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Abstract: This paper presents a general exisience and uniqueness theory for differential-algebraic equations ex-
tending the well-known ODE theory. Both local and global aspects are considered, and the definition of the in-
dex for nonlinear problems is elucidated. For the case of linear problems with constant coefficients the results
are shown to provide an aiternate treaiment equivalent to the standard approach in terms of matrix pencils.
Also, it is proved that general differentiul-algebraic equations carry a geometric content, in that they are locally
equivalent 1o ODEs on a *constraint” manifold. A simple example from particle dynamics is given to illustrate
our approach. .- a

1. Introduction AN

Differential-algebraic cquations (DAEs) are frequently identified as implicit equations
Fit.x,x')=0 (1.1)

for which the derivative x” cannot be cxpressed explicitly as a function of t and x (see e.g. [1]). In particular, if
x € R" and F maps into R", this includes the case when the partial derivative D, F (¢, x, p) of F with respect
to its third variable p is not surjective. Morc specifically, in the setting of DAEs it is natural to require the
stronger hypothesis that D, F (¢, x, p) has constant rank on the domain under consideration. Indeed, the proto-
type for such equations is given by
Fit, x)
Fi,x,p)= [Fz(r,x,p)]=o (12)

where F, and F; map into R*~ and R”, respectively, and D, F(t, x, p) has full rank, so that, indeed,

D,F(t, x, p) has constant rank r < n.

Many DAE-problems of practical intcrest do not exhibit such a convenient splitting between algebraic and
differential parts as in (1.2). Morcover, even if the cquations can be writien in the separated form (1.2), the rank

of D,Fyt, x, p) may turn out o be lcss than r so that Fy(t, x, x’) =0 is an equation containing an implicit

1) This work was supported in part by ONR-grant N-00014-90-J-1025 and NSF-grant CCR-8907654.
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algebraic part. While these comments suggest the need for a thorough investigation of DAEs in the broad setting
of (1.1), existence and uniquencss theories for these cquations have not been developed in such generality and
available results plncc_ more restriclive conditions on the form of £ (see e.g. [4], [71,[8)).

In this paper we present existence and uniqueness results for gencral problems of the form (1.1) under
some “"generic” conditions which do not assume that F has a special form. Briefly, our technique consists in
deriving a necessary condition for the existence of local solutions by differentiating the equation once followed
by an application of orthogonal projections onto the range of D, F to produce a system that again contains only
x and X', For this decomposed system a sufficient condition is then obtained that guarantees the equations to
define a local vector field to which the standard existence theory applies. The effectiveness of this conceptually
-- but not always technically -- simple approach for providing an answer to this notoriously complex problem
may be called surprising.

The sufficient condition esscntially requires that the index (see e.g.[1]) of the DAE is one. But it also
tums out that the theory can be applied recursively to equations of higher index provided that the resulting equa-
tions again satisfy the constant rank condition mentioned above. This is a requirement of a global nature not

covered by the standard index theories. In fact, it also suggests that the constant rank condition is inherent to the

definition of the index.

In Section 2 below we present the local existence and uniqueness theory sketched above. Then in Section
3 these local solutions arc extended under conditions which corresnond to those of the standard ODE theory. In
Section 4 it is proved that when DF has full rank then the set of admissible initial points forms an 7-
dimensional submanifold of R*x R”* and thc DAE is locally cquivalent to a differential equation on an r-
dimensional submanifold of R*. This also shows that the gcometric approach developed in [7] and (8] is con-
ceptually valid in gencral. Then in Section 5 we apply our results to linear equations with constant coefficients
and prove that the recursive application of the technique leads. exactly to the standard index for such linear
DAEs. Finally, Section 6 concems the generalization of this recursive application of the results to the general
nonlinear case which, as mentioned before, rcquires the additional glcbal assumption that the constant-rank con-

dition remains valid. This is illustrated on the classical example of the nonlinear pendulum.
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2. Local Existence and Uniqueness

For casc of notation, we shall consider (1.1) first in the autonomous form

Fx,x)=0 .1
where it is assumcd that
F:R"xR™” = R" is of class C? on the opcn set E: < R* x R* (2.2a)
and
rank D,F(x,p)=r <n, forall (x,p) € E. (2.2b)

Our results will show that the differcntiability assumption (2.2a) -- instead of the expected and apparently
more natural, minimal C'-regularity of F -- turns out to be important for the theory. We note also that the char-
acter of the problem changes significanly when, instead of (2.2b), D, F (x, p) is only required to be singular on
some lower dimensional sub-manifold of R*x R”* (se¢ [S]). Finally, we observe that, while the rank condition
(2.2b) may suggest a transformation of the problem to some canonical form by means of a version of the "rank
theorem” (sce [3]), it must be noled that such a reduction mixes the variables x and p. Since in (2.1) the deriva-
tive * occupies the position of the p-variable, such a reduction is not readily usable to transform (2.1) to an

explicit ordinary dilfcrential cquation.

A CZ2solution of (2 1) shall be any function
x:J ->R" ,(x(t), xX’(t))e E,fort € J, 2.3)

which is of class C? on some open interval / < R* and satisfies F (x(t), ¥ (t)) =0 for all ¢ € J. For any C?-

solution (2.3) of (2.1) we obtain by differentiation

D F(x(e), X 4Nx' (1) + D, F(x (1), X (1)x" (1) =0, t € J, @24

which provides the following necessary condition:

Lemma 2.1: If (2.2a) holds for (2.1) then for a given point (x, p) € E the two conditions

, F(x,p)=0 (2.50)

D,F(x,p)p € rge D,F(x,p) (2.5b)
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are necessary for the existence of a € *-solution (2.3) of (2.1) that passes through (x, p).

The two rclations (2.5a/b) define a subsct of possible initial points (x, p) of E. For a closer analysis of the

~
structure of this sct we introduce the orthogonal projections

P.L 5L{R", R"), Px,p)R" =rge D,Flx,p),(x,p)e E (2.6a)

Q:E->LR"R"), Qx,p)=1, -P(x,p), (x,p) € E. (2.6b)

These projections are C'-functions of (x, p). In order to see this, let (xq, po) € E be given and choose an ortho-
normal basis {e,....e,} of rge D,F (xo, po). Then there exist w; € R* such that ¢; = D, F (xo, po)w; and obvi-
ously for (x,p) ncar (xq po) the mappings 7;, W,(x,p)=D,F(x,p)w;, i = 1,.,r are of class C! and
{(Mi(x, p)....n,(x, p)} are linearly independent. Hence, since rank D,F (x, p) = r, these vectors form a basis of
rge D,F (x, p). By applying the Gram-Schmidt proccss we obtain now an orthonormal basis of the same space
and, because the process involves only analytic operations, the vectors of this basis arc again C! functions of
(x.p). But then the same holds for the projection P{x, p) as the sum of dyadic products of the basis vectors

whence also @ =17, — P is C\.

