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L DISCUSSION
We describe the SAIC accomplishments for the final contract period.

Our previous annual report for this contract, N00014-86-C-2147, described

the work performed up to March 9, 1988. Here the period covered is

March 10, 1988 to September 9, 1989. Because of budget considerations

the scale of our program was cut back and the research performed was
undertaken after consultations with the COTR for the Laboratory for

Computational Physics and Fluid Dynamics (LCPFD) of the Naval Research

Laboratory (NRL).

The accomplishments of the program cover three major areas. They

include the development of computer codes to numerically simulate (1)

turbulent flow at a free-surface and (2) inviscid/viscous flows over complex

geometries. The third area concerns the development of numerical

algorithms for multitarget tracking. .

L NUMERICAL SIMULATION OF TURBULENT FLOW AT A FREE-

SURFACE

Introduction
*0 Much of this year's effort was directed at performing a direct

numerical simulation of turbulent flow at a free-surface. There were several

distinct steps taken in this direction and several distinct physical problems

examined. All of the work discussed below was performed at NRL in
* collaboration with Drs. T. Swean, R. Handler, and H. Wang of NRL.

Development of Fast Poisson Solvers Using a Pseudo-Spectral

Algorithm
& At the center of any Navier-Stokes solver using pseudo-spectral

methods are Poisson solvers and Fast Fourier Transforms (FFT). For the
Fourier transforms, the latest version of the FFTs from Cray Research Inc.

were used. For the Poisson solvers, we implemented an algorithm

described by Orszag and Gottlieb (1977) and optimized it for the Cray X-MP

at NRL. These Poisson solvers allow a single non-homogeneous direction
and a single homogeneous direction. Chebechev polynomials are used as
expansion functions in the non-homogeneous direction and trigonometric

functions in the homogeneous direction. In the non-hrmogeneous direction
Neumann, Dirichlet or Robin 1 boundary conditions can be used.

1



Development of a Two Dimensional Navier-Stokes Solver
A two dimensional Navier-Stokes solver was developed as a test bed

for the numerical algorithm. The governing Navier-Stokes equations are
recast into a 4th order equation for the vertical velocity and a 2nd order

equation for the vertical vorticity and the continuity equation is solved
explicitly in the recovery of the streamwise velocity. The equations are
numerically solved after they are Fourier transformed in the streamwise (x)
and spanwise (z) directions and Chebychev transformed in the vertical
direction (y). For a two dimensional simulation the spanwise direction and
the equation for vertical vorticity are omitted.

Additionally, an Orr-Sommerfeld solver was developed to determine
initial conditions for the simulations. Solutions to the Orr-Sommerfeld

equations with the model free-surface boundary conditions indicated that
the open channel, free-surface two dimensional flow is always stable in the
parameter range that we considered. Using the Navier-Stokes solver, a
direct simulation indicated that the flow is also stable to finite amplitude

perturbations.
The Navier-Stokes solver is also being used to perform direct

numerical simulations of a vortex pair interacting with the free-surface. In
this work, done in collaboration with Henry Wang, a velocity field vortex pair
is specified as an initial condition and allowed to propagate to the free-
surface. The model free-surface boundary condition was modified to include
the effects of a surface contaminant. The addition of a surface contaminant
imposed a flow dependent stress on the free-surface. This work is
described in more detail in Appendix A, which will appear in the 9th
International Conference on Offshore Mechanics and Arctic Engineering,
February 18-25, 1990.

Development of a Three Dimensional Navier Stokes Solver
The two dimensional Navier-Stokes solver was converted into a three

dimensional solver by the addition of the equation for vertical vorticity. A
strong emphasis was placed on both the computational speed. or efficiency.
of the computer code and its versatility in terms of the application of
boundary conditions. The program runs at 40 percent of the theoretical
speed of the Cray X-MP. The code was developed to allow both slip and no
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slip boundary conditions and either zero normal velocity or a specified

normal velocity (blowing or sucking boundaries in the parlance of turbulence

research). Much of the effort of the current year will be directed towards

developing new boundary conditions.

Analysis of Free-Surface Turbulent Flow
The incompressible three-dimensional Navier-Stokes equations are

solved for initial and boundary conditions approximating a turbulent open-

channel flow of water at Reh = 3000 where h is the channel depth. Most of

the calculations were performed on a 32x65x64 grid in x, y, z respectively.

This resolution allows six grid points to occur within the viscous sublayer.

In the spanwise and streamwise directions, the grid spacing is

approximately 0.lh and 0.2h respectively. These should be compared to the

physically relevant scales of the low speed streaks in the wall region: lh and

5h, respectively at this Reynolds number. All essential turbulent scales

needed for the determination of most statistical and flow structure
properties have been resolved, as can be determined by comparison to

relevant experimental and numerical results. A subgrid or large eddy model

has not been used. The boundary conditions are periodic in all dependent

variables in the streamwise and span-wise directions. No slip conditions are

used at the channel bottom while the free surface is approximated as a rigid

free slip surface with vanishing shear.

A large number of turbulence statistics are computed in the vicinity of

the free surface and complete determinations of the balances of the exact
Reynolds stress, turbulence kinetic energy, and isotropic dissipation rate

equations are reported for the first time. The results show that while the

turbulence kinetic energy is preserved in the vicinity of the free surface, the

turbulence is redistributed from the vertical component into the two

horizontal components. The vertical vorticity at the free surface is

concentrated in regions elongated in the streamwise direction. This

anisotropic behavior leads to preferential redistribution of the turbulence

kinetic energy into the span-wise component of kinetic energy. The

balances of the streamwise and span-wise components of the turbulence

kinetic energy reveal a reversal in sign of the pressure-velocity correlations

in this region. A physical model has been suggested to explain this behavior.

It is apparent from the kinetic energy and dissipation balances that there
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exist two separate regions near the free surface, a thin viscous layer and a
thicker zone wherein the redistribution of turbulence is more pronounced.
Near surface expansions of the turbulence kinetic energy and isotropic

dissipation rate are determined for use in Reynolds-averaged turbulence
models. A paper describing this work is in preparation and will be
submitted for publication.

HI0. SIMULATION OF INVISCID/VISCOUS FLOWS OVER COMPLEX

GEOMETRIES
The use of unstructured grids for the simulation of high-speed flows

can be found in the literature (see references cited in the appendices). In
the present research effort, we have extended this technology to nearly
incompressible flows, and applied the procedure to simulate inviscid as well
as viscous flows past submarine configurations with all its appendages. One
attractive feature of using triangular or tetrahedral meshes over structured
meshes is that complex geometries can be easily represented. For example,
constructing a structured mesh around a submarine with all its appendages
will require a tedious task of decomposition of the domain. In the present
work, unstructured grids are generated using the advancing front algorithm
of Lohner. The governing equations of flow are solved using the finite-
element version of the Flux-Corrected Transport algorithm (FEM-FCT).
Details of the flow solver can be found in the appendices referred to in this
section.

As a first step, Euler and Navier-Stokes solutions were obtained for
axisymmetric flows. This provided an excellent case to validate the
procedure employed and also a base to build models for predicting turbulent
flows. The procedure was applied to solve a model problem of flow over a
sphere and the computed results were found to be in good agreement with
those found in the literature for both the potential flow case and the case of
viscous flow at Reynolds-number, Re = 100. These are part of the paper
submitted for publication in the IJNMFD journal, which is included here as
Appendix B. Having established the correctness of the procedure, it was
then extended to compute flow over the submarine hull configuration. Grid
refinement studies were conducted for the inviscid flow in order to

40 establish the independence of the flow solution to the chosen grid. Also, a
laminar viscous flow solution for this configuration was obtained for Re =
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1000. The convergence rate for this problem deteriorated considerably, as
would be expected, due to the presence of the small elements in the

boundary layer which are needed to resolve the high gradients present in

the flow variables. Hence, convergence acceleration of the numerical

method was investigated by appropriately sub-stepping the viscous diffusion

terms. It was found that this method of convergence acceleration did not

yield substantial gain because the allowable time-step for the explicit

scheme for low Mach numbers is limited by the speed of sound. For explicit

schemes, the allowable time-step due to the advective terms is given by

A
Atadv <

where A is the minimum cell size, u is velocity and c is the speed of sound.

For low subsonic flows, the allowable Atadv therefore decreases. Hence, this

convergence acceleration procedure should be investigated with the barely-

implicit correction (BIC) scheme.

