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Abstract

We present a general study relating the geometry of the
grapn of a real function to the existence of local times for the
function. The general results obtained are applied to Gaussian
processes. and we show that with probability 1 the sample
functions of a non-differentiable stationary Gaussian process
with local times will be Jarnik functions. This extends earlier
works of Lifschitz and Pitt, which gave examples of Gaussian
processes without local times. An example is given of a Jarnik
function without local times thus answering negatively a question

raised by Geman and Horowitz.
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Section 1: Introduction

Let f: {0,1] - Rl be a Lebesgue function and define the two

measures

(1.1) p(B) = pe(A) = [{t: £(t) € A}|, and

(1.2) v(B) = vg(B) = [{t: (t,£(t)) € B}|.

Here |-] denotes Lebesgue measure on R} and a € B(Rl) is a Borel
set of Rl while B € %(Rz) is a Borel set of Rz. The measure y is

called the occupation measure of f and v will be calied the image
of Lebesgue measure on the graph of f. A fundamental guestion
is, when is p absolutely continuous with respect to Lebesgue
measure? If dpy << dx, then the occupation density du(x)/dx is
called the local time at x. Following [5], we describe this by
saying f has iocal times.

The survey article [5] gave a full account of what was
known concerning the existence of local times in 1980, and raised
several open questions. This paper addresses two areas of
investigation that were raised there. What is the exact role

that the Jarnik condition Jl(t):

ap lim JELEFRIZECOIL

he0 Ihi

plays in the existence of local times? Also, if f(t) has local
times, what can be said about the existence of local times for

perturbed functions fa(t) = f(t)+at?




Our approach to both of these guestions is through
geometric measure theory and consideration of the measure He as a

projection of the measure Ve The general setup here is: for
2

z = (t,x) € R°, the function Pe(z) X Cos 8 - t Sin 8 is viewed

as the orthogonal projection onto the line Le through 0 and

(-Sin 8, Cos 8). The two measures He and v_ are related through

f
the projection Po by the equation

_ -1
Helh) = ve(Py (A)).

Although it is often the case that little is known about the
specific measure ufoPal, there is much classical geometric
information about the family of measures {vfoP;I}.

Two particularly useful results which are both exposed in

Falconer {4], chapter 6, are

Besicovitch (1939). 1If B ¢ R2 is an irregular 1i-set, then for

a.a. 8, lPe(B)I = 0 holds.

Kaufmann (1968). If v(dz) is a finite Borel measure on R2 with

[, e

then for a.a. © the measure uoP;1 is absolutely continuous.

These results can become an effective analytic tool for

discussing the occupation measures Mo of the functions




fa(t) = f(t)+at. The first necessary step here is a simple
change of variables argument. The second key ingredient is the

following geometric lemma proved in Section 2.

Proposition 2.2. Let D = {t: Jl(t) does not hold}. That is,

t e D iff
ap 1im inf ‘f(ttgz_f(t)‘ < o,
h-0
Let
G(f:D) = {(t,f(t)): t € D}

denote the graph of f above D. The set G(f:D) has o-finite
linear Hausdorff measure ﬁl and the restrictions quG(f:D) and
ﬁllG(f:D) to G(f:D) of vf(dz) and ﬂl(dz) are mutually absolutely
continuous. Moreover, if J = [0,1]1-D is the class of Jarnik
points, then each subset E C G(f:J) with uf(E) > 0 has
non-o-finite Al measure.

The following minor modification of Theorem 5.2 is proved

in Section 5.

Corollary 5.2’. Suppose that f is a non-Jarnik function in the
strong sense that |J| = 0 where J = (t: Jl(t) is satisfied}.

Suppose also that the approximate derivative

’ _ f(x+h)-f(x)
fap(x) = ap l1lim h

h-0

exists at most on a set of Lebesgue measure 0. Then, for a.a. «a,
the occupation measures Mo of fa(t) = f(t)+at are purely

continuous singular.




An idea that goes back to R. Klein (1976) allows us to lift
theorems about perturbations to almost sure results about

Gaussian processes. Thus, for example, in Section 9% we prove

Theorem 9.1. Let {X(t): t € Rl} be a real continuous stationary

Gaussian process. Set

&,(h) = ElX(t+h)-X(t) ]2,
and
8,(n) = ElX(t+h)+X(t-h)-2X(t) 2.
if
Al(h)
(1.3) sup 5 = + o,
h>0 h
and
4, (h)
(1.4) sup 5 < ®,
h>0 h

then with probability 1 the occupation measure of {X(t)} is a

purely continuous singular measure.

Remark. It is shown in Section 8 that condition (1.4) has a

®©

spectral equivalent. Namely, if EXtXO = J eit'xA(dA), then (1.4)

=00

is egquivalent to

sup Tza{k: Al > T} < =,
T>0

It is also known that (1.3) is equivalent to
szé(dk) = + «, Thus, examples of measures & which correspond to

{X(t)) satisfying (1.3) and (1.4) are easy to give, e.g..




O(dr) = X !

n#0 Inl

én(dk). Other examples satisfying more stringent

conditions are in [9] and {10].

We now outline this paper.

In Section 2, we derive Proposition 2.2 and related results
concerned with decomposing the graph G(f) of f into a countable
union of l-sets and a piece which is essentially larger than
l-dimensional.

Section 3 looks closer at this decomposition, breaking the
l-set parts of G(f) into a regular piece which is the graph above
the set {t: fép(t) exists} and an irregular piece. Applying the
results of Besicovitch and Kaufman to these pieces in Section 4,
we derive several theorems on the absolute continuity or

singularity of the measures v oP;1 which hold for a.a. e.

f
Section 5 translates the work of Section 4 into the
language of the perturbations fa and their occupation measures

Hy In addition to Corollary 5.2’ and related results we prove

Iheorem 5.3. Suppose that

1
f dt < o

) J(t—s)2+(f<t)-f(s))2

holds for a.a. s € [0,1]. Then, for a.a. a, the function f(t)+at
has local times.

Formally, this result is related to, but distinct from, the
L2 Fourier theory of local times that was explored by Berman

starting in [3}.




Section 6 contains examples showing that the exceptional
sets of a in Theorems 5.2 and 5.3 may not be non-empty. It also
answers in the negative a question raised by Geman and Horowitz
in {5]: Does every Jarnik function have local times?

In Section 7, we turn to probability proper and we show how
an idea of Klein may be used to translate perturbation results
into a.s. theorems about Gaussian processes and other related
processes.

Section 8 presents a class of stochastic processes which
are stochastic analogues of the Zygmund space A* of guasi-smooth
functions. Several spectral characterizations of these processes
are also developed.

Section 9 combines the earlier results, especially those of
Sections 4 and 8 to prove our basic result, Theorem 9.1. The
methods also lead in Section 10 to a further example which
settles in the negative another question from [5]. We exhibit a

discontinuous stationary Gaussian process with no local times.

Secti : ome 0 r
We let f(t) be Borel measurable, and we denote the set of

approximate discontinuities of f with

N =U{t: 1im infl{s: Is-ti < h, 1f(s)-f(t)! < e}|/2h < 1.
£>0 hio0

It is elementary to show that N is a Borel set, and by the
theorem of Denjoy [12], p. 132, |IN|] = 0. Thus, G(f:N) is a Borel

subset of G(f) with uf(G(f:N)) = 0,




Introduce the quantity

1f(t)-f(s)|

IDIf(t) = ap 1im inf t=s] .

s—t

and the set of Jarnik points not in N,
J = {t: [DIf(t) = + «}-N.
The set of points of linear condensation for f is
D = {t: IDIf(t) < «}-N = [0,1]-(J U N).

