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L 'DISCUSSION

~We describe the SAIC accomplishments for the final contract period.
Our previous annual report for this contract, NO0014-86-C-2147, described
the work performed up to March 9, 1988. Here the period covered is
March 10, 1988 to September 9, 1989. Because of budget considerations
the scale of our program was cut back and the research performed was
undertaken after consultations with the COTR for the Laboratory for
Computational Physics and Fluid Dynamics (LCPFD) of the Naval Research
Laboratory (NRL).

The accomplishments of the program cover three major areas. They
include the development of computer codes to numerically simulate (1)
turbulent flow at a free-surface and (2) inviscid/viscous flows over complex
geometries. The third area concerns the development of numerical
algorithms for multitarget tracking. [/ ~ = (-—

IL NUMERICAL SIMULATION OF TURBULENT FLOW AT A FREE-

SURFACE

Introduction

Much of this year's effort was directed at performing a direct
numerical simulation of turbulent flow at a free-surface. There were several
distinct steps taken in this direction and several distinct physical problems
examined. All of the work discussed below was performed at NRL in
collaboration with Drs. T. Swean, R. Handler, and H. Wang of NRL.

Development of Fast Poisson Solvers Using a Pseudo-Spectral

Algorithm

At the center of any Navier-Stokes solver using pseudo-spectral
methods are Poisson solvers and Fast Fourier Transforms (FFT). For the
Fourier transforms, the latest version of the FFTs from Cray Research Inc.
were used. For the Poisson solvers, we implemented an algorithm
described by Orszag and Gottlieb (1977) and optimized it for the Cray X-MP
at NRL. These Poisson solvers allow a single non-homogeneous direction
and a single homogeneous direction. Chebechev polynomials are used as
expansion functions in the non-homogeneous direction and trigonometric
functions in the homogeneous direction. In the non-hrnmogeneous direction
Neumann, Dirichlet or Robin! boundary conditions can be used.




Development of a Two Dimensional Navier-Stokes Solver

- A two dimensional Navier-Stokes solver was developed as a test bed
for the numerical algorithm. The governing Navier-Stokes equations are
recast into a 4th order equation for the vertical velocity and a 2nd order
equation for the vertical vorticity and the continuity equation is solved
explicitly in the recovery of the streamwise velocity. The equations are
numerically solved after they are Fourier transformed in the streamwise (x)
and spanwise (z) directions and Chebychev transformed in the vertical
direction (y). For a two dimensional simulation the spanwise direction and
the equation for vertical vorticity are omitted.

Additionally, an Orr-Sommerfeld solver was developed to determine
initial conditions for the simulations. Solutions to the Orr-Sommerfeld
equations with the model free-surface boundary conditions indicated that
the open channel, free-surface two dimensional flow is always stable in the
parameter range that we considered. Using the Navier-Stokes solver, a
direct simulation indicated that the flow is also stable to finite amplitude
perturbations.

The Navier-Stokes solver is also being used to perform direct
numerical simulations of a vortex pair interacting with the free-surface. In
this work, done in collaboration with Henry Wang, a velocity field vortex pair
is specified as an initial condition and allowed to propagate to the free-
surface. The model free-surface boundary condition was modified to include
the effects of a surface contaminant. The addition of a surface contaminant
imposed a flow dependent stress on the free-surface. This work is
described in more detail in Appendix A, which will appear in the 9th
International Conference on Offshore Mechanics and Arctic Engineering,
February 18-25, 1990.

Development of a Three Dimensional Navier Stokes Solver

The two dimensional Navier-Stokes solver was converted into a three
dimensional solver by the addition of the equation for vertical vorticity. A
strong emphasis was placed on both the computational speed, or efficiency,
of the computer code and its versatility in terms of the application of
boundary conditions. The program runs at 40 percent of the theoretical
speed of the Cray X-MP. The code was developed to allow both slip and no
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slip boundary conditions and either zero normal velocity or a specified
normal velocity (blowing or sucking boundaries in the parlance of turbulence
research). Much of the effort of the current year will be directed towards
developing new boundary conditions.

Analysis of Free-Surface Turbulent Flow

The incompressible three-dimensional Navier-Stokes equations are
solved for initial and boundary conditions approximating a turbulent open-
channel flow of water at Re, = 3000 where h is the channel depth. Most of
the calculations were performed on a 32x65x64 grid in x, y, z respectively.
This resolution allows six grid points to occur within the viscous sublayer.
In the spanwise and streamwise directions, the grid spacing is
approximately 0.1h and 0.2h respectively. These should be compared to the
physically relevant scales of the low speed streaks in the wall region: 1h and
5h, respectively at this Reynolds number. All essential turbulent scales
needed for the determination of most statistical and flow structure
properties have been resolved, as can be determined by comparison to
relevant experimental and numerical results. A subgrid or large eddy model
has not been used. The boundary conditions are periodic in all dependent
variables in the streamwise and span-wise directions. No slip conditions are
used at the channel bottom while the free surface is approximated as a rigid
free slip surface with vanishing shear.

A large number of turbulence statistics are computed in the vicinity of
the free surface and complete determinations of the balances of the exact
Reynolds stress, turbulence kinetic energy, and isotropic dissipation rate
equations are reported for the first time. The results show that while the
turbulence kinetic energy is preserved in the vicinity of the free surface, the
turbulence is redistributed from the vertical component into the two
horizontal components. The vertical vorticity at the free surface is
concentrated in regions elongated in the streamwise direction. This
anisotropic behavior leads to preferential redistribution of the turbulence
kinetic energy into the span-wise component of kinetic energy. The
balances of the streamwisec and span-wise components of the turbulence
kinetic energy reveal a reversal in sign of the pressure-velocity correlations
in this region. A physical model has been suggested to explain this behavior.
It is apparent from the kinetic energy and dissipation balances that there
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exist two separate regions near the free surface, a thin viscous layer and a
thicker zone wherein the redistribution of turbulence is more pronounced.
Near surface expansions of the turbulence kinetic energy and isotropic
dissipation rate are determined for use in Reynolds-averaged turbulence
models. A paper describing this work is in preparation and will be
submitted for publication.

OI. SIMULATION OF INVISCID/VISCOUS FLOWS OVER COMPLEX

GEOMETRIES

The use of unstructured grids for the simuiation of high-speed flows
can be found in the literature (see references cited in the appendices). In
the present research effort, we have extended this technology to nearly
incompressible flows, and applied the procedure to simulate inviscid as well
as viscous flows past submarine configurations with all its appendages. One
attractive feature of using triangular or tetrahedral meshes over structured
meshes is that complex geometries can be easily represented. For example,
constructing a structured mesh around a submarine with all its appendages
will require a tedious task of decomposition of the domain. In the present
work, unstructured grids are generated using the advancing front algorithm
of Lohner. The governing equations of flow are solved using the finite-
element version of the Flux-Corrected Transport algorithm (FEM-FCT).
Details of the flow solver can be found in the appendices referred to in this
section.

As a first step, Euler and Navier-Stokes solutions were obtained for
axisymmetric flows. This provided an excellent case to validate the
procedure employed and also a base to build models for predicting turbulent
flows. The procedure was applied to solve a model problem of flow over a
sphere and the computed results were found to be in good agreement with
those found in the literature for both the potential flow case and the case of
viscous flow at Reynolds-number, Re = 100. These are part of the paper
submitted for publication in the IJNMFD journal, which is included here as
Appendix B. Having established the correctness of the procedure, it was
then extended to compute flow over the submarine hull configuration. Grid
refinement studies were conducted for the inviscid flow in order to
establish the independence of the flow solution to the chosen grid. Also, a
laminar viscous flow solution for this configuration was obtained for Re =
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1000. The convergence rate for this problem deteriorated considerably, as
would be expected, due to the presence of the small elements in the
boundary layer which are needed to resolve the high gradients present in
the flow variables. Hence, convergence acceleration of the numerical
method was investigated by appropriately sub-stepping the viscous diffusion
terms. It was found that this method of convergence acceleration did not
yield substantial gain because the allowable time-step for the explicit
scheme for low Mach numbers is limited by the speed of sound. For explicit
schemes, the allowable time-step due to the advective terms is given by

At €—
adv Il

where A is the minimum cell size, u is velocity and c is the speed of sound.
For low subsonic flows, the allowable Ataqv therefore decreases. Hence, this
convergence acceleration procedure should be investigated with the barely-
implicit correction (BIC) scheme.