The procedure was next extended to solve three-dimensional flows.
Results were obtained for inviscid flow over the submarine with sail and

stem appendages at various pitch angles of attack. This work was presented
at the APS meeting in November 1989, and an abstract of this presentation
is included in this report as Appendix C. In order to predict the formation
of vortices and hence the ncise generated by them, it is important to carry
out a Navier-Stokes analysis. Therefore, the viscous diffusion terms were
incorporated into the 3-D version of the flow solver. In the numerical
procedure, these terms were treated as a deferred correction in the second
step of the Taylor-Galerkin procedure. Preliminary coarse grid results of
the fully appended model at a pitch angle of attack of 100 show the presence

of vortices at the Junction of the sail and the hull and also at the tips of the

stem planes. This configuration was also studied at a yaw angle of attack, in
order to predict the forces and moments that will be involved in a

maneuvering submarine. This effort will be presented at the AIAA 28th
Aerospace Sciences Meeting and an extended abstract is attached as

Appendix D.
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1V. ALGORITHM DEVELOPMENT FOR MULTITARGET TRACKING

This section describes the SAIC effort in the application of advanced
computer science algorithms for multitarget tracking. The effort starts with

the notion that near neighbors finding algorithms can be used to help track
objects, and it has evolved into the identification and solution of an
important problem that occurs in state-of-the-art multitarget tracking

algorithms.
The part of the tracking problem we have focused on is the

combinatorial explosion that can occur in gating. The previous year annual
report 2 gives an overview of tracking bottlenecks and it includes suggestions

for efficiency improvements in the various parts, and in particular for gating.
A recent SAIC report3 has detailed descriptions and test results of the

algorithms we have devised for efficient gating performance. The results are
encouraging. A copy of this report is included in Appendix E. In the

following, we outline the essential results.
We have discovered that we can perform gating efficiently if we do

three things: (1) use the characteristics of the Gaussian correlation measure
to obtain a Euclidian search radius from values of the measure. This allows

the use of efficient geometrical computational methods; and it is a
breakthrough because the correlation measure is a function of report and
track covariance distributions as well as on their position distributions. (2)

0 Recognize that once you have a search radius you can use existing fast near-
neighbors finding algorithms to pair the reports to the tracks. (3) In the

case where the observation times of the reports are unequal, use an auxiliary
algorithm that makes "multiple projections" of the search data structures

* and helps the near neighbors finding algorithms retain good overall scaling.

Applying these techniques takes us one significant step forward in
having a correlator/tracker that can process very large numbers of objects,

including SDI scenario numbers of objects, in real time. This is principally
*0 so because the algorithms used to do the gating are designed for optimal or

near optimal scaling, and it can be seen from analysis and data presented in 3

that they approach NInN scaling.

40
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APPENDIX A

Direct Calculation of the Interaction Between Subsurface Vortices and

Surface Contaminant Distributions Using Spectral Methods
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DIRECT CALCULATION OF THE INTERACTION BETWEEN SUBSURFACE VORTICES
AND SURFACE CONTAMINANTS

Paper No. OMAE-90-332

H. T. Wang
Laboratory for Computational Physics and Fluid Dynamics

Naval Research Laboratory
Washington, D.C.

R. I. Leighton
Science Applications International Corporation

McLean. Virginia

ABSTRACT merely serves as the initial condition for the solution of the Navier-
Stokes equations for a no-slip as well as a shear-free bounding surface.

This paper presents a numerical calculation of the evolution of the In both studies, finite differences are used to obtain the spatial deriva-
flow due to a pair of vortices rising toward a boundary surface. A Lives.
spectral method, with transforms in Fourier-Chebyshev space, is used to
solve the two-dimensional incompressible Navier-Stokes equations. In all of the above studies, the principal interest is in the vortex
Three conditions are considered at the surface: the fixed no-slip and flow field away from the surface, which is taken to furnish fixed condi-
shear-free conditions, and a novel variable shear condition due to the tions. In aerodynamic applications, an important example of such a
presence of a nonuniform contaminant distribution. An additional tran- problem is the flow field above the runway due to the vortices left
sport equation for the contaminant concentration is required in this case. behind by departing or landing aircraft. In marine applications, it is of
The computation scheme is stable for low and moderate contaminant interest to ascertain the effect of the free surface on the performance of
concentrauons gradient levels. Contour and line plots of the main and underwater lifting surfaces. More recently, improvements in remote
surface flows generally show the expected result that the variable shear sensing technology using such techniques as synthetic aperture radar and
case lies between the no-slip and shear-free cases. infrared radiometry make it of interest to ascertain the wake features

around a surface or submerged marine vehicle. Thus, the experinental
INTRODUCTION and theoretical determination of the surface elevation features of the

wake due to submerged vortices is currently a field of active interest.
The use of vortex elements is a powerful and convenient method Examples of experimental investigations are those of Sarpkaya [61 and

to model the velocity field in a fluid. These elements may take the Willmarth, Tryggvason, Hirsa, and Yu [7], who study the surface wave
form of points, blobs, sheets, or curved filaments. If bounding walls features caused by the previously mentioned case of a pair of counter
and fluid viscosity are neglected, the resulting fluid velocities are rotating vortices. Examples of numerical studies of this problem are
obtained by calculating the locations of the vortex elements, which those of Yu and Tryggvason (8 and Ohring and Lugt [9). In [8). a
move at the local velocity, and their induced velocities. Thus, the prob- potential flow combined vortex/boundary integral technique is used.
:em reduces largely to kinematics. In the case of a reflecting wall, the while in [91 the Navier-Stokes equations are solved in curvilinear coor-
techniques of complex variables are often used to account for their pres- dinates with finite differences used to calculate the spatial derivatives.
ence. In the case of fluid viscosity, it is necessary to amend the calcu- As may be expected, the presence of the unknown free surface requires
lation methed to account for the diffusion of the vorticity as well as the an iterative procedure at each time step.
creation of vorticiy due to the no-slip condition at the wall. Leonard [1)
and Saffman and Baker (21 have written earlier surveys of the various In this paper, we present the results of a numerical investigation,
analytical and numerical vortex calculation methods while Sarpkaya (31 using the Navier-Stokes equations, of the flow due to a pair of vortices
has written a more recent and comprehensive survey of these methods. approaching a free surface with an unknown boundary condition dif-

ferent from the wave elevation case considered in [8,91. We use a spec-
Methods which consider the basic equations of motion for the fluid tra method, whereby the equations ae solved in Founrier-Chebyshev

are less often used to study vortex motions. These methods model transform space, instead of the previously used finite-difference
more accurately the vortex generation at the bounding surfaces and the methods. It is well known that the Chebyshev transform clusters the
vortex diffusion at the expense of greater computational complexity. calculation points near the wall, where the flow gradients tend to be

0 Examples of this type of approach are the studies of Ersoy and Walker largest. In addition to the fixed no-slip and shear-free conditions at the
[4l and Peace and Riley [5], who consider the case of a pair of counter surface, we consider the novel condition of shear due to the presence of
rotating vortices approaching a bounding surface. In both studies, the an adsorbing surface contaminant, known also as a surfactant. In this
flow fleld is initially divided into an inviscid outer flow and a viscous case. the shear stress is variable and is a function of the constantly
inner flow. In [41, the outer flow serves as a boundary condition for changing surfactant distribution on the surface. The modeling of this
the bundai, Liyer flow near a no-slip wall, while in (51 the outer flow condition requires a transport equation for the surfactant distribution at



the surface and a coupling of the shear stress exerted by this contain- y
minat into the boundary condition at the surface. Instead of using an
iterative procedure due to the varying surface condition, we Lake advan- FREE SURFACE: v a 0. u - 0, or auay , Re ay(ayax
tage of our spectral approach to obtain a technique which gives results
which are comparable in computer time to those for fixed conditions.
This technique is. however, limited to low and moderate contaminant 1.0
shear stress cases.

06.
We start the body of the paper by describing the theoretical 10.5 0.5

approach. This includes a description of the Navier-Stokes equations in 0.75 1.0
rotational form, the dervaton of the fourth-order formulation which
implicitly satisfies the troublesome continuity condition, and the I
transformation of the resulting formulation into Fourier-Chebyshev 2.5 2.5
space. We give the initial conditions for the vortex pair, and the i
dimensions of our computation domain. We describe next the transport LOWER SURFACE: v O. 8uiay- 0
equation for the surface contaminant, the computation technique, and its
liinutations. We then present contour plots of the velocity and vorticity Fig. I - Definition of Initial Vortex Configuration
distributions for the main flow for no-slip, shear-free, and contaminant and Computation Domain
surface conditions. We also present line plots of the evolution of the
velocity, vorticity. and contaminant distributions on the surface for for u. and using Eq.(2) to write 3u/8x as -avlay, the following
these same surface conditions. We conclude the paper by briefly sum- fourth-order equation for v is obtained •
marizing the principal findings.