Evidently, the points (x, p) € E satisfying the neccssary conditions (2.5a/b) are the common zeros of F

I'd

and the C'-mapping
G:E-R" G&,p)=Pkx,p)F(x,p)+Qx,p)D;F(x,p)p, (x,p) € E. @n

In other words,
Ey=((x,p)e E;F(x,p)=0,G(x,p) =0} 238)

is the set of all points in E that satisfy the necessary conditions of Lemma 2.1. For later use, note that the set

(x(t), X (1)), t € ] lies in Ey (and not only in F~1(0)) for every C Zsolution of (2.1).

A major step toward transforming (2.1) locally into an explicit ordinary differential equation will be pro-

vided by the following result about the relationship between the solutions of (2.1) and those of the equation
Gx,x)=0. 2.9)

Below and in other instances, we shall use the remark that G (x, p) = 0 amounts to the fact that both terms on

the righthand side of (2.7) vanish.
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Lemma 2.2: Any C2solution (2.3) of (2.1) solves the equation (2.9), and conversely, any C2-solution (2.3) of

(2.9) for which F (x(t,), ' (£,)) = 0 for some ¢, € J is a C3-solution of (2.1).

Proof: By Lemma 2.1 any C2-solution (2.3) of (2.1) satisfics F (x(¢), x’(¢)) = 0 and (2.4) for all t € J whence,
because of QD,F =0, we scc that Q (x, ¥ )D,F (x, x')x’ = 0 on all of J. This shows that x is a C2-solution of

2.9).

Conversely, suppose that (2.3) is a C2-solution of (2.9). Then, on J the identity

%F(x, xX)=(Px,x")+Qx, XD F(x, X)X +D,F(x, x')x"]

=Px, X )D,F(x, x)x +DPF(x,x')x"]=P(x,x') % F(x,x"),

holds where we used that P + Q =1,, QD,F =0, and Q(x, x')D,F(x, ¥')x’ =0. By differentiation of the

identity Px,xX)F(x,x)=0 (sec 2.7 and 2.9) it folows that

P(x.%)%F(x.x’)=—{% P(x,x’)]F(x,x’). Hence the function E&:J = R*EW)=F&x@), X ()

satisfies the lincar system 714‘- E=A(), where A:J —)L(R"),A(l)=—[:;‘-‘- P(x,,()](t) is a continuous

function since the projection P is C' on £ and the solution x is C? on J. Hence the standard uniqueness theory
for linear systems 2 together with the condition F (x (1), x’(¢1)) = O implies that F(x(¢), ¥ (t)) = 0 for ¢ in a
neighborhood of ¢, in J. Because of the connectedness of J it follows readily that this local result holds for all

t € J. Thus x is a solution of (2.1) on J as claimed.

In order for the equation (2.9) to induce a unique vector ficld on some neighborhood of any given point
(x0, Po) € Ey, we need to guarantee that for cach x near x, there exists only one vector p near pg for which
G(x, p) = 0. Obviously, a sufficient condition for this will be that D,G (xo, po) is an isomorphism on R".

Accordingly, we define the set of admissible initial points of (1.1) in E as

E, ={(x,p)e Ey: D,G(x,p) € IsomR") ). (2.10)

2) We emphasize that continuity of A with respect to ¢ is sufficient 1o guarantee uniqueness, as a straightforward
verification confirms.
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Clearly, by the continuity of D,G, thc set E, is (relatively) open in Ey. Moreover, note that when

(x0 po) € Ex tcn, by (2.3b), there exists 2 gg € R" such that

-~ D F(xg, po)po+ DpF (x0, p0)q0=0. 2.11)
The following lemma provides a characterization of E, in terms of F and its derivatives. For a somewhat
related condition in the quasilincar case see also [2].
Lemma 2.3: For any (x,, po) € Ey we have D, G (xq, po) € Isom(R") if and only if for some go which satisfies

(2.11) the following condition holds

u € ker D,F (xo, po) and D2, F (xo, po)(po, 4)+D;,F (X0, PoXqo, 4)+D, F (xo, po)u € rge D,F (xo, pd) ¥
together imply that u =0 . (2.12)

This equivalence does not depend on the particular choice of ¢ satisfying (2.11).

Proof: Evidently, for any u € R”, we have

D,G(x,pu =Ki(x,p,u)+Kxx,p, u)

where
Kix,p,u)=D,[P(x,p) (x,p)lu =[D,P(x,plulF(x,p)
+P(x,p)D,F(x,p)u =[D,P(x,p)ulF(x,p) +D,F(x,p)u (2.13)
and
Kyox,p,u)=Dy[Q(x, p)D:F(x,p)plu. (2.14)

The condition (xq, po) € Ey implies that F (xy, po) = 0 and hence by (2.13) that

> B s

Ki(xo, po» 4) = DpF (x0, polu. 2.15)
For the evaluation of K, note that for any fixed ¢ € R" and by definition of @ it follows that
Q(x,p)DF(x,p)p =Q(x,p)D:F(x,p)p + D, F(x.p)q),

and therefore that

3) Here D2, F (xo, Po)(po. 4) means D?F (xo, po)((0:0),(0,4)) and hence po and & do not play symmetric
roles.

-
_
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Kyx,p, u)=(D,Q(x,pu)D,F(x,p)p +D,F(x,p)q)
+Qx. pIDEF (. p)p. u) + D, F (x, plu + DEF (x, p)q. u)l.

Now with any point g5 € R" for which (2.11) holds we find that

Ko(xo, pot) = Q (xo, po)DSoF (xo, po)(po, u3+DF,F (X0, po)go, D F (X0, podusl. (2.16)

Together, (2.15) and (2.16) show that K(xq, po, ¥) and Ku(xq, po, 4) are the components of the vector
D,G(xo, po)u along rge D,F(xg, po) and iis orthogonal complement, respectively. This implies that

D, G (xq, po)u =0 if and only if
Kl(Xo, Po u)= 0 and Kz(Xo, Do u) =0. (2.17)

Thus D,G (x¢, po) is an isomorphism exactly if (2.17) holds only for u = 0 which by (2.15) and (2.16) is
equivalent with (2.12). The iast part of the lemma now is a direct consequence of the fact that the invertibility

of D, G (x¢, po) is indcpendent of the choice of qq.