The procedure was next extended to solve three-dimensional flows.
Results were obtained for inviscid flow over the submarine with sail and
stern appendages at various pitch angles of attack. This work was presented
at the APS meeting in November 1989, and an abstract of this presentation
is included in this report as Appendix C. In order to predict the formation
of vortices and hence the ncise generated by them, it is important to carry
out a Navier-Stokes analysis. Therefore, the viscous diffusion terms were
incorporated into the 3-D version of the flow solver. In the numerical
procedure, these terms were treated as a deferred correction in the second
step of the Taylor-Galerkin procedure. Preliminary coarse grid results of
the fully appended model at a pitch angle of attack of 10° show the presence
of vortices at the junction of the sail and the hull and also at the tips of the
stern planes. This configuration was also studied at a yaw angle of attack, in
order to predict the forces and moments that will be involved in a
maneuvering submarine. This effort will be presented at the AIAA 28th
Aerospace Sciences Meeting and an extended abstract is attached as
Appendix D.




IV. ALGORITHM DEVELOPMENT FOR MULTITARGET TRACKING

This section describes the SAIC effort in the application of advanced
computer science algorithms for multitarget tracking. The effort starts with
the notion that near neighbors finding algorithms can be used to help track
objects, and it has evolved into the identification and solution of an
important problem that occurs in state-of-the-art multitarget tracking
algorithms.

The part of the tracking problem we have focused on is the
combinatorial explosion that can occur in gating. The previous year annual
report2 gives an overview of tracking bottlenecks and it includes suggestions
for efficiency improvements in the various parts, and in particular for gating.
A recent SAIC report3 has detailed descriptions and test results of the
algorithms we have devised for efficient gating performance. The results are
encouraging. A copy of this report is included in Appendix E. In the
following, we outline the essential results.

We have discovered that we can perform gating efficiently if we do
three things: (1) use the characteristics of the Gaussian correlation measure
to obtain a Euclidian search radius from values of the measure. This allows
the use of efficient geometrical computational methods; and it is a
breakthrough because the correlation measure is a function of report and
track covariance distributions as well as on their position distributions. (2)
Recognize that once you have a search radius you can use existing fast near-
neighbors finding algorithms to pair the reports to the tracks. (3) In the
case where the observation times of the reports are unequal, use an auxiliary
algorithm that makes "multiple projections" of the search data structures
and helps the near neighbors finding algorithms retain good overall scaling.

Applying these techniques takes us one significant step forward in
having a correlator/tracker that can process very large numbers of objects,
including SDI scenario numbers of objects, in real time. This is principally
so because the algorithms used to do the gating are designed for optimal or
near optimal scaling, and it can be seen from analysis and data presented in3
that they approach NInN scaling.
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ABSTRACT

This paper presents a numerical calculation of the evolution of the
flow due to a pair of vortices rising toward a boundary surface. A
spectral method, with transforms in Fourier-Chebyshev space, is used to
solve the two-dimensional incompressible Navier-Stokes equations.
Three conditions are considered at the surface: the fixed no-slip and
shear-free conditions, and a novel variable shear condition due to the
presence of a nonuniform contaminant distribution. An additional tran-
sport equation for the contaminant concentration is required in this case.
The computation scheme is stable for low and moderate contaminant
concentration gradient levels. Contour and line plots of the main and
surface flows generally show the expected result that the variable shear
case lies between the no-slip and shear-free cases.

INTRODUCTION

The use of vortex elements is a powerful and convenient method
10 model the velocity field in a fluid. These elements may take the
form of points, blobs, sheets, or curved filaments. If bounding wails
and fluid viscosity are neglected, the resuiting fluid velocities are
obuained by calculating the locations of the vortex elements, which
move at the local velocity, and their induced velocities. Thus, the prob-
iem reduces largely to kinematics. In the case of a reflecting wall, the
techruques of complex variables are often used to account for their pres-
ence. In the case of fluid viscosity, it is necessary to amend the calcu-
lation methrd to account for the diffusion of the vorticity as well as the
creation of vorticity due to the no-slip condition at the wall. Leonard (1)
and Saffman and Baker (2] have wrinten earlier surveys of the various
analytical and numerical vortex calculation methods while Sarpkaya (3]
has written a more recent and comprehensive survey of these methods.

Methods which consider the basic equations of motion for the fluid
are less often used to study vortex motions. These methods model
more accurately the vortex generation at the bounding surfaces and the
vortex diffusion at the expense of greater computational complexity.
Examples of this type of approach are the studies of Ersoy and Walker
{4] and Peace and Riley (5], who consider the case of a pair of counter
rotatng vortices approsching a bounding surface. [n both studies, the
flow tleld is initially divided into an inviscid outer flow and a viscous
inner flow. In [4], the outer flow serves as a boundary condition for
the toundar, layer flow near a no-slip wall, while in (5] the outer flow

merely serves as the initial condition for the solution of the Navier-
Stokes equations for a no-slip as well as a shear-free bounding surface.
In both studies. finite differences are used to obtain the spatial deriva-
tives.

In all of the above studies, the principal interest is in the vortex
flow field away from the surface, which is taken to furnish fixed condi-
tions. In aerodynamic applications, an important example of such a
problem is the flow field above the runway due to the vortices left
behind by departing or landing aircraft. In marine applications, it is of
interest to ascertain the effect of the free surface on the performance of
underwater lifting surfaces. More recently, improvements in remote
sensing technology using such techniques as synthetic aperture radar and
infrared radiometry make it of interest to ascertain the wake features
around a surface or submerged marine vehicle. Thus, the experimental
and theoretical determination of the surface elevation features of the
wake due to submerged vortices is currently a field of active interest.
Examples of experimental investigations are those of Sarpkaya [6) and
Willmarth, Tryggvason, Hirsa, and Yu (7], who study the surface wave
features caused by the previously mentioned case of a pair of counter
rotating vortices. Examples of numerical studies of this problem are
those of Yu and Tryggvason (8) and Ohring and Luget (9]. In (8). a
potential flow combined vortex/boundary integral technique is used.
while in [9] the Navier-Stokes equations are solved in curvilinear coor-
dinates with finite differences used to calculate the spatial derivatives.
As may be expected, the presence of the unknown free surface requires
an iterative procedure at each time step,

In this paper, we present the results of a numerical investigation,
using the Navier-Stokes equations, of the flow due to a pair of vortices
approaching a free surface with an unknown boundary condition dif-
ferent from the wave elevation case considered in (8,9]. We use a spec-
tral method, whereby the equations are solved in Fourier-Chebyshev
transform space, instesd of the previously used finite-difference
methods. [t is well known that the Chebyshev transform clusters the
calculation points near the wall, where the flow gradients tend to be
largest. In addition to the fixed no-slip and shear-free conditions at the
surface, we consider the novel condition of shear due to the presence of
an adsorbing surface contaminant, known also as a surfactant. In this
case. the shear stress is variable and is a function of the constantly
changing surfactant distribution on the surface. The modeling of this
condition requires a transport equation for the surfactant distribution at
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the surface and a coupling of the shear stress exerted by this contam-
inant into the boundary condition at the surface. Instead of using an
uerauve procedure due to the varying surface condition, we take advan-
tage of our spectral approach (0 obtaun a technique which gives results
which are comparable in computer time to those for fixed conditons.
This technique is, however, limited to low and moderate contaminant
shear stress cases.

We sart the body of the paper by describing the theoretical
approach. This includes a description of the Navier-Stokes equations in
rotational form, the denvation of the fourth-order formulation which
implicitly satisfies the troublesome continuity condition., and the
ransformation of the resulting formulation into Fourier-Chebyshev
space. We give the initial conditions for the vortex pair, and the
dimensions of our computation domain. We describe next the transport
equauion for the surface contaminant, the computation technique, and its
limutations. We then present contour plots of the velocity and vorticity
distributions for the main flow for no-slip, shear-free, and contaminant
surface conditions. We also present line plots of the evolution of the
velocity, vorticity, and contaminant distributions on the surface for
these same surface conditions. We conciude the paper by briefly sum-
manzing the principal findings.