We also introduce the upper linear density of v_ at z = (t,x)

f

vf(B(z,r))

Dluf(z) = 1im sup 57

rio

Here B(z,r) is the closed disk of radius r and center z. D.v

and |D|f are related by

Lemma 2.1. For x = £f(t) and z = (t,f(t)),

Bluf(z) >0 iff IDIf(t) < o,

Proof. For c¢c > 0 and k = J1+c2,

{(s,f(s)): Is~t]| < r and |[£(s)-£(t)| < cls-t|} ¢ B(z,kr).

Thus |D|f(t) < =« implies that for some c < e,

Is-tl < r and If(s)-f(t)! < clt-si}!l

1im sup i{s: 5T

ri0

0,

vf(B(z,kr))

so lim sup 3T

hi0

> 0 and Dluf(z) > 0.




Conversely, we observe that for 0 < » < 1 and r > O,

{s: (s,f(sj) € B(z,r)}-{s: Is-t! < % T}

¢ {s: Is-tl < r, |£(s)-£(t)] < Zis-tl}.

Thus, Blvf(z) > A implies

lim sup %; [{s: Is~t] < r and |f(s)-f(t)] < % Is-t]}|
ri0

> 0,

4
N >

and

< oo,

>

IDIE(t) <

In Lemma 2 of [11], Rogers and Taylor show that the set

{z: Djve(z) > 0} is a Borel subset of R2. Hence,

G(f:D) = [G6(f) N {z: Dyve(z) > 0}]-G(f:N)

is also a Borel subset of R2.

We now turn to the

Broof of Proposition 2.2. We again invoke the Lemma 2 of [11]

where it is established that there is a finite constant k such

that for each » > 0 and each finite Borel measure m on Rz, the

set €, = {z: D;m(z) > )2} is a 9§, set and satisfies

ﬂl(tx) < % m(R2).

It follows that each open set O ¢ R2 satisfies




o n ) ¢ £meo,

from wnich it follows that the restriction of Rl to CA is

absolutely continuous with respect to the measure n.

Setting m = Ve and taking the union of the sets U

shows that G(f:D) ¢ U{¢C
n

x1 measure and that RIIG(f:D) << v On the other hand, the

obvious inequality uf(B(z.r)) ¢ 2r shows that Ve satisfies

(1/n)

. D \ . - . s
(1/n)° B °? 0; is a Borel set of o-finite

vV, < const. %1 for some constant. Thus ﬂlls(f:D) and uflG(f:D)

f
are eguivalent as claimed.

Finally, suppose E C G(f:J) satisfies vf(E) > 0. Lemma 3
of [11] shows that ﬂl(E) = + o, and hence E cannot be of o-finite

1
X* -measure.

Section 3: Regylar and Irregular Parts of G(f:D)

We apply the classical theory of l1-sets to obtain a
decomposition of G(f:D) into a regular part, an irregular part,
and a negligible part. A brief self-contained treatment of the
general theory is in Falconer's book [4], Chapters 2, 3, and 6.

2 2

If z = (t,x) € R® and A ¢ R, the upper and lower linear

densities of A at z are defined as

BI(A,z) z 1lim sup wlan B(z,r))/2r,
rio
and
D (A,z) = 1lim inf ¥'(A N B(z,r))/2r,

rdo




10

respectively. If A is a l-set, it is known that 51(A,z) ¢ 1 for
#'-a.a. z in A. If z € A and D,(A,2) = BI(A,Z) = 1, then z is
called a regular point of A. Otherwise, z is called an irregular

point of A. The l-set A is called regular (resp. irregular) if

#'-a.a. z in A are regular (resp. irregular). 1If A, {z € A:
z is regular} then A, is a regular l-set if ﬂl(Ar) > 0 while
Ai = A—Ar is an irregular l-set if ﬂl(Ai) > 0. See {41, Ch. 2.

Proposition 3.1. Define two subsets of D by

D, = {t: fap(t) exists and is finite};

D,
1

{t: fép(t) does not exist, finite or infinite}.

{a) Then Dr and Di are Borel sets with,

(3.1) D = Dr u Di'

(b) Iif IDr! > 0. then G(f:Dr) is a countable union of regular
l-sets.

(c) 1f lDil > 0, then G(f:Di) is a countable union of irregular
l-sets.

Proof. The argument showing that Di is a Borel set is

routine, while f;p(t) = + o implies |D|f(t) + ©, Thus
{t € D: fép(t) = + »} = 0, and (3.1) follows.
The theorem of Denjoy on the bottom of p. 237 in [12] shows

that the restriction of f to Dr is of generalized bounded
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variation, and in particular there exists a sequence {fn} of

functions of bounded variation on [0,1] with

G(f:D_) ¢ U G(f_:{0,17).
r n n

But G(fn:[o,l]) is a reguliar l-set, so the Borel subset,

An E G(f:Dr) N G(fn:[O,l])

of G(fn:[o.l]) is a regular l-set or

I{t e D« £ (t) = £(t)}| = 0O,

see [4], p. 26.

The proof of (b) is completed by invoking the elementary
fact that a measurable subset of a regular set is regular, [4],
p. 26.

To prove (c¢), we observe that G(f:Di) c U G(f:Di) i tl/n’
n

where ta is defined as in paragraph one of the proof of

Proposition 2.2. 1If IDil > 0, then for some a > O,
0o < Xg(e:D,) Nt ) < (L) < w
Ui a « ’

and it suffices to show that

E
«

G(f:Di) n fa

is an irregular 1-set. If Ea were not irregular, then by

Theorem 3.25 of [4], there would exist a rectifiable curve
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7: {z(s) = (t(s),x(s)): 0 ¢ s ¢ L}, parametrized by arc length
with #1(« N E) > O.
We introduce the sets
T, = {s: z'(s) does not exist),
T, = {s: z'(s) exists and t’(s) # 0},
T, = {s: z'(s) exists and t'(s) = 0},
and
7, = {z(s): s € Ti}, i=1,2,3.
3
The Z, are disjoint, Borel measurable, and satisfy z = U 21. We
i=1
must show that Rl(zi n Ea) = 0 for each i.
Since |z(s)-z(o)| ¢ lo-s|, z is differentiable a.e. and

< | = 0.

1
To treat the sets 22 n Ea, we use the property that for all

1 4 Z
iz, NE) ¢ IT

rational a and b with a < b if 52 =T, N {s: z(s) € Ea} and if

| (a,b) N 52| > 0, then Ta,b e {t = t(s) for some s € (a.b) N 82}

has positive Lebesgue measure, see [14], Theorem 1, and almost

all s € (a,b) N 82 are such that t = t(s) is a point of density

of Ta b For such an s and t = t(s), we have
/ = - - = x'(s)
fap(t) :i: {£(7) £(t)}/(r-¢) T (s)
reTa’b

By definition of Di‘ f;p(t) exists for no t € D Hence,

g
= 1 =
I52| = 0, and we have X (22 n Ea) < I32| = 0.

For Z, n Ea, we will show that




. = o , 1
(3.2) Dl(na,z) > 1 for ¥ -a.a. z € 73 n Ea'
Since 51(Ea;z) ¢ 1 for ﬂl—a.a. z, this implies ﬂl(ia N Ea)
For this end, we note that for ﬂl-a.a. z = (t,x) =
(t(s).x(s)) € Zy f E..

