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EULER'S THEOREM FOR POLYNOMIALS

INTRODUCTION

The similarity of the theory of divisibility for integers

and that for polynomials is striking. For example, the Euclidean

algorithm, the formula

(1) (a, b) - ca + db

for the greatest common divisor (a, b) of a and b, the

arithmetic of elements modulo a fixed element m, and the

criterion

(2) a is invertible modulo m iffi (a, m) = 1,

all apply equally well for integers, or for polynomials, a, b,

c, d, and m. Both theories measure the distance of an element

from zero, by the absolute value lal of an integer a, or by

the degree aa of a polynomial a.

This similarity suggests a polynomial analogue to Euler's

pretty theorem on modular arithmetic:

Euler's Theorem. If a and m are integers with (a, m) =

1 and 0(m) = 1(k E Z : 0 < k < Iml, (k, m) = 1)1, then

0(m)=
a - 1 (mod m).

Such an analogue does indeed exist, and the analogy is

almost exact! We begin the next section with a statement of this

analogous theorem. We continue by discussing the related
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concepts, the order of a polynomial f modulo a relatively prime

polynomial m, and the exponent exp(m) of the polynomial m.

We end with some applications of these ideas to the factorization

of polynomials over finite fields. The factorization of

polynomials over the two element field GF(2) is important in

the design of linear feedback shift registers.

EULER'S THEOREM FOR POLYNOMIALS

Theorem 1. (Euler's Theorem for Polynomials). Let

m E K[x], where K is a finite field, and let

o(m) = j(f E K[x] : 0 < af < am and (f, m) = l)1.

Then for any f E K[xJ with (f, m) = 1,

(3) f 0(m) 1 (mod m).

Proof. Let K = K[xl/(m). Then K is a ring and K *m m m
is the group of invertible elements of K . (f, m) = 1 impliesm
that fm = f + (m) E K m*. Since 1K m*1 = o(m), it follows by
Lagrange's theorem that

f '(m) (mn) 1 (mod m).E
m

It should come as no surprise that an immediate corollary is

an analogue to Fermat's Little Theorem:

Corollary I.I. (Fermat's Little Theorem for Polynomials)

Let K be a field of q elements and let g be an irreducible

polynomial over K of degree d. Then f E K~x] implies

(4) fq E f (mod g).
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d
Proof. There are r = q polynomials of degree < d over

K, one of which is 0, so o(g) = r - 1, since g is irredu-

cible. Thus, f 0 0 (mod g) implies (f, g) = 1, so fr- 1

(mod g) by (3), and multiplication by f gives (4).

Otherwise, g I f, and (4) is clear. U

Note that taking f = x in (4) shows that if g is an

irreducible polynomial of degree d over a field K of q

elements, then
d

(5) g I xq - x.

This result can be useful. For example, the negation of (5)

can be used to show that g is reducible in K[x]. A different

and somewhat (the author feels) more complicated derivation of

(5) can be obtained using the properties of splitting fields and

algebraic extensions of K. Then one can use the arithmetic in

K (The facts needed are that aq = a and (u + v) q = ug + v9

for a E K and u, v E K[x].) to show that (f(x))q = f(xq), and

then apply (5) to obtain (4).

One problem in using Theorem 1 is the evaluation of o(m).

Analogy again saves the day: o turns out to be multiplicative!

Theorem 2. Let K be a field with q elements and let

f, g E K[x]. Then:

a. (f, g) = 1 implies o(fg) = v(flo(g).af
b. o(f) q - 1.

c. g irreducible iffi o(g) = q ag .

d. g irreducible, k E N, and r = qag implies

k k-i
0(gk) (r - 1)r
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Proof. a. (This proof is an exact analogue of the author's

favorite proof of the multiplicative property of the arithmetic

totient function. One only needs to replace Z = Z/(n) byn
Kf.) As before, denote Kf = K[x)/(f) and hf = h + (f).