As an immediate corollary of Lemma 2.3 we obtain from (2.10) and the implicit function theorem the fol-

lowing result:

Lemma 2.4: For any (xg, po) € E, there exists an open neighborhood Ug x Vo < E and a unique C'-mapping

D:Up— Vg, Oxg) = po, such that (x, p) e Ugx Vgand G(x, p) =0if and only if p = ®(x).

Lemma 24 shows that for any initial point (xo, pp) € E, there exists an open neighborhood
Eg=Ugx Vg in E where the system (2.9) can be written in the explicit form x’ = ®(x). Hence the standard
theory for initial value problems ensures that, modulo translations in time, this explicit system has a unique solu-
tion x in U, through any given point of that set, and clearly this solution is of class C? since @ is C'. It follows
that for any given point of Eq the system (2.9) has a unique C? solution x such that (x, ') passes through that
point of Eo. Now Lemma 2.2 asserts that such a solution is a solution of (2.1) if and only if (x, X') passes
through some point of Ey. Thus we conclude that (2.1) has a unique C? solution for which (x, x’) passes
through any given point of Ey (™ Eq. As noted earlicr, E, is open in Ey and, clearly, for sufficiently small E,

we have Ey ™ Eo=E, M Ey. Thus, in particular, the result applies to the given point (xq, po) € E4.
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We summarize this conclusion in the following form:

Theorem 2.1: Suppose that for the problem (2.1) the conditions (2.2a/b) arc valid and choose any ¢y € R. Then,

(xo. Po) € Ey is necessary for the existence of a C2-solution of the initial value problem
F(x,x')=0, x(to) = xq, X' (to) = po - (2.19)
Moreover, if (xo, po) € E4 then there exists a unique C2-solution of (2.19).

Note that the thcorem does remain valid when 7 = 1 in (2.2b). In that case we have rge D,F(x,p)=R"
for all (x, p) € E and hence the necessary condition (xq, pg) € Ey simply is F (xg, po) = 0 while the sufficient
condition (xo, po) € E4 reduces 1o F (xq, po) =0 and ker D,F (xq, pg) = (0}. Thus we recover here the usual
situation when the implicit function thcorcm provides that (2.1) can be written locally as an explicit ODE. In
this case, it is of course sufficient that F be of class C' on E since the second derivatives of F are no longer

involved in the definition of E,.

Similarly, the extreme case r =0 in (2.2b) is rivial since then D,F(x,p) =0 for (x,p) € E; that is, F
is independent of p. Here we have (xg, po) € Ey if and only if F(xg) =0 and D.F(xo)po=0 while
(xo» Po) € E4 under the additional requirement that D, F is at x4 an isomorphism of R” to itself. But then the
equation F = 0 has x, as isolated solution and the unique solution of (2.1a/b) is x(¢) = xo. This is consistent

with the remark that if D, F (x) is an isomorphism, then D, F (xo)po = 0 only if py = 0.

We end this scction by considering the conditions (xg, po) € Ey and (xg, po) € E4 of Theorem 2.1 for

the general nonautonomous case (1.1); that is,
Fi.x,2)=0, x(to) =x0, X (tg) = pon F(tow X0 P = 0. (2.20)

We use the standard approach 10 make this problem autonomous and hence introduce the mapping

-1
H: (Rx R')X(RX Rn) - R“H ' ll((tv x)- (T' P)) = [:‘("x’p)] (2‘21)

and the corresponding initial p)oim ((to, x0)s (To, P0)), To = 1. Then, under the required smoothness assumptions

the condition (2.5b) for H, written in terms of F, assumes the form

D,F°+ D,F°yg € rge D,F° Q22




while the condiurt)? (2.12) becomes

for go € R" such that D,F°+D,F°po+DpF°qo =0,
u € ker D,F°and
D2 F%+ D} F po, w)+D},F%(qo, u)+DFu € rge D,F° (2.23)
together imply that u =0 .
In (2.22) and (2.23) the superscript O indicates that the particular function is to be evaluated at (¢g, xg, po). Note

also that in (2.22) and (2.23) we explicitly used To =1 and that the condition (2.23) is independent of the

specific choice of gq.

3. Global Behavior of the Solutions

In order to determine the global behavior of the local solutions of the initial value problem (2.19) suppose
again that the conditions (2.2a/b) hold. Then Theorem 2.1 guarantees the existence of a unique C2-solution (2.3)
x for which (x, x") passes through any given point of E, . For any such solution and any Y € J we introduce the
sets Ty, ={p e R p=x(t), ySt <b} and Ty = [peR*p=x(t), a<tsy}. Then the following

extendability result holds:

Theorem 3.1: Assume that for the problem (2.1) the conditions (2.2a/b) hold and that E, = Ey. Then the follow-

ing statements arc valid:

(i) If the set Ty, [or T, ] is bounded for some y € J, then lim,_,,. x(t) = x, [or lim;_.4 x(¢t) = x,] exists.

(i) If lim,,. x(¢) = x, foriim,_,. x (1) = x,] exists and for some sequence {f} € J with limy_5 = b [or
limy_.t; = a) the sequence (x'(s,)} has an accumulation point p* for which (x,,p*)€e E [or
(x,, p*) € E] then lim, _,_ X' (¢t) = p* [or lim,_,. X (¢) =p*] and for b < e [or @ > —os) the solution x
can be continued to the right of b [or to the left of a7.

Proof: We present the proof only for the right endpoint b, for the other one it proceeds analogously. Suppose

first that T, is bounded for some vy € J and hence that I (¢l <M < oo fort € Jy=[Y, b). Since

!
Me) - x(sM s | [ W (@)ldtl SM le-s|, forall s, ¢ € Jy
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we see that for any sequence {1} < J, with lim,‘_y.e-;—ab the sequence {x(;)} is a Cauchy sequence, and
moreover that its limit is indcpendent of the particular choice of {#}. This proves the existence of the limit
point x; .

Now assume that lim,_,. x(t) = x, exists and that for some sequence {7} < J with lim;_, .t; = b the
sequence (x'(¢;)} has an accumulation point p* for which (x,,p*) € E. Then there is a sub-sequence
(s} © () for which lim,_.s, = b as well as lim,_.x"(s,) = p*, and, because of F(x(s;), X (5;)) = 0 and
(xp, p*) € E, we also have F(x,, p*) =0. As in the previous section, for all (x, p) near (x,, p*) let Q(x, p)
be the orthogonal projection onto [rge D, F(x, p)} . Recall that Q is continuous (even C'‘). Hence, from
D F (x(sy), X' (5: )% (5) € rge D, F (x(s), X' (5¢)) (see Lemma 2.1) it follows that Q (x(s;), X (5¢))D, F (x(5y),
X (5:))X (s¢) = 0 for all k& and therelore, in the limit, that Q (x,, p*)D,F (x,, p*)p* = 0. In other words, p* is a

solution of the sysicm
Fxy,p)=0,D.F(xy,p)p € rge D,F(xy,p). (32)

Since (x,, p*) € E it follows that (x,,p*) e Ey = E, and thus, by Lemma 2.3, that the solution p = p* of
(3.2) is isolated. In other words, there cxists a ball Bg < R* centered at p* with radius & > 0 such that

(xy,p) € E, forall p € By, and that B contains no solution p of (3.2) other than p*.