THEORETICAL APPROACH V 2 vF (4)

Basic Equations
where F is the nonlinear term arising from x ii. given by

By using the initial vortex spacing a. the initial translational velo-

city of the vortex pair V0. and the fluid density p. as reference vari-
ables, the Navier-Stokes equations take the following dimensionless F ,- -a - (vw) (5)
form ax2  aydx

au+ u . Vu - - Vp 2 U + 1) Numerical Solution Procedure
r Re

We advance Eq. (5) in time by using the weighted implicit

where u is the fluid velocity, t is the time. p is the pressure, Crank-Nicholson method for the linear term and the weighted explicit
Adams-Bashforth method for the nondinear term, resulting in the follow-Re =aV11, is the Reynolds number, and ;& is the fluid dynamic viscos- ing equation for the value of v at the new n + I tune step in terms of

ity. For an incompressible fluid, the conservation of mass takes the values at the previous n and n - I time steps
form

V .- O (2) I-"a z v v '. ,e

By using vector identities. Eq. (1) can be put in the following so-called r
rotational form I + 7 -

2  72v + L (3FR - F'- (6)

a_u + X U - VP + _ 72 U  
(3)

aT Re
where a is the siue of the time step. Since we assume the flow not to
penetrate the upper and lower surfaces of our computation domain,where P - p + u • u/2 is the dynamic pressure head and w- V x u shown in Fig. 1, the vertical velocity Y is subject to the following boun-

is the vortacity. As noted by Hussaira and Zang (101, the use of this conditions S
form in Fourier collocation methods, as in our study, conserves kinetic
energy and hence tends to minimize the effect of nonlinear instabilities. . - 0 on y - *1 (7)

Handler. Hendricks. and Leighton (I 1I point out that a number of This means that both the upper and lower boundaries remain flat. We
alternate methods may be used to advance Eqs. (2) and (3) in fue. In allow the horizontal velocity u ad/or its derivative au/ay to be func-coupled methods, the entire system is considered at a given time step. tions of x. Noting that au/ ax - -(asv /8y) from continuity, Eq. (2).
In splitting methods, the time step is split into a momentum step. and a the boundaiy condiuons on u take the following genera] form. expressed
step whereby the pressure is adjusted to satisfy the condition of in terms of v
incompressibility, Eq. (2). We use here an unsplit scheme, whereby
the troublesome term involving P is eliminated and the incompressibility av
condition is implicitly satisfied by going to a higher fourth-order formu- a. - + b* - c. ony- *1 i8)
lauon. The approach implemented here is similar to that proposed by

Kim. Moin, and Moser (121. For the two-dimensional case considered
here, this fourth-order equation may be derived as follows. First, write where a. and b , am given constants and c. are. in general. func-
Eq. (3) in component form for the velocity u in the x-direction and the tions of z. Specializing the eauutme given in [11l to the two- S
velocity v in the y-direction, where x and y are defined in Fig. 1. Then dimensional case., we proceed as follows to solve for v' t

. We
by taking a2 lax2 of the equauon for v and -e/iyax of the equation express Y' as the following sum of three partial solutions



V, - =V;-, ., a- . + 01-v (9) Transformation to Founer.Chebyshev Space

In order to solve the above formulation in transform space, we
Each of the iividuai solutioas satisfies the b d condition given expand v(x.y,) given in Eq.(9) u a senes of exponental functions in
by Eq. (7). while the two boundary conditions given by Eq. (8) deter- the periodic x direction and Chebyshev polynomials in the y direcuon.
mine the unknown coefficients a and a-. To reduce the problem to as follows
second order we introduce the intermediate variable r" which is related
to V by M/2-1 M

v(x,yt) - : 1. (mn,t)exp(ikx)T(y) 14)
r- , VZR, 1  (10) ft,-o ,-o

where M and N + I are the number of grid points in the z and v direc-
The formulation for the paricular solution v which satisfies homogene- tions, respectively, k, - 21rm / is the mth wavenumber in the x
ous boundary conditions but accounts for the nonlinear term F is given direction, and L= = 5 (see Fig. 1) is the length of the computationby domain in the x direction. The grid points x,, and y. are spaced as fol-

lows

I -A V 2  r' 

mI

M 
0ML, MI15a)

J~ + -V'- V2 r +, 1 .. -F" (I1a)

* j J f' + (3F ' - Fy.) (ha) YR " cos(rn/ , n ,0. . N (15b)

0 -b) The Chebyshev polynomials are related to the cosine functions by

T.(y) - cos(n9), a - cos-Y (16)
v °  Oony - *I (lIc)

By rewriting the double sum given in Eq. (14) as the following
- Oony = -J (lId) single sum

M/i2-1

The formulation for the solution v,. which satisfies a nonzero boundary v(x.y,) E k V(m,yaz)ep~ikar) (17)

condition on y = I is given by ,-0

" Z ( 1.a-) we reduce the problem .ver the M x (N + 1) physical points to the
I Me 0 (12a) consideration of the 34 2 transform variables at each time step. In

J terms of the transform .ariables, Eq. (Ila), which is the only equation
which must be advanced in time, takes the form

= ~~(12b) &R

- - k, e i = 'Ie)

V.
"  =Oony * l (12c) aY U I t" .'1

'I. ify - +1 In the above, use has been made of the fact that the operation alx in
- O, if y - -I (12d) physical space corresponds to multiplication by ik. in transform space.

Due to the presence of the nonlinear terms ,and , it is necessary,
at each time step, to inverse transform to physical space. eerform the

Finally, the formulation for the solution v - which satisfies a nonzero operations required to obtain F. and then transform F to get F. We per.

boundary condition oi. - I is given by form these transforms by using standard Fast Fourier Transform tech-
niques. Also, to avoid aliasing errors, whereby energy from modes
outside our range of consideration is placed into lower modes, we use

I V r1+ 0 (13a) the well known de-aliasing technique whereby we consider 3M /2 physi-L - j Vl =0 (a cal points but use only the modes corresponding to M points,

We remark that the transform variable .+ iself contans a
V -vM+1 = I (13b) senes of N + I Chebyshev polynomials (compare Eqs. (14) and (17)).

However. by using recursion relations which relae derivatives of a
S" =Oon y = *I (1 3€) Chebyshev function of order n to neighboring orders, the second denva-

tive in Eq. (1) for the N + I grid points gives rise to two .4uasi-
trdiagonal matrices for the coefficients of the even and odd Chebyshev

0, if y + 13 polynomials (131. Inversion of these matrices is considerably less time
= , if y = -1 d consuming than full matrices of the same order.

Boundary Conditions
We note here that Eqs. (12) and (13) need be solved only once and give
two solutions which may be regarded as independent Gren functions At the lower boundary y - -I we use the shear-free condition
whose coefficients a* and *- are adjusted to satisfy the boundary aul8y = 0 to minimize its effect on the ineractio of the vorices with
conditions given in Eq.(8). the upper boundary, our principal interest. At the upper boundary



y- I we consider three conditions. Two are the sundard fixed shear- in Eq. (22). Secondly. we consider only slow and moderate variations
free and no-slip (m - 0) conditions. as considered in (51. The third is of Y with a. The experimental dam surveyed by Skop. Brown. and
the novel condition of the presence of a surface contaminant which is Lindsley [141 show that the variation of -y with a may be approximated
adsorbed on the water surface. or surfactan. In this case the surface by several line segments, with slopes I A'J which are typically less than
tension on the water surface -f varie a function of the surfactant con- 30 ergs/ig or more than 300 ergsjlg. We use the absolute value sign
centration a. In the case where a varies with z on the surface. Fig. 2 since 4' is a negative number, i.e., -y decreases with increasing a. We
shows that a shear stress occurs, given by find that that we must restrict A'I to be less than approximately 60

ergpig to prevent significant numerical instability. We have been able
au Re a (19) to extend the range of A' by using numerical damping techniques such
ay ax as increasing the value of RP or adding a higher order diffusion term

involving a i4/) in Eq.(21). or (which is most convenient in our spec-

In terms of our formulation, which considers the velocity v in transform tral approach) directly filtering out the higher modes in Eq. (22). We
space. the ..,)os, condition takes the form have not extensively pursued these techniques since we feel that exces-

sively high damping will be needed to stabilize the calculations of the 0
shock-like behavor at the high end of I A' . Also, as shown later, our

a - Rek. . for m = 0. I, 2. M/2 - I (20) results at the upper end of the numerically stable I A'I range already
)Y' "'resemble those for the no-slip case.

