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An idea that goes back to R. Klein (1976) allows us to lift

theorems about perturbations to almost sure results about

Gaussian processes. Thus, for example, in Section 9 we prove

Theorem 9.1. Let (X(t): t e be a real continuous stationary

Gaussian process. Set

AL(h) = EIX(t+h)-X(t)l 2

and

22
IL2 (h) = EIX(t+h)+X(t-h)-2X(t)! 2

If
a1 (h)

(1.3) sup 2 = + ,
h>0 h 2

and
A2(h)

(1.4) sup <2 (
h>O h2

then with probability 1 the occupation measure of {X(t)} is a

purely continuous singular measure.

Remark. It is shown in Section 8 that condition (1.4) has a

spectral equivalent. Namely, if EXtX 0 = f' eit'A(dX), then (1.4)

is equivalent to

sup T2 (A{ : I XI > T) < .

T>O

It is also known that (1.3) is equivalent to

fX 2 (dX) = + -. Thus, examples of measures A which correspond to

(X(t)} satisfying (1.3) and (1.4) are easy to give, e.g..
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3 6 n (dX). Other examples satisfying more stringent
n O In n

conditions are in [9] and [10].

We now outline this paper.

In Section 2, we derive Proposition 2.2 and related results

concerned with decomposing the graph G(f) of f into a countable

union of 1-sets and a piece which is essentially larger than

1-dimensional.

Section 3 looks closer at this decomposition, breaking the

1-set parts of G(f) into a regular piece which is the graph above

the set {t: f' (t) exists) and an irregular piece. Applying theap

results of Besicovitch and Kaufman to these pieces in Section 4,

we derive several theorems on the absolute continuity or

singularity of the measures fOP 6  which hold for a.a. e.

Section 5 translates the work of Section 4 into the

language of the perturbations fa and their occupation measures

a" . In addition to Corollary 5.2' and related results we prove

Theorem 5.3. Suppose that

f dt 2 dat

0 1(t-s)2+(f(t)-f(s))

holds for a.a. s e [0,1]. Then, for a.a. a, the function f(t)+at

has local times.

Formally, this result is related to, but distinct from, the

L2 Fourier theory of local times that was explored by Berman

starting in [3].
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Section 6 contains examples showing that the exceptional

sets of a in Theorems 5.2 and 5.3 may not be non-empty. It also

answers in the negative a question raised by Geman and Horowitz

in (5]: Does every Jarnik function have local times?

In Section 7, we turn to probability proper and we show how

an idea of Klein may be used to translate perturbation results

into a.s. theorems about Gaussian processes and other related

processes.

Section 8 presents a class of stochastic processes which

are stochastic analogues of the Zygmund space A of quasi-smooth

functions. Several spectral characterizations of these processes

are also developed.

Section 9 combines the earlier results, especially those of

Sections 4 and 8 to prove our basic result, Theorem 9.1. The

methods also lead in Section 10 to a further example which

settles in the negative another question from [5]. We exhibit a

discontinuous stationary Gaussian process with no local times.

Section 2: On the Geometry of Graphs

We let f(t) be Borel measurable, and we denote the set of

approximate discontinuities of f with

N = U {t: lim infl{s: Is-tl < h, If(s)-f(t)l < E}I/2h < 1.
E>O h1O

It is elementary to show that N is a Borel set, and by the

theorem of Denjoy (12], p. 132, INI = 0. Thus, G(f:N) is a Borel

subset of G(f) with Pf(G(f:N)) = 0.
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Introduce the quantity

IDjf(t) = ap lim inf lf(t)-f(s)i

It-sl

and the set of Jarnik points not in N,

J = {t: D If(t) = + -}-N.

The set of points of linear condensation for f is

D = (t: IDIf(t) < -}-N = [O,1]-(J U N).

We also introduce the upper linear density of v f at z = (t,x)

S u f(B(zr))
D If(Z) = lir 2r

r4O

Here B(z,r) is the closed disk of radius r and center z. DIf

and IDIf are related by

Lemma 2.1. For x = f(t) and z = (tf(t)),

D1L vf(z) > 0 iff IDIf(t) < .

Proof. For c > 0 and k=JI c,

{(s,f(s)): Is-ti < r and jf(s)-f(t)l < cls-tl)c B(z, kr).

Thus IDIf(t) < - implies that for some c < -,

lim sup Ifs: Is-tl < r and lf(s)-f(t)l < clt-sI}l > 0,
rO 2r

v f(B(zkr))so lm sup 2r > 0 and Dvf (z) > 0.hi0
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Conversely, we observe that for 0 < X < I and r > 0,

s: (s,f(s)) -E B(z,r)) -(s: Is-t, < 1 r)

C {s: Is-ti < r, if(s)-f(t)i < 7is-tI).

Thus, DI f (Z) > ' implies

1 2

1m SUP - I{s: Is-tj < r and If(s)-f(t)I < T Is-ti)1

) - > 0,

and

IDjf(t) < 2 <

In Lemma 2 of [11], Rogers and Taylor show that the set

{z: DL, f(z) > 0 is a Borel subset of IR2. Hence,

G(f:D) = [G(f) n {z: D V f(z) > O})-G(f:N)

2
is also a Borel subset of IR

We now turn to the

Proof of Proposition 2.2. We again invoke the Lemma 2 of [11]

where it is established that there is a finite constant k such
2

that for each X > 0 and each finite Borel measure m on IR , the

set {z: Dlm(z) > X) is a 36o set and satisfies

1 k olo 2

It follows that each open set 0 S IR satisfies



II(o n rx k m(o),

from which it follows that the restriction of X 1 to is

absolutely continuous with respect to the measure m.

Setting m = uf and taking the union of the sets t(1/n)

shows that G(f:D) S U{ i : n > O} is a Borel set of a-finite
n

NI1 measure and that A"IIG(f:D) << v On the other hand, the

obvious inequality Puf(B(z.r)) < 2r shows that v f satisfies

Vf S const. XI for some constant. Thus I IG(f:D) and P f G(f:D)

are equivalent as claimed.

Finally, suppose E C G(f:J) satisfies vf(E) > 0. Lemma 3

of [11] shows that R 1 (E) = + -, and hence E cannot be of a-finite

It-measure.

Section 3: Reaular and Irreaular Parts of G(f:D)

We apply the classical theory of 1-sets to obtain a

decomposition of G(f:D) into a regular part, an irregular part,

and a negligible part. A brief self-contained treatment of the

general theory is in Falconer's book [4], Chapters 2, 3, and 6.