Consider now any sequence {t;} € J with lim, .1, = b. We show first that x’ (1,) must have an accu-
mulation point. Suppose that this is not true, so that lim, _._llx" (1, )ll = oo, Because of lim;_,..x" (s;) = p* it there-

fore follows that for some sufficiently large kg
I’ (ti) — X (s )l 2 &2, for k 2 ko. (33)

By continuity and the intermediate value thcorem there exists in each interval [infit,, 5;), sup (Ts, Si)] a value
P such that lix’(p,) — X’ (s Wl = &2. Then, X’ (p,) is bounded and upon extracting a subsequence, we obtain an
accumulation point p® of x’(p,), which, of course, satisfies llp? — p* Il = &2. But this means that p? € Bg and
p®? #p* which is a contradiction because (x,, pP) € E, lim,_.px =b and hence pP is a solution of (3.2).
Therefore x’(t,) must have an accumulation point. Suppose there exists such an accumulation point p** which
is distinct from p*. If (x,, p**) € E then, as before, p** must solve (3.2) and hence cannot be in B;. On the

other hand, if (x,, p**) docs not beiong to £ then necessarily, p** cannot be in By either, There is some sub-

—
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sequence, to be denoted again by (7.}, which converges to b and for which lim,_.. X' (1) = p**. As p** is
not in Bg, the rclation (3.3) must be valid for sufficicntly large k¢ which, of course, leads once more to a con-
tradiction. Thus, altogether, we have found that p* is the unique accumulation point of the sequence (X (1))

for any sequence {t,} € J such that lim,_,.. T, = b. This proves that lim,_,,_ x"(¢) = p*.

Since p* solves (3.2) we have (x,, p*) € Ey and, by hypothesis, Ey = E,. Hence, for b <o we can
apply Theorem 2.1 at (xq, po) = (x,, p*) with to = b. Thus there exists some neighborhood £4 < E of (x,, p*)
and some open interval / containing b where the C2-solution y: I — R" y(b) =x,, y' (b) = p*, of (2.1a) is
the only solution of an explicit system y = @(y), x(b) = x,, with some C'-function ® on E, for which
&(x,) =p*. By the standard uniquencss thcorem it follows that any “one-sided” C!-solution
E:(b—e bl > R* with G(),8'()) e Eq,b —e<t <b, of this explicit problem necessarily has to agree
with the unique C?solution y of the problem on thcir common interval of definition. But because of
lim,_,_x(t) = x5, and lim,_,_x’ (t) = p* our given solution x is such a onc-sided C'-solution and hence
agrees with y on their common domain. This shows that the original solution indced can be continued beyond

the right endpoint b of J and the proof is complete.

The result' implies that any local CZ%solution of (2.1a) can be extended to some open interval

J =(a*, b*), b* £ oo, a* 2 —o, which is maximal under set inclusion.

Now consider Theorem 3.1 in the case E = R*x R". If lim,_,,_ x(¢) = x, exists, then any accumulation
point p of x(¢) as ¢ — b— in R” necessarily satisfies (x,, p) € £ and we have lim,_,_ x' (¢t) = p. Clearly, if
Ty is bounded then there must be such an accumulation point; in other words, for bounded T, both limits
lim, _,- x(¢) and lim,_,,_ X’ (¢) always exist and thc solution can be extended. Suppose now that b = b* < e
which implies that the solution cannot bc extended. Then T, must be unbounded. Moreover, if
lim, ,,_x(t) =x, exists then x’(t) cannot have an accumulation point as ¢ — b- which means that
lim, _,. I’ (¢)I = oo. The analogous result holds at a* and altogether we have the following corollary of

Theorem 3.1.

Theorem 3.2: Assume that the mapping F of (2.1a) satisfies the conditions (2.2a/b) and (3.1) on £ = R*"x R"
and let x: Jo R*, (x(t), ¥ (1)) € E fort € J, be any C2solution of (2.1a) where J = (a*, b*) is a maximal

interval. If b* <o then the sct T, is unbounded for some, and hence all, y€ J, and, in particular, if
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lim, e _ x(¢) exists then lim,_e_ Ie’ ()il = eo. Correspondingly, for a* > —o the set T is unbounded and, in

particular, if lim, _z.. x (1) cxists then lim, e, lx” (£l = oo,

4. The Structure of the Set of Admissible Initial Points

In this scction we analyze the sutucturc of the set £, of admissible initial points of (2.1) in E as well as
that of its projection onto the x-space. For this, we assume that, in addition to the properties (2.2a/b) the map-

ping F satisfies
rank DF(x,p)=n, forall (x,p) € E; @.1)

that is, that the equations (2.1) arc indcpendent.

We prove first the following prcliminary lemma:
Lemma 4.1: Suppose that F satisfies the conditons (2.2a/b) and (4.1). Then the mapping QF: E — R" has at
any point (x, p) € F~(0) the partial derivatives
D, (QF)x,p)=Q(x,p)D,F(x,p), D,(QF)x,p)=0. @.2)

Moreover, the linear map Q (x, p)D,F (x, p) € L(R") has constant rank n~r on all of F =0).

Proof: Let (x, p) € F~'(0). For any 4 € R" we have
D,(Q(x,p)F (x,p)lu = [D,Q(x, pJulF (x,p+Q(x, p)D:F (x, p)u

which implies the fiest part of (4.2) while, because of @D, F = 0, the second part is a consequence of
D,[(Q(x, p)F(x,p)lu = [D,Q(x, p)ulF (x, prQ(x, p)D,F (x, p)u.

By (4.2) we see that Q(x,p)D.F(x,p)=Q(x,p)DF(x,p) and, because DF(x,p) has full rank, that

rank Q(x,p)DF(x,p)=rank Q(x, p) = n-r. This proves the Eccond part of the assertion.