Eqs. ([9) and (20) indicate that it is necessary to solve the following Initial Conditions
transport equation for the concentrauon d in order to determine the
shear stress condition at the surface The initial position of our vortices is as shown in Fig. I. For the

Gaussian vortices considered in our study, the voricity wi,, i - 1.2. of

aff I a2a (uo) each vortex is given by
-t R(21) a x(x.y) - - exp -[(x - x,)' + (y - yi)2]/,2 (23)

'hhere R5 = Voa /3 is the Reynolds number for the surfactant, and 0 is
the surfactant diffusion coefficient. We solve Eq. (21) implicitly for the
concentration a but couple it explicitly with the surface velocity u. By where xI = -0.5, x z =+0.5. Y, - Y2 - -0.75. and , - 0.25 is a
using the previously mentioned Crank-Nicholson method for the linear measure of the core size. The unit distance between the vortices and a
diffusion term and the Adams-Bashforth method for the nonlinear con- value of r, - 2w give an initial unit vortex velocity, in accordance with
%ection term, Eq. (21) takes the following form in transform space our nondimensionlization approach, discussed in connection with Eq.

(I). The total vorticity w is given byr '"
I+ -- av _au )

w - r 77-y Wi(4

• ;. ik, •

a. +- (-3uo'a4  ua ) (22) By taking first derivatives of the above equation with respect to x and.y,
- , "and making use of the continuity Eq.(2). we obtain two second-order

Poisson equations for the velocities u and v

It is well known that it is. n general, necessary to solve the boundary aw
condition Fq. '21) or (22) iteratively with the previous formulation for u= - -- (25a)
the main flow until the concentration a calculated for two successively ay
updated values of u agree to within a given error tolerance e. The ()W
boundary condition would, in fact, require repeated calculations of the V9v - + (25b)
main flow. with sharply increased computer cost.

Similar to what we have described for the time stepping procedure, we
Sx. solve these equations in Fourier-Chebyshev transform space for the foi-

lowing boundary conditions. At the lower boundary y - - I.
v - uw18y -0. At thn upper boundary y - +-1. v -u = 0 for'the

d. no-slip case, and v - 8u/8y - 0 for the shear-free and surface con-
UNIT DISTANCE ---- , x tarnant cases. We ne here that the latter two cases have identical

initial conditions since we take the initial surfactant distribution x) to
be uniform.

a dx NUMERICAL RESULTS

Fig. 2 - Shear Stress Due to Nonuniform Surfactant Concentration Calculation Paret e

We perform our calculations over a 32 x 33 grid in the x and y
We have adopted a series of approximations which render the cal- directions, respectively, which corresponds to M - N - 32. The

culation time to be nearly the same as for the fixed shear-free and no- value of Re is taken to be 5000. The dimensions of our computation
slip conditions. First, in order to avoid a mismatch between the time domain, in term of the initial vortex spacing, is 2 units in the y direc-
step requirements for the boundary condition and main flows, we take tion. and 5 unis in thn z direction. Thus are equal to those used in
Ri - Re. We note that numerical values for the diffusion coefficient of (8]. In the following, we firm present contour plots of v. v. and w for S
surfactants are not well known and that for the relatively high Re used the main flow and then line piots of u, j, and w at die surface for van-
in our study (Re - 5000), the value of Rs has only a secondary effect ous times t. We notit dt - I corr'sponds to the time required to

I I I



travel a unit distance at the initial vortex velocity. The results are The differences due to the various surface conditions are larger *n
presented for the no-slip, shear-free, and various surfactant cases. The the case of u, and are largest in the case of w. Figures 4a. b. c respec-
contour plots are shown for A' - -5.4 ergs/4ug. while the line plots are tively show plots of ui for the shear-free, surfactant, and no-slip condi-
shown for four values of A': - 1.8S. - 5.4, - 18. - 54 ergs/;&g. tions at: tN 1.5, while Figs. Sa,b show plots of w for the first two cases

* at r 2.0. Figures 6a, b, c and Figs. 7a. b show corresponding
Contour Plots of Main Flow results for the vorticity w~ at: tN 1.5 and 2.5. Figures 4 and 6 show the

expected result that the surfactant case lies intermediate between Lhe
Figures 3a. b. c respectively show plots of the velocity v for the shear-free and no-slip conditions. In particular, the surfactant case

shear-free case at I - 0.5. 1.5, 2.5. The results are very similar for tends to exhibit the main flow shape of the shear-free case and (to some
the no-slip and surfactant cases with the exception that the calculations extent) the surface shear characteristics of the no-slip case. Figures 5
for the no-slip case had to be stopped for: t 2 due to numerical insta- and 7 show that the differences between the shear-free and surfactant

* bility. It seems that for the high shear gradients in this case. a finer cases are greater at the later times. Now even the main flow shapes of
grid is necessary. These figures show the expected result that at the two cases are perceptibly different. particularly in the case of w.

te oiia - 1.5. and flattens against the upper boundaryrstoa ane tnei We also note that the relative lack of gradients in the shear-free
at 2.5.na t L.adflte gistteupr onaya flow case leads to the computation being stable over a longer time than

t 2.5.the other two cases.

:157WE --- Or OSMC

*Fig. 3b - Velocity v for Shear-Free Case at: t 0.5 Fig. 4b - Velcity u for Shefa-Free Case at: r 1.5

rUIRfE %W(E IqC URrAcC

Fg3c-Velocity v for Shear-Free Case a: 1 .5 Fig. 4 - Velocity ui for NSulacan Cane at: .



--0 At the surface towards which the vortices ate rising. we consider

A' - -54 ergsigg three boundary conditions: the traditional fixed no-slip and shear-free
7o~ A'- - 18 orga.g conditions. and a novel condition of variable shear due to the presence
120 of an adsorbing surface contaminant (or surfactant. which changes the

~. '.. A'- - 5.4 *rfQ54o surface tension at the fluid surface. Our solution of the additional tran-
A' - - 1. 8 orgsi.g sport equation modeling the surfactant concentration is stable. without

I using iterative or numerical damping techniques. for low and moderate
magnitudes of the surfactan surface tension-concentrauon slopes.

-40 Contour plots of the main flow below the surface show the expected
trend that the surfactant case lies intermediate between the no-slip and

-20 shear-free cam. The differences are quite small for the vertical velo-
city v, moderate for the horizontal velocity u, and large for the vortcity
w. Line plots of u. w., and Av (the deviation of the concentration from

-200
2.S -1 5 - 5 .5 1.5 2.5 the initial uniform distribuuon) for the surface flow show the manner in

HORIZONTAL DISTANCE X which the behavior of the surfactant cases changes from that of the

g -shear-free case to resemble the no-slip case with increasing magnitudes
Fig. Sa - Surface Vonicity at: of the surface tension-concentration slope.