If z = (t,x) e I 2 and A c R 2 the upper and lower linear

densities of A at z are defined as

DI(A,z) E lim sup It1(A n B(z,r))/2r,
r4O

and

D,(A,z) a lim inf 10(A n B(z,r))/2r,r4o
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respectively. If A is a 1-set, it is known that D I(A,z) 1 for

Xi-a.a. z in A. If z e A and DI(A,z) = DI(A,z) = 1, then z is

called a regular point of A. Otherwise, z is called an irregular

point of A. The I-set A is called regular (resp. irregular) if

i-a.a. z in A are regular (resp. irregular). If Ar {Z E A:

z is regular} then Ar is a regular 1-set if J1(A r) > 0 while

Ai = A-Ar is an irregular 1-set if II(A ) > 0. See [4], Ch. 2.

Proposition 3.1. Define two subsets of D by

Dr = {t: f'p (t) exists and is finite);

Di = {t: fa (t) does not exist, finite or infinite}.
a ap

(a) Then D and D. are Borel sets with,r a

(3.1) D = Dr U D.

(b) If IDr I > 0, then G(f:D r) is a countable union of regular

1-sets.

(c) If IDII > 0., then G(f:D i ) is a countable union of irregular

1-sets.

Proof. The argument showing that Di is a Borel set is

routine, while fa (t) = ± O implies IDjf(t) = + c. Thus
ap

(t e D: f' (t) = ± 0} 0, and (3.1) follows.
ap

The theorem of Denjoy on the bottom of p. 237 in [12] shows

that the restriction of f to Dr is of generalized bounded
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variation, and in particular there exists a sequence (fn) of

functions of bounded variation on [0,I] with

G(f:Dr) r U G(fn:[O,1]).n

But G(f :[0,lj) is a regular I-set, so the Borel subset,n

An  = G(f:D r) n G(f n:[0,1])

of G(f :[0.I]) is a regular i-set orn

1(t e Dr: f (t) = f(t)}I = 0,r n

see [4], p. 26.

The proof of (b) is completed by invoking the elementary

fact that a measurable subset of a regular set is regular, [4],

p. 26.

To prove (c), we observe that G(f:Di) £ U G(f:D) il 1/n'
n

where Z is defined as in paragraph one of the proof of

Proposition 2.2. If IDiI > 0, then for some a > 0,

0 < R 1(G(f:Di) n r-a) < N I (ta ) <

and it suffices to show that

Ea G(f:D n) Y.

is an irregular 1-set. If were not irregular, then by

Theorem 3.25 of (4], there would exist a rectifiable curve
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V: {z(s) = (t(s),x(s)): 0 < s < L}, parametrized by arc length

with II (-fn E ) > 0.

We introduce the sets

T, = {s: z'(s) does not exist),

T2 = {s: z'(s) exists and t'(s) 0),

T 3 = (s: z'(s) exists and t'(s) = 0),

and

= {Z(s): s e Ti), i = 1, 2,3.

3
The . are disjoint, Borel measurable, and satisfy Z = U 2.. Weal

must show that I (Zi n Ea) = 0 for each i.

Since Iz(s)-z(o)l _ lo-sl, z is differentiable a.e. and

it ( f E) n IT I = O.

To treat the sets l2 f E , we use the property that for all

rational a and b with a < b if S2 = T2 n s: z(s) e E.) and if

I(ab) IS 2 1 > 0, then T ab {t = t(s) for some s e (ab) I $2i

has positive Lebesgue measure, see [14], Theorem 1, and almost

all s e (a,b) nl S2 are such that t = t(s) is a point of density

of T a,b  For such an s and t = t(s), we have

f/ (t) = lim (f(r)-f(t))/(r-t) = X(s)
ap r-tT--

rET a,b

By definition of DIP f/ (t) exists for no t e D Hence,
ap

Is21 = O, and we have NI(: 2 F E) IS21 = 0.

For z 3 n %, we will show that
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(3.2) D (E, z) > 1 for It-a.a. z e !3 n E
1 a

Since D (E Az) 1 for A -a a z, this implies A1 V-1 E) = 0.

For this end, we note that for t I -a.a. z = (t,x) =

(t(s),x(s)) -E Z3 FtE A

lim Ai(i n n B(zr))/2r.

Fixing M > 0 and setting

C(zM) = O(r'y): ly-xl < MIr-tI},

we see from t'(s) = 0 and x'(s) * 0 that

{o: Io-sl < e. and z(s) c C(z,M)}

is empty provided only that z is sufficiently small.

From this, it follows that

1 = lim f n E fn B(z,r))-C(zM))/2r,
r4.0

for each M < . But z e G(f:D), so IDIf(x) < -, and thus, for

some M <c,

0 < lrm sup m(B(z,r) n C(z,M))/2r
r4O

lim sup X 1 (E f C(z,M) n B(z,r))/2r.
rIO

Thus,

I < lrm sup X1 (E an B(z,r))/2r
rIO

= DI(Ea;P),

which completes the proof. U
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Section 4: Projection Properties of Lf*

We break the measure v f into three parts:

" R(A) -- f(A n G(f:D r)),

" I(A) f f(A n- G(f:D i)),

SJ (A) 5 v f(A n G(f:J)).

Observe that Lf = V R+V I +VJ J . For 8 e [0,2n), the projection

operator P8 mapping 2 prependicularly onto the line L spanned

by 0 and (-Sin e, Cos e) is,

P_(t,x) = x Cos 9 - t Sin 6.a

The corresponding projections of the measures v R' ui , and

are

(A) -E v (P 1(A)),

pIe(A) - i(P 1 (A)),

/JJ (A) w J (P9  (A)).

Note the occupation measure p of f has the decomposition

P = MR, 0 + II, 0 + /J O .

Theorem 4.1. Except for a countable set e8R of exceptional values

of s the measures uR,Q are absolutely continuous. Moreover,

(4.1) (= {: I{x: fap(x) = Tan G)} > 0}.



15

Theorem 4.2. Except for a Lebesgue null set eI of exceptional

values of 8, the measures MI,e are singular, and for all 9, the

measure yi,8 has no discrete part.

Theorem 4.3. For M < c., define

1

FM = {Z: 2 dr < M}.
r

0 r

If ii(F ) > 0, then for a.a. a, the meausre pJ's has a nonzero

absolutely continuous part. If V (G(f:J)-F.) = 0, then for

a.a. e, pJ'8 is absolutely continuous.

Proof of Theorem 4.1. As described in the proof of Proposition

3.1 there exists a sequence f of functions of bounded

variation with

G(f:D ) U G(f :[0,1]).r n
n

Thus, v f is absolutely continuous w.r.t. the measure

00

n== 2 -n v From this, it suffices to consider the special
n=1 n

case when f is a bounded variation and to show in this case that

YR,e (A) = 1(t: -t Sin 8 + f(t) Cos e G A}I

is absolutely continuous unless

l{t: -Sin e + Cos e.f'(t) = 0)1 > 0.
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Since this is satisfied for at most a countable set of 8, the

result will follow. But, by Theorem I of [14], PR,e is

absolutely continuous iff

{t: ~!-[-t Sin e + f(t) Cos e] = 0}) = 0.