With this we obtain now the following result about the structure of E,:

Theorem 4.1: Suppose that F satisfies the conditions (2.2a/b) and (4.1). Then the set E,  E of admissible ini-

tial points of (2.1) is an r -dimensional C'-sub-manifold of R* x R*.
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Proof: Let (xq, po) € E4, so that F(xo, po) = G (xo, pg) = 0 and D,G (xo, po) € Isom(R"™). Since the condition
D,G(x,p) e Isom(R™) is fulfilled by all poinis (x, p) € E ncar (xo, po), the points of E, in the vicinity of
(x0, po) are characterized by the sole conditions F(x, p) = G(x, p) = 0. Actually, this system may be replaced
by

G*(x,p) = (Qxo, po)f (x,p) . G(x,p)=0.

Indeed, it is obvious that G*(x,p)=0 whenever F(x,p)=G(x,p)=0. Conversely, suppose that
G*(x,p)=0, so that Q(xg, po)F(x,p)=0, G(x,p)=0. The latter relation implies in particular that
P(x,p)F(x,p)=0, which, together with Q(x,po)F(x,p)=0 yields F(x,p)=0 because
rge Q(x,p)=1[rge D,F(x, p)} and rge P(xq, po) =rge D,F (xq, po) remain complementary for (x, p) close
enough to (xo, po) (by constancy of rank D, F and continuity of P and Q on E; see Section 2).

Identifying rge Q(xo, po) = R"™", we sce that the mapping G* maps a neighborhood of (x4, po) in

R"x R" into the fixed space R*x R", and with F (xo, pg) = 0 and QD,F =0, that

. Q(x0, pOIDLF (x0, Po) 0
DG* (0. £0) = |, G (xo, po) D,G(x0. P0)] “3)

Recalling that D,G (x, po) € Isom(R") and from Lemma 4.1 with (x,p)= (xo, po), We conclude that
D, G* (xo, po) maps onto R*™"x R". The implicit function theorem now ensures that (G*)~'(0), and hence E,
is a r-dimensional C'! sub-manifold of R"x R" in the vicinity of (xo, po). This completes the proof since

(x¢, po) was an arbitrary point of E, .

Let IT: R"X R" — R" be the projection onto the first factor and let (xo, po) € E,. It follows from the
proof of Theorem 4.1 that the tangent space T, , »Ea may be identified with the null-space of the mapping
DG* (xq, po) in (4.3). Thus, for given (1, q) € T(,V,&EA. once has I1(4, ¢) = u and hence Il(u, ¢) =0 if and
only if (¥, ¢) = (0, 0). This means that the restriction of IT to the manifold £, is an immersion at (xq, po). It
follows that therc is an open neighborhood Ny of (xg, po) in E4 such that My = II(N,) is an r-dimensional C!
sub-manifold of R” and I1:No— M, is a C!-diffecomorphism. We are now in a position to prove that,

locally, the DAE (2.1) is cquivalent to an explicit ODE on the manifold M,

Theorem 4.2: There is a neighborhood Eq=Uyx Vo< R*XR* of (xo,po) € Ex and a C' vector, field
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Q:Ug\ Mg R, Oxq) = po, with O(x) € T,Mq, for x € Ug ( Mo, such that x :J - R* is a C*-
solution of F(x.x')=0 satsfying (x(t),x’(1))e Eq. for teJ, if and only if x(t)e Uo ™ Mo,
X@)=D()), for ull t € J.
Proof: Lemma 2.4 has alrcady cswblished cxistence of a ncighborhood Eg= Ugx Vy and C‘-mapping
®: Uy R*, Oxq) = po. such that (x, p) e Eqand G(x,p)=0if and only if x € Ugand p = &(x). More-
over, it was also shown that x: J — R” is a C? solution of (2.1) satisfying (x(¢), x"(t)) € Eq if and only if
x()e Uy X (1) =0(x(¢t)), for all ¢+ € J, and (x, x’) passes through one point of Ey (so that, in fact, (x, x’)
lies entirely in Ey).

Clearly, the neighborhood E¢ = Uy X V can be shrunk to arbitrarily small size with no prejudice to the
mentioned properties. One may then assume that Nog = Eo ™ E4 = Eg () Ex in the discussion preceding the

theorem. In this case, Mo =ITI(Ng) < Ugso that Uy (y Mo =M,.

Since the curve (x, x’) lies in Ey whenever x is a C2-solution of F (x, x’) = 0, it follows that x(¢) € M,
as soon as (x(t), x’(t)) € Eo. To prove the theorem, it suffices to show that

(a) x € M, implics (x, D(x)) € Ny,

(b) x € My implies d(x) € T,Myc R".

If (b) is assumed to hold then, (a) is needed to show that for any (automatically C2) solution x: J — M,
to x’ = &(x) the curve (x, x) lics in Ny < Ey and hence is a C%-solution of (2.1). But (a) holds since every
x € Mg has the form x =I(x, p) with (x, p) € Ny c E,, whence p = O(x).

To prove (b), we shall use a characterization of the points of Ny that is slightly different from that
involved in the proof of Theorem 4.1: Note that (x,p) € N, if and only if Q(x,p)F(x,p)=0 and
Gx,p)=0 since P(x,p)F(x.p)=0 s alrecady ensured by the second relation and since
D,G(x,p) € Isom(R"™) is guaranteed by the hypothesis Eq (™ Ey = Eq () E4 (=Nq). Since (x,p) € Eq, we
see that G (x, p) = 0 is equivalent with x € Uy and p = ®(x) and hence (x, p) € N, if and only if x € Ug and

H(x) = 0 where we have set

1{x) = Q(x, ®(x))F (x, ¥x)) ,x € Up.

Using (a), one finds at once that My = //7}(0). In turn, this shows that for x € M, the space T, M, identifies

i




|
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with ker DH (x). Because of //(x) =0 we have (x, d(x)) € Ny c Ey < F}(0) and, with the help of Lemma

4.1, an elementary calculation yiclds
DH(x)u = Q(x, (x))D, F (x, d(x))u ,

for u € R", Leuing u = Ox), we find that O(x) € ker DH(x) =T, M, because

Q(x, x)D.F (x, O(x))P(x) = 0 follows from G (x, ®(x)) = 0. This completes the proof of Theorem 4.2.