For any f, g E K[x], a : Kfg--+ Kfa Kg : hfg--> (hf, hg) is a

homomorphism into K f K . hfg is in the kernel iffi f I h
and g I h. Therefore, (f, g) = 1 implies ker a = (0), so

Kfg Kfe Kg, Kfg* z (Kf* Kg)* z KfX K*, and

o(fg) = IKfg = lKf*llKg*1 =

as claimed.

af
b. o(f) = IKf* 1 IK f 1 q - 1 since Kf* f f \ (0).

ag
c. g irreducible iffi K * = K \ (0) iffi o(g) = q - 1.

gg
k

d. The polynomial g has degree dk, where d = ag is
dk

the degree of g. There are q polynomials in K[x] with
degree < dk, and q d(k) of these are divisible by g. Thus,

d
if g is irreducible and r = q ,

k dk d(k-1) k k-1
=(g q -q -r .

THE ORDER OP f MODULO m

For relatively prime polynomials f and m over a finite

field K, define the order of f modulo m to be the number

(6) o (f) = min(n E N : fn 1 (mod m)).m

This number exists by Theorem 1.
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Theorem 3. If K is a finite field, f, g, h E K[x],

and (fg, h) = 1, then:

a. f I g implies o f(h) I o (h) I 9(g).

b. (f, g) = 1 implies that Ofg(h) = lcm(of(h), o (h)].

Proof. a. Since o (h) is the order of the element h

in the group K *, it is clear that o (h) I o(g) = fK *1. Now,

0 (h) = n implies that g divides hn - 1, and so f does,
g

also. Thence hn 1 (mod f) and of(h) I n = O (h).

b. Since (f, g) = 1, K fg* a K f* x Kg* , as shown in

the proof of Theorem 2. Hence, o fg(h) is the order of hfg in

Kfg* , which is the order of its isomorphic image (hf, h ) in
fg g

K f* xKg* . The latter is clearly lcm(of(h), o (h)].§

THE EXPONENT OF A POLYNOMIAL

We conclude with some applications of the above. The

exponent of a polynomial f is defined to be the number
n

(7) exp(f) = min(n E N : f I x - 1),

or exp(f) = 0 if the set on the right hand side is empty. Since

f(O) * 0 iffi (f, x) = 1, comparison of (6) and (7) shows

that over a finite field,

(8) exp(f) = of(X) > 0 iffi f(0) * 0.

The exponent of a polynomial over K = GF(2) is of importance in

constructing linear shift register sequences. (See [G].) After

proving the next theorem, we will see that it is also useful in

factoring, or determining the irreducibility, of a polynomial.
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Theorem 4. Let K be a field of characteristic p which

has q elements, and let f, g E K[x] with g(O) * 0. Then:

a. f(0) = 0 iffi exp(f) = 0.

b. f I g implies exp(f) exp(g) I o(g).
ag

c. ag S exp(g) < q - 1.

d. (f, g) = 1 implies exp(fg) = lcm(exp(f), exp(g)].

e. g irreducible implies exp(g) q g - 1.

f. g irreducible implies exp(g ) p rexp(g), where k
r-1 r

and r are positive integers such that p < k S p

g. exp(g) = qag _ 1 implies g is irreducible.

h. g has repeated irreducible factors iffi p J exp(g).

Proof. a. The result is immediate from (8).

b. The result follows from (8) by taking h = x in

Theorem 3.a.
cagC. g :S exp(g) since g I xexp(g) - 1 , and exp(g) : o(g)

_q _ 1 by b. and Theorem 2.b.

d. If f(0) = 0, both sides of the equation give 0. Other-

wise, the result follows from (8) and Theorem 3.b. with h = x.

e, g. The results are immediate from b. and Theorem 2.b,c.
e k

f. Let e = exp(g). Then g x - 1 implies that g I g
r r

(xe - 1) I (xe - 1) = x -1, so exp(g) =e I exp(g k)
r

exp(xep - 1) = epr, by part b. Hence, exp(gk ) = ep with

0 < s < r. Now (e, q) = I by part e., so (e, p) = 1 (since
eq is a power of p) and x - 1 has no repeated roots follows

e -1e-l
from the fact that x - 1 and its formal derivative ex ares

relatively prime in K. It follows that gk I xep -1=

(x e_ 1 )p only if p 5 2 k ; i.e., s = r and exp(gk) = epr.

h. The result follows by d, f, and the proof of f.1
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APPLICATIONS TO FACTORING

7
ExaMUle--. Let K = GF(2) and f =x + x + 1. Taking

congruences modulo f, x 7 x + 1 , 8 x + x , x = (x7)88 8 8x 1 2  25 6

(x + 1) 8  x + 1 x2 + 112 = (x56)2 (x + x + 1) 2

4 2 16 8 2 2 2 4 2 15 3= x + x + 1 , x = (xS) (x + x) = x + x 2 , x x + x,
127 15 112 3 4 2 7so x =(x )(x ) (x + x)(x + x + 1)= x + x .