This is automatic if Cos a = 0 while for Cos a * 0, this is the

same as

(4.2) 1{t: f'(t) = Tan e}I = 0.

The result follows in this case, and the extension to the general

case is elementary.

Proof of Theorem 4.2. The set G(f:Di) is contained in a

countable union U An of irregular 1-sets. Hence, byn

Besicovitch's fundamental theorem [4], p. 89, IP A nI = 0 for

a.a. e. Letting En = {: IPeAn' > 0) and 8. = U En . we see that
n

whenever a 4 8i the measure pI's is carried by the set U P An
n

which has Lebesgue measure 0. Thus, pI,8 is singular for a.a. e.

If P I, were to have a nonzero atom at y0, then

l{t: -t Sin a + f(t) Cos S = y0)l > 0.

Letting L = {(t,x): -t Sin 9 + x Cos -yo), it would follow

that L n G(f:Di) is a regular I-set, see [4], page 33. This is

impossible, since either IDiI = 0 or G(f:Di) is an irregular

1-set.
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Proof of Theorem 4.3. The proof is easily reduced to the special

case in

2

Lemma 4.4. Suppose that for some M < -, v J(FM) = uJ(I ). Then

for a.a. e, p J,e is absolutely continuous with

dy 2 dy < oo.

Proof. By definition, PJ(, 2 ) < 1, and by hypothesis,

f r ~(p)di,,3 (q) <sup dp dL'(q)
l2 2 p-q pEF f2 Ip-qI

2 IR M  2

du {B(p,r)}
sup fr
PC" F M 0

su Go i(B(p, r)) )

Pe FM f r2
M O

_M+ 2-d

O r

= M+I < -.

Now Kaufman's arguments [7] or [4], Sec. 6.3, show that

f d/j ()d,) 2

0 -.

and the proof is complete.
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Section 5: Perturbations

If we choose 8 = Tan (-a), then the occupation measure p,

of fa (t) = -at+f(t) is related to the projection v f OPe of V by

(P -1A) = p ((Sec e).A).

From this identity and Theorems 4.1, 4.2, and 4.3, we can deduce

at once

Theorem 5.1. Suppose IDr I = 1. Then, except for at most a

countable set of values of a, the function f has local times.

Theorem 5.2. Suppose IDiI = 1. Then, except for a Lebesgue null

set of values of a, the function f has a continuous singular

occupation measure.

Theorem 5.3. Suppose that

1

(5.1)- ds <

0 j(t-s)2+(f(t)-f(s)) 2

holds for a.a. t e [0,1]. Then for a.a. a, f has local times.a

Remark. Corollary 5.2' follows directly from Theorem 5.2 if we

observe that ID l = 1 is equivalent to IJI = 0 and 1(t: f' (t)

e Oap

exists)i I 0.
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The particular perturbation of f by at is not essential in

1
Theorems 5.1, 5.3, and 5.3. In fact, if 9(t): [0,1] -* rI is a

continuously differentiable increasing function with T'(t) > 0

for all t, it is elementary to use the change of variables

u = I(t) and show that

a p(t)+f (t)

will have local times iff the function

au+ffoT- (u)

has local times. From this observation, routine arguments lead

to the following theorems. We will call (P(t) a "regular

perturbation" if (t) is continuously differentiable, not

necessarily monotonic, but with W(x) * 0 a.e.

Theorem 5.4. Suppose Y is a regular perturbation and that

ID I = 1. Then, except for a countable set of X, the functionr

XW(t)+f(t)

has local times.

Theorem 5.5. If (P is a regular perturbation and IDil = 1, then

the function
Alp(t)+f (t)

has a continuous singular occupation measure for a.a.

Theorem 5.6. If T is a regular perturbation, and if
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1
ds

0 ](st)2 (f(s)f(t))
2

holds for a.a. t e [0,1], then XW(t)+f(s) has local times for

a.a. A.

We can now easily prove Corollary 5.2' which was stated in

the introduction. In fact, the assumption Jil = 0 implies

j =, whiie the assumption f' (t) exists almost nowhere implies
ap

IDiI = 1. Invoking Theorem 5.2 gives the result.

Remarks. In the next section, we will give examples which show

that the exceptional sets of a in Theorems 5.5 and 5.6 may be

non-empty.

We also observe there is an obvious gap between the

condition

(5.2) D Vz( ) = 0, a.e. [vf),

and the condition (5.1). We do not know if (5.1) can be replaced

in Theorem 5.3 with the weaker (5.2).

Section 6: The Exceotional Perturbations

It is natural to ask if the exceptional sets of a mentioned

in the theorems of Section 5 may be empty, and if not, can the

conditions be strengthened so that they become empty.
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Example 6.1. An example of a discontinuous function f satisfying

the hypothesis of Theorem 5.2, but with absolutely continuous

occupation measure is easily constructed using ternary expansions

of real numbers. Let

t = X t (t)/3
n

n=1

be the ternary expansion of t with t = 0, 1, 2. Define s (t) byn n

S (t) = 0 if t (t) = 0, S (t) = 2 if t (t) = 1, and s (t) = 1 if

t (t) = 2. Finally, set f(t) = 2 s (t)/3n.
n n=1

Except for the usual problem with triadic rationals the

{tn(t)} are well defined and f(t) is one-to-one. For a triadic

interval I = [k/3 n , (k+l)/ 3 n) the image f(I) = K is another

triadic interval of length 1/3n . Disjoint intervals go into

disjoint intervals and we may conclude that pf(dx) is simply the

restriction of Lebesgue measure dx to [0,I].

Because f maps triadic intervals onto triadic intervals of

equal length, it is clear that for each z = (t,f(t))

1
D 1 f(z) T > 0,

from which it follows that G(f) is a one set.

Finally, to see that IDiI = 1, we only need show that

f/ (t) is undefined for a.a. t.ap

First we suppose that t and n are such that t n(t) = 2. Let

n n
I = [k/3n, (k+1)/3 ) be the triadic interval containing t. Then

n and nfor x z J W' K where J = I - 1/3 adK = I + 1/3 , we have
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f(s) f(t). From this it follows that if f' (t) exists, and if
ap

t (t) = 2 infinitely often, then f' (t) = 0.n ap

On the other hand, if tn (t) = 0 and t e I = [k/3n, (k~l).3n)

then for a! s e K = I + 1 /3n, we have f(s) > f(t)+ (s-t). From

this, it follows that if f' (t) exists and tn (t) = 0 infinitely
apn

often, then f' (t) > 3.
ap

The conclusion that f' (t) does not exist for a.a. t is nowap

clear.