Remark: In the proof of Theorem 4.1, the projection Q (xo, po) cannot be replaced by Q (x, p), for rge Q(x, p)
varies with (x, p) and the rcsulting mapping G* must be viewed as taking its values in R*x R”* instead of
R*7x R", and the implicit function thcorem cannot be uscd. Neither can the rank theorem be applied since
there is no guaranice that rank DG*(x, p) = 2n—r for (x, p) near (xq, po) but not on E,. On the other hand,
Q (x0. po) cannot be substituted for Q(x, p) in the proof of Thcorem 4.2, for it would become impossible to

take advantage of Lemma 4.1 with (x, p) # (x¢, Po)-

As in [7] the local result in Theorem 4.2 may be globalized to some extent by applying the theory of cov-
ering spaces. We skeich only briefly the general approach. Clearly, the local result shows that the restriction
M, =aTIIE, is a local homcomorphism between E, and IT,E,. Let E; be some non-empty, arc-connected sub-
set of E, for which (E., I15), I1 = ITIE,, is a covering space of I1E,. In other words, each point x € TIE, is
assumed to have an open, arc-connected neighborhood U such that each arc-component of (TI;)~(U) is not
empty and is mapped topologically onto U by IT4. Often it turns out that E, = E, can be used. This is certainly
the case when, for fixed x € I1E, there are only finitely many p such that (x, p) € E,. In general, it is always
possible to choose E, as the closure of a non-cmpty, pre-compact, (relatively) open, and arc-conr;ected submani-

fold of E,4 .

For any given (xo, po) € E4 let now M be a non-empty, (relatively) open, simply connected subset of
I1E, that contains xo. For any x € M choose a path § : / — M which connects xo with x. Then there exists a
unique lifting &°: J — E, with initial point (xo, po) for which [T,&* = &. This lifted path has a unique endpoint
(x,p) in E, since all paths in M betwecen xq and x are homotopic. Since x was arbitrary in M our above local
result can now be used (o prove that M indeed is an r-submanifold of R* and that the DAE (2.1) induces a

tangential vector ficld on M for which all integral curves in M are solutions of (2.1).
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5. The Linear Case With Constant Coefficients
In this scction we apply our results 10 a non-autonomous lincar problem with constant coefficients
Ax +Bx = f, .1
where f = f (¢) is assumcd to be as smooth as necessary and
A, Be LR" R*), rank A =r<n . (52)
These linear problems probably represent the most extensively studied DAEs in the literature, (see [1],[4]).
For (5.1) the nccessary condition (2.22) becomes
Bx - f erge A (5.3)
while the sufficient condition (2.23) has the form

Au =0 and Bu € rge A imply u =0. 54

It is well-known (see ¢.g. [1]) that (5.1) is uniquely solvable for compatible initial data if and only if the
matrix pencil (A, B) is regular; that is, cxactly if there is some A € R such that B + A4 is invertible. A central
concept in the solvability theory of (5.1) is the index of regular pencils. For regular (A, B) choose any A for

which B + AA is invertible. Then, the index is the smallest integer x (S n) such that
ker (B + M) AT = ker (B + M)A (5.5

It can be shown that x is independent of the choice of A (see [4, App. A)), and it is also readily checked that

x = 0 if and only of A is invertible.

In order to relate our theory to this index-concept, let P € L(R"™) be the orthogonal projection onto
rge A and Q =/, - P. As in Section 2 our first step is 10 differentiate the DAE (5.1) and then to multiply the
resulting equation Ax” + Bx” = f* by Q in order to remove again the second derivative of x. Together with the

projection of the original equation onto rge A this produces the system
PAX +PBx =Pf, QBx =Qf . (5.6)

Since P and Q map onto complementary spaces the two equations (5.6) can be added which results in the
reduced DAE
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Alx' +BIX =f1 (5.73)
where, becausc of PA = A,
A1=PA+QB=A+QB,BI=PB, f1=Pf+Qf'. (5.7b)

In Section 2, (5.7a/b) corresponds to (the non-autonomous version of) (2.9) and thus the results of that section
can be applied. We concentrate here only on the effect of the sufficient condition (5.4). Even without recourse to
the earlier theory, it is readily checked that (5.4) is equivalent with A, € /som(R") and, hence, that when (5.4)

holds then (5.7a/b) can be transformed into an explicit ODE.

Suppose therefore that Ay is singular. Then we may apply the same procedure repeatedly as many times as

necessary, 10 obtain a scquence of DAEs of the form
A;x +Bix =f, (5.8a)
where A;, B, f, are specificd recursively by Ag=A,Bo=8, fo=f and
Aj,=PA; +QB;, Bjan=PB;, fiu=P;f; +Q;f;, (5.8b)

and P; is the orthogonal projection onto rge A; and Q; =/, — P;. The process stops with the smallest integer k
such that A,,, is invertible; that is when the sufficient condition (5.4) holds for A, and B,. Explicitly, this condi-

tion has the form
Aug= 0 and B,‘uo € rge Ag unply uo=0. (5.9)
In terms of the original matrices A and B of (5.1) the condition (5.9) tums out to be equivalent with the
condition
Aug =0, Bu; = Auj,, j=0,1,..., k, implies ug=0. (5.10)
The proof will follow by repcated application of the following result where, for ease of notation, the matrices
A, B now stand for any A,, B;:
Lemma 5.1: Let A, B be any nxn matrices and, with the orthogonal projections P and Q = /,-P onto rge A
and (rge A)-, respectively, set A, =PA + QB =A + 0B, B, =PB. Then, for any k 2 1 the equations

Aug =0, Bu; = Aujy, j=0...., k (5.11)
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have a solution g, ...,4¢,; if and only if uy, ....u, solve the cquations

Awo=0, Biu; =Au,,, j=0...., k-1. 5.12)
In particular, if for all solutions of (5.11) we have ug = 0, then the same must hold for all solutions of (5.12).
Proof: Suppose that ug, ..Mk, solve (5.11). Since QA = 0, multiplication of Buj = Auj,1 by Q shows that
Q@Bu; =0 for j = 0,..k. Hence, for j =0,....k-1 we obtain

Buj = PBu; = PAuj,; = PAuj, + QBujy = Ay
and, since Aug =0,
Aug=PAug+ QBugy= PAug=0,

so that ug, ...,4; solve (5.12).

Conversely, assume that the vectors ug, ....4;, solve (5.12). In terms of A, B the equations (5.12) assume

the form

Auo + QBuo =0 (5.138)

PB“/ =Auj*l + QBujﬂ,j = 0,..., k-1 (5.l3b)

where we used that A; = A + QB. Since Q maps onto a complement of rge A, both terms on the left of (5.13a)
have to be zero; that is, we have Aug =0, and QBu, = 0. By multiplication of (5.13b) with Q it follows that

QBu,,; = 0 and hence altogether that
Buj,l = PB“j+l' j = 0,-.., k-1. (5.14)

Now, by multiplying (5.13b) with P and using (5.14), we obtain Bu; = PBu; = PAu;,, = Au;,, for
Jj=0,..,k~1. On the other hand, (5.14) for j = k-1 shows that Bu, € rge P =rge A and thus that

Bu, = Au,,, for some vector u,,;. This completes the proof.