1= lim xl(zs NE N B(z,r))/2r.
[« §
ri0

Fixing M > 0 and setting
C(z,M) = {(r,y): ly-x] < Mir-t]|},
we see from t'(s) = 0 and x'(s) # 0 that

and z(s) € C(z2,M)}

m

{o: lo—sl <
is empty provided only that ¢ is sufficiently small.

From this, it follows that

1 = 1im ﬁl(za NE N B(z,r))-C(z,M))/2r,
[+
rl0

for each M < ., But z € G(f:D), so |DIf(x) < o, and thus,

some M < o,

O < 1lim sup m(B(z,r) N C(z,M))/2r
rio

A

rio

Thus,

1 < 1im sup X' (E_ N B(z,r))/2r
rio

Dl(Ea‘P)'

which completes the proof.

lim sup ﬂl(Ea N c(z,M) N B(z,r))/2r.

for




14
Section 4: Projectjon Properties of Ve
We break the measure Ve into three parts:
vR(A) = uf(A n G(f:Dr)),
uI(A) = uf(A N G(f:Di)),
uJ(A) = vf(A N G(£:J)).
Observe that uf = UR+UI+UJ. For © € [0,2n), the projection

operator Pe mapping R2 prependicularly onto the line Le spanned

by 0 and (-Sin ®, Cos 8) is,

Pa(t,x) = X Cos &8 -~ t Sin e,

v and

The corresponding projections of the measures V' Y1°

v, are
J

v (Poh(a)),

k2
1]

R(

- -1
A) = v (Pg"(A)),

>
]

-1 -
”J(Pe (A)).
Note the occupation measure y of f has the decomposition

H = Hr,o0*H1,0*Hs5,0°

Theorem 4.1. Except for a countable set 6_ of exceptional values

R
of 8 the measures Hr o are absolutely continuous. Moreover,

(4.1) & = {e: I{x: fép(x) = Tan @}| > 0}.
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Theorem 4.2. Except for a Lebesgue null set ©_. of exceptional

I

values of &, the measures Hi g are singular, and for all e, the
’

measure p. has no discrete part.
b4

e

Theorem 4.3. For M ¢ , define

1 .
/ UJ(B,Z,I‘))

FM = {Z: 5 dr <« M}.
o r
If pJ(Fw) > 0, then for a.a. 8, the meausre 3 @ has a nonzero
absolutely continuous part. If vJ(G(f:J)—Fw) = 0, then for

a.a. 8, is absolutely continuous.

ljJ,e

Proof of Theorem 4.1. As described in the proof of Proposition

3.1 there exists a sequence {fn}:=1 of functions of bounded

variation with

G(f:Dr) < g G(fn:[0,1]).

Thus, Ve is absolutely continuous w.r.t. the measure

[ ]
m=3 2" Ve - From this, it suffices to consider the special
n=1 n

case when f is a bounded variation and to show in this case that

MR g(A) = I{t: -t Sin e + £(t) Cos & € A}

is absolutely continuous unless

|{t: -Sin e + Cos @-f'(t) = 0}| > 0.
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Since this is satisfied for at most a countable set of 8, the
result will follow. But, by Theorem 1 of [14], HRr & is

absolutely continuous iff

) d . ) _
I{t: ggl-t Sin ® + f(t) Cos ®] = 0}| = 0.
This is automatic if Cos 8 = 0 while for Cos 8 # 0, this is the
same as
(4.2) [{t: £'(t) = Tan e)| = 0.

The result follows in this case, and the extension to the general

case is elementary.

roo f Theorem . The set G(f:Di) is contained in a
countable union U An of irregular l-sets. Hence, by

n
Besicovitch's fundamental theorem [4], p. 89, 'PaAnl = 0 for

a.a. e. Letting E_ = {o: IPeAnl > 0} and Qi = g E . we see that

whenever 8 & ®, the measure i e is carried by the set U P

n

i eAn

which has Lebesgue measure 0. Thus, is singular for a.a. 8.

“I,e
If Hi g Were to have a nonzero atom at Yo then

|{t: -t Sin e + f(t) Cos 8 = Yo}l > 0.

Letting L = {(t,x): -t Sin @ + X Cos & = yo}, it would follow
that L N G(f:Di) is a regular l-set, see [4], page 33. This is
impossible, since either IDiI = 0 or G(f:Di) is an irregular

l-set.
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Proof of Theorem 4.3. The proof is easily reduced to the special

case in
Lemma 4.4. Suppose that for some M < «, (FM) = uJ(Rz). Then

for a.a. e, p is absolutely continuous with

J,e

Proof. By definition, yJ(Rz) ¢ 1, and by hypothesis,

f

R

sup —_—
ip-q! Ip-ql
2 peFy 2

A

2 R

g dv {B(p, )}
sup f

peF,, d

" v;(B(p,T))
= sup f - dr

2
peFM o r

5”*Jj
1

M+l < o,
Now Kaufman's arguments [7] or [4], Sec. 6.3, show that

I I ldyJ e(HI d\} de < =,

-0

and the proof is complete.
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Section 5: Perturbations

1

If we choose & = Tan "(-a), then the occupation measure yu
of £ (t) = -at+f(t) is related to the projection v _oP_' of v, oy
v (P_Ya) = u_((Sec e)-A)

f''e = Hy e :

From this identity and Theorems 4.1, 4.2, and 4.3, we can deduce

at once

Theorem 5.1. Suppose IDrl = 1. Then, except for at most a

countable set of values of a, the function fa has local times.

Theorem 5.,2. Suppose IDiI = 1. Then, except for a Lebesgue null
set of values of a, the function fa has a continuous singular

occupation measure.

Theorem 5.3. Suppose that

1
(5.1) j ds < o
0 J(t-s)2+(f(t)—f<s))2

holds for a.a. t € [0,1]. Then for a.a. «a, fa has local times.

Remark. Corollary 5.2’ follows directly from Theorem 5.2 if we
observe that 'Di' = 1 is equivalent to |J| = 0 and |{t: f;p(t)

exists}| = 0.
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The particular perturbation of f by at is not essential in
Theorems 5.1, 5.3, and 5.3. 1In fact, if 9(t): [0,1] » R} is a
continuously differentiable increasing function with ¢/(t) > ©

for all t, it is eliementary to use the change of variables

u = ®(t) and show that
aP(t)+f(t)
will have 1local times iff the function

au+fo I (u)

has local times. From this observation, routine arguments lead
to the following theorems. We will call ¢(t) a "regular
perturbation" if ¢(t) is continuously differentiable, not

necessarily monotonic, but with ¢/’ (x) # 0 a.e.

Theorem 5.4. Suppose ? is a regular perturbation and that

IDrI = 1. Then, except for a countable set of ), the function

AP(t)+£f(t)

has local times.

Theorem 5.5. If ¢ is a regular perturbation and |D = 1, then

iI
the function
AP(t)+£f(t)

has a continuous singular occupation measure for a.a. ).

Theorem 5.6. If ® is a regular perturbation, and if
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}
J o ds <

o J(s-t)2+(f(s>-f(t))2

holds for a.a. t € [0,1], then Ap(t)+f(s) has local times for

a.a. A,

We can now easily prove Corollary 5.2’ which was stated in

the introduction. 1In fact, the assumption |J| = 0 implies
vy = 0, while the assumption fép(t) exists almost nowhere implies
ID.l = 1. 1Invoking Theorem 5.2 gives the result.

b

Remarks. In the next section, we will give examples which show
that the exceptional sets of a in Theorems 5.5 and 5.6 may be
non-empty.

We also observe there is an obvious gap betwéen the
condition

(5.2) D, ve(z) =0, a.e. [v.],

and the condition (56.1). We do not know if (5.1) can be replaced

in Theorem 5.3 with the weaker (5.2).