THEORETICAL APPROACH
Basic Equations

By using the initial vortex spacing a. the initial translational velo-
city of the vortex pair V,, and the fluid density p. as reference vari-

ables, the Navier-Stokes equations take the following dimensionless
form

%‘:—+u~Vna—Vp+-El;Vzu 43

where u is the fluid velocity, ¢ is the time, p is the pressure,
Re=paVy,u is the Reynolds number, and u is the fluid dynamic viscos-
ity. For an incompressible fluid, the conservation of mass takes the
form

V- -u=0 2

By using vector identities. Eq. (1) can be put in the following so-called
rotauonal form

du 1 2
—_ = -9P + — ¢
3 w X u R u 3)

where P = p + u - u/2 is the dynamic pressure head and w=V x u
is the vorticity. As noted by Hussaini and Zang [10], the use of this
form in Fourier collocation methods, as in our study, conserves kinetic
energy and hence tends to minimize the effect of nonlinear instabilities.

Handler, Hendricks, and Leighton (11] point out that a aumber of
alternate methods may be used to advance Eqgs. (2) and (3) in time. [n
coupied methods, the entire system is considered at a given time step.
[n spliting methods, the time step is split into a momentum step, and a
step whereby the pressure is adjusted to satisfy the condition of
incompressibility, Eq. (2). We use here an unsplit scheme, whereby
the woublesome term involving P is eliminated and the incompressibility
condition is implicitly satisfied by going to a higher fourth-order formu-
lauon. The approach implemented here is similar to that proposed by
Kim, Moin, and Moser {12]. For the two-dimensional case considered
here, this fourth-order equation may be derived as follows, First, write
Eq. (3) in component form for the velocity u in the x-direction and the
velocity v in the y-direction, where x and y are defined in Fig. 1. Then
by taking & /0x? of the equauon for v and —3*/dydx of the equation

Y
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Fig. | — Definition of Initial Vortex Configuration
and Computation Domain

for 4, and using Eq.(2) to write du/dx as —dv/dy, the following
fourth-order equation for v is obtained

[i -L v’J Viv = F (4)

where F is the nonlinear term arising from @ X u, given by

Fw=- Bzguw) - az(VU) (%)
ax? dydx

Numerical Solution Procedure

We advance Eq. (5) in time by using the weighted implicit
Crank-Nicholson method for the linear term and the weighted explicit
Adams-Bashforth method for the nonlinear term, resuiting in the foilow-
ing equation for the value of v at the new 7 + | time step in terms of
values at the previous 2 and n — | time steps

‘rl - _AL vZJ 2L
2Re

A .2 ! s a-l
S[I+EVJ7V"+Z(3F"—F } (6)

where As is the size of the time step. Since we assume the flow not to
penetrate the upper and lower surfaces of our computation domain,
shown in Fig. 1, the vertical velocity v is subject to the following boun-
dary conditions

valony s %] )]

This means that both the upper and lower boundaries remain flatc. We
allow the horizontal velocity « and/or its derivative du/dy to be func-
tions of . Noting that du/dx = ~(dv/3dy) from continuity, Eq. (2),
the boundary conditions on « take the following general form. expressed
in terms of v

a,%-&b,%-c.ony-gl 8)

where a, and b, are given constants and ¢, are. in general, func-
tions of x. Specializing the weaupent given in (l1] to the two-
dimensional case, we proceed as follows to solve for v**' We
express v* *! as the following sum of three partial solutions




vil = v;’l + a’v'l" +a - vir! 9

Each of the individual solutions satisfies the boundary condition given
by Eq. (7). while the two boundary conditions given by Eg. (8) deter-
mine the unknown coefficients @™ and a~. To reduce the problem to
second order we introduce the intermediate variable { which is related
to v by

;a*l = vzvnﬂ (10

The formulation for the particular soiution v, which satisfies homogene-
ous boundary conditions but accounts for the nonlinear term F is given

by
a 2 LRd!
-—v

.
= j1+e B vt e Ep -y (11a)
2Re 2
N
vt - g (11b)
Vit =0ony = &1 (lic)
7' =0ony = =1 (11d)

The formulation for the solution v, which satisfies a nonzero boundary
condiionon y = +1 15 given by

-
: o 2 Aol
= = 2
(Ll Re . % 0 (12a)
vIATh = g (12b)
Vil =0ony = %1 (12e)
~
i1, ify = +1
Al
AR P S (12d)

Finally, the formulation for the solution v_ which sausfies a nonzero
boundary condition ot y = ~1 is given by

[1 - % vl} il =0 (13a)

L ALALEE N A (13b)

Vil =Qony = #! (13¢)
0, ify= +|

¢t - {1 iy = -1 (13)

We note here that Eqs. (12) and (13) need be solved only once and give
two solutions which may be regarded as independent Green functions
whose coefficients a® and a” are adjusted to satisfy the boundary
conditions given in Eq.(8).

Transformation 1o Fourier-Chebyshev Space

In order to solve the above formulation in transform space. we
expand v(x.y,t) given in Eq.(9) as a senies of exponenual funcuons n
the periodic x direction and Chebyshev polynomials «n the y direction.
as follows

M-l N
vigy ) = ¥ L vima.nexplikas) T, () i14)
meQ A=l

where M and N + | are the number of grid points in the x and v direc-
tions, respectively, k, = 2xm /L, is the mth wavenumber in the x
direction, and L, = S (see Fig. 1) is the length of the computaton
domain in the x direction. The grid points x,, and y, are spaced as foi-
lows

x,aT‘. m=0,1,....M-1 (15a)
Yo = cos(rn/N), n=0,1,... N (15b)

The Chebyshev polynomials are related to the cosine functions by

T.(y) = cos(n@), 9§ = cos~'y (16)

By rewriting the double sum given in Eq. (14) as the following
single sum

M-t
vy t) = 5 v(m,y,0)expliket) an

m =0

we reduce the problem over the M x (N + 1) physical points to the
consideration of the A 2 wansform variables at each time step. In
terms of the transform ‘ariabies, Eq. (11a), which is the only equation
which must be advanced in time, takes the form

Fha' (. 2Re) gam . s apel
— K 22 For ® Gk FmiFmiFm ) (18)
dy* LY

[n the above, use has been made of the fact that the operation d/dx 1n
physical space corresponds to multiplication by ik_in transform space.
Due to the presence of the nonlinear terms I-J,'.. and F',:, ! it is necessary,
at each time step, to inverse transform to physical space, perform the
operations required to obtain F, and then transform F to get £. We per-
form these transforms by using standard Fast Fourier Transform tech-
niques. Also, to avoid aliasing errors, whereby energy from modes
outside our range of consideration is placed into lower modes, we use
the well known de-aliasing technique whereby we consider 34f /2 physi-
cal points but use only the modes correspoading to M poiats.

We remark that the transform variable ?:,:' itself contains a
series of N + | Chebyshev polynomials (compare Egs. (14) and (17)).
However. by using recursion relations which relate derivatives of a
Chebyshev function of order a to neighboring orders, the second deriva-
tive in Eq. (18) for the N + | grid points gives rise to two quasi-
tridiagonal matrices for the coefficients of the even and odd Chebyshev
polynomials (13]. Inversion of these matrices is considerably less time
consuming than full matrices of the same order.

Boundary Conditions

At the lower boundary y = =1 we use the shear-free condition
du/dy = 0 1o minimize its effect on the interaction of the vortices with
the upper boundary, our principal interest. At the upper boundary




v = | we consider three conditions. Two are the standard fixed shear-
free and no-slip (¥ = 0) conditions, as considered in (5]. The third is
the novel condition of the presence of a surface contaminant which is
adsorbed on the water surface, or surfactant. [n this case the surface
tension on the water surface y varies a function of the surfactant con-
centration o. In the case where o varies with x on the surface, Fig. 2
shows that a shear stress occurs, given by

du - dyla)
3 Re x (19)

In terms of our formulation, which considers the velocity v in transform
space, the uoove condition takes the form

Eu]

3 oM =1 (20)
dy*

= Rekly. form =0, 1,2, ..