We do not have an example of a continuous function

satisfying the hypothesis of Theorem 5.4 for which pf is

absolutely continuous, although we presume such functions exist.

We do, however, have a strengthening r- ie hypothesis of

Theorems 5.2 and 5.4 for which there are no exceptional sets.

One such result is

Theorem 6.2. If f satisfies

1

(6.1) lim sup Ftf(t+h)+f(t-h)-2f(t)1 = 0,
hLO t

and if f(t) is non-differentiable a.e., then for each CI function

q(t) the function ((t)+f(t) has a continuous singular occupation

measure.

For results of a similar sort and their relation to the

perturbation of the spectrum of certain multiplication operators,

we refer to [10]. In particular, we note here that the
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occupation mesure of P-f is singular for every c function 9

independent of its modulus of continuity.

We also observe that in [13] Sawyer has given an examp2e

a discontinuous function f such that the range of f+ P has measu:re

0 for each C function T.

Proof. Without loss of generality we may assume that 'F and f

both are periodic with period 1. Condition (6.1) is the

definition of Zygmund's space ^ of smooth functions. Thus,

W f E A is non-differentiable a.e. Invoking Theorem 7.1 of [21

yields the desired result.

Remark. Examples of functions in that are non-differential :-'

a.e. are easily given with Lacunary Fourier series, see e.g.,

[16J, p. 47. One such is

%~ n- n
f(t) = X (n .2 ) Cos(2 .27it).

n=1

Non-differentiable functions f in the larger Zygmund space

A = (f: sup 1If(t+h)+f(t-h)-2f(t)I < a*) n C,

t,h>O

satisfy the hypothesis of Theorems 5.2 and 5.4, but we do not

know if they satisfy the stronger conclusion of Theorem 6.2. For

more on this, see [2], Section 7.
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Example 6.3. An example of a function f(t) satisfying the

hypotheses of Theorem 5.3 but with singular occupation measure

will be given using known properties of Brownian motion.

We begin by constructing a continuous singular increasing

function F(x) satisfying

(6.2) F(x)-F(y) clx-yfa  for all x,y with Ix-yI < i,

and for some c > 0 and a > 1.

Go
nFor this purpose, let x = X (x)/2 be the dyadic

n=l

expansion of x e [0,I). For p e (%,I), we let F0 (x) be the

distribution function of x which corresponds to the {Xn (x)} being

i.i.d. random variables with P{X 1} = p = -P(X = }

We observe that F is singular, so F6 (x) = 0 a.e. Setting
00

q = I-p, we also note that each dyadic interval [a,b) C [0,1) uf

length 1/2n satisfies

(6.3) qn < F(b)-F(a),
-n .

and that any interval [x,y) of length at least 2.2 will contain

a dyadic interval [a,b) of length 2- n satisfying (6.3). Thus,

for a = -log q/log 2 > 0,

F0 (y)-F 0 (x) I F0 (b)-F 0 (a)

> qn

n= [(. )nl

2 1_ Iy-xl a .
2a
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We now let [xl be the integer part of x e IR and define

F(x) = [x]+F 0 (x-[xl). We observe that (6.2) holds for all x and

y with a = -log q and c = 1/2

Let (B(t): 0 ( t < 1} be standard Brownian motion and

introduce the function

f(t) = F(B(t)).

We claim that f(t) satisfies (5.1) with probability 1. For

this, it suffices to show that

EJJ[f(s-t) 2+(f(s)_f(t)) 2 J]"ds dt.

0 0

Using Fubini's theorem, the stationary increments of {B(s))

and (6.2), it will suffice to show that

k(t) =- E[t 2 + B(t) 2a-%] -

satisfies

1
(6.4) fk(t)dt < -

0
Now

Go= 1 ( 2 2 )a

k(t) I )[t +(tx 2 ) ]-exp(-x2 /2)dx

is not easily computed but is easily bounded. Setting

I = (2-a)/2a and cutting the integral into 3 pieces at 1xi = t

and at 1x1 = 1 gives

k(t) = k1(t)+k2(t)+k3(t),
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where

k (t) < fconst. 1 dx
Ixl<t

= const. t

k2 (t) const, t-a/ 2x-adx
t

< const, t - A.

and

ka(t) < const. t-a i 2 f e-x2/2dx

1

= const. 
t

For 1 < a < 2, we see that (6.4) holds and thus that (5.1) holds,

almost surely.

We now claim that f(t) = F(B(t)) does not have local times.

In fact, since F(x) is singular there is a decomposition of iR

into two Borel sets A and B with

1
i= A U B,

IAI = 0,
and

IF-1(B)j = 0.

Since the distribution of B(t) is absolutely continuous, we know

that with probability 1,

1

I (B(t))dt = 1.0 F1A
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This is equivalent to the assertion that Pf(A) = I and hence Pf

is a singular measure.

Observing finally that a = -log q/log 2 satisfies I < a < 2

1 I
if and only if 4. q . 2, we can formally state:

1 3
For - p < , the function f(t) = F(B(t))

satisfies the condition (5.1) but has with probability 1 a

singular occupation measure.

Remark. This example answers in the negative the question raised

by Geman and Horowitz [5], p. 16. Our function f is a Jarnik

function without local times.

Section 7: Almost Sure Results for Gaussian Processes

We begin with two preliminary results.

Lemma 7.1. Let (X(t): t e IR ) be a real mean zero measurable

stationary Gaussian processes, and define

IDIX(t) = ap lim inf IX(s)-X(t)IIs-tl

Then

p(t) r P(IDJX(t) <--

is independent of t and equals 0 or 1.

Lemma 7.2. Under the hypothesis of Lemma 7.1, the probability

P{ap X'(t) exists) is independent of t and equals 0 or 1.
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Proof of Lemma 7.1. By stationarity p(t) is constant.

To establish that p(t) = 0 or 1, we use the spectral

represen at ion

(7.1) X(t) f 0 e ' XtdW(A),
-00

where (W(A)} is a mean zero complex-valued Gaussian measure on

satisfying W(A) = W(-A), and with finite control measure . for

which

,:(A n B) =_ E W(A) W(B)
and

(7.2) EX(t)X(s) f e (t-s)xL(dx).

We now let

Z n(t) = eit'XdW(x).

n-l<IX I<n

The real Gaussian processes {Zn(t)} are stationary and

independent. Moreover, if

(7.3) Xn(t) = f eit'Xdw(x),

IX K-n
and

Y n(t) = f eit'Xdw(x),
IX l>n

we note that

n
X n(t) = 2 Z I(t) and Yn(t) = Zj(t).J=0 Jn jn+1
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Finally, we comment that each process X n(t) is a real

analytic function of t. In particular, X'(t) exists and isn

finite for each t. Thus, for each n, the event {IDIX(t) < 0}

only depends on the process (Yn(s)}. Or, and this is equivalent,

for each n 0 the event (IDIX(t) < m} only depends on the

JJindependent processes (Z i(s)), i > n. Thus, (IDIX(t) < -) is a

tail event for the sequence {Z.(s)}. By Kolmogorov's 0-1 law

P{IDIX(t) < o equals 0 or 1.