Section 6: The Exceptional Perturbations
It is natural to ask if the exceptional sets of a mentioned
in the theorems of Section 5 may be empty, and if not, can the

conditions be strengthened so that they become empty.




Example 6.1. An example of a discontinuous function f satisfying

the hypothesis of Theorem 5.2, but with absocliutely continuous

occupation measure is easily constructed using ternary expansions

of real numbers. Let
(-]
t =3 t_(t)/3"
n
n=]1
be the ternary expansion of t with tn =0, 1, 2. Define sn(t) by
sn(t) = 0 if tn(t) = 0, sn(t) = 2 if tn(t) = 1, and sn(t) =1 if
[+ <
t (t) = 2. Finally, set f(t) = I sn(t)/sn.

n=1

Except for the usual problem with triadic rationals the
{tn(t)} are well defined and f(t) is one-to-one. For a triadic
interval 1 = [k/an,(k+1)/3n) the image f(I) = K is another
triadic interval of length 1/3n. Disjoint intervals go into
disjoint intervals and we may conclude that pf(dx) is simply the
restriction of Lebesgue measure dx to [0,1].

Because f maps triadic intervals onto triadic intervals of

equal length, it is clear that for each z = (t,f(t))

B, velz) 2 ;T; > 0,
from which it follows that G(f) is a one set.
Finally, to see that IDil = 1, we only need show that
f;p(t) is undefined for a.a. t.
First we suppose that t and n are such that tn(t) = 2. Let
I = [k/sn,(k+1)/3n) be the triadic interval containing t. Then

for x £ J!! K where J = I - 1/3" and kK = I + 1/3", we have




N
[\

f(s) ¢ f(t). From this it follows that if fép(t) exists, and if

t_ (t) = 2 infinitely often, then f’ (t) = 0.
n ap

On the other hand, if t_(t) = 0 and t € I = [k/3", (k+1)/37)
then for al s € K = 1 + l/3n, we have f(s) > f(t)+%(s-t}). From
this, it follows that if f;p(t) exists and tn(t) = 0 infinitely

often, then fép(t) > %,

The conclusion that fép(t) does not exist for a.a. t is now
clear.

We do not have an example of a continuous function
satisfying the hypothesis of Theorem 5.4 for which He is
apsolutely continuous, although we presume such functions exist.
We do, however, have a strengthening c. .ue hypothesis of
Theorems 5.2 and 5.4 for which there are no exceptional sets.

One such result is

heore 2. If f satisfies
(6.1) lim sup %If(t+h)+f(t—h)—2f(t)l = o,
hi0 ¢t

and if f(t) is non-differentiable a.e., then for each C1 function
¢{t) the function @(t)+f(t) has a continuous singular occupation

measure.

For results of a similar sort and their relation to the
perturbation of the spectrum of certain multiplication operators,

we refer to [10]. 1In particular, we note here that the




occupation mesure of ¥-f is singular for every C1 function ¥
independent of its modulus of continuity.
We also observe that in [13] Sawyer has given an example ¢

a discontinuous function f such that the range of f+¢ has measurs

0 for each C1 function ¢.

Proof. Without loss of generality we may assume that ¢ and f

both are periodic with period 1. Condition (6.1) is the

definition of Zygmund's space ~ of smooth functions. Thus,
.

¢+f € A is non-differentiable a.e. Invoking Theorem 7.1 of [2]

vields the desired result.

x
Remark. Examples of functions in *» that are non-differentialle
a.e. are easily given with Lacunary Fourier series, see e.g.,
[16]), p. 47. One such is

f(t) = £ (n? 2™ lcos(2® 2nt).

n=1
Non-differentiable functions f in the larger Zygmund space

* 1
A = {f: sup £
t,h>0

ff(t+h)+f(t-h)-2f(t)| < «} N C,

satisfy the hypothesis of Theorems 5.2 and 5.4, but we do not
know if they satisfy the stronger conclusion of Theorem 6.2. For

more on this, see [2], Section 7.
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Example 6.3. An example of a function f(t) satisfying the
hypotheses of Theorem 5.3 but with singular occupation measure
will be given using known properties of Brownian motion.

We begip by constructing a continuous singular increasing

function F(x) satisfying

(6.2) F(x)-F(y) 2 clx-yl® for all X,y with |x-y| < 1,

and for some ¢ > 0 and a > 1.

0
For this purpose, let x = X Xn(x)/2n be the dyadic
n=1

expansion of x € [0,1). For p € (%,1), we let Fo(x) be the
distribution function of x which corresponds to the {Xn(x)} being
i.1.d. random variables with P{X = 1} = p = 1-P{X = 0}.

We observe that F0 is singular, so Fé(x) = 0 a.e. Setting

q = 1-p, we also note that each dyadic interval {a,b) © [0,1) of

length 1/2n satisfies

n

(6.3) q F(b)-F(a),

(Y

and that any interval (x,y) of length at least 2.2 " will contain
a dyadic interval [a,b) of length 2 " satisfying (6.3). Thus,

for a = -1og gq/log 2 > O,
FO(Y)-FO(X) 2 Fo(b)-Fo(a)

> q°

1l na
[(5) ]

l& |y~-x|
2

a

"
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We now let [x] be the integer part of x € R! and define
F(x) = [x]+F0(x—[x]). We observe that (6.2) holds for all x and
¥y with a = -log g and ¢ = 1/2“.

Let {B(t): 0 ¢ t ¢ 1} be standard Brownian motion and

introduce the function
f(t) = F(B(t)).

We claim that f(t) satisfies (5.1) with probability 1. For
this, it suifices to show that

=%

E ds dt.

C —

11
[tis-t)2+(t(s)-£(1)) 2]
0]

Using Fubini's theorem, the stationary increments of {B(s)}

and (6.2), it will suffice to show that

K(t) = E[t2+|B(t)| 2% 7% ™%
satisfies
1
(6.4) Ik(t)dt < o,
0
Now
k(t) = 1 I[t2+(tx2)a]_*exp(-xz/Z)dx
Jan 7

is not easily computed but is easily bounded. Setting
1 = (2-a)/2a and cutting the integral into 3 pieces at [x| =t

and at |x| = 1 gives

K(t) = Kk (£)+Kk,(t)+k (t),




where
- const.
k. (t) ¢ ——— f 1 dx
1 t o
IxI<t
= const. t %,
1
k,(t) ¢ const, j ™%/ 24 % ax
t7
v-1
¢ const. t .
and
o0
-x/2 —x2/2
ks(t) < const. t J e dax
1

const. t %72,
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For 1 < a < 2, we see that {(6.4) holds and thus that (5.1) holds,

almost surely.

We now claim that f(t) = F(B(t)) does not have local times.

In fact, since F(x) is singular there is a decomposition of R

into two Borel sets A and B with

R” =AU B,

[Al = o,
and

IF"1(B)I = o.

Since the distribution of B(t) is absolutely continuous,

that with probability 1,

j 1 _,  (B(t))dt = 1.
F

1

we know




This is eguivalent to the assertion that yf(A) = 1 and hence He
is a singular measure.

Observing finally that a = -log g/log 2 satisfies 1 < a < 2
if and only if

< q < =, we can formally state:

|
[ ST

For < p < =, the function f(t) = F(B(t))

N bt
wlw

satisfies the condition (5.1) but has with probability 1 a

singular occupation measure.

Remark. This example answers in the negative the question raised
by Geman and Horowitz {5], p. 16. Our function f is a Jarnik

function without local times.