Egs. (19) and (20) indicate that it is necessary to solve the following
transport equation for the concentrauon ¢ in order to determine the
shear stress condition at the surface

2
f L% dug n
ar Rs oax* ax

where Rs =V,a/3 is the Reynolds number for the surfactant, and 8 is
the surfactant diffusion coefficient. We solve Eq. (21) implicitly for the
concentration o but couple it explicily with the surface velocity u. By
using the previously mentioned Crank-Nicholson method for the linear
diffusion term and the Adams-Bashforth method for the nonlinear con-
vection term, Eq. (21) takes the following form in transform space
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-

(=3ua" + ua -l) (22)

It 1s well known that it 15, in general. necessary to solve the boundary
condiion Fq. (21) or (22) iteratively with the previous formulation for
the main flow unul the concentration ¢ caiculated for two successively
updated vaiues of u agree 10 within a given error tolerance ¢. The
boundary condition would, in fact, require repeated calculations of the
main flow. with sharply increased computer cost.
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Fig. 2 — Shear Stress Due to Nonuniform Surfactant Concentration

We have adopted a series of approximations which render the cal-
culation time (0 be nearly the same as for the fixed shear-free and no-
slip conditions. First, in order to avoid a mismatch between the time
step requirements for the boundary condition and main flows, we take
Rs = Re. We note that numerical values for the diffusion coefficient of
surfactants are not well known and that for the relatively high Re used
in our study (Re = 5000), the value of Rs has only a secondary effect

in Eq. (22). Secondly, we consider only siow and moderate varauons
of y with ¢. The experimental data surveyed by Skop. Brown. and
Lindsley {14] show that the vanauon of y with ¢ may be approximated
by several line segments, with slopes [ A’| which are typically less than
30 ergs/ug or more than 300 ergs/ug. We use the absolute value sign
since A’ is a negalive number; i.e., y decreases with increasing 0. We
find that that we must restrict |A4'| 10 be less than approximately 60
ergs/ug to prevent significant numerical instability. We have been able
to extend the range of A’ by using numerical damping techniques such
as increasing the value of Rs or adding a higher order diffusion term
involving 3*/3x* in Eq.(21), or (which is most convenient in our spec-
tral approach) directly filtering out the higher modes in Eq. (22). We
have not extensively pursued these techniques since we feel that exces-
sively high damping will be needed to stabilize the calculations of the
shock-like behavor at the high end of |A4‘]. Also, as shown later, our
results at the upper end of the numerically stable [A’| range already
resemble those for the no-slip case.

Initial Conditions

The initial position of our vortices is as shown in Fig. 1. For the
Gaussian vortices considered in our study, the vorticity w;, i = 1.2, of
each vortex is given by

.
wiry) = =g ep =lx =) + o =piu?ad
L3

where x, = =05, x; = +0.5,y, =y; = -0.75, and r = 0.25 15 2
measure of the core size. The unit distance between the vortices and a
value of I'; = 2 give an initial unit vortex velocity, in accordance with
our nondimensionlization approach, discussed in coanection with Eq.
(1). The total vorticity w is given by

dv du 2 s
B e w = . 24
w i 3y ' E- ] w; (24)

By taking first derivatives of the above squation with respect to £ and, v,
and making use of the conunuity Eq.(2). we obtain two second-order
Poisson equations for the velocities u and v

Vi = - %;— (25a)

9y =+ 3_0 (25b)
ax

Similar to what we have described for the time stepping procedure, we
solve these equations in Fourier-Chebyshev transform space for the fol-
jowing boundary conditions. At the lower boundary y = -1,
v = Ju/dy = 0. At the upper boundary y = +1, v = u = ( for the
no-slip case, and v = Ju/dy = Q for the shear-free and surface con-
taminant cases. We note here that the latter two cases have identical
initial conditions since we take the initial surfactant distribution o(x) to
be uniform.

NUMERICAL RESULTS

Calculation Parameters

We perform our calculations over a 32 x 33 grid in the x and y
directions, respectively, which corresponds 0 M = N = 32. The
value of Re is taken to be 5000. The dimensions of our computation
domain, in terms of the initial vortex spacing, is 2 units in the y direc-
tion, and S units in the x direction. These are equal (0 those used in
(8]. In the following, we first presemt contour plots of «. v, and w for
the main flow and then lins plots of u, v, and w at the surface for van-
ous tumes f. We note that ¢ = | corresponds (0 the ume required to




rravel a unit distance at the imtial vortex velocity. The results are
presented for the no-stip, shear-free, and various surfactant cases. The
contour plots are shown for A’ = ~35.4 ergs/ug, while the line plots are
shown for four values of 4”: —1.8, —5.4, —18, -S54 ergs/ug.

Contour Plots of Main Flow

Figures Ja. b. ¢ respectively show plots of the velocity v for the
shear-free case at ¢+ = 0.5, 1.5, 2.5. The resuits are very simular for
the no-slip and surfactant cases with the exception that the calculauons
for the no-slip case had to be stopped for 1 2 2 due to numerical insta-
bility. It seems that for the high shear gradients in this case, a finer
grid is necessary. These figures show the expected result that at
¢t = 0.5, the vortices are near the lower boundary, rise to an intermedi-
ate position at ¢+ = 1.5, and flanten against the upper boundary at
r =25,
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The differences due to the various surface conditions are larger .n
the case of u, and are largest in the case of . Figures 4a. b, ¢ respec-
tively show piots of u for the shear-free, surfactant, and no-siip condi-
tions at ¢ = |.5, while Figs. 5a.b show plots of u for the first two cases
at ¢+ = 2.0. Figures 6a, b, ¢ and Figs. 7a. b show corresponding
results for the vorticity w at ¢ = |.S and 2.5. Figures 4 and 6 show the
expected result that the surfactant case lies intermediate between the
shear-free and no-slip conditions. [n particular, the surfactant case
tends to exhibit the main flow shape of the shear-free case and (to some
extent) the surface shear characterisics of the no-slip case. Figures §
and 7 show that the differences between the shear-free and surfactant
cases are greater at the later times. Now even the main flow shapes of
the two cases are percepubly different, particularly in the case of u.

We also note that the relative lack of gradients in the shear-free
flow case leads to the computation being stable over 2 longer ume than
the other two cases.
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CONCLUSIONS

We have presented a spectral method involving transforms in
Fourier-Chebyshev space to solve the two-dimensional incompressibie
Navier-Stokes equations describing the evolution of the flow due a pair
of vortices rising to a surface. The use of these transform methods con-
verts, at each ume step, the calculation over the physical grid to a series
of Poisson equations for the Fourier modes. The solution of each
Fourier mode amounts to the solution of sets of sparse algebraic equa-
uons for the coefficients of the Chebyshev modes. By combining the
continuity equation with derivatives of the momentum equations, we
arrive at a founth-order formulation which eliminates the troublesome
pressure term.

At the surface owards which the vortices are nising, we consider
three boundary conditions: the traditional fixed no-slip and shear-free
conditions, and a novel condition of variable shear due to the presence
of an adsorbing surface contaminant (or surfactant), which changes the
surface tension at the fluid surface. Our solution of the additional (ran-
sport equation modeling the surfactant concentration s stable. without
using iterative or numerical damping techniques, for low and moderate
magnitudes of the surfactant surface tension—concentrauon siopes.
Contour plots of the main flow below the surface show the expected
trend that the surfactant case lies intermediate between the no-siip and
shear-free cases. The differences are quite smail for the verucal velo-
city v, moderate for the horizontal velocity u, and large for the vorucity
w. Line plots of u, w, and Ao (the deviation of the concentrauon from
the initial uniform distribution) for the surface flow show the manner in
which the behavior of the surfactant cases changes from that of the
shear-free case to resemble the no-slip case with increasing magnitudes
of the surface tension—~concentration siope.
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Abstract

This paper describes an extension of previously devel-
oped methodologies for solving the Euler and Navier-
Stokes equations with unstructured grids in cartesian
coordinate systems {1-5] to axisymmetric coordinate
systems. It is shown how to arrive st a consistent,
high-order formulation by proper choice of interpola-
tion for the unknowns. An exact integration of all
integrals is performed, sad the exact formulae are
derived and presented. Numerical examples simu-
lating both transient and steady-state flows in the
subeonie, transonic and supersonic regime are given.
They demonstrate the accuracy and wide range of ap-
plicability of the method.