5, /'u/y -0
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Abstract 1 0)
This paper describes an extension of previously devel- F."
oped methodologies for solving the Euler and Navier- F" = (
Stokes equations with unstructured grids in cartesian P+,
coordinate systems (1-51 to axisymmetric coordinate

systems. It is shown how to arrive at a consistent, Here z, r denote the axial and radial coordinates,
* high-order formulation by proper choice of interpola- p, p, e, H denote the density, pressure, energy and en-

tion for the unknowns. An exact integration of ll thalpy, u, v denote the velocities in the z and r direc-
integras is performd, and the exact formulae are tion. Using Stokes hypothesis, the viscosity coeficient
derived and presented. Numerical examples simu- p and the bulk modulus A are related by
lating both transient and steady-state flows in the 2u
subsonic, transonic and supersonic regim a given. A = -T' (2)
They demonstrate the accuracy and wide range of sp-
plicabilty of the method. ad the viscous them strese ad he&& fluxes me

given by
Introduction

Axisymmetric compressible flow problems need to o
be simulated in many practical situations, including = 2p- - ' = , (3a, b)
flows in or past bodies of revolution at sero angle of

attack, such a. pipes, nacell., fuselages, missiles,. ( A + ) (
well a. certain types of explosions and detonations. = or ' (3c.d)
For an axisymmetric coordinate system, the Navier-
Stokes equations governing compressible flows may be k k (3e )
written am: 8Z 4,'

OF+ 1 S. + ' where T and k denote the temperature and thermal
_ OU = F - I F-, , conductivity of the fluid respectively. The equation
O x z r Or t 8z P or r set is completed by the addition of the state equations

where

PU =p 2 P=(Of )P ~(U 2 + V2)I(ab
PI+ [ (4a, b)

U= . T C'e- (u2+v2) ,iil tu r t,+Hp
(Ib - d) which me valid for a perfect gas, where 7 is the ratio

of the specific heats and c, is the specific heat at

H =pe +p , 0 (le -f) constant volume.

p Multiplication of the system of Eqs. (1) with r yields

0 01 arU + OrFa* OF'j = eO rF9* OF;r+
", o N x 69r 9 O 9r

Fg + ?s ( R 'o We will denote the form of the Euler equations as

- j + u"+ qJ 1 0 given by Eq.(1) as form 1, and the form given by

(I - h) Eq.(3) as Form 2. Both forms have been used as

1



starting points for discrete approximations. Form 1
was used by Kutler, Chakravarthy and Lombard (6], W L- 2 x r dz dr
who treated it as a system of equations in two dimen-
sions. This straightforward use of form I does not which yields essentially conservative form 2. or
produce a conservative difference scheme, and there- b) Take Conservative form 2, interpret it as a two-
fore these authors employed a shock fitting scheme to dimensional cartesian problem. and incorporate
trace the shocks. Form 2 was employed by Deese and it 'as is' into an existing 2-D code.
Agarwal [7], Yu and Chen (8], and Woan (9]. These It is interesting to note that whichever approach we
authors used this form in Jameson's two-dimensional take, we always require conservative form 2 in or-
cell-centered finite volume FLO52 code. Because the der to obtain a consistent, conservative scheme. The
scheme is cell-centered, no problems appear at r = 0 next question that arises is how to interpolate the

next questionethatcarisesris.howwtoeinterpolate thee
(no nodes are placed there). However, problems aunknowns involved in order to obtain a discretization
expected at r = 0 if a node-centered scheme is pre- scheme. We can:
ferred.

a) Interpolate (rp, rpu, rpt, rpe) by a piece-

Two-Step Taylor-Galerkin wise linear approximation. This is the so-called
'group formulation'. It appears very economical

The two-step Taylor-Galerkin algorithm has been and simple to implement, but for the limit as
used extensively for the computation of both invis- r -- 0, all derived quantities, such as the pres-
cid and viscous flows in two and three dimensions for sure, are not defined. They have to be obtained
Cartesian coordinate systems [3-5]. Given a system either using L'Hopital's rule (which involves tak-
of partial differential equations of the form: ing derivatives), or the points lying on the axis

r = 0 have to be pushed to r = e, where c ia a
U OF! a ." small number. We tried this option, but found

at 8* --8, that we always encountered numerical problems

where U, F' and S denote the vectors of unknowns, close to the axis r = 0.

fluxes and source terms, we proceed as follows: b) Interpolate (p, pu, pv, pe) Aad r by a
a) First steR * (Advective Predictor) piecewise linear approximation. This form yields

a higher accuracy in the r -direction [10] and has

no problems at r = 0. The integrals that ap- 0
U n # = U" + pear in the weighted residual statement are more

U"ElU - Inz. (7) complicated to evaluate. However, they may still
be derived in closed form. For these reasons we

chose this second form for the spatial discretiza-
b) Secnd steip tion of the Euler equations.

The First Step

= - U= A. S OF! Evaluating all the integrals in the weighted residual
8'z statement of Eq.(5) and using the notation defined in

OF' " Figure 1, and the expressions+ S,j"+ -i,

I ri - N r + " rC(8) ri = -- ; . =(10)rel 3 (

In both subeteps the spatial discretization is per-
formed via the usual Galerkin weighted residual the following discretization for the Navier-Stokes

method (3-5]. However, we note that at t" * = equations results:

tn + 'At, the quantities U, F, S are assumed as piece- Continuity:
wise constant in the elements, whereas at t" , t"', •
the quantities U, F, S are assumed piecewise linear. (

Choice of Conservative Form and Interpolation j=t,3

Having selected the time-marching algorithm, we are -T E [N0(Pu)j+ ,.(pt'),] ( i)
now faced with the choice of conservative form. We 2=1,3

can either: AtiI •

a) Take Conservative form 1, and integrate consis- 2 Fi 3
tently, e.g.,

2



X-Momentum: X-Momentum:

T2 , (3 + r')(pu)j W P= at F, O. Ns( 9 2+pe Z

jml,3 41

- F T '( "+P)u + N,(PUv)j] (12) + N'-(v.,- r.7,)
jatS (17)

Atl
-- = ' -3 F , (p u v )j - o e t m

2-M=13 -Momentum:

R-Momentumn: MAr =At E VOL., WFiIN'(Nv-.1 -r.*'

5 ., =~ , (3 +. ( ), " + N((pv2 + "-).i -

2 -n. +At , VOL., N' (P., +,',)
- " r NJ(puy), + N,(pw2 + p)j] (13) "'

jul,3

-, 2 V 3 Energy:

Energy: at ] vo, ,.,[N,.(.-a., - (Ur" + ,.r + ,).,)

41

9.1 = -12 , (3 + r)(pe) + NI,(M., - (ur' + u" +,q).,)]
j.a,3 (19)

E NJ (,uH)j + Nj vH)j] (14)2 A ( + Consistent Mass Matrices

-at 1 1 - (H)j A question that arises from the computational point
2 3 =1,3of view is whether the consistent mass matrix, which

is obtained by assembling, at element level, the fol-
* lowing exact element matrices

The Second Step

For the second step, we again evaluate all the inte- VOL. r( 6 2 2)\ (2 2 1\
pals exactly. Denoting Nj' as the derivative of the M. = --- [rA 2 2 1 +r |2 6 2

shape function N' with respect to j, and M. as the (2 1 2 2 2

consistent mass matrix (2 1

M, A"NJNI rdzde, (15) (2 2 (20)

we obtain for the EulW r equations: cannot be simplified by taking the average element ra-
dius in the integral (13). This would yield the element

Continuity: matrix

M'A .=At E  VOL.,1 . [N ' a., + N ] M. =VOL., 1. 2 1 =1 F.,M 2D ,

.1 (16) 12 (1 1 2

which is less expensive to evaluate. Our numerial ex-
periments indicate that this simplification can be em-
ployed without los of accuracy. The consistent mas

3



matrix is solved iteratively as in the cartesian case the body affects the stability of the stand-off shock
(1-5), and again it is found that two to three passes significantly. Figures 3g,h show the time-histories for
over the elements are sufficient to raise the phase ac- the pressure at a two stations along the r = 0-axis.
curacy of the Mlting scheme from second to omeVn- Station I (Figure 3g) lies at the far right end of the do-
tially fourth order. main, while station 7 lies shortly behind the final po-

sition of the shock. One can clearly observe a damped
Artificial Viscoaities oscillation for the shock location. It takes many cycles

aModified Lapidus artificial viscosity: The modi.fed for the shock to settle to its final position. This be-

Lapidus artificial viscosity [11], which proved succed haviour, which is not observed for convex bodies, was

ful for Cartesian coordinate systems, can be extended also sw n in other numerical simulations and several

to the axisymmetric can without any further modi- wind-tunnel experiments (15-171.

fications by multiplying the element contributions by 3) Flow in an Underornanded Nozzle (steady state):
their respective average element radius. The problem statement, as well as adapted mesh

and Mach number contours ae shown in Figures 4a
b) Mass diffusion for the FEM-FT gorithm: The and 4b respectively. Several differ nt runs were per-
mae diffusion which is added to the high-order formed for this problem. Some had the FEM-FCT
sheme to yield a monotonic low-order scheme es pt option switched on, others only employed the two.
of the FEM-FCT algorithm 51 c a s lso be extended step scheme described above. They all showed the
to the asymmetuic case by smply multiplying the existence of the two shocks depicted in Figure 4b.
element contributions by their respective average ele- The run reproduced her was done with a Lapidus
ment radius. artificial viscosity. Both shocks resulted from inad-

equate nosul* contouring, as shown in the contours
Numwia exampes of the Mach number in the region the throat