Section 7: ost Sure Result i roc es

We begin with two preliminary results.

Lemma 7.1. Let {X(t): t e Rl} be a real mean zero measurable

stationary Gaussian processes, and define

IX(s)-X(t) |
Is-tli

IDIX(t) = ap lim inf
s—t
Then

p(t) = P{IDIX(t) < =}

is independent of t and equals O or 1.

Lemma 7.2. Under the hypothesis of Lemma 7.1, the probability

P{ap X'(t) exists) is independent of t and equals 0 or 1.




Proof of Lemma 7.1. By stationarity p(t) is constant.
To establish that p(t) = 0 or 1, we use the spectral

representation

-

1) X(t) = f e tawiny,

-0

~)

(

I : : 1
where {W{A)} is a mean zero complex-valued Gaussian measure on K

satisfying W(A) = W(-A), and with finite control measure & for
which
‘ A(A N B) = E W(A) W(B)
and
o
(7.2) EX(t)X(s) = f e (T-8)X8 4y,
—oo

We now let

Z (t) = f et Xaw(x).
n-1i<idi¢n
The real Gaussian processes {Zn(t)} are stationary and

independent. Moreover, if

(7.3) X (t) = I et Xaw(x),

IAl¢<n
and

Y (t) = j el Xaw(x),
IXI>n
we note that
n

X (t) =X 2,(t) and Y (t) = T Z,(t).
n j=0 J n jen+1 3




Finally, we comment that each process Xn(t) is a real
analytic function of t. 1In rarticular, Xé(t) exists and is
finite for each t. Thus, for each n, the event {|DIX(t) < )}
only depends on the process {Yn(s)}. Or, and this is equivalent,
for each n > 0 the event {!D!/X(t) < *} only depends on the
independent processes {Zj(s)}, j > n. Thus, {IDIX(t) < »} is a
tail event for the sequence {Zj(s)}. By Kolmogorov's 0-1 law

P{IDIX(t) < =} equals 0 or 1.

oof o© emma 7.2. As in the proof of Lemma 7.2, we observe

that {ap X’(t) exists} is a tail event for the sequence {Zn(s)}.

The result then foilows from Kolmogorov's 0-1 law.

Lemma 7.3. Let {X(t)} be as in Lemma 7.1 and let the spectral
measure & be as in (7.2). Then a necessary and sufficient
condition for P{ap X'(t) exists} = 1 is

o0

(7.4) IAZA(dA) < w,

-0

Condition (7.4) is known to be equivalent to the existence of L2

derivatives. That is, (7.4) holds iff

X(s)-X(¢t) /
(7.5) lim —————= = X' (%)
st s-t

exists in Lz.
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Proof. Assume that P{ap X’'(t) exists} = 1. We

take t = 0, and
we set Y = ap X'(0). Then the assumption
P{ap 1im Z{EIZKO) - vy oy
t-0
impiies for each ¢ > 0,
1/n
lim nJP{IX(t)-X(O)—tYl < et) dt = 1,
n—+o 0

from which we may conclude there exists a sequence tn$0 with

X(tn)—X(O)

1im B{|—2—— -¥| > ¢} = 0
n-+» n

for each ¢ > 0. Thus (1/tn)(X(tn)-X(0)) converges in
probability.

But this is a sequence of Gaussian variables which

must converge in L2 if it converges in probability. Thus

(- -]

t

sup 35 J(l-Cos tnA)A(dk) = sup E
t n
n

[X(tn)-X(O)}2
n n
—00

< o,

Applying Fatou's inequality gives (7.4), but this implies that

the convergence in (7.5) occurs in L2.

Remark. It is possible to prove versions of Lemma 7.1, 7.2, and

7.3 in considerably more generality. For example: if X(t) is any

process with a series expansion

n
(7.6) X(t) =X X ¢ (t),
n=y PR




31

and if

(7.7) {Xn} are independent.

and if

(7.8) each @n(t) is continuously differentiable and ¢A(t)

has only finitely many zeros,

then for each t, P{|D|X(t) < »} and P{ap X'(t) exist} each will
equal O or 1, but they will in general depend upon t.

We now turn to an idea that is originallily due to Klein [8&],
and which enables us to convert the perturbation results in
Section 5 to almost sure resulits on stationary Gaussian
processes.

We again assume that X(t) is as in Lemma 7.1, and to avoid
trivialities we assume that X(t) is not constant a.e. with
probability 1. This implies that for some N the process XN(t)

given in (7.3) is not constant and that

pylt) = EX (£)Xy(0) = j elta(an)
INISN

is a non-constant real analytic function. Setting
P(t) = pN(t)/pN(O), we observe that XN(O) is independent of

XN(t)-¢(t)XN(0) since they are orthogonal. If we now set
I(t) = Yy (t)+[Xy(t)=9(t)X(0)]

X = XN(O),

and

we have
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- . 2 . X
Lemma 7.4. A non-constant real stationary L~ continuous Gaussian

process {(X(t)} has a representation of the form

(7.9) X(t) = XP(t)+Z(t),

where:

(a) P(t) is a C1 function and 9‘(t) has isolated zeros,
(b) X is a real random variable with absolutely continuous

distribution, and
(c) {Z(t)} is a real stochastic process that is independent

of X.

eor 7.5. Let {X(t)} be a real measurable stochastic process
which admits a repr-.r.atation of the form (7.9) satisfying
conditions a, b, ¢..d ¢ of Lemma 7.4.

Part 1. Suppose that for a.a. t € [0,1],
(7.10) P{ID|X(t) < »} = 1 and P{ap X'(t) exists} = 0.

Then, with probability 1, {X(t)} has a singular continuous
occupation measure.
Part 2. Suppose that for a.a. t € [0,1],
1
(7.11) I((t-s)2+(X(t)—X(s))2)'*ds <
0
holds with probability 1. Then, almost surely {(X(t))} has local

times.




roof. Part 1. 1If (7.10) holds, then Fubini's theorem implies

that for almost all w,

IDIZ(t) < + for almost all t, and

ap Z'(t) exists for almost no t.

For each w, Theorem 5.5 gives that A¢(t)+Z(t) has a singular
continuous occupation measure. Parts (b) and (c) of Lemma 7.4

allow the conclusion
P{X9(t)+Z(t) has a singular continuous occupation measure} = 1.

Part 2. Without loss of generality, we may assume that

¢’(t) > 0 on [0,1). With this assumption, it follows that

d
B[ ((t-5)2+(z(t)-2(s)) %) Has < =) =1
0
for almost all t in [0,1]. It is now straightforward to apply
Theorem 5.6 and complete the proof.
We specialize part 1 of this theorem to the case of

stationary Gaussian processes.

Propogition 7.6. Suppose {X(t)} is a real measurable L2

continuous stationary Gaussian process with

E(X(t)-X(0))% _

(7.12) sup 3

t>0 t

+ o,
and

(7.13) P{IDIX(0) < »} = 1.
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Then with probability 1, X(t) has a singular continuous

occupation measure.

Proof. This follows directly from Lemmas 7.3 and 7.4 and Theorem

7.5.

Proposition 7.6 forms the basis of our main probabilistic

result in this paper, Theorem 9.1.

ection 8: c mund ac
*
The Zygmund space 1 of continuous real-valued functions f
on Rl satisfying

£l = sup |3 (£(t+h)+£(t-h))-£(t)|/h
h>0, t

naturally extends to vector valued functions. Here we introduce

* * *
a stochastic version of A that we denote with {sA ,H-Hs}.