Proof of Lemma 7.2. As in the proof of Lemma 7.2, we observe

that {ap X'(t) exists) is a tail event for the sequence {Zn(s)} .

The result then follows from Kolmogorov's 0-1 law.

Lemma 7.. Let {X(t)} be as in Lemma 7.1 and let the spectral

measure L be as in (7.2). Then a necessary and sufficient

condition for P{ap X'(t) exists) = I is

00

(7.4) f 2 (dX) <

Condition (7.4) is known to be equivalent to the existence of L
2

derivatives. That is, (7.4) holds iff

(7.5) lm X(s)-X(t) = X'(t)
s-t

exists in L
2.
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Proof. Assume that P{ap X'(t) exists) = 1. We take t = 0, and

we set Y = ap X(O). Then the assumption

P ~a lim X(t)-X(O) .!t-t

implies for each E > 0,

1/n

lim nfP{ X(t)-X(o)-tY < Et) dt = 1,
n -* w

from which we may conclude there exists a sequence tn O with

Xltnl-X(O)

lim P( n -YI > E) = 0
n

for each E > 0. Thus (1/tn)(X(tn )-X(O)) converges in

probability. But this is a sequence of Gaussian variables which

must converge in L2 if it converges in probability. Thus

sup > o X),(dX) = su [X(t n)-X(O)] 2
Lup f (1-Cos tn ' t

n t n n n
n -o

< *.

Applying Fatou's inequality gives (7.4), but this implies that

the convergence in (7.5) occurs in L2 .

Remark. It is possible to prove versions of Lemma 7.1, 7.2, and

7.3 in considerably more generality. For example: if X(t) is any

process with a series expansion

n
(7.6) X(t) - X n(n (t),

n=1
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and if

(7.7) {Xn) are independent.

and if

(7.8) each (n(t) is continuously differentiable and (P'(t)
n n

has only finitely many zeros,

then for each t, P{JDIX(t) < o) and P{ap X'(t) exist) each will

equal 0 or 1, but they will in general depend upon t.

We now turn to an idea that is originally due to Klein [8],

and which enables us to convert the perturbation results in

Section 5 to almost sure results on stationary Gaussian

processes.

We again assume that X(t) is as in Lemma 7.1, and to avoid

trivialities we assume that X(t) is not constant a.e. with

probability 1. This implies that for some N the process XN(t)

given in (7.3) is not constant and that

PN(t) = EXN(t)XN(O) = f e itX(dX)

IX I<N

is a non-constant real analytic function. Setting

T(t) = PN(t)iPN(O), we observe that XN(O) is independent of

XN(t)-(t)XN(O) since they are orthogonal. If we now set

X(t) = YN(t)+[XN(t)-9(t)XN(O)]

and
X a o),

we have
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Lemma 7.4. A non-constant real stationary L2 continuous Gaussian

process {X(t)} has a representation of the form

(7.9) X(t) = XT(t) 7X(t),

where:

(a) (t) is a C1 function and 9'(t) has isolated zeros,

(b) X is a real random variable with absolutely continuous

distribution, and

(c) {X(t)) is a real stochastic process that is independent

of X.

Theorem 7.5. Let {X(t)} be a real measurable stochastic process

which admits a repr-,.itation of the form (7.9) satisfying

conditions a, b, z.,d c of Lemma 7.4.

Part I. Suppose that for a.a. t e [0,1],

(7.10) P{IDIX(t) < -) = 1 and P{ap X'(t) exists) = 0.

Then, with probability 1, {X(t)) has a singular continuous

occupation measure.

Part 2. Suppose that for a.a. t e [0,1],

1
(7 11 f ((t-s) 2+(X(t)_X(s)) 2 )-%ds <

0

holds with probability 1. Then, almost surely {X(t)) has local

times.
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Proof. Part 1. If (7.10) holds, then Fubini's theorem implies

that for almost all w,

ID11(t) < + for almost all t, and

ap 2'(t) exists for almost no t.

For each w, Theorem 5.5 gives that XW(t)+I(t) has a singular

continuous occupation measure. Parts (b) and (c) of Lemma 7.4

allow the conclusion

P{X p(t)+I(t) has a singular continuous occupation measure} = 1.

Part 2. Without loss of generality, we may assume that

P'(t) > 0 on [0,1]. With this assumption, it follows that

P{f((t-s) 2+(X(t)-I(s)) 2 )-%ds < c} = 1

0

for almost all t in [0,1]. It is now straightforward to apply

Theorem 5.6 and complete the proof.

We specialize part 1 of this theorem to the case of

stationary Gaussian processes.

Prooosition 7.6. Suppose {X(t)) is a real measurable L
2

continuous stationary Gaussian process with

2

(7.12) sup E(X(t)-X(O)) 2 + c,t>O t 2

and

(7.13) P(IDIX(O) < -) = 1.
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Then with probability 1, X(t) has a singular continuous

occupation measure.

Proof. This follows directly from Lemmas 7.3 and 7.4 and Theorem

7.5.

Proposition 7.6 forms the basis of our main probabilistic

result in this paper, Theorem 9.1.

Section 8: A Stochastic Analoaue of the Zyamund Space A

The Zygmund space A of continuous real-valued functions f

on IR I satisfying

0lf11, = sup I (f(t+h)+f(t-h))-f(t)I/h
h>O, t

naturally extends to vector valued functions. Here we introduce

stochastic version of A* that we denote with {SA* DI-1s}

Definition 8.1. An L -continuous real stochastic process

{X(t): t e 1} is in the space SA*-read stochastic A*-if the

semi-norm

(8.1) IIXIl a sup l.!(X(t+h)+X(t-h))-X(t)l 2/h <c.
h>O, t

2  2 %
Here IIXII12 denotes the L norm (EX).
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We will only make use of this space in the context of

stationary processes.

If {X(t)} is stationary, we set

2Ai(h) = EIX(t+h)-X(t)I 2

and
2L2(h) = EIX(t+h)+X(t-h)-2X(t)I

Then

An (h )2
(8.2) sup 2  4(!X! 2

h>O h

and we have

Lemma 8.2. An L 2-continuous stationary Gaussian process is in

sA iff

(8.3) A2 (h) = O(h ) as h 1 0.

We remark that the arguments in [2] generalize to the

vector valued case, and without essential change yield several

useful results concerning SA . In particular we will need the

following two lemmas.