A number of numerical examples are given to illus. (Fig. 4c). The pressure ratio across the shock is sig-
trate the performance of the method when simulating nificantly lower than the pressure decrease through

transient and steady-state problems in the subsonic, the throa, though the gradients ar higher. During

transonic and supersonic flow regime. For all the convergence to steady state, the grid was adaptively

stnady-statie problem, local timesteppinS was used rineshed three times. The maximum retching rar-

to accelerate the convergence. tio for the element. wa set to S = 0. A compari-
son between the measured and predicted radial dis-

1) Sunersonic flow nast a inhere (steady ester the tribution of pressure at the exit plane is shown in
cae under consideration corresponds to a free-stream Fig. 4d. Significant scatter is shown in the experi-
Mach Number of Moo = 3.0. For this steady-state mental data, while no data is available in the region
case, only the Lapidus artificial viscosity was ea- of the multiple shock system. Nonethelem, the re-
ployed to stabilixe the solution. The exact stand-off suits demonstrate very good agreement over most of
distance for the shock should be of s = 1.216R, where the exit plane. Some deviation is shown near the wall,
R denotes the radius of the sphere (121. The grid was no doubt due to wall boundary layer effects.
adaptively remeshed three times [13]. The final so-
lution is shown in Figures 2&-2c. The experimental 4) Flow Razt a scheme. RI 100 (steadv. viscous):

stand-off distance is reproduced exactly by the solu- Steady viscous flow past a sphere at a Mach-number

tion. of Ma = 0.1 and Reynolds-number of Re = 100 pro-
video an important test example to evaluate the ac-

2) g an a blunt body (tt ient: The curacy of the present scheme. No artificial viscosity
problem statement, as wen as the solutions obtained was added for this subsonic case. The problem state-
at two different times an shown in Figures 3a-3f A meat, as well as the results obtained, are shown in
strong shock (M, = 10), coming from the left, col- Figure 5. The grid employed for this case, shown in
tides with the concave body displayed in Figure 3a. Fig. *a, consists of a structured portion divided into
An adaptive refinement scheme for transient problems triangles nea the vicinity of the sphere and unstruc-
[14) was employed to resolve accurately all flow fea- tured mesh elsewhere. From Fig. 5d, it can be seen
tures. The mesh was adapted every 7 timesteps, and that the recirculation sone extends upto 1.4D into the
two levels of refinement were specified. The FEM wake, measured from the center of the sphere. This
FCT option was invoked to maintain sharp shock- compares well with experimental results (17. Fig-
resolution. The main aim of this simulation was to ur s shows the comparison of surface vorticity with
demonstrate the good phase-accuracy and low an- earlier numerical results (18,19], and the agreement
merical damping of the present scheme for this clas is pod. The dow separates at an angle of approxi-
of problem. As observed in earlier simulations of mately 123 des.
this clam of problems (15-171 the concave shape of
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Figure 2. Results for Flow past a Sphere, Re =100.

0 (a) Grid; (b) Pressure Contours; (c) Vorticity Contours;

(d) Velocity Vectors.
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Study of Three-Dimensional Flows Past Complex
Geometries Using a Finite-Element Method,*
R. Ramamurti, SAICk& RL and &, L6hner GWU - The finite-
element method of L6hner' has been advanced to study the flow
past complex 3-D geometries. In the present investigation, the
advancing front algorithm 2 is employed to generate the unstruc-
tured grids over a complete submarine configuration. A two-step
Taylor-Galerkin procedure is used to discretize the Euler equations
of motion. The procedure was tested via application to a model
problem of inviscid flow past a sphere at M. = 0.2. Comparison of
the surface pressure distribution with potential flow is very good.
The procedure is then extended for the simulation of 3-D flow past
a submarine hull configuration and the results are compared with
the axisymmetric solution. Flow past this configuration with sail
and stern appendages is also investigated for various pitch angles
of attack to study the asymmetric flow properties.

This work is supported by Naval Research Laboratory under
a contract from DARPA.

hLuher, R., Morgan, K. and Zienkiewicz, O.C., Int. J. Num.
Meth. Fliuds, No.4, 1984.

2 L6hner, R. and Parikh, P., AIAA Paper No. 88-0515, 1988.
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SIMULATION OF SUBSONIC VISCOUS FLOWS USING UNSTRUCTURED

GRIDS AND A FINITE ELEMENT SOLVER

Ravi Ramamurti

Science Applications International Corporation, McLean, VA 22102

Rainald L~hner

CMEE, School of Engineering and Applied Science
The George Washington University, Washington, D.C. 20052

Abstract for the 28th Aerospace Sciences Meeting,
Reno, NV, January 1990.

Abstract
A finite element scheme [1-4] has been advanced for solving the Euler and

Navier-Stokes equations with unstructured grids in both Cartesian and axisym-
metric coordinate systems. A two-step Taylor-Galerkin procedure is employed to
discretize the governing equations. The accuracy of the scheme is validated by com-

0 paring computed results for flow over a sphere with well known numerical results
and via a grid- refinement study for an inviscid flow over an axisymmetric body.
The procedure is extended to solve three-dimensional flows over submarine configu-
rations with sail and stern appendages. Convergence acceleration for viscous flows
by sub-stepping of the viscous terms is investigated.

0 Introduction
Numerical solution of flow past complex geometries is an important tool for a

fluid dynamicist. The use of finite element methods using unstructured grids for
problems involving high speed flows can be found in literature [1-4]. The advantage
of using triangular or tetrahedral meshes over structured meshes is that complex

* geometries can be easily represented. For example, constructing a structured mesh
around a submarine 44th all its appendages requires a tedious task of decomposition
of the domain. In this work, unstructured grids are generated using the advancing
front algorithm [5].

Most of the conservative schemes which are extensions of 1-D schemes to 2-D
* and 3-D through operator splitting, cannot be employed with unstructured grids, as

the discretization stencils obtained on these grids are inherently multidimensional.
The high resolution scheme employed in the present study is based on Zalesak's [61
generalization of the Flux-Corrected Transport (FCT) algorithm of Boris and Book
[7].

11
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Governing Equations
The equations governing the fluid flow are the Navier-Stokes equations, and can be
written as

U F 1 OFr k F " s + OF:=  i OF' OFz +S--+ , r a J '91+; r., - J-

j = 1,k = O: axisymmetric case
j = O,k=1: 3-dimensionalcase

where U = (p, pu, pv, pe)T
and F. and F, are inviscid and viscous fluxes respectively.

The equation of state for an ideal polytropic gas can be written as 0

p= (y- 1)p[e - 1 [(pu)2 + (pv) 2))] (2)

For the axisymmetric case the system of Eqs. (1) is multiplied with r to yield 0

o(rU) a(rE) OF = (rE,) OF,,Ot +-=+-=s.+ =+-+s, , (3)

Using this form of the conservative equations can be shown to be the same as
integrating the system of Eqs. (1) in a consistent manner. Moreover, the use of
conservative form represented by Eq. (3) in conjuction with separate interpolations
for r and U avoids the problems encountered for r = 0 using a node-centered scheme.

Two-Step Taylor-Galerkin Procedure

The two-step Taylor-Galerkin algorithm has been used extensively for the com- 0
putation of both inviscid and viscous flows in two and three dimensions for Carte-
sian coordinate systems [2-41. Given a system of partial differential equations of the
form:

aU OFI OFiW+ a + + s, , (4) •

where U, F" and S. denote the vector of unknowns, advective fluxes and advective
source terms, and F". and S. denote viscous fluxes and viscous source terms, we
proceed as follow.:

a) First step (Advective Dredictor): •

U + = U" + -(S." - !T'g ) (5)2 '~

0
2



b) Second step:
0i

AU" = U +1 - U" = At. (S.I"+ OF. n + Oi In+ SIn) . (6)

In both substeps the spatial discretization is performed via the usual Galerkin
weighted residual method [2-4]. However, we note that at t"+j = t" + !At, the
quantities U, F, S are assumed piecewise constant, whereas at t" , t"+1 , the quan-
tities U, F, S are assumed piecewise linear.

Convergence Acceleration
A Fourier stability analysis for the explicit scheme described above, shows that

the scheme is stable provided

C< :5/1l+R ea-I1(7
ReA (7)

where C is the Courant number and ReA is the minimum cell Reynolds number.
Convergence to steady state can be accelerated by local timestepping. Although
this local time- stepping strategy is efficient for inviscid flows, convergence is rather
poor for viscous flows. Hence, a sub-stepping of the viscous terms is investigated.
This involves advancing the inviscid fluxes with their maximum allowable At and
computing the corresponding right hand side. This inviscid time-step is divided
into a given n-.aber of viscous sub-steps. The contribution from the viscous terms
to the right haud side is then computed and added to the corresponding fraction of
the inviscid right hand side. Complete details of this procedure will be given in the
final version of the paper.