Definition 8.1. An L2-continuous real stochastic process

1 * R £ .
{X(t): t € R"} is in the space SA —read stochastic A —if the
semi-norm

(8.1) lleI; shsup Il%(X(t+h)+X(t—h))-X(t)llz/h < oo,
>0, t

Here HX"2 denotes the L2 norm (EXZ)*.




We will only make use of this space in the context of
stationary processes.

If {X(t)} is stationary, we set

&,(h) = EIX(t+h)-X(t) 17,
and

&,(h) = E|X(t+h)+X(t-h)-2X(t) 2.
Then

A,(h) % 2
(8.2) sup 5 = 4(”X”s) ,
h>0 h
and we have
Lemma 8.2. An L2-continuous stationary Gaussian process is in
*

sA iff
(8.3) 8,(h) = o(h®) as h i o.

We remark that the arguments in [2] generalize to the
vector valued case, and without essential change vyield several
*
useful results concerning SA . 1In particular we will need the

following two lemmas.

Lemma 8.3 (see [2], (2.20)). For an interval I = (a,b), we let

1

=3 [(b-t)X(a)+(t-a)X(b)]

X () =

be the linear function interpolating (a,X(a)) and (b,X{(b)). If
X e SA*,

(8.4) sup IIX(t)-X (), ¢ 20Xl (b-a).
a<t<b




Lemma 8.4 (see [2], Prop. 2.4). For 0 ¢ a < b ¢ 1,

. 2lxI L
(8.5) HX(b)-X(a)N2 < [HX(I)—X(O)H2+6HXHS + Tog 2 log ETSJ(b'a"

Finally, we derive some spectral characterizations of

*
stationary processes in SA .

Proposition 8.5. Let {X(t)} be an L2-continuous process with

covariance function

p(t) EX(t)X(0)

(-

jeitxA(dx).

-

Then the following are equivalent.
*
(1) {X(t)} € s .

(ii) For some Kl < oo,

-~

I (1-Cos tx)2a(dx) ¢ K, t2

1

-00

holds for all t > 0.

(111) sup V28 ([).»)) = K, < .
Y

(iv) For some p > 2,

1 P - -
sup — J xFA(dx) = C_ < w,
x>1 AP~2 P
PIRQ)

Note: If Cp in (iv) is finite for some p > 2, then Cp < «» for

all p > 2.
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«
Proof. By Lemma 8.2, {X(t)} € SA iff there is a K < » with

8,(t) Kt? for all t.

But

8,0t

o0
fleltx+e°1tx-2|2A(dx)
-Q0

(-]

4](1-005 tx) 2 (dx),

-0

and thus (i) is equivalent to (ii).

Assuming (ii) we observe that 2n < X < 2n+1 implies
1-Cos(%/2") » 1-Cos(1) » %. Thus
n . n+l
-1 .2 I 1 ([2,2 })
kl( n) - ; 9 A (dx) 9
2 n .n+l
[27.2 )

and

a2, »)) < 9K, = 1/4™
mn

., 1 2
12 KI(EH) ’

from which (iii) follows.

We now show (iii) implies (iv). First note that & is an

even measure, so it suffices to consider

A A
I xPa(dx) ¢ const. + pJ xp—lﬁ([x.“))dX'
1 1

where we have used integration by parts. Bringing in (iii) gives




A A
J pc.(dx) { const. + pKJ xp—de = o(kp_z),
1

1

gives (iv).

which
Assuming (iv) we have
p-2 p- AP .
Cp A 2 xTa(dx) 2 (5) A([A/2,A)).
{(A/2,A)
s0

our proof that (ii) implies (iii), this gives (iii),

As in
(iii) and (iv) are equivalent.
Finally, we show (iii) implies (ii). We write
©0
2.
J(l—Cos tx)"a(dx) = J + I
-0 IXI<1/71¢1 IxI>1/1¢tl
(tx)?
Oon |4x]| ¢ 1, we use 1-Cos tx < 5" which gives
2 4 4
j (1-Cos tx) " 4a(dx) < e j X &(dx),
Ixi<1/1tl

Ixi<1/1¢tl

and by (iv), which follows from (iii), this is 0(t?).
For |x| > 1/1t! we simply use (1-Cos tx)2 < 4 which gives

I (1-Cos tx)2Adx ¢ 8 8([1/¢t,))

ixi>1/1¢1
= o(t?),

again by (iii).
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Sectio : Proof o e
We turn now to the proof of our main result, Theorem 9.1,
which is stated in the introduction. We begin with some

preliminary remarks.

In the terminology of Section 8, the process {X(t)} in
Theorem 8.1 is a stationary Gaussian process in SA*, but without
L2 derivatives. By Proposition 8.5 we can characterize the
spectral representations of such processes: A process

-

(9.1) X(t) = j el ™y ax)

-

with spectral measure 4(dx) satisfies the conditions of Theorem

9.1 iff
(9.2) sup XZA([x,m)) < o,
A>0
and
o0
2
(9.3) JXA(dX) = o
-0
hold.

Our method is simply to apply Proposition 7.6. Since
(9.3) is equivalent to (7.12), we only need show that
P{ID|X(0) < «} = 1, and by Lemma 7.1, it will suffice to show
that

P{IDIX(0) < «} > 0.

Theorem 9.1 will thus follow from
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Proposition 9.2. If {X(t)} is a measurable stationary Gaussian
process with representation (9.1) and if conditions (9.2) and

(9.3) hold, then for some constant K < « and some sequence XnTm,

(9.4) P{ sup XnIX(t)—X(O)l ¢ 2K i.o.} > 0.
Ogtgl/kn

Proof of Proposition 9.2. Assume the sequence kn t + w is given

and introduce the two sequences of processes

itx/)\n
Xn(t) = An I (e ~-1)dW(x),
legAn
ana
itx/xn
Yn(t) = An f (e ~1)dw(x).
le>kn
For fixed K we introduce the events
C,(K) = {suplxn(t)i < K; te [0,1]},
and
D (K) = {suplY_(t)| < K: t € [0.1]}.
Since

X(t/kn)—X(O) = Xn(t)+Yn(t).
it will suffice to show that for some K,

(9.5) P{C_(K) N D_(K) i.0.} > oO.

The difficult part of showing (9.5) is




Proposition 9.3.

that

(9.6)

For K > 0, the seguence

P{C_(K) i.0.} = 1.

41

kn 1t «° may be chosen so

Assuming this proposition has been established, we note

that the event Dn(K) is independent of the o-field

By a variant o

we oObserv

(1],

(9.7)

(We remark her
unfortunate mi
should read Bn

But

(ny

Also,

¥ o{xj(s); s € Rl; 1 ¢

n

-

n the Borel-Cantelli Lemma,

e that (9.6) implies

inft
n

P{C_(K) N D _(K) i.0.} 2

e that the proof of Lemma 2
sprint. The last symbol in

.)

+1

k2
II*)2 = sup -
ns n h2
lx|>)\n
A ®
{ sup (F_
h -Q0
* 2
< ("X"s) .

2 2
. OA .
ElY, (1)1 ¢ 422.8(x: Ix|

j ¢ n}.

Lemma 2 on page 86 of

in [1] contains an

the proof is Bj, and it

f (1-Cos(hx/xn))2A(dx)

2 J(I-Cos(hx/kn))ZA(dx)

> xn}
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wnich by Proposition 8.5 is bounded independently of n. Applying
Lemma 8.4, we may conclude that independent of the sequence knTw

there is a constant c, such that

1
< s 2 1 2
Elfn(t)—xn(s)l < cl(log—,t_—s, |t‘S|)
holds for all t,s € [0,1] with Jt-s| ¢ %. Since Y (0) = 0, it

will follow from Garsia's inequality in the form presented, for

example, in [15], p. 49, that

"
l"

< o,

sup E sup IYn(t)l
n 0<¢t<1

It follows from Chebyshev's inequality that

inf P{D_(K)} > ©
n

hoids for all large K. Thus by (9.7), it suffices to prove
Proposition 9.3.