L (see (2], (2.20)). For an interval I = (a,b), we let

1X (t) = --L- [(b-t)X(a)+(t-a)X(b)]

be the linear function interpolating (a,X(a)) and (b,X(b)). If

x e sA,

(8.4) sup IIX(t)-XI(t)1 2  < 211X1s (b-a).
a<t<b
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Lemma 8.4 (see [23, Prop. 2.4). For 0 < a < b < 1,

*

211XII s
(8.5) tfX(b)-X(a)lI 2  [IIX(1)-X(O)11 2 +611XI1s + f log - (b-a).

Finally, we derive some spectral characterizations of

stationary processes in SA

2
Proposition 8.5. Let {X(t)} be an L -continuous process with

covariance function

p(t) = EX(t)X(O)

00

= featXi (dx).

-CO

Then the following are equivalent.

(i) {X(t)} E sA

(ii) For some K1 < ,

f (1-Cos tx)2A(dx) 2 K1t 2

holds for all t > 0.

(iii) sup X 2 A([.)) K2 < 0.

A>0

(iv) For some p > 2,

sup 1 f xPA(dx) = C < o.

X>1 p-2 ' P

Note: If C in (iv) is finite for some p > 2, then C < c for

all p > 2.
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Proof. By Lemma 8.2, (X(t)) e SA iff there is a K <c with

2
2 (t) < Kt for all t.

But
00

%2(t) = f eitx+e-itx-212A(dx)

-00

4) (I-Cos tx) 2 (dx)
-00

and thus (i) is equivalent to (ii).

Assuming (ii) we observe that 2n < x < 2n + I implies
n 1

1-Cos(x/2 ) 1-Cos(1) > 3. Thus

n n+1
(j 2 > (ldx) 1 L([2 ,2n))I2n  A, dx 9

[2 n.2
n + I

and

6([2n,) 9K Z/4 m

m~n

=12 K (-_) 2 ,

12n

from which (iii) follows.

We now show (iji) implies (iv). First note that . is an

even measure, so it suffices to consider

f xPA(dx) const. + pf xP-1 ([x,-))dx,

1 1

where we have used integration by parts. Bringing in (iii) gives
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J xPAidx) < const. + PKJ xp-3dx = °(Xp-2)'
11

which gives (iv).

Assuming (iv) we have

C Xp-2 > xP6(dx) ()PA([Xi2,X))

[X/2, )

As in our proof that (ii) implies (iii), this gives (iii), so

(iii) and (iv) are equivalent.

Finally, we show (iii) implies (ii). We write

co

f(1-Cos tx) 2 Ld) f + f
2

On 14xl < i, we use I-Cos tx < (tx) which gives

2 wi f g

f (1-Cos tx)2 (dx) _ - x 6(dx),

Ix< 1/It Ixi</ItI
2

and by (iv), which follows from (iii), this is O(t ).

For lxi > 1/It1 we simply use (1-Cos tx) 2 < 4 which gives

f (1-Cos tx)2Adx < 8 &([1/t,-))
xi>1/I ti

2
= O(t ),

again by (iil).



39

Section 9: Proof of Theorem 9.1.

We turn now to the proof of our main result, Theorem 9.1,

which is stated in the introduction. We begin with some

preliminary remarks.

in the terminology of Section 8, the process {X(t)} in

Theorem 9.1 is a stationary Gaussian process in SA , but without

L2 derivatives. By Proposition 8.5 we can characterize the

spectral representations of such processes: A process

00

(9.1) X(t) = f eitXW(dx)

with spectral measure 6(dx) satisfies the conditions of Theorem

9.1 iff

(9.2) sup X2 <
A>0

and
00

(9.3) f x 2  ldx) =

hold.

Our method is simply to apply Proposition 7.6. Since

(9.3) is equivalent to (7.12), we only need show that

P{IDIX(O) < 1} = 1, and by Lemma 7.1, it will suffice to show

that

P{IDIX(O) < -*) > 0.

Theorem 9.1 will thus follow from
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Proposition 9.2. If (X(t)} is a measurable stationary Gaussian

process with representation (9.1) and if conditions (9.2) and

(9.3) hold, then for some constant K < - and some sequence Xnto,

(9.4) P{ sup X nX(t)-X(0)l < 2K i.o.} > 0.

n

Proof of Proposition 9.2. Assume the sequence X n  + is given

and introduce the two sequences of processes

/itx />X

Xn(t) = Xn f (e n-l)dW(x),

-n
and

Yn(t) = A f (e n)dW(x)

lxi>
n

For fixed K we introduce the events

Cn(K) = (supXn (t)i K; t [0,1]),

and

Dn(K) = {suplY n(t)I K; t E [0,1]).

Since

X(t/X n)-X(O) = X n(t)+Y n(t),

it will suffice to show that for some K,

(9.5) P(Cn(K) n Dn (K) i.o.) > O.

The difficult part of showing (9.5) is
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Proposition 9.3. For K > 0, the sequence A n may be chosen so• n

that

(9.6) PfC (K) i.o.) = 1.

Assuming this proposition has been established, we note

that the event D (K) is independent of the a-fieldn

7n = o{Xj(s): s E R 1; 1 < j < n}.

By a variant on the Borel-Cantelli Lemma, Lemma 2 on page 86 of

(1], we observe that (9.6) implies

(9.7) P{Cn(K) fn Dn(K) i.o.} > inf P{D (K)).
n

(We remark here that the proof of Lemma 2 in [1] contains an

unfortunate misprint. The last symbol in the proof is B., and itJ

should read Bn+I .)

But

S 2  
2

lyns 2 h n (I-Cos(hx/An)) (dx)
Ixl>A

n

2 0 (n)&
Sup (0) flI-Cos(hx/ An)1(dx)

h

*2
(IXIl) )

Also,

EY (W1)12 < 4"A2.6(X: XI > An
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which by Proposition 8.5 is bounded independently of n. Applying

Lemma 8.4, we may conclude that independent of the sequence AnT.

there is a constant cI such that

21 i s )2

EY n(t)-Y (S)l2 c1 (log it-s It-s)

holds for all t,s e [0,1] with It-sl < %. Since Y (0) E 0, itn

will follow from Garsia's inequality in the form presented, for

example, in [15], p. 49, that

sup E sup IY n(t)l = L < C.
n Ogtgl

It follows from Chebyshev's inequality that

inf P{Dn(K)} > 0
n

holds for all large K. Thus by (9.7), it suffices to prove

Proposition 9.3.

We first establish

Lemma.4. For each K > 0, there exists a sequence A n T- so that

P{IXI. 1 (o)l+lX (O)l < K i.o.} = 1.

Proof. We will work instead with the equivalent sequence of

events

An(K) = {IX'_1 (0) < K and IX'(O)I < K).

We now introduce the sequence
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Z = i f x dW(x)

I <IXI< n

of independent mean zero normal random variables with variances

a' = ( x2 dW(x).