For the proof of the equivalence of (5.9) and (5.10) we begin by applying Lemma 5.1 to (5.9) which
corresponds o (5.12) for A = A,_;, B = B,_;. Hence, we conclude that the validity of (5.9) is equivalent with
the condition that

Ao =0, Byjug = Ap\uy, Baoyit) = Ap_quy (5.15)
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implies uo = 0. Evidently (5.15) is (5.12) for A = A;;, B = B,_; and thus the lemma can be applied again. In
other words, by repeating the process we arrive after k-1 applications of Lemma 5.1 at the condition (5.10)

which then completcs the proof of the cquivalence of (5.9) and (5.10).
As before, let now &k be the smallest integer for which (5.9) holds; that is, for which A,y is invertible. If
no such integer exists we set k = oo. Then for k < oo the system
A X + Brux = fra, x(to) = x9
has a unique solution which, from our theory, is a solution to (5.1) if and only if A;po+ B;xg=f;(to).
Jj =0, -k, where py is characterized by Ay, po + BreiXo = fee1(to)-

This solvability result raises, of course, the question how our condition (5.9) (or (5.10)) relate to the regu-

larity and the index x of the matrix pencil (A, B). This is answered as follows:

Theorem 5.1: 1f the matrix pencil (A4, B) is regular and rank A < n (so that x 2 1) then & = x—~1 and hence

k < e, Conversely, if k < oo then (A, B) is rcgular and hence k = x-1 if rank A < n.
Proof: Let (A, B) be regular and choose A such that C = B + AA is invertible. Then the index x is defined as
the smallest integer for which (5.5) holds. Let u, be any vector for which

(C'AY*ue=0 (5.16)

and set u; = C~'Au;, = (CT'A)Vuy, j = -1...0. Since (5.16) implies that A(C™'A)u, =0 it follows that

Aug = 0. Hence altogether we have the equations

Auo = 0, Cllj = Au,+,,j = 0.....'("1, (5.17)
and, conversely, (5.16) holds whenever uy, - - - , &, solves (5.17). Now, by (5.6), the condition (5.16) implies
that ug = (C™'A)ux = 0 for every solution ug, - - - , ux of (5.17). This implication is not true when x is

replaced by any smaller integer as is easily seen when taking ! < x and choosing u; € ker C'*! not in ker C':
In fact, the family u; =C~'Au;y, j=1I-1, -+ ,0 obviously satisfies Auo=0, Cu; =Au;.,,
j=0, -+ ,l-1,but uo # 0 since u is not in ker (CT'A).

Thus, at this siage, we know that x is the smallest integer for which existence of the solution

oy * - . UxOf (5.17) implies that ug = 0. Given arbitrary vectors uq, - , 4, in R*, define
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izt |j-1 _ ,
V0=u0; ] =Z l (—.k)‘u}'-i 7j=1’ e L, K. (5.18)
i=0
With C =B + A4, a straightforward induction argument now shows that if u,, - - - , u, solve (5.17),
then
AV0=0,BVI=AVI‘+1,]=O, < k=1, (5.19)
Conversely, if vg, + - , v, solve (5.19), then the relation (5.18) may be inverted to produce a solution
Wg, -, U of (5.17). In fact, we have
=1
u0=v0,u,-=z i )\.‘Vj_“.j=1,"‘.K.
i=0
It then clearly follows that x is the smallest integer for which existence of a solution vg, - -+ , v, of (5.19)

implies that vy = 0, whence k£ = x—1 by definiton of &.

Conversely, suppose now that k& < e, Then, our theory ensures that (5.1) has at most one C2-solution for

each prescribed initial condition. In particular, this holds for the homogeneous problem
Ax" +Bx =0, x(tg) =0. (5.20)

But then the pencil (A, B) must be regular because, otherwise, the system (5.20) has infinitely many C*-

solutions (see e.g. [4]).

The case x = 1 was noted already in [4], but the general result appears to be new.

6. Nonlinear Problems with Higher Index

As shown in the previous section, for the linear problems (5.1) the sufficient condition (2.23) is equivalent
with the statement that the pencil (A, B) is rcgular with index one. The discussion in that section suggests that

we may proceed analogously when, for the general (autonomous) problem
F(x,x')=0, 6.1)

the condition (2.12) does not hold but F is of class C™, m 2 3.
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The first step in the construction of a sequence of problems corresponding to (5.9a/b) was already done in
Section 2 when F was only C2 In fact, we diffcrentiated (6.1) and then applied the projections P and Q to

obtain the new problem (2.9); that is,
Gx,xX')=Pu,xF(x,x)+Qx, x D, Fx,xX)x =0. 6.2)

Our sufficient condition (2.12) is exactly that D,G(x,p) is invertible at the given point
(xo» Po) € F'(0) (N G7'(0), and hence that, by the implicit function theorem, (6.2) can be transformed locally

into an explicit ODE.

If this sufficient condition docs not hold, then, as in Scction S, it would now be natural to set FOu F,

F! = G and, to construct rccursively the sequence of mappings
F'*(x,p)=P;(x,p)F/ (x,p) + Q;(x, p)D,Fi(x,p),j =0,1, - - (6.3)

where P; again is the orthogonal projection onto rge D, F / and Q; =1, - P,. Formally, the process is repeated
until the sufficient condition (2.12) is satisfied for F*; that is, until D, F**!(x, p) is invertible at the point under

consideration.

As before, one might consider calling the intcger k+1 the local index of the problem at the particular
point. However, the situation differs here in a critical way. Indeed, the very definition of the iterate F/*!
assumes some smoothness of its predccessor F/ and of the projections P; and Q;. But P; and Q; cannot even
be continuous at (xo, po) unless rank D,F’ (x, p) is locally constant near (x4, po) (in general, continuity of a
parametrized family in L (R*) does not require constancy of the rank, but it does for projections). The validity
of such a condition for j =0, - -+ , k is then a necessary prerequisite to iterating the procedure as outlined
above. This is not a restriction in the lincar case with constant cocfficients of the previous section because each

F/ involves matrices independent of (x, p).

Conversely, it is easily seen that the constant rank condition near (xo, po) implies that only one degree of
regularity is lost when passing from F/ 1 F/*!, and hence that F € C™, m 2 k+2, suffices to ensure that F**!
is C'. It thus appears that aside from sufficient smoothncss, the constant rank condition near (xo, Do) is the cru-
cial ingredient needed for the definition of a local index. Clearly, in general, local constancy of the rank cannot

be captured by a finite list of requirements about F and its derivatives at the point (xo, po) alone: even locally,




it is a condition of a global nature.