We first establish

Lemma 9.4. For each K > 0, there exists a sequence %ntw so that

P{IX _,(0)I+IX (0)] < K i.0.} = 1.

Proof. We will work instead with the equivalent sequence of

events
A (K) = {IX;_,(0)] < K and X (0)| < K}.

We now introduce the sequence
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Zn = 1 j X dW(x)

An_l<lxlghn

of independent mean zero normal random variables with variances

2 _ 2
cn = J x° dW(x).
kn_1<lxlgkn
But
/ oy itx/)\n
Xn(t) = 1J X e aw(x),
lxl<A
n
so that

n
Xn(O) = E zZ.

is simply a random walk with non-identically distributed
increments Zj.

Our desired result P{An(K) i.o.) = 1 is a slight twist on

the usual recurrence criteria for such random walks, and our
proof of Lemma 9.4 1s an adaptation of a standard proof [6],
p.- 173.

We assume, as we may, that aif

Let dﬁ be the determinant of the covariance matrix of

XA_I(O) and XA(O). Because of the form of the normal density

there are positive constants c, and €, that are independent of n

but not of K such that

c c
1 2

== < P(A_(K)) < ==

dn n dn

(9.8)
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_ 2 _ <n 2 < - .
But d = s, _,0 wheres = Zloj, and we abbreviate the relation

(9.8) with

(9.9) P(A (X)) =

Similarly, computing the determinant of the covariance

. ’ ’ 14 / 3
matrix of the vector (Xm—l(o)' Xm(O), xn_l(O), Xn(O)), and using

the inequality sg-si 2 si_m, which follows from the assumption
027, we find
n
(9.10) P(A (K) N A_(K)) ¢ Const.
m n S s o o
m=-1"n-m-1"m n-m

holds for all m and n with 1 ¢ m < n-1.

If we now set

Nn = number of j ¢ n for which Aj(K) occurs,
we have
n n 1
(9.11) EN =2 P(A_(K)) = 2 ’
D=2 j=2 %3-1°3
and
> n
ENS = I P(A_,(K) N A _(K))
n j, k=2 3 k
n n-1 n
¢ 3% P(AJ(K)) + 23 z P(AJ(K) N A (K))
j=2 j=2 n=j+2

2
¢ const. [Eﬂn+(ENn) ].
Schwarz's inequality gives the estimate

EN_ ¢ M (B(N A RINI,
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which wnen substituted into the above inequality gives: There

exist positive constants A, B, and ¢ which depend only upon K and

of > 0 such that

2
2

2 :
(9.12) WA IS < BA+BMIN I +CPL{A >a) 1IN

holds for all » » 1.

If anng - ® this implies

Q|-

9.13) P{A_ (K curs i.o.} »
{ ) {a,(K) oc )2

But, a closer lock at the derivation of (9.12) reveals that if of
is bounded away from O and K § 0, then the constant ¢ in (9.12)
may be taken arbitrarily close to 1.

From (9.11) and (9.13) we may thus conclude: 1If of > 0 and

oﬁf then necessary and sufficient for P{An(K) occurs i.o0.} = 1 is
ot 1

(9.14) z s o + %,
n=2 n-1n

Since the condition (9.2) and (9.3) allow us to choose Antw
in such a manner that (9.14) holds, this completes the proof of

Lemma 9.4.

Our plan now is to show that {Cn(K)} occurs infinitely
often by showing that An(K) occurs infinitely often, and then
estimating the derivatives xg(t). We begin by considering the
conditional expectation of Xg(t) given the variables
{X](0),...,X/(0)}. Since {X(t)} is Gaussian, we need only

compute the orthogonal projection ang(t) onto the linear span
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sp{xl(O),...,Xn(O)} = sp{zl,...,Zn}. Observing that the {Zj} are
orthogonal N(O,o?) variables
n Z.X7(t)
P = J_n
PnX£(t) —‘E 5 Zj.
Jj=1 o .
J
Call E ijg(t) =a, j(t). Then the representations
Zj = i f X dW(x)
Aj_1<|x|5kj
and
ixt/A
X7(t) = - - f x% e D oaw(x),
n A
n IxE¢A
n
give
a (t) =3 j x> sin(tx/)_)b(dx)
n, j Y; n ’
M. L <IxICh, ‘
Jj-1 J
where we have used here that an j(t) is real and that 4(dx) is a
symmetric measure. Thus we have
(9.15) 0 ¢ a_ ,(t) ¢ 2t j x%/3 2 (ax)
: < n,J = n :
A » A
In
n a (t)
P XZ(t) =3 el Zy,
j=1 aj

we now estimate the partial sum

n-1 a (t)
Emax | X —EL%———
0¢t¢l j=1 o
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n-1 Z.
(E2% f o x*n2acax) 12
=L o J
j=1""3
< 37 I x¥a (ax)
Xn I X1 <A
n-1
n-1Y) 2
< 2 04(_Y__) by Prop. 8.5, iv.
n
We thus have:
© -1 2
If I (—5—)° < «, then with Probability 1,
n=2 n
a (t)
sup | T _n.J < K

0<t<1 j#*n o

e N

holds for all large n.
Looking now at an n(t), (9.15) and Proposition 8.5(iv) give

0 ¢ a n(t) ¢ C, for all t € [(0,1], so

4
a (t) & (t)
n,n _ n,n ; i
n n

On the set An(K), this is less than 2C4K/ci, which is always
bounded if oﬁr and tends to zero if oﬁtw. We formally state this

result as

A
Lemma 9.5. If 2(—§Zl)2 < ®, and if a§1~, then for all K > O,
n
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iim sup 1

)Hang(t)H” =0 a.s.
-0

An(h

As usual, 1A (K) is the indicator function of the set An(K).

n -

Finally. we consider ang(t), where

Xg(t) = ang(t)+ang(t).

We observe that Eang(t)Xs(O) = 0 for 1 < j < n, so the process

{ang(t): 0 ¢ t ¢ 1} is independent of the sigma field

S 0= o{E[(0), ..., X (0)}.

We let

- — Vo~ s . -
E (K) = { sup |ann(t)| K},

0¢t<1

[ PN

and we wish to prove that for some K > 0,

(9.16) inf P{E_(K)} > O.
n

But Qn is a projection in L2(P) with norm 1, so

2 2
EIQ X(0)|° ¢ EIXZ(0)|

2 itx/A
=[ ¥ e = MZax)
n

5‘04, by Prop. 8.5(iv).
Similarly,

4
o - Y 2 X 2
EIQxZ(t)-q ¥z(s) 12 ¢ X 1x/g1 % (ax) _
n

1<A
Iselg n

2
< C4 (t-s) .




with

SO

Applying Garsia'’s inequality again gives a constant B < «

sup E sup lan~(t) -A x~(0)| < B,
n  0<t¢1

E sup [Q XI(t)| ¢ B+C +1 < =.
0<¢t<1

Chebyshev's inequality now gives (9.16) for sufficiently

large K and the independence of En(K) from gn together with Lemma

2 of [1] give the desired result:

P{An(K) n E (K) i.0.} 2 inf P{En(K)}

> 0,

provided that P{A (K) i.o0.}

Thus we see that Proposition 9.3 will follow if we can
2

choose Xnt satisfying both (9.14) and Z(Xn_l/kn) < », To see

how this is possible, start with

c. = 2 J A(dx)

J 1’ J

Set T(x) = &([x,~)) and integrate by parts to obtain

A
2 - ax®rx) 1\ 4+ 4 J x T(x)dx.
. *3-1 A A
3-1-"3]

[+

But sz(x) is bounded by (9.2), so there exist positive constants

A and B such that
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A

AL
J
o?-A B f 95
X
AJ-l

= B log(h./>. .
gl 57 J_1)
or
-Dc§
C e > A, ‘A ..
If we now choose the o?, so that for all large j,
32 o g 12,
then
62 ~ n3/2
n
and
1 1
Z & 2 - = 4+ @®,
n;2 sn—lon n
while
A 2 o -2D
z (—%—l] $ CZX e N ¢ ow,
n2z2' n’ n)2

The proofs of Proposition 9.3 and Theorem 9.1 are now complete.