In <lxX nn-i -

But

S itx/X n

X'(t) = i x e dW(x),
n

so that

n
X'(0) = : Z.n j=03

is simply a random walk with non-identically distributed

increments Z..J

Our desired result P{A n(K) i.o.) = 1 is a slight twist on

the usual recurrence criteria for such random walks, and our

proof of Lemma 9.4 is an adaptation of a standard proof [6],

p. 173.

We assume, as we may, that ont

Let d2 be the determinant of the covariance matrix ofn

X' (0) and X'(0). Because of the form of the normal density
n-i n

there are positive constants cI and c2 that are independent of n

but not of K such that

P( c2

(9.8) c- -< P(A (K)) < 2
d n

n n
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But d s where ,2 n 2  and we abbreviate the relation
n n-1i n n 1 j

(9.8) with

(9.9) P(A n(K)) :% 1

Similarly, computing the determinant of the covariance

matrix of the vector (X-(0), X'(0), X'(0), X'(0)), and using

the inequality s2 2 > S2 which follows from the assumption
n m- nn m

c2 twe find

(9.10) P(A (K) n A (K)) < Const.
m n - msnmam n-im

holds for all m and n with 1 m < n-1.

If we now set

Nn = number of j n for which A.(K) occurs.

we have
n n 1

(9.11) E/V= Z P(A (K)) 7
n j=2 J=2 SJ-i J

and
n

EN n= P(A (K) n Ak(K))

n n-1 n
3 7 P(A (K)) + 2 1 1 P(A (K) Ii Ak(K))
J=2 J=2 n=J+2

< const. [ENn +(En) 2].

Schwarz's inequality gives the estimate

EN n X+(P{n>} X)%IV n11 n2
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which when substituted into the above inequality gives: There

exist positive constants A, B, and C which depend only upon K and

2 > 0 such that
1

2
(9.12) 11N n1 2  < AX+B)JIN I1 +CP(Nn>A) - tiNI1 2

n 2 n 2 rl n 2

holds for all A > 1.
2

If ll1 n 2 2 - this implies
n 2

1

(9.13) PA (K) occurs i.o.) - > 0.
n C

But, a closer look at the derivation of (9.12) reveals that if a

is bounded away from 0 and K 4 0, then the constant c in (9.12)

may be taken arbitrarily close to 1.
2.

From (9.11) and (9.13) we may thus conclude: If a1 > 0 and
2

o n then necessary and sufficient for P{A (K) occurs i.o.} = 1 is
n n

00 1
(9.14) 1 = + 00.

n=2 n- ln

Since the condition (9.2) and (9.3) allow us to choose Xnt

in such a manner that (9.14) holds, this completes the proof of

Lemma 9.4.

Our plan now is to show that {Cn(K)} occurs infinitely

often by showing that An (K) occurs infinitely often, and then

estimating the derivatives X"(t). We begin by considering then

conditional expectation of X"(t) given the variables
n

X'(O), ...,X'(0)). Since {X(t)) is Gaussian, we need only

compute the orthogonal projection P X"(t) onto the linear spannn
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sp{X!(O),...,Xn(O)} = sp{Z 1,.... Z}. Observing that the {Z.} are
.1 n n)J

orthogonal N(O,o 2 ) variables

n Z.Xn(t)
P X"(t) = z- z.
nn 2 J

3

Call E Z.X"(t) = a (t). Then the representations
j n n,j

Z i f x dW(x)
X ~<IxI(X J

and

2  ixt/ Xn
X(t) -x e dW(x),

n Ixf(X

-n

give

S () 1 (3
Mnj t 3 Sin(tx/X )6(dx),

n )xjI<IxI<x j

where we have used here that a n, (t) is real and that 6(dx) is a

symmetric measure. Thus we have

(9.15) 0 an 1(t). <. 2t X 4iXn 2 (dx).

In

n (t)

n n" J= a 2

we now estimate the partial sum

n-1 a (t)
EmaxI n n 2 z
0<tl J-1 Ga
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n-1 4 2A  Z.
< E 2 1 x iXn (dx).l I-11

j=1 f I
j-1,

2 2 f1 4 -( xx2
n lxl<n

x n-1

< 2 C 4 (- n  by Prop. 8.5, iv.
n

We thus have:

00

If ( 1-i )2 < , then with Probability 1,
n=2 n

i ~(t)
sup n,j ( Z <K

0<t< l j*-n 2 .

holds for all large n.

Looking now at a n, (t), (9.15) and Proposition 8.5(iv) give

0 < an,n (t) C4 for all t c (0,1], so

Ini (t) Zn = nn(t) (Xn(°)-Xn-(0)) •0 0
n n

2On the set An (K), this is less than 2C4K/o n, which is always

bounded if o2 T and tends to zero if o2too. We formally state this

result as

Lemma .5. If Z(-7--) < a, and if o t-, then for all K > 0,
n
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limn sup 1 I[P X'(t)I[0 = 0 a.s.
n-c* A n(K) nrn

As usual, IA (K) is the indicator function of the set A (K).
nn

Finally, we consider Q X'(t), where
nfn

X'-(t) = P X -(t)+Q Xn (t).
nn n n n

We observe that - X"(t)X'(0) = 0 for I < j _ n, so the process
in n

rQ X-"(t): 0 < t _< 1} is independent of the sigma field

n =n

We let

En (K) = { sup IQ Xn(t)I < K),

o<t<1 n

and we wish to prove that for some K > 0,

(9.16) inf P{En(K)} > 0.
n

But Qn is a projection in L2 (P) with norm 1, so

EIQ Xn(0) 1 2  EIX"(O)2n"

= f 2 - e i n 2A(dx)
Ixl<X n

S C4, by Prop. 8.5(iv).

Similarly,

EIQ X"(t)-Q X'Is)I 2 4 X/n 2A(dx)n n n n <2 (dx)
Ixl X n-n

2
f C4 (t-s)
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Applying Garsia's inequality again gives a constant B <

with

sup E sup IQ Xn(t)-A Xn (O)i < B,
n O<t< n nn

so

E sup IQ Xn(t)I < B+C +1 < '.

0<t< n

Chebyshev's inequality now gives (9.16) for sufficiently

lare K and the independence of E (K) from 9 together with Lemman n

2 of [1] give the desired result:

P{A (K) fl En (K) i.o.} > inf P{E (K)}

> 0,

provided that P{An(K) i.o.} = 1.

Thus we see that Proposition 9.3 will follow if we can

choose X n satisfying both (9.14) and 2(Xn_1iXn)2 < . To see

how this is possible, start with

= 2 f x2A(dx).

Set T(x) = A([x,-)) and integrate by parts to obtain

2 -2x2T(x)I j + 4 x T(x)dx.