Now, consider a problem with local index k+1 ncar (xq, po). If so, a C2-solution to (6.1) may pass
through (xo, po) only if F/(xo, po) =0, =0, - -+ , k+1. As D,F**'(xo, po) € Isom (R*) by hypothesis, the
problem F**'(x, x’) = 0, x(t¢) = xo. ¥ (to) = po, may be made into an explicit ODE for which the solution, is
necessarily C2if F € C™, m = k+2, and is readily seen to solve F/(x,x’)=0, j =k, --- ,0, by recursive
application of Lemma 2.2. In sharp contrast, nonexistence of a local index because of failure of the constant
rank condition for some iterate F/ leads to a singular ODE for which the existence (and uniqueness) theory

should be expected to be considerably different from standard explicit ODE theory in view of the results in [5].

In the hypothesis of the existence of a global index; that is, of the same local index k+1 near each point
of the domain of definition E of I, the global results of Scction 3, corresponding to the case k = 0, remain
valid since any solution of (6.1) is one of F k(x,x") =0, a problem of global index 1. Finally, it should be
mentioned that problems of arbitrary index k+1 also reduce (locally) to explicit ODE’s on manifolds, at least
under mild additional assumptions such as surjcctivity of the total derivatives DF ix,p)j=0, -+ ,k. The
effect of a higher index is merely to shrink the dimension of the underlying manifold: In fact, with r = rank
D,F(x,p). rj = rank D,Fi(x,p), j =1, --+ ,k, we can show that the relevant manifold has dimension
ry + -+ ry+r —kn (compare with Section 4 when k = 0). Since this dimension must be nonnegative and
r.ry, **° ,r S n-l1, one infers that, generically, the index k+1 cannot exceed n. In the linear case with con-
stant coefficients, this result follows from Theorem 5.1 and x < n. This example (via the results in [4]) also
shows that the exisience and uniqueness thcory for problems where the iterates F/ are defined beyond j = n
may differ significantly from standard ODE theory. A somewhat formal definition of the index in temis of man-

ifolds and related in its spirit to the above remarks is given in (6].

As an example when the constant-rank condition remains valid for the iterated maps F/ we consider here
the classical pendulum problem. A pendulum with mass m attached at the end of a rigid massless wire with

length [ attached at the origin in the plane (x,, x,) satisfies the second-order DAE

xt +x} =12,
miy =-Ax,, 6.4)

mJ'c'2=-b¢2-mg ,
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where A is the (unknown) tension of the wire and g is the gravity constant.

In order to reduce the problem to a first ordes DAE we inroduce the new variables x; = %, and x4 = %,
and write x5=MAm. Then, the problem assumes the form (6.1) with x =(x;, **- ,xs) € RS,

p=@, - .ps)e R3and

[, 2 2 _2)
xf +x5 -1

Dy~ X3
F{x,p)= |p2— x4 . 6.5)
Pyt X1Xs

P4+ XoXs + & |

Evidently, if e,,...es denote the standard basis vectors of RS then rge D,F(x, p)=span (e;, ] =2..5}.
Hence the conditions (2.2a/b) arc satisfied and the orthogonal projections P, Q onto rge D, F(x, p) and its
complement, respectively, are independent of (x, p). A straightforward calculation shows that the mapping
F!' = G of (6.2) has thc form

’2-"11’1 + 7—*2}’21
P11~ X3

Fl(x,p)= |p2= x4 . (6.6)
Pat XX

Pat Xpks+ 8 |

It is easily checked that D,F!(x, p) has the constant rank 4 and hence is not invertible. In other words, the
sufficient condition (2.12) does not hold for the pendulum problem. But since F! does indeed satisfy again the
constant rank condition, we may proceed.

With z(x) = (1, =2x;, —2x3, 0, 0)" the orthogonal projection onto (rge D,F'(x,p)} is the rank-one

matrix Q,(x) = 2(x)z(x)7/z(x)Tz(x). Since with Q also P, =I5 - Q depends only on x it follows that
D,FXx,pu = P\(x)D,F'(x, p)u + Q1(x)D, [D,F'(x, p)plu . 6.7

Thus we have u € ker D,F%x,p) if and only if both terms on the right side of (6.7) are zero. Since
P\D,F'=D,F' it follows that dim ker D,F*x,p) < dim ker D,F'(x,p)=1. Now a short calculation

shows that D, F¥(x, p)es = 0 and therefore that rank D,F*(x, p) = 4.

In order to check whether the sufficicnt condition (2.12) holds for F? that is, whether D,F’(x. p) maps
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onto RS let u=oes € ker D,F%(x, p). Then DX,F' =0, and
D, ,[D:F'(x,p)p)u, q) = (4q,u; + 49243, 0,0,0,0)" from the explicit calculation of D,F'(x, p)p whence,
because of ker D,F*(x,p)=span (es}) we have D2, F%x,p)(q,es)=0. Since Q,(x)es=0, we have
DQ\(x)es =0 and DP(x)es = -DQ (x)es = 0. Morcover, onc also finds @1(x)D, , (D,F(x, p)pi(p. €s) = 0.

Thus altogether,
DZ,F*x,p)p.u)=P(x)D2F'(x. p)pu)=0,

because D2, Fl(x,p)p,es)=0 as a result of D,F'(x,ples=0. Similarly, we have
D.F¥x,pu = P (x)D.F'(x, p)u = D,F'(x, p)u because D,F'(x, ples=(0,0,0, x;, xo)T =v(x) and hence
Q1(x)v(x) =0.

Thus in this case the sufficient condiion (2.12) for F? simply requires that when
av(x) € rge D, F %(x,p) then o =0. Since the two terms on the right of (6.7) are complementary and
Q(x)v(x) = 0 this means that the equations DPF‘(x. p)q = av(x)and Q(x)D, [D,F'(x, p)plq =0 only have
a solution ¢ when o = 0. In fact, the first of these equations amounts to ¢, = g, =0, g3 = ox;, and ¢4 = 0x,,

while from the second equations it follows that g3 = g4 = 0. Hence, for (xy, x3) # (0, 0) we indeed have a =0

as desired.

Because F' and F? satisfy the constant-rank condition, the existence and uniqueness results apply for
every initial condition (xo, pg) € R’ satisfying F/(xo, po) =0, j =0, - , 3 since (xo1, x¢p) # (0, 0) from
F(x0, po) = 0 (see (6.5)). Moreover, here we may indeed say that the problem has global index three since the

condition (x;, x5) # (0, 0) is not a restriction along and hence ncar the solutions of (6.4).
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