Hence, exp(f) 1 127, so exp(f) = 127 = 27 - 1 and f is

irreducible by Theorem 4.g.

7 6 2
Example 2. Let K = GF(2) and g =x + x + x + x + 1.k

Take congruences modulo g for x with k = 7, 8, 9, 10, 12,
9 6 1920, and 19 to show x (x + 1) and x x + 1. Thus114 _ x19)6 9 105 _k

x = (x = x and x = 1, but x k 1 for k = 35,38 3 21 19 4
21, and 15 since x 3 x , x 2 1, and x 1 x .

Therefore, exp(g) = 105 = 357.

Since g(0) = g(1) = 1, g has no linear factor, and hence

has no irreducible factor of degree 6. For d = 2, 3, 4, 5, or

7, Theorem 4.e. shows that the exponent of an irreducible factor

of degree d must divide 2d - 1 = 3, 7, 15, 31, or 127 respec-

tively. In view of Theorem 4.e., the factors 7 and 5 of

exp(g) imply g has irreducible factors of degrees d = 3 and
3 3 2

d = 4, respectively. Now x + x + 1 and x + x + 1 are the

only irreducible cubics over K = GF(2): The others all have a

linear factor. Knowing this, it is easy to factor
x7 6 x2 3 x24

g= +x6+x2 x 1 (x 3 + 2+ 1)(x 4 + x + 1).

7 4 2
E. Let K = GF(2) and h = x + x + x + x + 1.

The reader can verify that exp(h) = 42. Thus h has a repeated

irreducible factor by Theorem 4.h. The formal derivative of h

7



is h' = x6 + 1, and the Euclidean algorithm gives
4 2 x2 2

(h, h') =x + X+1 = ( + x + 1)2.

From this it is easy to find the factorization

h = (x2 + x + l)2(x 3 + x + 1).

4
Example 4. Consider the cyclotomic polynomials c5 = x +

3 2 6 x5 x4 3 x2
x + x + x + 1 and c 7 =x +x +x +x + + x + over

K = GF(2). exp(c5) = 5 1 24 - 1 but does not divide 2 - 1

for 1 < d < 4, so c 5  is irreducible. exp(c7 ) = 7 1 2 - 1,

but 7 1 23 _ 1 also, so c7 can have a factor of degree 3. In

fact, c7 = (x
3 + x + 1)(x 3 + x2 + 1). These examples show that

"implies" cannot be replaced by "iffi" in Theorem 4.e or g.

CONCLUSION

Euler's Theorem for Polynomials is completely analogous to

the corresponding theorem for integers, and it provides a power-

ful tool for examining the powers of a polynomial modulo another

polynomial over a finite field. Theorem 3 gives an easy method

for evaluating o(m) for any polynomial m(x), once m(x) is

given as a product of powers of its irreducible factors.

More importantly, knowledge of o(m) gives considerable

information about the factorization of m(x). The related

concepts of the order, o m(f), of a polynomial f modulo the

polynomial m, and the exponent, exp(m), of m, give an

organized method of factoring a polynomial m(x) over a finite

field. The ease of calculating exp(m) makes Theorem 4 especi-
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ally useful for factoring.

The factorization of polynomials over finite fields is

important in coding theory and the design of linear feedback

shift registers. For the latter, one especially wants to find

polynomials over the two element field, GF(2), which are irre-

ducible of prime degree p such that L = 2p - 1 is a Mersenne

prime. (See the corollary to Theorem 3.1 in (G], p. 37, or

Corollary 7 in [W], p. 13.) The examples in the preceding

section show how Theorem 4 applies particularly well to this

situation.

REFERENCES

[G) Solomon W. Golomb, Shift Register Seauences, rev. ed.,

Aegean Park Press, Laguna Hills, CA. (1982).

[W] William P. Wardlaw, A Matrix Model for the Linear Feedback

Shift Register, NRL Report 9179, Naval Research Laboratory,

Washington, DC 20375-5000 (1989)

9