Introduction

Axisymmetric compressible flow problems need to
be simulated in many practical situations, including
flows in or past bodies of revolution at zero angle of
attack, such as pipes, nacelles, fuselages, missiles, as
well as certain types of explosions and detonations.
For an axisymmetric coordinate system, the Navier-
Stokes equations governing compremsible lows may be
written as:

8V OF; 10F] _S. OFI 18F S,

Tt Etr e e tree Ty 0 (19
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P ] rpv
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Here z,r denote the axial and radial coordinates.
7, P, ¢, H denote the density, pressure, energy and en-
thalpy, u, v denote the velocities in the z and r direc-
tion. Using Stokes hypothesis, the viscosity coefficient
u and the bulk modulus A are related by

Xa-T, (2)

and the viscous shear stresses and heat fuxes are
given by

r"=2p-g-u— ,f"=2u?1 , (3a,%)
2
"_ _q,° = fl
r’ = ‘2ur 'f"_“(ar+az) . Be.d)
T . _ 0T
q.-kaz -1 —kar ' (3¢‘f)

where T and k denote the temperature and thermal
conductivity of the fluid respectively. The equation
set is completed by the addition of the state equations

P=(7-l)p[e-%(u’+v’)] .

1 (4a.b)
T=e, [e-i(u’-#v’)] .

which ace valid for & perfect gas, where v is the ratio
of the specific heats and ¢, is the specific heat at
constant volume.

Multiplication of the system of Eqs. (1) with r yields

t 1d ] r
8‘;‘04-0';‘ +a:'_‘ =5.+3_;§°_+33L:+5v - (3)

We will denote the form of the Euler equations as
given by Eq.(1) as form 1, and the form given by
Eq.(3) as Form 2. Both forms have been used as




starting points for discrete approximations. Form 1
was used by Kutler, Chakravarthy and Lombard (6],
who treated it as a system of equations in two dimen-
sions. This straightforward use of form | does not
produce a conservative difference scheme, and there-
fore these authors employed a shock fitting scheme to
trace the shocks. Form 2 was employed by Deese and
Agarwal (7], Yu and Chen (8], and Woan [9]. These
authors used this form in Jameson’s two-dimensional
cell-centered finite volume FLO52 code. Because the
scheme is cell-centered, no problems appear at r = 0
(no nodes are placed there). However, problems are
expected at r = 0 if a node-centered scheme is pre-
ferred.

Two-Step Taylor-Galerkin

The two-step Taylor-Galerkin algorithm has been
used extensively for the computation of both invis-
cid and viscous flows in two and three dimensions for
Cartesian coordinate systems [3-5]. Given a system
of partial differential equations of the form:

3U dF: oF;
7y 8—‘_ =5, + s — 43S, , (6)

where U, F' and S denote the vectors of unknowns,
fluxes and source terms, we proceed as follows:

a) Firat step : (Advective Predictor)

e s (-8 o
b) Second step ;
AU” = Uml-l ~U" = At (s.lmf* - a_F;' n+§
oz
aF:
+ 5+ 5 ) .

(8)

In both subetepe the spatial discretization is per-
formed via the usual Galerkin weighted residual
method [3-5]. However, we note that at t**} =
t"+1At, the quantities U, F, S ace assumed as piece-
wise comtmt in the elements, whereas at t" , t"*!,
the quantities U, F,S are assumed piecewise hneu

Choice of Conservative Form and Interpolation

Having selected the time-marching algorithm, we are
now faced with the choice of conservative form. We
can either:

a) Take Conservative form 1, and integrate consis-
tently, e.g.,

Y , 13)
which yields essentially conservative form 2. or

b) Take Conservative form 2, interpret it as a two-
dimensional cartesian problem, and incorporate
it ‘as is’ into an existing 2-D code.

It is interesting to note that whichever approach we
take, we always require conservative form 2 in or-
der to obtain a consistent, conservative scheme. The
next question that arises is how to interpolate the
unknowns involved in order to obtain a discretization
scheme. We can:

a) Interpolate (rp, rpu, rpv, rpe) by a piece
wise linear approximation. This is the so-called
‘group formulation’. It appears very economical
and simple to implement, but for the limit as
r — 0, all derived quantities, such as the pres-
sure, are not defined. They have to be obtained
either using L’Hopital’s rule (which involves tak-
ing derivatives), or the points lying on the axis
r = 0 have to be pushed to r = ¢, where c is a
small number. We tried this option, but found
that we always encountered numerical problems
close to the axis r = 0.

b) Interpolate (p, pu, pv, pe) and r bya
piecewise linear approximation. This form yields
a higher accuracy in the r -direction [10] and has
no problems at ¢ = 0. The integrals that ap-
pear in the weighted residual statement are more
complicated to evaluate. However, they may still
be derived in closed form. For these reasons we
chose this second form for the spatial discretiza-
tion of the Euler equations.

/Wa—UQI'rdzdr
0

The First Step

Evaluating all the integrals in the weighted residual
statement of Eq.(5) and using the notation defined in
Figure 1, and the expressions

3
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the following discretization for the Navier-Stokes
equations results:

Continuity:
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X-Momentum:
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The Secound Step

For the second step, we again evaluate all the inte-
grals exactly. Denoting N% as the derivative of the
shape function N* with respect to j, and M, as the
consistent mass matrix

M, = /N‘N!rdzdr , (15)
we obtain for the Euler equations:

Continuity:
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Consistent Mass Matrices

A question that arises from the computational point
of view is whether the consistent mass matrix, which
is obtained by assembling, at element level, the fol-
lowing exact element matrices

8 2 2 2 1
M...Vgg“‘[ (2 1)+r, (2 8 2)4-
2 2 1 2 2
2 2
rell 2)],
2 6
(20)

caanot be simplified by taking the average element ra-
dius in the integral (13). This would yield the element
matrix

DN = DN

2 {211

v

M,=—OI{;‘ i1 o2 1] =FaMP, (2D
112

which is less expensive to evaluate. Our numerial ex-
periments indicate that this simplification can be em-
ployed without loss of accuracy. The consistent mass




matrix is solved iteratively as in the cartesian case
(1-5], and again it is found that two to three passes
over the elements are sufficient to raise the phase ac-
curacy of the resulting scheme from second to essen-
tially fourth order.

Artificial Viscosities
a) Modified Lapidus artificial viscosity: The modified
Lapidus artificial viscosity [11], which proved success-
ful for Cartesian coordinate systems, can be extended
to the axisymmetric case without any further modi-

fications by multiplying the element contributions by
their respective average element radius.

b) Mass diffusion for the FEM-FCT algorithm: The
mass diffusion which is added to the high-order
scheme to yield a moaotonic low-ozder scheme as part
of the FEM-FCT algorithm (5] can also be extended
to the axisymmetric case by simply multiplying the
element contributions by their respective average ele-
ment radius.

Numerical examples

A number of aumerical examples are given to illus-
trate the performance of the method when simulating
transient and steady-state problems in the subsonic,
transonic and supersonic flow regime. For all the
steady-state problems, local timestepping was used
to accelerate the convergence.

1) Supersonic flow past a sphere (steadv state): the
case under consideration correspounds to a free-stream
Muach Number of My = 3.0. For this steady-state
case, only the Lapidus artificial viscosity was em-
ployed to stabilize the solution. The exact stand-off
distance for the shock should be of s = 1.216R, where
R denotes the radius of the sphere {12]. The grid was
adaptively remeshed three times {13]. The final so-
lution is shown in Figures 2a-2¢c. The experimental
stand-off distance is reproduced exactly by the solu-
tion.

2) Sheck impinging on a blunt body (transient): The
problem statement, as well as the solutions obtained
st two different times are shown in Figures 3o-3f. A
strong shock (M, = 10), coming from the left, col-
lides with the concave body displayed in Figure Ja.
An adaptive refinement scheme for transient problems
{14) was employed to resolve accurately all flow fea-
tures. The mesh was adapted every 7 timesteps, and
two levels of refinement were specified. The FEM-
FCT option was invoked to maintain sharp shock-
resolution. The main aim of this simulation was to
demonsteate the good phase-accuracy and low au-
merical damping of the present scheme for this class
of problems. As observed in earlier simulations of
this class of problema {15-17] the concave shape of

the body affecte ihe stability of the stand-off shock
significantly. Figures 3g,h show the time-histories for
the pressure at a two stations along the r = (-axis.
Station 1 (Figure 3g) lies at the far right end of the do-
main, while station 7 lies shortly behind the final po-
sition of the shock. Oue caa clearly obeerve s damped
oscillation for the shock location. It takes many cycles
for the shock to settle to its final position. This be-
haviour, which is not observed for convex bodies, was
also seen in other numerical simulations and several
wind-tunnel experiments (15-17].