Results

Axisymmetric Flow

Flow Dast a Sphere. Re= 100 (steady, viscous)
Steady viscous flow past a sphere at a Mach-number of Mo, = 0.1 and

Reynolds-number of Re = 100 provides an important test example to evaluate
the accuracy of the present scheme. No artificial viscosity was added for this sub-
sonic case. The problem statement, as well as the results obtained, are shown in
Figure 1. The grid employed for this case (Fig. la) consists of a structured por-
tion divided into triangles in the boundary layer zone, and an unstructured mesh
elsewhere. From Fig. 1d, it can be seen that the recirculation zone extends 1.4 di-
ameters into the wake, measured from the center of the sphere. This compares well
with experimental results [9]. Figure le shows very good agreement of computed
surface vorticity with earlier numerical results 110,111. The flow separates at an
angle of approximately 1230.

3
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Flow 2ast a Body of Revolution at Zero Angle of Attack
Having established the correctness of the procedure, the present scheme was 0

applied to solve flow past a hull-shaped body of revolution. First, the inviscid
equations were solved on a coarse grid consisting of 988 points and 1807 elements.
The results for M. = 0.2, are shown in Fig. 2. In order to establish the reliability
of the solutions, a grid refinement study is undertaken. The grid was refined using
the classic h-refinement technique. The results in terms of pressure contours and 0
velocity vectors are shown in Fig. 3. Figure 4 shows the comparison of the surface
pressure distribution, obtained employing the two grids. One can see that the effect
of grid refinement is minimal on the quality of the solution. This indicates that the
first mesh was already quite adequate.

Next, the procedure was applied to solve steady viscous flow past this configu- 0
ration at M.. = 0.1 and Re = 1000. The grid employed for this case consists of 7276
nodes and 14093 elements, and is shown in Fig. 5a. Results in terms of pressure
and vorticity contours and velocity vectors are shown in Fig 5b-d. Correct trend in
surface pressure distribution is observed. The vorticity contours show a tendency
for the flow to separate in the afterbody region. This solution was obtained with
local time-stepping but without sub-stepping of the viscous terms. Convergence,
defined by reduction of residuals by three orders of magnitude, was achieved in 5000
steps. Convergence acceleration for this case is currently being pursued.

3-Dimensional Flow

Inviscid Flow Past a Sohere. M., = 0.2 6
Next, the procedure was extended to 3-D and an inviscid flow past a sphere

was chosen as the test case, since axisymmetric results from the present study and
earlier results are available for this case. Figure 6a shows the comparison of the
surface pressure distribution. From this figure, it is clear that the axisymmetric
case compares very well with the potential flow solution; the agreement of the 3- S
D solution is fairly good except near the two stagnation points. This discrepancy
may be due to the small artificial dissipation that was needed to stabilize the 3-D
solution procedure. Figure 6b shows the pressure contours over the surface of the
sphere.

Inviscid Flow Past a Fully Anpended Submarine S
The procedure was extended to solve inviscid flow past a submarine with sail

and stern appendages, at a Mach number M. = 0.2 and a pitch angle of attack
of 100. The grid employed for this case consists of 410,162 tetrahedra and 71,524
nodes and is shown in Fig. 7a. Convergence to steady state was achieved in 800
iterations, and the results in terms of surface pressure contours is shown in Fig. 7b.
Currently, unsteady viscous simulation of flow around this configuration is being
pursued, and will be presented in the final version of the paper.

4
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0 Algorithrhs for Improved Gating Combinatorics
in Multitarget Tracking

* Miguel R Zuniga*
Science Applications International Corporation

1710 Goodridge Dr.
McLean, VA, 22102

* August 9. 1989

I. Introduction

* Multitarget tracking algorithms have appeared in recent literature [1,2,3]. Reference
1 provided an analysis of the scaling of times of possible combinatorial bottlenecks,
e.g. gating, hypothesis generation, and duster merging. Suggestions were made for
improving scaling and/or the speed of each. In this report we focus on scaling and
speed improvements of gating algorithms, whose combinatorial problem we define as
follows: given a set of N, observations and Nt tracks, perform a matching algorithm

* such that we identify all the observation-track pairs, whose scores fall above a certain
threshold. For a fixed object density or for a variable density that is sufficiently low ,we'
verify that the overall cost of making pairs will scale as O(NlnNt). For high density and
observation reports with unequal timestamps, we show that the overall cost of making
the pairs can be made to scale better than NtlnNtN,(1/ ( + 1) ), where 63 is a parameter

* known as the search dimension and which will be discussed below.

In the next section we present technical terms and definitions. In section M. we describe
the problem in greater generality . We treat two cases: (1) the case with either low
object density or all observations made at the same time, and (2) the case of high density
and with observations made at different times. In section W. we show that one can use

* near neighbors search algorithms for the first case, and we discuss the derivation of a
search radius from a pair score threshold. In sections V. and VI. we show how to extend
these techniques to the second case, with the aid of an auxiliary algorithm. Scaling
analysis is then done for these combined algorithms. In sections VII. and VIII. we give
a brief discussion and conclusions respectively.

11. Preliminary Details

By an observation we mean a set whose items are measured simultaneously at some
specified time. We call this time the validity time of the observation or the "time-
stamp" of the observation. In our discussion and in the simulations we require that

* *Laboratory for Computational Physics and Fluid Dynamics, Naval Rmearch Laborator, Washing-
ton, D.C. 20375
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the timestamps all be within a period of time called a "scan" of length T,. For the
simulation presented here, the timestamps are of uniform random distribution. A track
is an estimate that in some sense converges to the "true trajectory" as the number of
observations correctly matched to the track increases. There are i position components 5
to each track at any one time. And, similarly, among the items of an observation there
are # position components. When a geometrical position search is done, we use all /
components and only these components. In particular, we do not explicitly use the
observation validation time for the searches. Also, further information may come with
observations, e.g. the location of the measurement device and the extent of its detection
volume. This additional information is not used in the techniques presented here, but
if used intelligently it could speed the searching.

We define a score for observation-track pair (i,j) as the function:

exp( dRtr7ldR )

Sii(dRj, ri ) oc 1et~/ (1)
detL', 1 /2 ()

where r, is the residual covariance of the track j, and dR is the vector position difference
of the pair, and these arguments are taken to be valid at the same time.

In our simulations we use "near-neighbors-within-a-raius" algorithms - the acronym is
NRA. The two NRA's we use in this study are: a search tree (41, which in this paper
we shall refer to as the "BLD tree"; and a modification of the Ordered Partition [5]
which we shall refer to as the "OP". These are the algorithms of choice primarily
because of their non statistical nature, i.e. guaranteed to find the near neighbors within S
a prescribed radius, but also because of their search time scaling.

III. Problem Overview

In the subsequent discussions we assume that we cannot integrate the observations in
time. Given a set of Nt tracks and a set of N, reports, there are at most NtN, scores S
which can be formed. Of these, only a fraction q of them will fall above the threshold,
and q could be as low as 1/Nt or 1/N,. or smaller. Ideally we would only calculate the
qNtN, scores and not have any overhead for identifying these correct pairs. At worst
we would calculate the NtN scores and, in addition, have significant overhead related
to this. An example of a brute force approach is the following technique: assume the
reports have different times and so for each report, integrate the equations of motion of
the tracks to update all tracks to the time on the report and to calculate Nt scores. For
each report, keep those scores that are above the desired threshold. The dominant cost
of this is the O(NNt) score calculations and integrations. There are probably many
schemes for avoiding the brute force costs. The approach we offer here is a detailed
outline of that proposed in (1] along with data obtained from simulations. l

IV. Equal Timestamps or Low Density

It is convenient to divide our approach into two parts: first, how do we use the standard
NRA's to efficiently do the gating type of matching in the straighforward case where
the sensor reports have equal timestamps; and, second, how do we use these algorithms

2



for the case of unequal timestamps without acquiring an O(NtN,) overhead, etc. As the
gating problem is posed, it would be useful for the solution of the first part to calculate a
search radius from a given score threshold. More specifically, in doing a search per report
j on a track database, we need to determine the following: given a threshold, what is the
radius squared, r2(threshold), such that all the report-track pairs which are separated
by distances larger than r 2(threshold) will not have scores above the threshold. Of
course, for a one dimensional gaussian function with a fixed r, the function value is
uniformly nonincreasing as r2 increases, and falls below a threshold after r2 gets larger

is than some value, say r 2(threshold). It can be shown that it is possible to determine
analytically an r2(threshold) that is independent of the r distribution and, furthermore,
that a useful one can be found for /3 > 1 dimensions [6]. With such a solution and its
obvious computational advantages, all pairs that are candidate for having scores within
a threshold are found, using NRA's, by searching within a threshold radius.