Remark. This result shows that a stationary Gaussian process

with spectral measure & satisfying
(9.17) B([A,®)) = 0(A"2); X oo

will either be differentiable or will not have local times. This
result is an extension of the theorem of Lifschitz [9] where

similar results are proven under the hypothesis

A([),»)) = O(X_z/log log M); )N = o,




We do not know how sharp our results are, but the example

in the next section shows that (9.17) is not necessary for the

singularity of the occupation measure Hy-

Section 10. A Discontinuous Gaussian Process without Local Times

The question is raised in [5], p. 53, if every
discontinuous stationary Gaussian process has analytic local
times? Here we use the methods of this paper to show the answer
is "no." We exhibit the existence of a stationary Gaussian
process that is discontinuous, but which has singular occupation
measures with probability 1.

We let a. > 1 and pn 2 1 be two sequences of integers

satisfying the lacunary conditions,

(10.1) Uhe1 2 2 %y Pavl 2 2 Py

and we let {X .Y .U .V } be independent N(O.1) random

ny1
variabies.

The process which we construct will have the form

Z2(t) = X(t)+Y(1),
where
ot 1
X(t) = X [X Cos a_t ~ ¥ _Sin a_t]},
n=1 a ln n n n n
and

(-]
Y(t) = X cn [UnCos pnt - VnSin pnt].
n=}1

The sequence {cn} will be required to satisfy
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(10.2) Sle | == and Xlc_|? < .
: N .

Other relations between {c_}, {a }, and {p } will arise in the
presentation.

We make several observations.

{i) Since Zlcnl2 < e and X lf(naﬁ) < o« both processes X{t)
and Y(t) are well defined periodic stationary Gaussian processes.

(ii) A lacumary trigonometric series is bounded if and only

if its coefficients are summable. Since

Ete 1{1u_l+1v_1} = «

with probability 1, the process {Y(t)} will be unbounded on each
interval of positive length.

(iii) A function with a lacunary Fourier series with
frequencies {«_} and coefficients {f } and {e } will be
differentiable on a set of positive measure if and only if both

Talle | 12

< o, Since
n n

: 2
< o and Zanlf
2 2
P{Z(1/n) (IX_1°41¥ 1%) = + o} =1,

the functions X(t) is almost surely non-~-differentiable almost
everywhere.
(iv) A function with lacunary Fourier with frequencies a,

and coefficients €. and fn is in R* if and only if

lim an(lenl+lfnl) = 0,
11—e00
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Since P{lim(IXnI+IYnI)/Jn) = 0} = 1, the process X(t) is almost
n-»°

surely in » .

For more detail on lacunary series, see [15], sections V.o,

[o¢]

7, and

From (iii) and (iv), we see that for any C1 periodic f the
function f+X is a non-differentiable )\ function, which by
Theorem 7.1 of [2] has a singular occupation measure Feox® Our
idea is to separate the two sets of frequencies {« } and {£ ]}
sufficiently far that from the view of the function X(t), the
function Y(t) looks like a C1 function.

More precisely, we let

i

1l « I;

n

{X Cos a_t - Y Sin a_t]
n n n n

M2

(10.3) XN(t) =

N
(10.4) Y. .{(t) = E cn[UnCos pnt - VnSJn pnt].

We will show that the Ly pn, and ¢, may be chosen so that there

exist other sequences Mn1+w, mn1+m, and Snlo such that for each n

§ 31 <27 > 1277,

N} b

(10.5) P{I{t € [0,1]: IX(t)-X, ()] >
n

6.3 <27 > 1-271,

[N

(10.6) P{I{t e [0,1]: l¥(t)-¥ (t)]| >
n
and

(10.7) P{G(n)} > 1-271,

where G(n) is the event that there exists a compact subset

n

K ¢ [0.1] such that |K| > 1-2"" and the 6n neighborhood of the




image set (X +Ym ) (K)

n n

M
these three conditions
1-3-2"" there exists a
least 1-3-2 " and such

-n
than 2

We proceed inductively.

al = 2n.
n

partial sum X;(t). Because Xl(t) =

occupation we can find

Replace the «
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n

has total length iess than 2 Together

imply that with probability at least
measurable set L ¢ [0,1] of length at

that the length | (X+Y)(L)| is less

Set m, = Let

0 and Y = 0.
1 m

1

in (10.3) with «~ and call the resulting

iim X
N—»o

28 -

(t) has a singular

and a < % such that

a large M1
1

small 61

the event G(1) satisfies P(G(1l)) > =.

Now we let

1 m
(10.7) Ym(t) = ﬁ

Observe that EY;(t) =

we can choose m = m2

P{It e [0,

Next we choose an

P{ = 21X 1/2" < 6,72} >
n20

Now for n =1, ..

n

seguence aﬁ = 27 for 1

1 2
0 and E(Ym(t))

integer O, 2 m

.,m,~M

2

n
~——[UnCos 2t

. n
M - VnSJn 2 t].

+1 1

-+ 0 as m-+ 0. Thus

m-M

so large that

5
1 1 1 3
1]: |Ym2(t)| > 5_}| < Z} > e

2 2 M, so that

3
1
2

n+M1
2~ My set pn = 2 . Define the

n+0
2 _ 2
1 and an+M1 = 2 .

En<m The process
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Xé(t) is defined by replacing the sequence {a;} with {ai} in the

definition of xé(t). Again we can find a large M2 > 02 and a 62
) . o1 . . 3
> 0 with 82 <3 61 for which P(G(2)) > 1

We define Yi(t) by replacing the M1 in (10.7) with M2.
Choose an m, > M2 with

L .2 . . -
P{I{t € [0,1]: “ma‘”' 2 6,723 < g} > g

and choose O3 > m. so that

P{ X 21X 1/2" < 6,/2) >
n2o,

[ 18]

On the interval m.-M. < n ¢ (mz—Ml)+(m3-M2) the sequence pn

2 1 =
M2+n 5
is given by pm M. +n - 2 , and we define a new sequence al by
2 1
n+0
3 _ 2 3 _ 3
a = al for n ¢ m1+(M2 02) and a = 2 .  The

n+M1+(M2-02)
pattern should be clear now.

The sequence pn is defined inductively on larger and larger

intervals. The sequence «_ is given by a, = lim aﬁ. The
n K00
1
coefficients Sn equal T for 1 ¢ n ¢ m,-M,, and equal v
2 1 3 2
for mz-M1 <n¢ (m2—M1)+(m3-M2), etc., That (10.5), (10.6), and

(10.7) are satisfied follows from elementary calculations.
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