3) Elow in sn Underexpanded Nozzle (steady statel
The problem statement, as well as adapted mesh
and Mach aumber contours are shown in Figures 4a
and 4b respectively. Several different runs were per-
formed for this problem. Some had the FEM-FCT
option switched on, others only employed the two-
step scheme deacribed above. They all showed the
existence of the two shocks depicted in Figure 4b.
The run reproduced here was done with a Lapidus
artificial viscosity. Both shocks resulted from inad-
equate nossle contouring, as shown in the contours
of the Mach number in the region near the throat
(Fig. 4c). The pressure ratio across the shock is sig-
nificantly lower than the pressure decrease through
the throat, though the gradients are higher. During
convergence to steady state, the grid was adaptively
remeshed three times. The maximum stretching ra-
tio for the elements was set to S = 6. A compari-
son between the measured and predicted radial dis-
tribution of pressure at the exit plane is shown in
Fig. 4d. Significant scatter is shown in the experi-
mental data, while no data is available in the region
of the multiple shock system. Nonetheless, the re-
sults demonstrate very good agreement over most of
the exit plane. Some deviation is shown near the wall,
no doubt due to wall boundary layer effects.

4) Elow past aschere, Be= 100 (steady, viscous):
Steady viscous flow past a sphere at 8 Mach-aumber
of Ma = 0.1 and Reynolds-number of Re = 100 pro-
vides an important test example to evaluate the ac-
curacy of the preseat scheme. No artificial viscosity
was added for this subsonic case. The problem state-
ment, ss well as the results obtained, are shown in
Figure 5. The grid employed for this case, shown in
Fig. Se, consists of a structured portion divided into
triangies near the vicinity of the sphere and unstruc-
tured mesh elsewhere. From Fig. 5d, it can be seen
that the recirculation 30ne extends upto 1.4D into the
wake, measured from the center of the sphere. This
compares well with experimental results {17]. Fig-
ure 5¢ shows the comparison of surface vorticity with
earlier oumerical resuits (18,19), and the agreement
is good. The flow separates at an angie of approxi-
mately 123 deg.




Conclusions

We have described a Finite Element Solver for ax-
isymmetric compressible flows. The Navier-Stokes
equations are advanced forward in time using a two-
step Taylor-Galerkin procedure. Due care was given
to obtain a consistent integration of all variables. Al-
though slightly more expensive than the equivalent
2-D scheme, the current formulation is the only one
that yields full second order accuracy for all the un-
knowns in both the x and r-directions. A high-order,
monotonicity preserving scheme is obtained by com-
bining this basic two-step Taylor-Galerkin procedure
with FEM-FCT techniques.

Future developments will center on extensions of
the current explicit scheme to semi-implicit or implicit
schemes.
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_Figure 1: Notation used at element level
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] Figure 3g: Shock-Concave Body Interaction: Pressure History at Station |
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Fig 4. Mesh (a) and Mach Number Contours (b) for the Whole Nozzle and Expanded
Mach Number Contours near the Throat.
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APPENDIX C

Study of Three-Dimensional Flows Past Complex Geometries Using a Finite-
Element Method




Study of Three-Dimensional Flows Past Complex

Geometries Using a Finite-Element Method,*
R. Ramamurti, SAJC & NRL and R. Lohner GWU_- The finite-
element method of Lohner! has been advanced to study the flow
past complex 3-D geometries. In the present investigation, the
advancing front algorithm? is employed to generate the unstruc-
tured grids over a complete submarine configuration. A two-step
Taylor-Galerkin procedure is used to discretize the Euler equations
of motion. The procedure was tested via application to a model
problem of inviscid flow past a sphere at M, = 0.2. Comparison of
the surface pressure distribution with potential flow is very good.
The procedure is then extended for the simulation of 3-D flow past
a submarine hull configuration and the results are compared with
the axisymmetric solution. Flow past this configuration with sail
and stern appendages is also investigated for various pitch angles
of attack to study the asymmetric flow properties.
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Simulation of Subsonic Viscous Flows Using Unstructured Grids and a Finite
Element Solver
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Abstract

A finite element scheme [1-4] has been advanced for solving the Euler and
Navier-Stokes equations with unstructured grids in both Cartesian and axisym-
metric coordinate systems. A two-step Taylor-Galerkin procedure is employed to
discretize the governing equations. The accuracy of the scheme is validated by com-
paring computed results for flow over a sphere with well known numerical results
and via a grid- refinement study for an inviscid flow over an axisymmetric body.
The procedure is extended to solve three-dimensional flows over submarine configu-
rations with sail and stern appendages. Convergence acceleration for viscous flows
by sub-stepping of the viscous terms is investigated.

Introduction

Numerical solution of flow past complex geometries is an important tool for a
fluid dynamicist. The use of finite element methods using unstructured grids for
problems involving high speed flows can be found in literature [1-4]. The advantage
of using triangular or tetrahedral meshes over structured meshes is that complex
geometries can be easily represented. For example, constructing a structured mesh
around a submarine With all its appendages requires a tedious task of decomposition
of the domain. In this work, unstructured grids are generated using the advancing
front algorithm (5).

Most of the conservative schemes which are extensions of 1-D schemes to 2-D
and 3-D through operator splitting, cannot be employed with unstructured grids, as
the discretization stencils obtained on these grids are inherently multidimensional.
The high resolution scheme employed in the present study is based on Zalesak’s [6]
generalization of the Flux-Corrected Transport (FCT) algorithm of Boris and Book

(7).




Governing Equations
The equations governing the fluid flow are the Navier-Stokes equations, and can be
written as

oU OFF 10F;  OFf .S, OF; 10F, L OF; .S,
3t+az+;3r+k_37-- +6::+—' +

rJ Or 5z T (1)

= 1,k = 0: axisymmetric case
= 0 k = 1: 3-dimensional case

where U = (p, pu, pv, pe)T
and F, and F, are inviscid and viscous fluxes respectively.

The equation of state for an ideal polytropic gas can be written as

= (v = ple = 5 [(ou)? + (o)) @)

For the axisymmetric case the system of Eqs. (1) is multiplied with r to yield

(rU) L O(rE) A OF _ d(rE,) OF,
& T o Ta ot T T

Using this form of the conservative equations can be shown to be the same as
integrating the system of Egs. (1) in a consistent manner. Moreover, the use of
conservative form represented by Eq. (3) in conjuction with separate interpolations
for r and U avoids the problems encountered for r = 0 using a node-centered scheme.

+ Sy , (3)

Two-Step Taylor-Galerkin Procedure

The two-step Taylor-Galerkin algorithm has been used extensively for the com-
putation of both inviscid and viscous flows in two and three dimensions for Carte-
sian coordinate systems [2-4]. Given a system of partial differential equations of the
form:

U  oF _  OF
Bt oz =t g

where U, Fi and S, denote the vector of unknowns, advective fluxes and advective
source terms, and F? and S, denote viscous fluxes and viscous source terms, we
proceed as follows:

a) First step (Advective predictor):

At OF}
n+4 =U" 4+ —. "
U U™ + 5 (Sal® = 53" (5)

-—+S, , (4)




b) Second step :

OF} oF:
n n+l _prn . n+d _ an+} v|n n
AU™ = U™ _ U™ = At- (S| ST LS L ()

In both substeps the spatial discretization is performed via the usual Galerkin
weighted residual method [2-4]. However, we note that at t®*% = t" + 1A¢, the
quantities U, F,S are assumed piecewise constant, whereas at t® , t"*!, the quan-
tities U, F, S are assumed piecewise linear.

Convergence Acceleration
A Fourier stability analysis for the explicit scheme described above, shows that
the scheme is stable provided

C< v1 +R1:cA -1 )
a

where C is the Courant number and Rea is the minimum cell Reynolds number.
Convergence to steady state can be accelerated by local timestepping. Although
this local time- stepping strategy is efficient for inviscid flows, convergence is rather
poor for viscous flows. Hence, a sub-stepping of the viscous terms is investigated.
This involves advancing the inviscid fluxes with their maximum allowable At and
computing the corresponding right hand side. This inviscid time-step is divided
into a given nu:uber of viscous sub-steps. The contribution from the viscous terms
to the right hand side is then computed and added to the corresponding fraction of
the inviscid right hand side. Complete details of this procedure will be given in the
final version of the paper.