Though the equal timestamp behavior of the near neighbors algorithm is straightforward
enough, we include Plots 1 and 2 with data from the simulation. Plot 1 verifies the
O(NtlnNt) CPU expense of creating the data structure to be searched. We have done
the same simulation for two competing data structures, i.e. the OP and the BLD tree.
Plot 2 verifies the search time scaling for the unequal timestamp case with "relatively
small" difference in timestamp. Of course, any difference in timestamps will force a
search with a larger radius than the case with no timestamp difference. Therefore, we
consider this case to be an upper bound for the times and scaling of searching and
scoring with equal timestamps. It is worthwile to note the nearly ideal O(N nNt)
search time scaling of the BLD tree, in Plot 2, in light of the fact that Plot 2 is for
scenarios of fixed volume and both Nt and N,. were allowed to be as as large as 32k.
That is, some scenarios were not exactly of very low object density abd the BLD tree
still performed very well.

V. High Density Unequal Timestamps: The Problem

* When the reports have unequal timestamps what are the best times to which to integrate
the tracks for making the potential pair matching? There are obvious answers if we are
not concerned at all about efficiency; and also it is obviously easy - from the efficiency
point of view - if we already know which report to pair with which track, but this
is the problem we are trying to solve. It is possible to mishandle this task so that a
combinatorial bottleneck will occur when matching. Assume we follow the textbook
procedure of making the tracks one dataset valid at the beginning or end of the scan;
and, also, that we use standard NRAs. Then the r2 argument to the algorithms is not
only dependent on error bounds from a score threshold, an r 2(threshold) component,
but also on bounds on positions determined by the location possibilities of the objects
due to their dynamics and to the time differences. The latter factor can be orders
of magnitude larger than the first. It is not difficult to imagine situations in which
dynamics and object density will cause the near neighbors finding algorithms to return
much of the data in the track dataset so that again we approach the O(NtN,) scaling.
And this horrendous scaling can occur not only for the score calculations, but also, in
the neighbors finding section. This is so because the time of the NRAs' execution is
dependent on the number of neighbors it returns, which in turn is dependent on 2, as
will be argued later. In Plot 4 we have redone Plot 2 except that the scan length is
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increased by a factor of five and therefore the average search radius is also increased.
In this case neither of the two search algorithms scale as O(N,lInNt). The search times
increased by a factor of about 2 and 5, for the OP and the BLD tree respectively, and
the number of near neighbors returned was increased by a factor of about 10.

VI. High Density and Unequal Timestamps : Solution Description and Analysis.

Part of the motivation for our approach lies in the following observations: (1) that
some data structures for NRAs are cheap to make - CPU wise, and (2) that by making
various copies of the track data structure - the various copies valid at different times -
a tradeoff can be made between the time spent on the creation of the data structures
and the time spent on searching ;.nd scoring. The payoff from spending more time in
creating data structures increases as the number and density increase and therefore may
reduce the scaling of overall gating. Consider the case of a large number of objects with
extremely high density and a scan length T, so that the r 2 argument to the NRA gives a 0

search volume comparable in size to the extent of the object distribution. Also, suppose
the object distribution is equally dense and random in each direction. Then, naturally,
many if not all objects will be returned as candidates by the NRA and we are near the
O(NtN,.) scaling that we want to avoid.

If we make Ni track data structures with NRAs valid at Ni equally spaced time intervals

within the scan of length T., then any report would be at most T./(2zN) time units
away from a track data structure (TDS). The average radius to the NRA is decreased
by the factor N - compared to the case where we have one copy at the middle of the
scantime - and the volume extent as well as the average number of candidates returned
is smaller by (1/Ni) 3 in the isotropic dense limit 3D case. That is, in this limit the total
number of N objects in N, spheres each of radius ri = i, VaT,/N 3 is given by

N',/2N, . ."(. Vm~Tr) 3

N 4r)2N ' 3  (2)
SM t

where p is the track density and V,,,., is the speed. The sum has an exact solution as
a function of N, but in the large N, limit we have

13 1 2N, +
N= p412NV..1N ) T- (N (3)

and for a fixed Nt, N, and T. then:

N a (1/N,) 3  (4) S

Overall CPU time could be reduced since scoring time is directly proportional to the
number of near neighbors found as is searching time - though exactly how depends on
the particular NRA. Though our simulation is somewhat degenerate in one of the 3
space dimensions, for only 32K objects and T. = 10., the number of near neighbors S
returned decreased by an average factor of 9.8 when Ni was changed from 1 to 5. Also,
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for N = 5, the number of near neighbors returned was decreased by a factor of 62.7
compared to the case of 1 TDS placed at the beginning of the scan. Plot 5 shows how
the scaling of the search time behaves for the same scenario as in Plot 4, except that
now Ni = 5 for the datasets of 4K and 32K tracks. The best fit lines approach the
NInN scaling line more closely. Also, for the same runs, Plot 5 shows that with multiple
copies the scaling for scoring was less than O(NInN), and the data shows it was almost
linear. Of course, a price was paid in creation of the multiple copies and data structures.

Was the price paid for the multiple data copies too high so that the overall cost would
still scale worse than NlnN ? Let k be the average number of near neighbors returned.
Then the total CPU cost can be modeled as

T(Nt,NNi,,k,) = C1 NNt + C2NNtlnNt + (C3NInNt + C Nk) + C4kN, (5)

where the terms on the right hand side of equation (5) give respectively, the cost for
integrating the tracks to the desired time of the data structures, the cost of making the
data structures (BLD tree case), the cost of searching the appropriate data structure for
each report(BLD tree case), and the cost of scoring the pairs. Of course, k is a function
of the density and the total volume searched:

k = k(pr 2). (6)

where p = p(Nt, Vol) and r 2 = r2(T,, Ni, r, v..). In the case of constant volume - the
case we actually modeled - a fixed T, dense and isotropic and in which r provides a
correction to r of lower order than that determined by the dynamics, then

k oc k(N, N,) x N/(Nr). (7)

Now we can rewrite equation (5) as

T(N, Nt, N) = C1NNt + C2NNtnNt+

C3.N 7 ()+ + C4 N,(-).) (8)

The function above has a minimum, which can be verified to be

Nm,, = (/NN(Cb, + C4,)/(C, + C2lnN ,))('/(A+)) (9)

and substituting equation (9) into (8) we find an upper bound on the leading scaling
term goes as O(NtlnNtNl(a+1))). Of course, with random timestamps within a scan,
only in the assumed dense limit will it scale this poorly as compared to the N lnN,
scaling of the low density case.

VII. Discussion
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Not only is the value of Ni, for a given Nt and N,., software dependent, but it is also
dependent on the computer used. For example a vector computer with good floating
point hardware will no doubt reduce C4, over a generic computer, but because C1 can be
reduced by an even larger factor since vectorization of the integration of the equations of
motion will be straightforward and possibly complete. Thus the values of the constants
will need to be "in house empirical" in every hardware/software setup.

Because only scaling data was provided, we should mention that the code currently takes
about 1 minute on a Sun 3/260 to process a case in which Nt = N,. = 4K. By processing
we mean the time to generate all the data and to find and score the candidates twice -
once for each NRA.

VIII. Conclusion

In this paper we have presented an efficient approach to gating in multitarget tracking. A S
technique was presented to (1) handle the case of fixed object density, or sufficiently low
density, with equal or nearly equal observation timestamps, and (2) to handle the case
of high density with observation reports of unequal timestamps. For the former case we
verified that the overall cost of making observation-track pairs scale as O(NlnNt). For
the latter case we showed that the overall cost of making the pairs can be made to scale
better than NtlnNtN ( l/(0 +1)). In both cases we used "near-neighbors-within-a-radius"
search algorithms, and in the latter case we introduced a new auxiliary algorithm to
achieve the stated gating.
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