But x2 T(x) is bounded by (9.2), so there exist positive constants

A and B such that
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2 ( _o .-A < B f _xJ - X

= B log(Xi /X j)

or

2
-Do.2

C e ~>A j1/A..

If we now choose the a2, so that for all large j,
J
3-.12 2 1/2 l2S < <j 2

then
2 n3/2
n

and

1 I + ~
n>2 Sn-10 n n

while

Xn-1) 2 0 -2D
( -T---J < C Z e n <

n>2' n n>2

The proofs of Proposition 9.3 and Theorem 9.1 are now complete.

Remark. This result shows that a stationary Gaussian process

with spectral measure A satisfying

(9.17) = o(X 2); A -

will either be differentiable or will not have local times. This

result is an extension of the theorem of Lifschitz [9] where

similar results are proven under the hypothesis

= O(A 2/log log A); A -4 0.
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We do not know how sharp our results are, but the example

in the next section shows that (9.17) is not necessary for the

singularity of the occupation measure p.X.

Section 10. A Discontinuous Gaussian Process without Local Times

The question is raised in [5], p. 53, if every

discontinuous stationary Gaussian process has analytic local

times? Here we use the methods of this paper to show the answer

is "no." We exhibit the existence of a stationary Gaussian

process that is discontinuous, but which has singular occupation

measures with probability 1.

We let an > I and Pn > I be two sequences of integers

satisfying the lacunary conditions,

(10.1) an+1 2 an ,  Pn+1 ) 2 C n"

and we let {Xn. Yn, Un. Vn}n I be independent N(0,1) random

variables.

The process which we construct will have the form

Z(t) = X(t)+Y(t),
where

X(t) =n 1 XnCoS a t - Y Sin a nt]
n=1 n n n

and

Y(t) = I c [Un Cos t - Vn Sin nt].
n=1 n n n "

The sequence (Cn) will be required to satisfy
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(10.2) lC i and Ic n12 < 0.

Other relations between {cn}, {an}, and {n} will arise in the

presentation.

We make several observations.

(i) Since Yic 12 < - and I 1/(na2 ) < - both processes X(t)n n

and Y(t) are well defined periodic stationary Gaussian processes.

(ii) A lacumary trigonometric series is bounded if and only

if its coefficients are summable. Since

Zcn{ iUni+IVn1I} = -

with probability 1, the process {Y(t)} will be unbounded on each

interval of positive length.

(iii) A function with a lacunary Fourier series with

frequencies 'a ) and coefficients (fn) and {en} will ben

differentiable on a set of positive measure if and only if both

za 2 le 12 < - and a 2 if 12 < o. Since
n n n n

P((1/n)(IX ni2 +Yni12) = +

the functions X(t) is almost surely non-differentiable almost

everywhere.

(iv) A function with lacunary Fourier with frequencies an

and coefficients en and fn is in X* if and only if

lm an (lenI+Ifn ) = 0.
n-n
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Since P{lim(IX I+IY n)iJ) = 0) = 1, the process X(t) is almost
Sn- n

surely in

For more detail on lacunary series, see [15], sections V.6,

7, and 8.
1

From (iii) and (iv), we see that for any C periodic f the

function f+X is a non-differentiable X function, which by

Theorem 7.1 of [2] has a singular occupation measure yf+X" Our

idea is to separate the two sets of frequencies fa I and {pn}

sufficiently far that from the view of the function X(t), the

function Y(t) looks like a C function.

More precisely, we let

N
(10.3) XN(t) = 2 _ [Xn Cos a t - Y Sin a t]

n=la n n n n nn

N
(10.4) YN(t) = I c [U Cos n t - V nSin p nt].

n=1

We will show that the an, Pn3 and cn may be chosen so that there

exist other sequences Mn T+, mn t+-, and 6 n4O such that for each n

(10.5) P('(t e (0'11: 'X(t)-XM n(" > 26'<2-n>12-n

(10.6) P{{t G [0,11: IY(t)-Ym (t)1 > .1 6n)1 < 2 - n } > 1-2 - n

n

and

(10.7) P(G(n)) > 1-2 -

where G(n) is the event that there exists a compact subset

K S [0.1] such that IKI > 1 -2
-n and the 6 neighborhood of then
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-n

image set (XM +Ym )(K) has total length less than 2 . Together
n n

these three conditions imply that with probability at least

1-3.2 -n there exists a measurable set L c [0,1] of length at

least 1-3.2
- n and such that the length I(X+Y)(L)I is less

-n
than 2n.

We proceed inductively. Set m I = 0 and Ym 0. Let

1 2n  I

a = 2. Replace the a in (10.3) with an and call the resultingn n n
partial sum 1 (t) Because XI(t) = jim XI(t) has a singularAN) ANt)ha(asigua

1
occupation we can find a large M1 and a small 6 < - such that11 2

the event G(i) satisfies P(G(l)) > 1

Now we let

m 1
(10.7) Y1 (t) +Z 1 (UC 2nt - VnSin 2nt]

n=M 1 

Observe that EY (t) = 0 and E(Y (t)) - 1 -4 0 as m 0 0. Thus
m m m-M1

we can choose m = m2 so large that

P{It e [0,1]: IYm M-1 < 1

Next we choose an integer 02 > m2 so that

P( I 21Xn1/2 n < 61/2) > .

n> 02  n 1 4

Now for n = 1,... ,m 2-M1 , set An = 2 n+M1 . Define the

sequencea2 = 2 nfor 1 n5 m and a2 = 2 2 The processn 1o 1n+M 1
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xN2(t) is defined by replacing the sequence {a } with {a2 in the

definition of XI(t). Again we can find a large M2 > 0 and a 6 2IN 2 22

> 0 with 6 < 1 6 for which P(G(2)) > 3
2 2 1

2We define Y (t) by replacing the M in (10.7) with M2.

Choose an m3 > M2 with

P{I1t E [0,1]: IY 2  62) <!- .• .m (t)l ? 6 2 1 < > 78,

and choose 0. > m- so that

P{ I 21X 1/2 n < 67/2) > 7

n> 03  n 622) .

On the interval m2-M < n < (m2 -M1 )'m 3 -M2 ) the sequencen
M 2+n 3

is given by pm -M +n = 2  , and we define a new sequence a n by

3  2 3 n+O 3
an n for n < m1 +(M 2 -02 ) and an+M +(M 2-0 2) = 2 The

pattern should be clear now.

The sequence pn is defined inductively on larger and larger

k
intervals. The sequence an is given by an = lim a n The

1 1
coefficients cn equal mM for 1 n < m2 -M1 , and equal m3M

2 1 3 2

for m2 -M1 < n (m2 -M 1 )+(m3 -M2), etc. That (10.5), (10.6), and

(10.7) are satisfied follows from elementary calculations.
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