Results
Axisymmetric Flow
W t =

Steady viscous flow past a sphere at a Mach-number of M, = 0.1 and
Reynolds-number of Re = 100 provides an important test example to evaluate
the accuracy of the present scheme. No artificial viscosity was added for this sub-
sonic case. The problem statement, as well as the results obtained, are shown in
Figure 1. The grid employed for this case (Fig. 1a) consists of a structured por-
tion divided into triangles in the boundary layer zone, and an unstructured mesh
elsewhere. From Fig. 1d, it can be seen that the recirculation zone extends 1.4 di-
ameters into the wake, measured from the center of the sphere. This compares well
with experimental results [9). Figure le shows very good agreement of computed
surface vorticity with earlier numerical results {10,11]. The flow separates at an
angle of approximately 123°.




w fo} voluti t e of Attac

Having established the correctness of the procedure, the present scheme was
applied to solve flow past a hull-shaped body of revolution. First, the inviscid
equations were solved on a coarse grid consisting of 988 points and 1807 elements.
The results for Mo, = 0.2, are shown in Fig. 2. In order to establish the reliability
of the solutions, a grid refinement study is undertaken. The grid was refined using
the classic h-refinement technique. The results in terms of pressure contours and
velocity vectors are shown in Fig. 3. Figure 4 shows the comparison of the surface
pressure distribution, obtained employing the two grids. One can see that the effect
of grid refinement is minimal on the quality of the solution. This indicates that the
first mesh was already quite adequate.

Next, the procedure was applied to solve steady viscous flow past this configu-
ration at Mo = 0.1 and Re = 1000. The grid employed for this case consists of 7276
nodes and 14093 elements, and is shown in Fig. 5a. Results in terms of pressure
and vorticity contours and velocity vectors are shown in Fig 5b-d. Correct trend in
surface pressure distribution is observed. The vorticity contours show a tendency
for the flow to separate in the afterbody region. This solution was obtained with
local time-stepping but without sub-stepping of the viscous terms. Convergence,
defined by reduction of residuals by three orders of magnitude, was achieved in 5000
steps. Convergence acceleration for this case is currently being pursued.

J-Dimensional Flow

JInviscid Flow Past a Sphere . Moo =02

Next, the procedure was extended to 3-D and an inviscid flow past a sphere
was chosen as the test case, since axisymmetric results from the present study and
earlier results are available for this case. Figure 6a shows the comparison of the
surface pressure distribution. From this figure, it is clear that the axisymmetric
case compares very well with the potential flow solution; the agreement of the 3-
D solution is fairly good except near the two stagnation points. This discrepancy
may be due to the small artificial dissipation that was needed to stabilize the 3-D
solution procedure. Figure 6b shows the pressure contours over the surface of the
sphere.

W

The procedure was extended to solve inviscid flow past a submarine with sail
and stern appendages, at a Mach number My, = 0.2 and a pitch angle of attack
of 10°. The grid employed for this case consists of 410,162 tetrahedra and 71,524
nodes and is shown in Fig. 7a. Convergence to steady state was achieved in 800
iterations, and the results in terms of surface pressure contours is shown in Fig. 7b.
Currently, unsteady viscous simulation of flow around this configuration is being
pursued, and will be presented in the final version of the paper.
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Figure §d: Velocity Vectors in the Front Stagnation Region
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Algorithms for Improved Gating Combinatorics in Multitarget Tracking
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in Multitarget Tracking
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I. Introduction

Multitarget tracking algorithms have appeared in recent literature [1,2,3]. Reference
1 provided an analysis of the scaling of times of possible combinatorial bottlenecks,
e.g. gating, hypothesis generation, and cluster merging. Suggestions were made for
improving scaling and/or the speed of each. In this report we focus on scaling and
speed improvements of gating algorithms, whose combinatorial problem we define as
follows: given a set of N, observations and N; tracks, perform a matching algorithm
such that we identify all the observation-track pairs, whose scores fall above a certain
threshold. For a fixed object density or for a variable density that is sufficiently low ,we’
verify that the overall cost of making pairs will scale as O(N,InN;). For high density and
observation reports with unequal timestamps, we show that the overall cost of making
the pairs can be made to scale better than NglnNgN,gl/ (s 'H)), where 3 is a parameter
known as the search dimension and which will be discussed below.

In the next section we present technical terms and definitions. In section III. we describe
the problem in greater generality . We treat two cases: (1) the case with either low
object density or all observations made at the same time, and (2) the case of high density
and with observations made at different times. In section IV. we show that one can use
near neighbors search algorithms for the first case, and we discuss the derivation of a
search radius from a pair score threshold. In sections V. and V1. we show how to extend
these techniques to the second case, with the aid of an auxiliary algorithm. Scaling
analysis is then done for these combined algorithms. In sections VIL. and VIII. we give
a brief discussion and conclusions respectively.

[I. Preliminary Details

By an observation we mean a set whose items are measured simultaneously at some
specified time. We call this time the validity time of the observation or the "time-
stamp” of the observation. In our discussion and in the simulations we require that

*Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washing-
ton, D.C. 20375




the timestamps all be within a period of time called a "scan” of length T,. For the
simulation presented here, the timestamps are of uniform random distribution. A track
is an estimate that in some sense converges to the "true trajectory” as the number of
observations correctly matched to the track increases. There are 8 position components
to each track at any one time. And, similarly, among the items of an observation there
are 3 position components. When a geometrical position search is done, we use all 3
components and only these components. In particular, we do not explicitly use the
observation validation time for the searches. Also, further information may come with
observations, e.g. the location of the measurement device and the extent of its detection
volume. This additional information is not used in the techniques presented here, but
if used intelligently it could speed the searching.

We define a score for observation-track pair (i,7) as the function:

exp(dR'T;'dR)
detrj1/2

Sij(dR;;,T) (1)

where T'; is the residual covariance of the track j, and dR is the vector position difference
of the pair, and these arguments are taken to be valid at the same time.

In our simulations we use "near-neighbors-within-a-radius” algorithms - the acronym is
NRA. The two NRA’s we use in this study are: a search tree (4], which in this paper
we shall refer to as the "BLD tree”; and a modification of the Ordered Partition [5]
which we shall refer to as the "OP”. These are the algorithms of choice primarily
because of their non statistical nature, i.e. guaranteed to find the near neighbors within
a prescribed radius, but also because of their search time scaling.

II1. Problem Overview

In the subsequent discussions we assume that we cannot integrate the observations in
time. Given a set of N; tracks and a set of N, reports, there are at most NN, ascores S
which can be formed. Of these, only a fraction q of them will fall above the threshold,
and q could be as low as 1/N, or 1/N, or smaller. Ideally we would only calculate the
gN¢N, scores and not have any overhead for identifying these correct pairs. At worst
we would calculate the N, N, scores and, in addition, have significant overhead related
to this. An example of a brute force approach is the following technique: assume the
reports have different times and so for each report, integrate the equations of motion of
the tracks to update all tracks to the time on the report and to calculate N, scores. For
each report, keep those scores that are above the desired threshold. The dominant cost
of this is the O(N,N;) score calculations and integrations. There are probably many
schemes for avoiding the brute force costs. The approach we offer here is a detailed
outline of that proposed in [1] along with data obtained from simulations.

IV. Equal Timestamps or Low Density

It is convenient to divide our approach into two parts: first, how do we use the standard
NRA'’s to efficiently do the gating type of matching in the straighforward case where
the sensor reports have equal timestamps; and, second, how do we use these algorithms




for the case of unequal timestamps without acquiring an O(NN,) overhead, etc. As the
gating problem is posed, it would be useful for the solution of the first part to calculate a
search radius from a given score threshold. More specifically, in doing a search per report
Jj on a track database, we need to determine the following: given a threshold, what is the
radius squared, r?(threshold), such that all the report-track pairs which are separated
by distances larger than r2(threshold) will not have scores above the threshold. Of
course, for a one dimensional gaussian function with a fixed T, the function value is
uniformly nonincreasing as r? increases, and falls below a threshold after r2 gets larger
than some value, say r2(threshold). It can be shown that it is possible to determine
analytically an r3(threshold) that is independent of the I distribution and, furthermore,
that a useful one can be found for § > 1 dimensions [6]. With such a solution and its
obvious computational advantages, all pairs that are candidate for having scores within
a threshold are found, using NRA’s, by searching within a threshold radius.

Though the equal timestamp behavior of the near neighbors algorithm is straightforward
enough, we include Plots 1 and 2 with data from the simulation. Plot 1 verifies the
O(NilnN;) CPU expense of creating the data structure to be searched. We have done
the same simulation for two competing data structures, i.e. the OP and the BLD tree.
Plot 2 verifies the search time scaling for the unequal timestamp case with "relatively
small” difference in timestamp. Of course, any difference in timestamps will force a
search with a larger radius than the case with no timestamp difference. Therefore, we
consider this case to be an upper bound for the times and scaling of searching and
scoring with equal timestamps. It is worthwile to note the nearly ideal O(N,lnN;)
search time scaling of the BLD tree, in Plot 2, in light of the fact that Plot 2 is for
scenarios of fixed volume and both N; and N, were allowed to be as as large as 32k.
That is, some scenarios were not exactly of very low object density abd the BLD tree
still performed very well.

V. High Density Unequal Timestamps: The Problem

When the reports have unequal timestamps what are the best times to which to integrate
the tracks for making the potential pair matching? There are obvious answers if we are
not concerned at all about efficiency; and also it is obviously easy - from the efficiency
point of view - if we already know which report to pair with which track, but this
is the problem we are trying to solve. It is possible to mishandle this task so that a
combinatorial bottleneck will occur when matching. Assume we follow the textbook
procedure of making the tracks one dataset valid at the beginning or end of the scan;
and, also, that we use standard NRAs. Then the r? argument to the algorithms is not
only dependent on error bounds from a score threshold, an r2(threshold) component,
but also on bounds on positions determined by the location possibilities of the objects
due to their dynamics and to the time differences. The latter factor can be orders
of magnitude larger than the first. It is not difficult to imagine situations in which
dynamics and object density will cause the near neighbors finding algorithms to return
much of the data in the track dataset so that again we approach the O(N¢N,) scaling.
And this horrendous scaling can occur not only for the score calculations, but also, in
the neighbors finding section. This is so because the time of the NRAs’ execution is
dependent on the number of neighbors it returns, which in turn is dependent on r?, as
will be argued later. In Plot 4 we have redone Plot 2 except that the scan length is




increased by a factor of five and therefore the average search radius is also increased.
In this case neither of the two search algorithms scale as O(N,InN;). The search times
increased by a factor of about 2 and 5, for the OP and the BLD tree respectively, and
the number of near neighbors returned was increased by a factor of about 10.

V1. High Density and Unequal Timestamps : Solution Description and Analysis.

Part of the motivation for our approach lies in the following observations: (1) that
some data structures for NRAs are cheap to make - CPU wise, and (2) that by making
various copies of the track data structure - the various copies valid at different times -
a tradeoff can be made between the time spent on the creation of the data structures
and the time spent on searching and scoring. The payoff from spending more time in
creating data structures increases as the number and density increase and therefore may
reduce the scaling of overall gating. Consider the case of a large number of objects with
extremely high density and a scan length T, so that the r? argument to the NRA gives a
search volume comparable in size to the extent of the object distribution. Also, suppose
the object distribution is equally dense and random in each direction. Then, naturally,
many if not all objects will be returned as candidates by the NRA and we are near the
O(N¢N,) scaling that we want to avoid.

If we make N; track data structures with NRAs valid at N; equally spaced time intervals
within the scan of length 7,, then any report would be at most T,/(2zN;) time units
away from a track data structure (TDS). The average radius to the NRA is decreased
by the factor N; - compared to the case where we have one copy at the middle of the
scantime - and the volume extent as well as the average number of candidates returned
is smaller by (1/N;)? in the isotropic dense limit 3D case. That is, in this limit the total
number of N objects in N, spheres each of radius r; = iV,,‘.;‘,,T,/I\f,l /3 is given by

N./2N;

4r VnazT,
N=p(-§-)2N.' E; ( N:la )y 2)

where p is the track density and V4, is the speed. The sum has an exact solution as
a function of N,, but in the large N, limit we have

1 N,
N = p(47 [3)2N(VimaTo/ N )X D 3)
and for a fixed N¢, N, and T, then:

N « (1/N;)® (4)

Overall CPU time could be reduced since scoring time is directly proportional to the
number of near neighbors found as is searching time - though exactly how depends on
the particular NRA. Though our simulation is somewhat degenerate in one of the 3
space dimensions, for only 32K objects and T, = 10s, the number of near neighbors
returned decreased by an average factor of 9.8 when N; was changed from 1 to 5. Also,




for N; = 5, the number of near neighbors returned was decreased by a factor of 62.7
compared to the case of 1 TDS placed at the beginning of the scan. Plot 5 shows how
the scaling of the search time behaves for the same scenario as in Plot 4, except that
now N; = 5 for the datasets of 4K and 32K tracks. The best fit lines approach the
N1nN scaling line more closely. Also, for the same runs, Plot 5 shows that with multiple
copies the scaling for scoring was less than O(NInN), and the data shows it was almost
linear. Of course, a price was paid in creation of the multiple copies and data structures.

Was the price paid for the multiple data copies too high so that the overall cost would
still scale worse than N1nN ? Let k be the average number of near neighbors returned.
Then the total CPU cost can be modeled as

T(Ng, N, Ny, k, ) = CiN;N¢+ CoN;N:n N, + (C3.,N,-lnN¢ + CsbN,-k) + C4kN, (5)

where the terms on the right hand side of equation (5) give respectively, the cost for
integrating the tracks to the desired time of the data structures, the cost of making the
data structures (BLD tree case), the cost of searching the appropriate data structure for
each report(BLD tree case), and the cost of scoring the pairs. Of course, k is a function
of the density and the total volume searched:

k = k(p,r?). (6)

where p = p(N¢, Vol) and r2 = r3(T,, N;,T, Vinaz). In the case of constant volume - the
case we actually modeled - a fixed T,, dense and isotropic and in which I' provides a
correction to r of lower order than that determined by the dynamics, then

k o< k(Ney Ni) & No/(ND). (M

Now we can rewrite equation (5) as

T(Ny,N¢, N;) = C1NiN¢ + CaNiN¢ln N+
N, N,
CaalN,AnN; + Ca No( 5) + Car Ne(5)- (8)

The function above has a minimum, which can be verified to be

Nimin = (BN:(Cap + Co)/[(CL + CglnN‘))(l/(ﬂ-H)) (9)

and substituting equation (9) into (8) we find an upper bound on the leading scaling

term goes as O(NglnN.N,(l/ ® +1))). Of course, with random timestamps within a scan,
only in the assumed dense limit will it scale this poorly as compared to the N, In/V;
scaling of the low density case.

VII. Discussion




Not only is the value of N;, for a given N; and N,, software dependent, but it is also
dependent on the computer used. For example a vector computer with good floating
point hardware will no doubt reduce Cy over a generic computer, but because C; can be
reduced by an even larger factor since vectorization of the integration of the equations of
motion will be straightforward and possibly complete. Thus the values of the constants
will need to be "in house empirical” in every hardware/software setup.

Because only scaling data was provided, we should mention that the code currently takes
about 1 minute on a Sun 3/260 to process a case in which N; = N, = 4K. By processing
we mean the time to generate all the data and to find and score the candidates twice -
once for each NRA.

VIII. Conclusion

In this paper we have presented an efficient approach to gating in multitarget tracking. A
technique was presented to (1) handle the case of fixed object density, or sufficiently low
density, with equal or nearly equal observation timestamps, and (2) to handle the case
of high density with observation reports of unequal timestamps. For the former case we
verified that the overall cost of making observation-track pairs scale as O(N,InN;). For
the latter case we showed that the overall cost of making the pairs can be made to scale
better than NglnNng/ (B+1)) In both cases we used “near-neighbors-within-a-radius”
search algorithms, and in the latter case we introduced a new auxiliary algorithm to
achieve the stated gating.
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